Hoja de problemas número 4: Calculus of Variations

1. Let $\mathcal{M}=\left\{u \in C([0,1]): \int_{0}^{1 / 2} u-\int_{1 / 2}^{1} u=1\right\}$ and $I: \mathcal{M} \mapsto \mathbb{R}$ given by $I(u)=\|u\|_{\infty}$.
(i) Show that $\inf _{u \in \mathcal{M}} I(u)=1$.
(ii) Show that there is no function $u \in \mathcal{M}$ such that $I(u)=1$.

The problem is that this space is not reflexive.
2. Let \mathcal{M} the convex closed subset of $H^{1}([0,1])$ given by $\mathcal{M}=\left\{u \in H^{1}([0,1]): u(0)=1, u(1)=0\right\}$. Consider the functional $I: \mathcal{M} \mapsto \mathbb{R}$ defined by $I(u)=\int_{0}^{1} x\left|u^{\prime}(x)\right|^{2} d x$.
(i) Show that $\inf _{u \in \mathcal{M}} I(u)=0$.
(ii) Show that there does not exist any $u \in \mathcal{M}$ such that $I(u)=0$.

In this case the problem is that the functional is not coercive.
3. Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain with smooth boundary, let $\beta: \mathbb{R} \mapsto \mathbb{R}$ be a smooth function such that there exist a and b such that

$$
0<a \leq \beta^{\prime}(z) \leq b \quad \text { for all } z \in \mathbb{R}
$$

and $f \in L^{2}(\Omega)$.
(i) Define a concept of weak solution for the nonlinear problem

$$
-\Delta u=f \quad \text { en } \Omega, \quad \partial u / \partial n+\beta(u)=0 \quad \text { in } \partial \Omega .
$$

(ii) Prove that there exists a weak solution (and is unique).
4. Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain with smooth boundary. Given $u \in H^{1}(\Omega)$, we define the surface of the graphic of u by

$$
F(u)=\int_{\Omega} \sqrt{1+|\nabla u|^{2}} d x
$$

(i) Prove that the functional F is C^{1} in $H^{1}(\Omega)$.
(ii) Let $g \in H^{1}(\Omega)$, and $\mathcal{A}=\left\{u=g+v: v \in H_{0}^{1}(\Omega)\right\}$. Prove that a critical point of F in \mathcal{A} is a weak solution to the equation of minimal surfaces:

$$
\nabla \cdot\left(\frac{\nabla u}{\left(1+|\nabla u|^{2}\right)^{1 / 2}}\right)=0 \quad \text { en } \Omega, \quad u=g \quad \text { en } \partial \Omega .
$$

The expression on the left of this equality is N-times the mean curvature of the graphic of u. Hence a minimal surface has zero mean curvature.
(iii) Check wether or not the direct method of calculus of variations can be used to deduce existence of a minimizer of F in \mathcal{A}.
(iv) Let $J(w)=\int_{\Omega} w d x$. assume that u is a smooth minimizer of F in $\mathcal{A} \cap\{w: J(w)=1\}$. Show that the graphic of u is a minimal surface with constant mean curvature.
5. Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain with smooth boundary. Consider the eigenvalue problem for the bi-harmonic opeartor with Dirichlet boundary conditions,

$$
\Delta^{2} u=\lambda u \quad \text { en } \Omega, \quad u=\partial u / \partial n=0 \quad \text { in } \partial \Omega .
$$

Show that there exists a non-trivial weak solution (λ, u) to the problem when $\lambda>0$.
6. Let $f \in L^{2}(\Omega)$. Show that there exists a unique minimizer u of

$$
J(w)=\int_{\Omega}\left(\frac{1}{2}|\nabla w|^{2}-f w\right)
$$

in $\mathcal{A}=\left\{w \in H_{0}^{1}(\Omega):|\nabla w| \leq 1\right.$ a.e. $\}$. Show that

$$
\int_{\Omega} \nabla u \cdot \nabla(w-u) \geq \int_{\Omega} f(w-u) \quad \text { for all } w \in \mathcal{A} .
$$

