matuam
  • Inicio
  • Presentación
  • Directorio
  • Organigrama
  • Intranet
  • Convocatoria de plazas

Investigación

  • Departamento
  • Seminarios
  • Joint Mathematics Colloquium ICMAT-UAM-UC3M-UCM
    • Coloquios 2024/2025
    • Coloquios 2023/2024
    • Coloquios 2022/2023
    • Coloquios 2021/2022
    • Coloquio UAM-ICMAT
  • Memorial Rubio de Francia
  • Coloquio Premio Rubio de Francia
  • Coloquios Departamento

Junio-2023

 

Analytic approach to extremal combinatorics

Dan Král (Masaryk University)
Viernes, 23 de junio, 12:00h, UAM  

Marzo-2023

 

Randomness and structure in combinatorics, analysis and computer science

Jop Briët (Centrum Wiskunde & Informatica)
Viernes, 24 de marzo, 11:00h, UC3M  
   

Marzo-2023

 

On the birational geometry of matroids

Annette Werner (Goethe University Frankfurt)
Viernes, 10 de marzo, 12:30h, ICMAT  

Septiembre-2022

Rigidity theory for von Neumann algebras

Stefaan Vaes (KU-Leaven, Belgium)
https://youtu.be/o2P0MB98ims
Jueves, 22 de septiembre, 11:30h, Aula Naranja, ICMAT  
Online  
   

Diciembre-2022

A survey of the Calderón inverse problem

Niky Kamran (McGill University)
Lunes, 14 de diciembre, 12:00h, Aula Miguel de Guzmán, UCM

In its geometric formulation, the Calderón inverse problem consists in showing that the metric of a smooth compact Riemannian manifold with boundary is uniquely determined (up to some natural gauge equivalences) from the knowledge of the Dirichlet-to-Neumann map for the Laplacian, that is the map that assigns to data prescribed on the boundary of the manifold the normal derivative of the unique solution of the corresponding solution to Laplace's equation. While the Calderón inverse problem is still open in its full generality, there are a number of results providing either an affirmative answer or counterexamples, depending on which special assumptions are made about the background geometry. After introducing the Calderón inverse problem, I will review some of these uniqueness and non-uniqueness results and time permitting, I will discuss the relation between the Calderón inverse problem and the problem of boundary rigidity, which is whether the knowledge of the boundary distance function determines uniquely the metric in the interior of the manifold.