
Author’s note: This article may use ideas you haven’t learned yet, and might seem overly
complicated. It is not. Understanding Stirling’s formula is not for the faint of heart, and
requires concentrating on a sustained mathematical argument over several steps.

Even if you are not interested in all the details, I hope you will still glance through the
article and find something to pique your curiosity. If you are interested in the details, but
don’t understand something, you are urged to pester your mathematics teacher for help.

Factorials!

Unbelievably large numbers are sometimes the answers to innocent looking questions.
For instance, imagine that you are playing with an ordinary deck of 52 cards. As you
shuffle and re-shuffle the deck you wonder: How many ways could the deck be shuffled?
That is, how may different ways can the deck be put in order? You reason that there are
52 choices for the first card, then 51 choices for the second card, then 50 for the third card,
etc. This gives a total of

52× 51× 50× · · · × 2× 1

ways to order a deck of cards. We call this number “52 factorial” and write it as the
numeral 52 with an exclamation point: 52! This number turns out to be the 68 digit
monster

80658175170943878571660636856403766975289505440883277824000000000000

which means that if every one on earth shuffled cards from now until the end of the
universe, at a rate of 1000 shuffles per second, we wouldn’t even scratch the surface in
getting all possible orders. Whew! No wonder we use exclamation marks!

For any positive integer n we calculate “n factorial” by multiplying together all integers
up to and including n, that is, n! = 1× 2× 3× · · · × n. Here are some more examples of
factorial numbers:

1! = 1 2! = 2 3! = 6 4! = 24 5! = 120
6! = 720 7! = 5040 8! = 40320 9! = 362880 10! = 3628800

Stirling’s formula Factorials start off reasonably small, but by 10! we are already
in the millions, and it doesn’t take long until factorials are unwieldly behemoths like
52! above. Unfortunately there is no shortcut formula for n!, you have to do all of the
multiplication. On the other hand, there is a famous approximate formula, named after
the Scottish mathematician James Stirling (1692-1770), that gives a pretty accurate idea
about the size of n!.

Stirling’s formula: n! ≈
√
2πn

(n

e

)n



Before we continue, let’s take a moment to contemplate the fact that n factorial involves
nothing more sophisticated than ordinary multiplication of whole numbers, which Stirling’s
formula relates to an expression involving square roots, π (the area of a unit circle), and
e (the base of the natural logarithm). Such are the surprises in store for students of
mathematics.

Here is Stirling’s approximation for the first ten factorial numbers:

1! ≈ 0.92 2! ≈ 1.92 3! ≈ 5.84 4! ≈ 23.51 5! ≈ 118.02
6! ≈ 710.08 7! ≈ 4980.39 8! ≈ 39902.39 9! ≈ 359536.87 10! ≈ 3598695.62

You can see that the larger n gets, the better the approximation proportionally. In fact
the approximation 1! ≈ 0.92 is accurate to 0.08, while 10! ≈ 3598695.62 is only accurate
to about 30,000. But the proportional error for 1! is (1!− .92)/1! = .0800 while for 10! it is
(10!− 3598695.62)/10! = .0083, ten times smaller. This is the correct way to understand
Stirling’s formula, as n gets large, the proportional error (n! −

√
2πn(n/e)n)/n! goes to

zero.
Developing approximate formulas is something of an art. You need to know when to

be sloppy and when to be precise. We will make two attempts to understand Stirling’s
formula, the first uses easier ideas but only gives a sloppy version of the formula. We
will follow that with a more sophisticated attack that uses knowledge of calculus and the
natural log function. This will give us Stirling’s formula up to a constant.

Attempt 1. To warm up, let’s look at an approximation for the exponential function
ex. The functions 1 + y and ey have the same value and the same slope when y = 0. This
means that 1 + y ≈ ey when y is near zero, either positive or negative. Applying this
approximation to x/n, for any x but large n, gives 1+x/n ≈ ex/n. Now if we take n− 1st
power on both sides, we get the approximation

(

1 +
x

n

)n−1

≈ e(n−1)x/n ≈ ex.

Returning to factorials, we begin with an obvious upper bound. The number n! is the
product of n integers, none bigger than n, so that n! ≤ nn. With a bit more care, we can
write n! precisely as a fraction of nn as follows:

n! =

(

1− 1

2

)1(

1− 1

3

)2

· · ·
(

1− 1

n

)n−1

nn.

I won’t deprive you of the pleasure of working out the algebra to confirm that this formula
is really correct. Using the approximation for the exponential function ex we can replace
each of the factors (1− 1/k)k−1 by e−1 and arrive at n! ≈ e (n/e)n. Because of cumulative
errors, the formula e (n/e)n sorely underestimates n!, but it does have the right order of
magnitude and explains where the factor “e” comes from.

Attempt 2. Mathematically, addition is easier to handle than multiplication so our next
attempt to get Stirling’s formula converts it into an addition problem by taking logs. Our



warmup problem this time is an approximate formula for the natural log function. We
start with the series expansion

1

2
ln
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)

= x+
x3

3
+
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x7

7
+ · · · .

Substitute x = 1/(2j + 1) and rearrange to get
(
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2

)
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− 1 =
1

3(2j + 1)2
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1

5(2j + 1)4
+

1
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· · ·

Now replacing the sequence of odd numbers 3, 5, 7, . . . by the value 3 in the denominator
makes the result bigger, so we have the inequality
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The sum on the right takes the form of the famous “geometric series”

ρ+ ρ2 + ρ3 + · · · = ρ

1− ρ
.

Making the replacement ρ = 1/(2j + 1)2 and a little algebra yields
(
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)
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)

. (1)

All that work to show that (j + 1/2) ln(1 + 1/j) − 1 is pretty close to zero. If you are
inclined, you could program your computer to calculate both sides of (1) for various values
of j, just to check that the right hand side really is bigger than the left. Note that we have
an upper bound in (1), instead of an approximate formula. This means that the values on
the two sides are not necessarily close together, only that the value on the right is bigger.

You will be relieved to hear that we are finally ready to return to Stirling’s approx-
imation for n!. Taking the natural log on both sides of n! = 1 × 2 × · · · × n, turns the
multiplication into addition: ln(n!) = ln(1)+ ln(2)+ · · ·+ ln(n). This sum, in turn, is the
area of the first n − 1 rectangles pictured here. The curve in the picture is ln(x), and it
reminds us that ln(1) = 0.
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The area of each rectangle is the area under the curve, plus the area of the triangle at the
top, minus the overlap. In other words, using the definitions below we have rj = cj+tj−εj.

rectangle := rj = ln(j + 1)

curve := cj =

∫ j+1

j

ln(x) dx

triangle := tj =
1

2
[ln(j + 1)− ln(j)]

overlap := εj =

(

j +
1

2

)

ln

(

1 +
1

j

)

− 1

The overlap εj is a small sliver shaped region that is barely visible in the picture,
except in the first rectangle. Using the inequality (1) we worked so hard to establish, we
add up on both sides and see that the infinite series satisfies

∑∞
j=n εj < 1/(12n), for any

n = 1, 2, 3, . . ..
To approximate ln(n!) =

∑n−1
j=1 rj, we begin by splitting rj into parts

ln(n!) =
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∑
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n−1
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εj.

Since
∑n−1

j=1 cj is an integral over the range 1 to n, and
∑n−1

j=1 tj is a telescoping sum, this
simplifies to
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1

2
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Taking the exponential gives

n! = e1−
∑∞

j=1 εj
√
n
(n

e

)n

e
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j=n εj

Pause to note that this is an exact equation, not approximate. It gives n! as the product
of an unknown constant, the term

√
n (n/e)n, and a term e

∑∞
j=n εj that converges to 1 as

n → ∞. With the formula
∑∞

j=n εj < 1/(12n) we now have the bounds

C
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where e
11
12 ≤ C ≤ e. Once we’ve identified C =

√
2π, we get
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If you’ve made it this far, congratulations! Now you see why Stirling’s formula works. The
part we skipped, to show that the unknown constant C is actually equal to

√
2π is not an

easy step. But we leave this aside, and look at some other properties of the number n!.

Number of digits For any x > 0 the formula d(x) = blog10(x)c+1 gives the number
of digits of x to the left of the decimal point. For moderate sized factorials we can simply
plug this formula into a computer to see how many digits n! has. For example, d(52!) = 68
and d(1000000!) = 5565709. But suppose we wanted to find the number of digits in a
really large factorial, say googol factorial? (Googol means ten raised to the power 100 or
10100). Even a computer can’t calculate googol factorial, so we must use Stirling’s formula.
Let g = 10100, substitute into Stirling’s formula, and take log (base 10) on both sides to
obtain

log10(
√

2πg
(g

e

)g

) ≤ log10(g!) ≤ log10(
√

2πg
(g

e

)g

e1/12g).

Let’s concentrate on the left side log10(
√
2πg(g/e)g). Using the logarithm property

and the fact that log10(g) = 100, we simplify this to log10(
√
2π) + 50 + g(100− log10(e)).

The hard part of this calculation is to find log10(e) to over 100 decimal places, but the
computer is happy to do it for us. Once this is accomplished we find that

log10(
√
2πg(g/e)g) = 99565705518096748172348871081083394917705602994196333433

8855462168341353507911292252707750506615682567.21202883 . . .

When we knock off the decimal part and add 1, we get d(
√
2πg(g/e)g). We can be

sure that the number of digits in googol factorial is the same by comparing with the upper
bound. The right hand side log10(

√
2πg(g/e)ge1/12g) exceeds the left hand side only by

the minuscule amount log10(e
1/12g) = log10(e)/12g. When this is added to the fractional

part .21202883 . . ., the first hundred or so digits after the decimal point are not changed.
Therefore d(

√
2πg(g/e)ge1/12g) is equal to d(

√
2πg(g/e)g), and since d(g!) is in between, it

also must be the same.
Raising 10 to the power of the fractional part .21202883 . . . gives us the first few digits

of g!, so we conclude that googol factorial is g! = 16294 · · · 00000, where the dots stand in
for the rest of the exactly

d(g!)=995657055180967481723488710810833949177056029941963334338855462168341353507911292252707750506615682568

digits. This explains why no one can or ever will calculate all the digits of googol factorial.
Where would you put it? A library filled with books containing nothing but digits? A
trillion trillion computer hard drives? None of these puny containers could hold it. This
super-monster has more digits than the number of atoms in the universe.

Trailing zeros Looking back, you may notice that 52! ends with a stream of zeros.
For that matter, all the factorials starting with 5!, have zeros at the end. Let’s try to



figure out how many zeros there will be at the end of n!. This doesn’t rely on approximate
values of n! anymore, more importantly we need to understand the divisors of n!.

Each zero at the end of n! comes from a factor of 10. For instance, 10! has two zeros
at the end, one of which comes from multiplying the 2 and the 5.

10! = 1× 2× 3× 4× 5× 6× 7× 8× 9× 10

= (1× 3× 4× 6× 7× 8× 9)× (2× 5)× 10

= (36288)× (100)

The fact that 36288 is an even number means that there are extra factors of 2 that don’t
get matched with any 5’s. Since there is always an excess of 2’s, the number of trailing
zeros in n! is equal to the number of 5’s that go into n!.

Imagine lining up all the numbers from 1 to n to be multiplied. You will notice that
every fifth number contributes a factor of 5, so the total number of 5’s that factor n! should
be about n/5. Since this isn’t an integer, we knock off the fractional part and retain bn/5c.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 · · · n
↑ ↑ ↑ ↑

According to this formula, the number of trailing zeros in 10! is b10/5c = 2, and that
checks out. But for 52! the formula gives b52/5c = 10, when there are really 12 trailing
zeros. What’s going on? The problem is that we forgot to take into account that the
number 25 contributes two factors of 5, and does 50. That’s where the extra two zeros
come from.

Now we modify our formula for the number of trailing zeros in n! to

z(n) = bn/5c+ bn/25c+ bn/125c+ bn/625c+ · · ·

We have anticipated that all multiples of 125 give three factors of 5, multiples of 625 give
four factors of 5, etc. Also note that if n is less than 25, for instance, then the formula
bn/25c automatically returns a zero.

We can get an upper bound on the number of zeros by not knocking off the fractional
part of n/5j and using the geometric series

z(n) =
∞
∑

j=1

⌊ n

5j

⌋

≤
∞
∑

j=1

n

5j
=

n

4
.

This turns out to be pretty close to the right answer. In other words, the number of
trailing zeros in n! is approximately n/4. For example, the number of trailing zeros in
googol factorial works out to be exactly z(g) = g/4− 18 or

24999999999999999999999999999999999999999999999999
99999999999999999999999999999999999999999999999982.


