Seminario de Análisis y Aplicaciones UAM-ICMAT 2019
13 de Diciembre de 2019, 11:30 : Módulo 17, Aula 520, Depto. Matemáticas UAM
Natalia Accomazzo Scotti, Universidad del País Vasco - Euskal Herriko Unibertsitatea
Maximal directional singular integrals.PDF,
Maximal directional singular integrals are defined by considering a one dimensional singular
integral operator acting along a line in the Euclidean space, and then studying the maximal
value as the line changes through a set of directions. Unlike the case of maximal directional
averages, when considering singular integrals we are forced to admit only finite sets of
directions in order to get \(L^p\) boundedness. In this talk we will talk about the case when
the set of directions is finite and lacunary, which gives us optimal \(L^p\) bounds depending
on the number of directions.
2 de Diciembre de 2019, 15:30 : Módulo 17, Aula 520, Depto. Matemáticas UAM
Andreas Seeger, University of Wisconsin-Madison
\(L^p\) improving estimates for circular maximal functions.PDF,
For \(f \in L^p(\mathbb{R}^2)\), let \(A_r f(x)\) be the mean of \(f\) over the circle of
radius \(r\) centered at \(x\). For a set \(E \subset [1, 2]\) one can ask about \(L^p \to L^q\)
estimates for the maximal function \(\sup_{r\in E} |A_r f(x)|\). How does the \((p, q)\)-parameter
range for such estimates depend on the set \(E\)? We discuss results from two recent papers,
one with Theresa Anderson, Kevin Hughes and Joris Roos, and one with Joris Roos.
29 de Noviembre de 2019, 10:30 : Aula Gris 1, ICMAT
David Cruz-Uribe, OFS, University of Alabama
The Dual of variable Lebesgue spaces with unbounded exponent.PDF,
Given a measure space \(X,\mu\) and a measurable function \(p(\cdot) : X \to [1,\infty]\), the
variable Lebesgue space \(L^{p(\cdot)}(X)\) consists of all measurable functions \(f\) such that
for some \(\lambda > 0\),
$$
\rho(f/\lambda) = \int_{X_*} \left(\frac{|f(x)|}{\lambda}\right)^{p(x)} d\mu + \lambda^{-1} \|f\|_{L^{\infty}(X_\infty)} < \infty,
$$
where \(X_* = \{x \in X : p(x) < \infty\}\) and \(X_\infty = \{x \in X : p(x) = \infty\}\).
This space is a Banach function space with the norm
$$
\|f\|_{L^{p(\cdot)}(X)} = \inf \{\lambda > 0 : \rho(f/\lambda) \leq 1\}.
$$
These spaces, particularly when \(X = \mathbb{R}^n\) and \(\mu\) is Lebesgue measure, have been
extensively studied for the past 20 years. It is well-known that if
$$
p_+ = \textrm{ess} \sup_{x \in X} p(x) < \infty,
$$
then these spaces have many properties analogous to the classical Lebesgue spaces.
In particular, the dual space \(L^{p(\cdot)}(X)^*\) is isomorphic to \(L^{p'(\cdot)}(X)\),
where the exponent is defined pointwise by
$$
\frac{1}{p(x)} + \frac{1}{p'(x)} = 1.
$$
This is no longer true if \(p_+ = \infty\), even if \(p(x) < \infty\) everywhere,
and it has been a long standing problem to characterize the dual space in this case.
I will discuss recent progress on this problem, both for general measure spaces and
for the special case of the discrete sequence spaces \(\ell^{p(\cdot)}\), where \(X = \mathbb{N}\)
and \(\mu\) is the discrete counting measure. We give a direct sum decomposition of the dual
space as \(L^{p'(\cdot)}(X)\oplus L^{p(\cdot)}_{\textrm{germ}}(X)\), where
\(L^{p(\cdot)}_{\textrm{germ}}(X)\), the germ space, intuitively consists of functions
that "live" where the exponent function is unbounded. We give a number of properties of the
germ space, particularly in the case of sequence spaces.
This talk is joint work with José Conde-Alonso, Jesús Ocariz, and Alex Amenta.
29 de Octubre de 2019, 15:00 : Módulo 17, Aula 520, Depto. Matemáticas UAM
João Pedro Gonçalves Ramos, Universität Bonn
Fourier uncertainty principles, interpolation and uniqueness sets.PDF,
A classical result in the theory of entire functions of exponential type,
Shannon’s interpolation formula predicates that, given a function whose Fourier
transform vanishes outside the interval \([−\frac{1}{2}, \frac{1}{2}]\), it is possible
to recover it from its values at the integers. More specifically, it holds, in
suitable sense of convergence, that
$$
f(x) = \sum_{n \in \mathbb{Z}} f(n) \frac{\sin(\pi(x - n))}{\pi(x - n)} .
$$
This formula is unfortunately unavailable for arbitrary Schwartz functions on
the real line, but a recent result of Radchenko and Viazovska provides us with
an explicit construction of an interpolation basis for even Schwartz functions. It
states, in a nutshell, that we can recover explicitly the function given its values
at the square roots of integers.
We will discuss a bit these results and explore the question of determining
which pairs of sets \((A, B)\) satisfy that, if a Schwartz function \(f\) vanishes on \(A\)
and its Fourier transform vanishes on \(B\), then \(f \equiv 0\), with particular interest in the
cases where \(A = \{\pm n^\alpha\}_{n\in\mathbb{N}}\) and \(B = \{\pm n^\beta\}_{n\in\mathbb{N}}\) are sets of powers of integers.
11 de Octubre de 2019, 11:30 : Aula Gris 1, ICMAT
Andrea Olivo, Universidad de Buenos Aires, Argentina
Maximal operators for cube skeletons.PDF,
There are many problems arising from geometry than can be treat from harmonic analysis.
For example, problems about the size of sets containing certain geometric configurations
are related to the boundedness of maximal operators. In this talk, we will present a
discretized maximal operator associated to averaging over (neighborhoods of) squares in
the plane and, more generally, \(k-\)skeletons in \(\mathbb{R}^n\). These results are
motivated by, and partially extend, recent results on sets that contain a scaled
\(k-\)skeleton of the unit cube with center in every point of \(\mathbb{R}^n\).
4 de Octubre de 2019, 12:00 : Módulo 17, Aula 520, Depto. Matemáticas UAM
III Coloquio Rubio de Francia. Joaquim Serra, ETH Zürich
Analysis of singularities in the classical obstacle problem and a conjecture of Schaeffer.PDF,
The classical obstacle problem is a free boundary problem that appears naturally in the
study of the Stefan problem, the Frostman equilibrium measure, the Helle-Shaw flow, the Dam
problem, or the pricing of American options.
Caffarelli obtained in the 1970’s a fundamental breakthrough: he gave a robust sufficient
condition that implies the local smoothness of the free boundary. Complementarily, in the last years
we worked towards obtaining a more complete understanding of singularities. This has lead us to
proving, in dimensions three and four, a conjecture of Schaeffer which asserts that for generic
boundary data there are no singularities (although one can construct examples of boundary data
and obstacles for which the singular set is as large as the regular set!).
17 de Septiembre de 2019, 14:30 : Aula Gris 1, ICMAT
Felipe Ponce Vanegas, BCAM - Basque Center for Applied Mathematics
A Bilinear Approach to Calderón's Problem.PDF,
The Calderón's problem is to decide whether the conductivity of a body
can be uniquely recovered from measurements of potential and current at the
boundary. In this talk I will introduce the problem and the main ideas behind
the method of Complex Geometrical Optics (CGO) solution. Finally, I will show
how bilinear estimates come into the method, and what is the extension of
Tao's bilinear theorem we need.
11 de Septiembre de 2019, 12:00 : Módulo 17, Aula 420, Depto. Matemáticas UAM
Guillermo Flores, Universidad Nacional de Córdoba, Argentina
Fórmulas del valor medio para las temperaturas de Ornstein-Uhlenbeck y de Hermite.PDF,
En esta charla presentaremos los principales resultados de un artículo en conjunto con
el Profesor Gustavo Garrigós de la Universidad de Murcia.
En una primera instancia se obtienen fórmulas explícitas del valor medio para
las soluciones de las ecuaciones de difusión del calor asociadas a los operadores de
Ornstein-Uhlenbeck y de Hermite. A partir de estos resultados, como
es usual en teoría potencial, se obtienen numerosas propiedades relevantes
para las soluciones de las ecuaciones mencionadas anteriormente, tales como principios del
máximo, propagación infinita, teoremas de unicidad, desigualdades de tipo Harnack,
entre otros.
28 de Junio de 2019, 11:30 : Aula Gris 1, ICMAT
Mitchell Taylor, UC Berkeley
Bases in Banach lattices.PDF,
In this talk we will discuss bases in Banach lattices, and how they can be
used to measure (non)-embeddability of a Banach space into a lattice. We
will give several characterizations of basic sequences that respect the lattice
structure, and discuss some of the more unexpected corollaries. Most of the
talk will focus on bibases, but I will also comment on existence of non-negative
bases in Hilbert space.
21 de Junio de 2019, 11:30 : Módulo 17, Aula 520, Depto. Matemáticas UAM
Mihalis Mourgoglou, Universidad del País Vasco - Euskal Herriko Unibersitatea
Regularity theory and Green functions for elliptic equations with lower order terms in unbounded domains.PDF,
In this talk we will discuss the extension of the regularity theory for solutions
of elliptic PDE in divergence form \(Lu = −\text{div}(A \cdot \nabla u)\) with merely bounded
coefficients in unbounded domains to operators of the form \(Lu = −\text{div}(A \cdot \nabla u + bu) − c \cdot \nabla u − du\),
in an open set \(\Omega \subset \mathbb{R}^n , n \geq 3\), with possibly infinite
Lebesgue measure. We assume that the \(n \times n\) matrix \(A\) is uniformly elliptic
with real, merely bounded n and possibly non-symmetric coefficients, and either
\(b, c \in L_{\text{loc}}^{n,\infty}(\Omega)\) and \(d \in L_{\text{loc}}^{\frac{n}{2},\infty}(\Omega)\), or
\(|b|^2 , |c|^2 , |d| \in K_{\text{loc}}(\Omega)\), where \(K_{\text{loc}}(\Omega)\) stands
for the local Stummel-Kato class. Let \(K_{\text{Dini},2}(\Omega)\) be a variant of \(K(\Omega)\) satisfying
a Carleson-Dini-type condition. We develop a De Giorgi/Nash/Moser theory
and also prove a Wiener-type criterion for boundary regularity. Assuming global conditions on the coefficients,
we show that the variational Dirichlet problem is well-posed and, assuming \(−\text{div} c + d \leq 0\), we construct
the Green's function associated with \(L\) satisfying quantitative estimates. Under the additional
hypothesis \(|b + c|^2 ∈ K'(\Omega)\), we show that it satisfies global pointwise bounds
and also construct the Green's function associated with the formal adjoint operator of \(L\).
An important feature of our results is that all the estimates are scale invariant and independent of \(\Omega\),
while we do not assume smallness of the norms of the coefficients or coercivity of the associated bilinear form.
20 de Junio de 2019 : Aula Gris 1, ICMAT
11:00 : Marius Mitrea, Univerisity of Missouri-Columbia
Singular Integrals and Flatness.PDF,
The theory of singular integral operators originally initiated by by A.P. Calderón and
A. Zygmund in the 1950's continues to expand, with geometric questions taking center
stage at the moment. From the seminal work of G. David and S. Semmes in the 1990's
we now know that uniform rectifiability is the most natural geometric conditions
ensuring boundedness on Lp spaces. For a variety of purposes it is of interest to understand
not just when the norm of such singular integral operators is finite but rather when the
said norm is actually small. This lecture elaborates on the specific analytic and
geometric features which determine the latter aspect. One of the main results identifies
the largest class of singular integral operators (dubbed "generalized double layers")
which have small norms as mappings on Lebesgue, Sobolev, Hardy, BMO, and Hölder
spaces considered on sufficiently flat "surfaces". This is based, in part, on joint work
with Juan José Mar´n, José Maréa Martell, Dorina Mitrea, and Irina Mitrea.
12:15 : Dorina Mitrea, Univerisity of Missouri-Columbia
Boundary Problems in Infinitesimally Flat Uniformly Rectifiable Domains.PDF,
In this talk I will discuss boundary value problems for second-order elliptic constant
(complex) coefficient systems in open subsets of the Euclidean ambient satisfying
certain geometric properties, best expressed in the language of Geometric Measure
Theory. One of the most prominent features is the smallness of the BMO semi-norm of
the outward unit normal, which should be thought as some scale-invariant demand
of flatness (this does not force the boundary to be regular as, in fact, this may contain
spiral points, for example). In this geometric environment we are going to formulate
both Dirichlet and Neumann Problems, and prove existence, uniqueness, estimates,
and integral representation formulas for their respective solutions. This relies on work
in collaboration with Juan José Mar´n, José Maréa Martell,
Irina Mitrea, and Marius Mitrea.
14 de Junio de 2019, 11:30 : Módulo 17, Aula 520, Depto. Matemáticas UAM
Juan José Marín, ICMAT
Integrales singulares y problemas de valor en la frontera para sistemas elípticos.PDF,
En este seminario trataremos varios problemas que se ubican en la intersección del
análisis armónico, las ecuaciones en derivadas parciales y la teoría
geométrica de la medida. Estudiaremos cómo la geometría de un dominio
en \(\mathbb{R}^n\) influye en las propiedades de acotación de ciertos operadores
definidos en su frontera y las aplicaciones de este hecho a los problemas de valor
en la frontera para sistemas elípticos de segundo orden, homogéneos, con
coeficientes complejos constantes. Más específicamente, el comportamiento
del vector normal unitario exterior es la característica geométrica clave
que nos permitirá acotar operadores integrales (como las transformadas de
Riesz o los potenciales de capa) en ciertos espacios de funciones. A su vez,
éste es un paso fundamental para estudiar problemas de valor en la frontera en
dominios SKT no acotados. En la dirección contraria, de estos operadores extraemos
información acerca de la geometría del dominio. También trataremos
el caso del semiespacio superior, estableciendo resultados para el problema de Dirichlet
con dato en la frontera en espacios generalizados de Hölder y Morrey-Campanato.
Además, mostraremos un teorema de tipo Fatou y una fórmula de
representación integral de Poisson para soluciones en el semiespacio superior.
Seminario previo a la defensa de la tesis doctoral.
13 de Junio de 2019, 11:30 : Aula Gris 1, ICMAT
Timothy Candy, University of Otago
Bilinear restriction estimates and the division problem.PDF,
Bilinear restriction (or extension) estimates for free waves give an efficient
way to exploit both transversality and curvature, and have a number of
applications in harmonic analysis and PDE. We give an overview of these estimates,
as well as some recent extensions of the bilinear theory from free waves to the
adapted function spaces \(U^p\) . These extensions give a way to connect the bi
bilinear restriction theory with the global well-posedness problem for dispersive
PDE. In particular, they can be used to give another solution to the division
problem for the wave maps equation.
3 de Junio de 2019, 12:00 : Módulo 17, Aula 320, Depto. Matemáticas UAM
Marta de León Contreras, Universidad Autónoma de Madrid
Acotación de operadores elı́pticos y parabólicos fraccionarios en espacios de Lebesgue y Hölder.
Un enfoque a través de semigrupos.PDF,
El lenguaje de semigrupos es una herramienta general y unificadora que
resulta útil para formular y analizar propiedades de operadores fraccionarios
y para obtener resultados de regularidad en algunos espacios funcionales
relacionados. En esta charla mostraremos algunos problemas relacionados con
la acotación de operadores elípticos y parabólicos fraccionarios en espacios
de Lebesgue y Hölder, donde esta técnica clarifica definiciones, facilita los
cálculos y permite probar algunos resultados que desde otros puntos de vista
involucraría estimaciones mucho más complejas o incluso podrían no resolverse.
Presentación previa a la defensa de la tesis doctoral.
31 de Mayo de 2019, 11:30 : Módulo 17, Aula 520, Depto. Matemáticas UAM
Pablo Berná, Universidad Autónoma de Madrid
Algoritmos Thresholding greedy en espacios de Banach.PDF,
Dado un espacio de Banach \(\mathbb{X}\) sobre \(\mathbb{C}\) y una base \(\mathcal{B} = (e_j)_{j=1}^\infty\),
uno de los problemas fundamentales en Teoría de Aproximación es como representar un
elemento \(f = \sum_{n=1}^\infty a_n \in \mathbb{X}\) por sumas finitas de \(m\) términos:
$$
\mathcal{T}_m(f) = \sum_{n \in A} b_n e_n
$$
para un conjunto \(A\) adecuado y unos escalares \(b_n\) que en principio no tienen
porque coincidir con los coeficientes de \(f\). La colección \((\mathcal{T}_m(f))_m\) se llama
algoritmo de aproximación de \(m\)-términos.
En esta charla introduciremos dos algoritmos aproximación, que son el Thresholding Greedy
Algorithm y el Thresholding Chebyshev Greedy Algorithm.
Para ambos algoritmos, estudiaremos su eficiencia a través del llamado parámetro de
Lebesgue y, además, veremos que condiciones ha de satisfacer la base
\(\mathcal{B}\) para garantizar ciertos tipos de convergencia.
Presentación previa a la defensa de la tesis doctoral.
29 de Mayo de 2019, 12:00 : Módulo 17, Aula 520, Depto. Matemáticas UAM
XXXI Memorial Rubio de Francia.Poster Jesús Bastero, Universidad de Zaragoza
An overview on the KLS-spectral gap conjecture.PDF,
En la charla se presentará la conjetura de Kannan-Lovász-Simonovits sobre
el salto espectral, en su vertiente funcional e isoperimétrica. Se relacionará
con otras conjeturas que forman la parte más importante del análisis
geométrico asintótico. Tambien se darán las mejores estimaciones conocidas
actualmente que son debidas a Eldan, Lee y Vempala.
23 de Mayo de 2019, 11:30 : Aula Gris 1, ICMAT
Steve Hofmann, University of Missouri, Columbia
Quantitative absolute continuity of caloric measure.PDF,
For a domain \(\Omega\) in space-time \(\mathbb{R}^{n+1}\), quantitative, scale-invariant
absolute continuity (more precisely, the weak-\(A_\infty\) property) of caloric measure with
respect to a natural version of "surface" measure on the "quasi-lateral
boundary" (a subset of the parabolic boundary which is simply the usual lateral
boundary for cylinders and Lip(1,1/2) domains), is equivalent to the solvability
of a suitable version of the initial-Dirichlet problem with lateral (more precisely
"quasi-lateral") data in some \(L^p\) space, \(p < \infty\). We establish two criteria for the
weak-\(A_\infty\) property to hold. The first, based on changing the pole of the
parabolic measure without a change of pole formula, extends elliptic results of
Bennewitz and Lewis to the parabolic setting. The second, based on
extrapolation from the endpoint, extends an elliptic result of Dindos, Kenig and Pipher.
This is joint work with A. Genschaw.
21 de Mayo de 2019, 11:30 : Aula Gris 1, ICMAT
Murat Akman, University of Connecticut
A Minkowski problem for nonlinear capacity.PDF,
The classical Minkowski problem consists in finding a convex polyhedron
from data consisting of normals to their faces and their surface areas. In the
smooth case, the corresponding problem for convex bodies is to find the
convex body given the Gauss curvature of its boundary, as a function of the unit
normal. The proof consists of three parts: existence, uniqueness and regularity.
In this talk, we study a Minkowski problem for certain measure, called
p-capacitary surface area measure, associated to a compact convex set with
nonempty interior and its p−harmonic capacitary function. We will discuss
existence, uniqueness, and regularity of this problem under this setting and see
connections with the Brunn-Minkowski inequality and Monge-Ampere equation.
17 de Mayo de 2019, 11:30 : Aula Gris 1, ICMAT
Pierre Portal, Australian National University
Hardy spaces for Fourier integral operators.PDF,
Which subspaces \(X_p \subset L^p(\mathbb{R}^d)\) give good initial data for the wave equation
\(\partial_t^2 u = \Delta u\), in the sense that \(u(0, .) \in X_p , \partial_t u(0, .) = 0\)
implies \(u(t, .) \in L^p\) ?
A classical answer is \(X_p = W^{(d−1)|1/p−1/2|,p}\).
Its weakness is that, while \(u(t, .) \in L^p\), one does
not have \(u(t, .) \in X_p\) , i.e. one looses derivatives. In this talk, we consider a new
Hardy space that contains \(W^{(d−1)|1/p−1/2|,p}\), but is invariant under the action of
the wave group. More generally, we show that this space is invariant under the
action of a large class of Fourier Integral Operators. This allows us to recover
and extend (to symbols that are less regular, and not compactly supported
in space) a celebrated result of Seeger-Sogge-Stein on the \(L^p\) boundedness
of FIO. More generally we set up a Hardy space theory that is meant to do
for hyperbolic equations what the usual Hardy space theory does for elliptic
and parabolic equations. This is possible because FIOs lifted to function spaces
over phase space through appropriate wave packet transforms turn out to
have a diffusive behaviour (not in space but in phase space, and with respect
to an appropriate metric). In this talk, we discuss this perspective, the deep
ideas from microlocal analysis and harmonic analysis that it builds upon, and
its potential.
This is joint work with Andrew Hassell and Jan Rozendaal (ANU).
26 de Abril de 2019, 11:30 : Módulo 17, Aula 520, Depto. Matemáticas UAM
José Manuel Conde Alonso, Universidad Autónoma de Madrid
BMO from dyadic BMO for nonhomogeneous spaces.PDF,
The usual one third trick allows to reduce problems involving general cubes
to a countable family. Moreover, this covering lemma uses only dyadic cubes,
which allows to use nice martingale properties in harmonic analysis problems.
In this talk, we consider alternatives to this technique in spaces equipped with
nonhomogeneous measures. This entails additional difficulties which forces us
to consider martingale filtrations that are not regular. The dyadic covering that
we find can be used to clarify the relationship between martingale BMO spaces
and the most natural BMO space in this setting.
12 de Abril de 2019, 11:00 : Aula Naranja, ICMAT
Emanuel Carneiro, ICTP - International Centre for Theoretical Physics
Sharp mixed norm spherical restriction.PDF,
In this talk I will present some recent results on the sharp form of a mixed
norm Fourier extension inequality first proposed by Luis Vega in his Ph.D. thesis
(Madrid - 1988). This problem has interesting connections to questions of
independent interest in the theory of special functions. The talk will be accessible
to a broad audience, with a minimal background in Analysis. This is based on
a joint work with D. Oliveira e Silva (Birmingham) and M. Sousa (Munich).
3 de Abril de 2019, 15:00 : Aula Naranja, ICMAT
Daniel Peralta, ICMAT
Approximation theorems for the Schrödinger equation and vortex reconnections in quantum fluids.PDF,
The quantum vortices of a superfluid are described as nodal lines of a solution
to the time-dependent Gross-Pitaevskii equation. Experiments in Lab and
extensive numerical computations show that quantum vortices cross, each of
them breaking into two parts and exchanging part of itself for part of the
other. This phenomenon, known as quantum vortex reconnection, occurs even
though the superfluid does not lose its smoothness. This usually leads to a
change of topology of the quantum vortices. In this talk I will show that, given any
initial and final congurations of quantum vortices (which do not need to be
topologically equivalent) and any conceivable way of reconnecting them (that
is, of transforming one into the other), there is a Schwartz initial datum
whose associated solution is smooth and realizes this specific vortex reconnection
scenario. Key for the proof of this result is a new global approximation property
of the linear Schrodinger equation. It ensures that a function that satisfies the
Schrödinger equation in a spacetime set satisfying certain mild topological
properties, can be approximated, in a suitable norm, by a global solution defined
by a Schwartz initial datum. This is based on joint work with Alberto Enciso.
22 de Marzo de 2019, 11:30 : Aula Naranja, ICMAT
Pedro Tradacete, ICMAT
The least doubling constant of a metric measure space.PDF,
Given a metric measure space \((X, d, \mu)\), its doubling constant is given by
$$
C_\mu = \sup_{x \in X, r > 0} \frac{\mu(B(x, 2r))}{\mu(B(x, r))} ,
$$
where \(B(x, r)\) denotes the open ball of radius \(r\) centered at \(x\).
Clearly, \(C_\mu \geq 1\), and in the case X reduces to a singleton \(C_\mu = 1\).
At first, one might think that for a metric space with more than one point,
the constant \(C_\mu\) could be very close to one. However, we will actually see that
in general \(C_\mu \geq 2\). The talk is based on a joint work with Javier Soria (Barcelona).
15 de Marzo de 2019, 11:30 : Módulo 17, Aula 520, Depto. Matemáticas UAM
Adrián González-Pérez, KU Leuven
Noncommutative versions of the strong maximal function.PDF,
In the context of von Neumann algebras bilateral almost uniform convergence
plays the role of almost everywhere convergence in measure spaces. It is
known, after the work for Junge and Xu, that there is a maximal ergodic
theorem in the \(L_p\)-spaces of von Neumann algebras that holds true and implies
bilateral almost everywhere convergence. One substantial difference between
that theorem and the classical one being that the optimal constants grow
like \((p - 1) - 2\) - as opposed to \((p - 1) - 1\) -. This has profound implications, for
instance the optimal extrapolation space for maximal ergodic inequalities is
\(L \log^2 L\) - as opposed to \(L \log L\) -.
Here, we are going to present new results that give almost uniform con-
vergence for maximals in several indices for operators in \(L \log^2 L\). Our results
generalize a technique of Jessen, Marcinkiewicz and Zygmund. After that, we
will discuss aplication to the free group algebra.
This is joint work with Jose Conde-Alonso and Javier Parcet.
7 de Marzo de 2019, 14:30 : Módulo 17, Aula 520, Depto. Matemáticas UAM
Adrián Ubis, Universidad Autónoma de Madrid
Invariant subspaces for Bishop operators.PDF,
In the fifties Bishop proposed the family \(T_\alpha f(x) = xf(\{x+\alpha\})\) acting on
\(L^2 [0,1)\) as a possible source of operators without invariant subspaces. Years later Davie
showed that \(T_\alpha\) actually has invariant subspaces whenever \(\alpha\) is not a Liouville
number (so for almost all \(\alpha\)).
In this talk I will speak about recent work with F. Chamizo, E. Gallardo and
M. Monsalve in which we extend Davie's method to some Liouville numbers \(\alpha\)
and show that these techniques cannot work for every \(\alpha\).
1 de Marzo de 2019, 11:30 : Módulo 17, Aula 520, Depto. Matemáticas UAM
Pablo Candela, Universidad Autónoma de Madrid
Nilspaces, Gowers norms, and a generalization of the Green-Tao-Ziegler inverse theorem.PDF,
The uniformity norms, introduced by Gowers in his famous work on Szemerédi's
theorem, have become a central tool in arithmetic combinatorics, especially
to count linear configurations in subsets of compact abelian groups, and more
generally to analyze averages of functions over such configurations. An important
result related to the Gowers norms is the so-called inverse theorem,
proved for functions on finite intervals of integers by Green, Tao and Ziegler.
This theorem tells us essentially that such a function has large Gowers norm of
order \(k+1\) only if the function correlates with a specific type of function, called
a nilsequence, that is generated by a rotation on a nilmanifold of step
\(k\). I shall discuss recent joint work with Balázs Szegedy in which, building up
on the theory of nilspaces initiated by Camarena and Szegedy, we obtain in
particular a generalization of the Green-Tao-Ziegler inverse theorem, valid for
functions on compact abelian groups and also on nilmanifolds.
22 de Febrero de 2019, 11:30 : Aula Naranja, ICMAT
Olli Saari, Mathematisches Institut der Universität Bonn
Functional analytic approach to self-improving properties in PDE.PDF,
Consider a local solution \(u ∈ W_{\textrm{loc}}^{1,2}\) to an inhomogeneous elliptic
partial differential equation in divergence form \(\textrm{div} (A\nabla u) = f\)
where \(A\) is a uniformly elliptic matrix with measurable coefficient and \(f\) is a
source term in a suitable \(L^p\) space. Classical results in regularity theory tell that
when the source term \(f\) is slightly better than what is required for the existence
of a solution as above, the regularity of the solution itself is also better than
what was assumed a priori. This is traditionally seen as a consequence of Gehring's lemma
about open-ended property of reverse Hölder classes. In this talk,
I discuss a functional analytic point of view on the topic with special focus on
extensions to parabolic and fractional PDEs.
19 de Febrero de 2019, 14:30 : Módulo 17, Aula 520, Depto. Matemáticas UAM
Detlef Müller, Christian-Albrechts-Universität zu Kiel
Spectral multipliers and wave equation for sub-Laplacians: lower regularity bounds of Euclidean type.PDF,
Let \(\mathcal{L}\) be a smooth second-order real differential operator in divergence
form on a manifold of dimension \(n\). Under a bracket-generating condition,
we show that the ranges of validity of spectral multiplier estimates of
Mihlin-Hörmander type and wave propagator estimates of Miyachi–Peral type for
\(\mathcal{L}\) cannot be wider than the corresponding ranges for the Laplace operator
on \(\mathbb{R}^n\). The result applies to all sub-Laplacians on Carnot groups and more
general sub-Riemannian manifolds, without restrictions on the step. The proof hinges
on a Fourier integral representation for the wave propagator associated with
\(\mathcal{L}\) and nondegeneracy properties of the sub-Riemannian geodesic flow. This
is a joint work with Alessio Martini and Sebastiano Nicolussi Golo.
15 de Febrero de 2019, 11:30 : Módulo 17, Aula 520, Depto. Matemáticas UAM
Javier Parcet, ICMAT
Fourier Análisis in \(SL_n(\mathbb{R})\).PDF,
In harmonic analysis terms, Lafforgue/de la Salle rigidity theorem for \(SL_n(\mathbb{R})\)
implies that Fourier summability fails in \(L_p\) when p is large enough in terms of
the rank n − 1. It refines older celebrated results by Harish-Chandra, Cowling
or Haagerup, and spotlights the dramatic difference between abelian and
semisimple harmonic analysis. We shall present the first sufficient condition for
\(L_p\)-boundedness of Fourier multipliers in this context, which is reminiscent of
the Hörmander-Mikhlin criterion, but substantially and necessarily different to
accommodate rigidity. Next, we shall introduce a major strengthening of the
rigidity theorem and link it with Bochner-Riesz summability problems. Emphasis
will be put on the harmonic analysis aspects of both of these results. Joint work
with Éric Ricard and Mikael de la Salle.
8 de Febrero de 2019, 11:30 : Módulo 17, Aula 520, Depto. Matemáticas UAM
Juan Cavero de Carondelet, ICMAT-UAM
Análisis Armónico en dominios irregulares.PDF,
En esta charla estudiaremos el problema de perturbación de operadores
elípticos en dominios irregulares. Dados dos operadores \(L_0 = − \textrm{div}(A_0 \nabla\cdot)\) y
\(L = − \textrm{div}(A\nabla\cdot)\), buscamos condiciones en la discrepancia entre \(A_0\) y \(A\) que
nos permitan transferir buenas propiedades de un operador a otro, como el
hecho de que la medida elı́ptica pertenezca a la clase \(A_\infty\). Extendemos el
resultado de Fefferman-Kenig-Pipher (1991) a dominios del tipo 1-sided CAD,
estableciendo que si la discrepancia entre las matrices satisface una
condición tipo medida de Carleson entonces la pertenencia a \(A_\infty\) de la medida
elíptica de uno de los operadores implica la misma propiedad para el otro.
Para probar este resultado presentamos dos métodos que son distintos del
usado por Fefferman-Kenig-Pipher. Uno de ellos usa la técnica denominada
"extrapolación para medidas de Carleson". El segundo, que explicaremos en
detalle y que es válido para operadores no simétricos, pasa por estudiar la
propiedad de que todas las soluciones acotadas de un operador satisfagan
estimaciones de tipo medida de Carleson.
1 de Febrero de 2019, 11:30 : Módulo 17, Aula 520, Depto. Matemáticas UAM
Guillermo Rey, University of Minnesota
Sparse domination and the strong maximal function.PDF,
We study the problem of dominating the dyadic strong maximal function by
(1,1)-type sparse forms based on rectangles with sides parallel to the axes,
and show that such domination is impossible. Our proof relies on an explicit
construction of a pair of maximally separated point sets with respect to an
appropriately defined notion of distance.
18 de Enero de 2019, 11:30 : Módulo 17, Aula 520, Depto. Matemáticas UAM
Mayte Pérez, Universidad de Buenos Aires
Modelos de formación de opinión con agentes inflexibles.PDF,
En esta charla estudiaremos un modelo de formación de opinión, donde los agentes están caracterizados,
además de por su opinión respecto a cierto tema, por su capacidad de convencer al otro y su facilidad o reticencia
a cambiar de opinión. Demostraremos que en presencia de agentes firmes o testarudos (que no modifican su opinión),
hay convergencia al consenso, situado en un valor que es una media de las opiniones iniciales ponderada por la capacidad de
convicción de los individuos, pero unicamente entre la población testaruda. En otras palabras, los agentes
firmes determinan la opinión final de la población. Más aún, hallamos la tasa de convergencia al
consenso y observamos que, a mayor número de agentes testarudos, menor es el tiempo de convergencia.