matuam
  • Inicio
  • Presentación
  • Directorio
  • Organigrama
  • Intranet
  • Convocatoria de plazas

Prácticas y empleo

  • Prácticas externas
    • Ofertas de prácticas
  • Empleo
    • Sesiones de orientación profesional
    • Ofertas profesionales

Investigación

  • Departamento
  • Seminarios
  • Joint Mathematics Colloquium ICMAT-UAM-UC3M-UCM
    • Coloquios 2024/2025
    • Coloquios 2023/2024
    • Coloquios 2022/2023
    • Coloquios 2021/2022
    • Coloquio UAM-ICMAT
  • Memorial Rubio de Francia
  • Coloquio Premio Rubio de Francia
  • Coloquios Departamento

Enero-2025

Williams` conjecture holds for meteor graphs

Elizabeth Gillaspy  (University of Montanaáté Matolcsi)
Lunes, 27 de enero, 13:00h, Salón de Grados del Edificio Padre Soler, Campus de Leganés, Universidad Carlos III de Madrid  
 
 Streaming: https://www.youtube.com/live/1nbXUf-QYf8  

Noviembre-2024

Spectral sets, weak tiling and Fuglede`s conjecture

Máté Matolcsi (Alfréd Rényi Institute of Mathematics)
Martes, 12 de noviembre, 12:00h, Aula Azul, ICMAT  
 
 Streaming: https://www.youtube.com/@ICMATactivities/live  

Octubre-2024

Miraculous Integer Sequences

Motohico Mulase (University of California, Davis)
Viernes, 11 de octubre, 13:00h, Aula Magna Miguel de Guzmán, Fac. Matemáticas, UCM  
 
 Streaming: https://www.youtube.com/@FacultadDeMatematicas-UCM  

We learn in school many interesting integer sequences and their significance. In this Colloquium, I will survey two such sequences, and explain their unexpected miracles.
The first one is the Catalan numbers. I will explain how this integer sequence leads us to two differential equations, their mirror-symmetric relations, and the quantization behind the scenes. We present Laurent polynomials that give solutions to these equations.
The miracle here is that these Laurent polynomials know the topologocal invariants of the moduli space of point Riemann surfaces, calculated by Harer-Zagier, Witten, and Kontsevich.
The second example is analogous to the first one in the sense that it is an integer sequence of genus 0 Gromov-Witten invariants of a particular algebraic 3-fold. We have again two differential equations. The contrast is that although we know mirror symmetric and quantization relations between these equations, the key mechanism to calculate general GW invariants is still missing. The miracle here is that this particular integer sequence knows why Riemann zeta at 3 is irrational, the work of Apery.