Estadística y R
- Albert, J. y Hu, J., Probability and Bayesian Modeling
- Alexander, R., Telling stories with data
- Boehmke, B. y Greenwell, B., Hands-On Machine Learning with R
- Bologna, E., Un Recorrido por los Métodos Cuantitativos en Ciencias Sociales a bordo de R
- Chacón, J.E. y Duong, T., Multivariate Kernel Smoothing and Its Applications (pdf)
- Chang, W., R Graphics Cookbook
- Clyde, et al. An Introduction to Bayesian Thinking
- De Leon, D. y Hill, A. Rstudio4edu, A Handbook for Teaching and Learning with R and RStudio
- Devroye, L. y Györfi, L, Nonparametric Density Estimation: The L1 View (pdf)
- Efron, B. y Hastie, T., Computer Age Statistical Inference (pdf)
- Gelman, et al., Bayesian data analysis (pdf)
- Gómez-Rubio, V., Bayesian inference with INLA
- Grolemund, G., Hands-On Programming with R
- Grolemund, G., Çetinkaya-Rundel, M. y Wickham, H, R for Data Science (segunda edición) | Versión en castellano de la primera edición
- Hastie, T. et al., Statistical Learning with Sparsity (pdf)
- Hastie, T. et al., The Elements of Statistical Learning (pdf)
- Healy, K., Data Visualization, a practical introduction
- Irizarry, R.A., Introduction to Data Science
- Ismay, C. y Kim, A.Y., Statistical Inference via Data Science
- James, G. et al., An Introduction to Statistical Learning (pdf)
- Johnson, A., Ott, M. y Dogucu, M., Bayes Rules! An Introduction to Bayesian Modeling with R
- Kuhn, M. y Silge, J. Tidy Modeling with R
- Navarro, D., Learning Statistics with R
- Navarro, D. y Foxcroft, D.R., Learning Statistics with jamovi (pdf)
- Peng, R.D., A Very Short Course on Time Series Analysis
- Roback, P. y Legler, J., Beyond Multiple Linear Regression
- Speegle, D. y Clair, B. Probability, Statistics, and Data: A Fresh Approach Using R
- Timbers, T., Campbell, T. and Lee, M., Data Science, a first introduction
- Vázquez Brust, A., Ciencia de Datos para gente sociable
- Wickham, H., Advanced R