EDPs en Ciencia e ingeniería. M.M.A. de la UAM

1. Study Hölder regularity of the functions for all $\alpha>0$

$$f_{\alpha}(x) = \begin{cases} x^{\alpha} \operatorname{sen}(1/x), & 0 < x \le 1, \\ 0, & x = 0. \end{cases}$$

Solution. A simple calculation shows that when $\alpha \geq 2$ we have $f_{\alpha} \in C^{1}([0,1])$, in particular f_{α} is Lipschitz. Therefore we consider the case $\alpha \in (0,2)$.

Let $x_n = \frac{1}{\left(1 + \frac{1}{n}\right)\pi}$, $y_n = \frac{1}{n\pi}$, so that

$$\frac{|f(x_n) - f(y_n)|}{|x_n - y_n|^{\gamma}} = 2^{\gamma} \pi^{\gamma - \alpha} n^{2\gamma - \alpha} \left(1 + \frac{1}{2n} \right)^{\gamma - \alpha} \to \infty \quad \text{cuando } n \to \infty \quad \text{si } \gamma > \alpha/2.$$

As a consequence, the Hölder exponent has to be at most $\alpha/2$. Let us check that it is exactly $\alpha/2$: consider the function

$$\begin{aligned} \phi(x) &= \left(x^{\alpha} \sin \frac{1}{x} - a^{\alpha} \sin \frac{1}{a}\right)^{2/\alpha} = \phi(x) - \phi(a) \\ &= \frac{2}{\alpha} \left(\xi^{\alpha} \sin \frac{1}{\xi} - a^{\alpha} \sin \frac{1}{a}\right)^{\frac{2}{\alpha} - 1} \left(\alpha \xi^{\alpha - 1} \sin \frac{1}{\xi} - \xi^{\alpha - 2} \cos \frac{1}{\xi}\right) (x - a), \end{aligned}$$

where we have used the Mean Value Theorem with $0 \le a < \xi < x \le 1$. As a consequence,

$$\frac{\phi(x)}{x-a} = \frac{2}{\alpha} \left(\alpha^{\frac{\alpha}{2-\alpha}} \xi^{\frac{2}{2-\alpha}} \sin^{\frac{2}{2-\alpha}} \frac{1}{\xi} - \left(\frac{a}{\xi}\right)^{\alpha} \xi^{\frac{2}{2-\alpha}} \sin \frac{1}{a} \sin^{\frac{\alpha}{2-\alpha}} \frac{1}{\xi} \right)^{\frac{2-\alpha}{\alpha}} \\ -\frac{2}{\alpha} \left(\xi^{\frac{\alpha}{2-\alpha}} \sin \frac{1}{\xi} \cos^{\frac{\alpha}{2-\alpha}} \frac{1}{\xi} - \left(\frac{a}{\xi}\right)^{\alpha} \sin \frac{1}{a} \cos^{\frac{\alpha}{2-\alpha}} \frac{1}{\xi} \right)^{\frac{2-\alpha}{\alpha}} \le C,$$

the result follows.

2. Let $\alpha \in (0, 1)$ and consider the function

$$u(x) = (1 + x^2)^{-\alpha/2} (\log(2 + x^2))^{-1}, \qquad x \in \mathbb{R}.$$

Show that $u \in W^{1,p}(\mathbb{R})$ for any $p \in [1/\alpha, \infty]$, and that $u \notin L^q(\mathbb{R})$ when $q \in [1, 1/\alpha)$.

Solution. We will use the following statements, whose proof is left as an (easy) exercise

$$\int_{1}^{\infty} \frac{dx}{x^{\alpha}} < \infty \Leftrightarrow \alpha > 1, \qquad \int_{2}^{\infty} \frac{dx}{x \log^{\beta} x} < \infty \Leftrightarrow \beta > 1$$

On one hand, the function u is clearly bounded for any $\alpha \in (0, 1)$, $u \in L^{\infty}(\mathbb{R})$. On the other hand, if $p \in (1/\alpha, \infty)$,

$$\int_{\mathbb{R}} |u|^p = 2\int_0^1 |u|^p + 2\int_1^\infty |u|^p = C + 2\int_1^\infty \frac{dx}{(1+x^2)^{\alpha p/2} (\log(2+x^2))^p} \le C + \frac{2}{\log^p 2} \int_1^\infty \frac{dx}{x^{\alpha p}} < \infty.$$

The critical case, $p = 1/\alpha$,

$$\int_{\mathbb{R}} |u|^p = C + 2\int_2^\infty \frac{dx}{(1+x^2)^{1/2}(\log(2+x^2))^{1/\alpha}} \le C + \frac{2}{2^{1/\alpha}}\int_2^\infty \frac{dx}{x\log^{1/\alpha}x} < \infty$$

Finally, the derivatives

$$u'(x) = -\alpha(1+x^2)^{-\frac{\alpha}{2}-1}x(\log(2+x^2))^{-1} - (1+x^2)^{-\alpha/2}(\log(2+x^2))^{-2}\frac{2x}{2+x^2}$$

has a decay at infinity which is faster than the function u, therefore it lies (at least) in the same $L^{p}(\mathbb{R})$ space as u. We can conclude that $u \in W^{1,p}(\mathbb{R}), p \in [1/\alpha, \infty]$.

If $q \in [1, 1/\alpha)$, taking $\varepsilon > 0$ so that $\alpha q + \varepsilon < 1$ (we can do it since $\alpha q < 1$),

$$\int_{\mathbb{R}} |u|^q = C + 2\int_2^\infty \frac{dx}{(1+x^2)^{\alpha q/2} (\log(2+x^2))^q} \ge C + C\int_2^\infty \frac{dx}{x^{\alpha q+\varepsilon}} = \infty.$$

3. Let $\Omega = \{x \in \mathbb{R}^2 : |x_1| < 1, |x_2| < 1\}$ and

$$u(x) = \begin{cases} 1 - x_1 & \text{si } x_1 > 0, \ |x_2| < x_1, \\ 1 + x_1 & \text{si } x_1 < 0, \ |x_2| < -x_1, \\ 1 - x_2 & \text{si } x_2 > 0, \ |x_1| < x_2, \\ 1 + x_2 & \text{si } x_2 < 0, \ |x_1| < -x_2. \end{cases}$$

Find the values of $p, 1 \leq p \leq \infty$, such that $u \in W^{1,p}(\Omega)$.

Solution #1. It is trivial to check that $u \in L^{\infty}(\Omega)$, with $||u||_{L^{\infty}(\Omega)} = 1$. Since Ω is a bounded domain, then $u \in L^{p}(\Omega)$, for all $1 \leq p \leq \infty$.

Given $\phi \in C_c^{\infty}(\Omega)$ we have that

$$\int_{\Omega} u \partial_{x_1} \phi = \sum_{j=1}^{4} \int_{T_j} u \partial_{x_1} \phi = -\sum_{j=1}^{4} \int_{T_j} \phi \partial_{x_1} u + \sum_{j=1}^{4} \int_{\partial T_j} u \phi \mathbf{e}_1 \cdot \nu^j,$$

where ν^{j} is the unit exterior normal to T_{j} in ∂T_{j} . On one hand we get

$$-\sum_{j=1}^{4} \int_{T_j} \phi \partial_{x_1} u = -\int_{\Omega} (-\chi_{T_1} + \chi_{T_2}) \phi.$$

On the other hand, since ϕ is compactly supported in Ω , and observing that T_i and T_j have a common a side, it follows that $\nu^i = -\nu^j$ on that common side,

$$\sum_{j=1}^{4} \int_{\partial T_j} u\phi \mathbf{e}_1 \cdot \nu^j = 0$$

We conclude

$$\int_{\Omega} u \partial_{x_1} \phi = -\int_{\Omega} (-\chi_{T_1} + \chi_{T_2}) \phi,$$

that is

$$\partial_{x_1} u = -\chi_{T_1} + \chi_{T_2}$$

in the distributional sense. We notice that $\partial_{x_1} u \in L^{\infty}(\Omega)$. As a consequence, since the domain is bounded, $\partial_{x_1} u \in L^p(\Omega)$, $1 \leq p \leq \infty$. The same holds for $\partial_{x_2} u$ (simply by switching x_1 and x_2), we conclude that $u \in W^{1,p}(\Omega)$ for all $1 \leq p \leq \infty$.

Solution #2. It is easy to check that $\min\{f,g\} = -\{f-g\}_+ + f$. We know that $h \in W^{1,p}(\Omega)$, therefore $\{h\}_+ \in W^{1,p}(\Omega)$ (cf. Problem 11), and we can conclude that if $f,g \in W^{1,p}(\Omega)$, then $\min\{f,g\} \in W^{1,p}(\Omega)$.

The function u satisfies

$$u(x_1, x_2)) = \min\{1 - x_1, 1 + x_1, 1 - x_2, 1 + x_2\}$$

Being the minimum of $W^{1,\infty}(\Omega)$ functions, it lies in the same space, hence in all $W^{1,p}(\Omega)$, with $1 \le p \le \infty$, since Ω is bounded.

Remark. The same holds true also for $\max\{f, g\} = \{f - g\}_+ + g$: indeed, if $f, g \in W^{1,p}(\Omega)$, then $\max\{f, g\} \in W^{1,p}(\Omega)$.

4. Let N > 1. Check that the unbounded function $u(x) = \log \log \left(1 + \frac{1}{|x|}\right)$ lies in $W^{1,n}(B_1(0))$.

Solution. Change to polar coordinates:

$$\int_{B_1(0)} |u|^n = C \int_0^1 r^{n-1} |\log \log(1 + \frac{1}{r})|^n \, dr < \infty \quad \text{si } n \ge 2,$$

the function under integral has a continuous extension on the whole interval [0, 1], since its limit as $r \to 0^+$ is 0).

A simple calculation shows that

$$\partial_{x_i} u(x) = -\frac{x_i}{(|x|^3 + |x|^2)\log(1 + \frac{1}{|x|})} \quad \text{si } x \neq 0$$

Change again to polar coordinates

$$\int_{B_1(0)} \left| \frac{x_i}{(|x|^3 + |x|^2)\log(1 + \frac{1}{|x|})} \right|^n dx \le C \int_0^1 \frac{r^{n-1}}{\left((r^2 + r)\log(1 + \frac{1}{r})\right)^n} dr \le C - \int_0^{1/2} \frac{dr}{r\log^n r} < \infty,$$

if $N \geq 2$.

Let $T_k u(x) = \min\{u(x), k\}$. for each constant $k \ge 0$ this function is in $W^{1,n}(B_1(0))$, its weak derivatives are

$$\partial_{x_i} T_k u(x) = -\chi_{\{u < k\}} \frac{x_i}{(|x|^3 + |x|^2) \log(1 + \frac{1}{|x|})}$$

which are functions belonging to $L^n(B_1(0))$ uniformly in k, and also to $L^1(B_1(0))$. By Dominated convergence, the limit as $k \to \infty$ becomes

$$\int_{B_1(0)} T_k u \partial_{x_i} \phi = -\int_{B_1(0)} \phi \partial_{x_i} T_k u$$

from which we deduce

$$\partial_{x_i} u(x) = -\frac{x_i}{(|x|^3 + |x|^2)\log(1 + \frac{1}{|x|})} \quad \text{en } \mathcal{D}'(B_1(0)),$$

which concludes the proof.

5. Let $\Omega \subseteq \mathbb{R}^N$ be open and connected and $u \in W^{1,p}(\Omega)$. Show that if Du = 0 a.e. in Ω , then u is constant a.e. in Ω .

Solution. For any $\varepsilon > 0$ consider the regularization $u^{\varepsilon} = \eta_{\varepsilon} \star u$, and we know that $u^{\varepsilon} : \Omega_{\varepsilon} \mapsto \mathbb{R} \in C^{\infty}(\Omega_{\varepsilon})$. Its first order derivatives, $\partial^{\alpha} u^{\varepsilon} = \eta_{\varepsilon} \star \partial^{\alpha} u$, $|\alpha| = 1$, are also zero on Ω_{ε} . As a consequence u is constant on each connected component of Ω_{ε} .

Let $x, y \in \Omega$. Since Ω open and connected, there is a continuous path $\Gamma \subset \Omega$ joining x and y. Let $\delta = \min_{z \in \Gamma} \operatorname{dist}(z, \partial \Omega)$. For all $\varepsilon < \delta$ the whole path Γ lies in Ω_{ε} , hence x and y lie in the same connected component of Ω_{ε} . Therefore, $u^{\varepsilon}(x) = u^{\varepsilon}(y)$.

Let $\tilde{u}(x) = \lim_{\varepsilon \to 0} u^{\varepsilon}(x)$. As a consequence of the above results, \tilde{u} is constant in Ω . We also know that $\tilde{u}(x) = u(x)$ a.e. in Ω , and the proof is concluded.

6. (Fundamental Theorem of Calculus) Let $I \subset \mathbb{R}$ an interval (not necessarily bounded). Let $g \in L^1_{loc}(I)$. For any fixed $y_0 \in I$ we define

$$v(x) = \int_{y_0}^x g(t) \, dt, \quad x \in I.$$

Prove that $v \in C(I)$ and that

$$\int_{I} v\varphi' = -\int_{I} g\varphi \quad \text{for any } \varphi \in C^{1}_{\rm c}(I).$$

Solution. We have that

$$\int_{I} v\varphi' = \int_{I} \left(\int_{y_0}^{x} g(t) dt \right) \varphi'(x)$$

= $-\int_{a}^{y_0} \left(\int_{x}^{y_0} g(t)\varphi'(x) dt \right) dx + \int_{y_0}^{b} \left(\int_{y_0}^{x} g(t)\varphi'(x) dt \right) dx.$

By Fubini's Theorem,

$$\int_{I} v\varphi' = -\int_{a}^{y_{0}} g(t) \left(\int_{a}^{t} \varphi'(t) dx\right) dt + \int_{y_{0}}^{b} g(t) \left(\int_{t}^{b} \varphi'(x) dx\right) dt$$
$$= -\int_{I} g(t)\varphi(t) dt.$$

7. Let $I \subset \mathbb{R}$ an interval (not necessarily bounded). Let $u \in W^{1,p}(I)$, $1 \leq p \leq \infty$. Prove that there exists a function $\tilde{u} \in C(\overline{I})$ such that $u = \tilde{u}$ a.e. in I, and that moreover we have

$$\tilde{u}(x) - \tilde{u}(y) = \int_{x}^{y} u'(t) dt$$
 para todo $x, y \in \overline{I}$.

Hint. Use the two previous exercises

Solution. Fix $y_0 \in I$ and let $\bar{u}(x) = \int_{y_0}^x u'(t) dt$. Thanks to the previous exercise, we have

$$\int_{I} \bar{u}\varphi' = -\int_{I} u'\varphi \qquad \forall \varphi \in C^{1}_{\rm c}(I).$$

As a consequence, $\int_{I} (u - \bar{u})\varphi' = 0$ for all $\varphi \in C_{c}^{1}(I)$. Thanks to Problem 5, $u - \bar{u} = C$ a.e. in I. The function $\tilde{u} = \bar{u} + C$ has the required properties.

8. Let $u, v \in H^1(\mathbb{R})$. Show that

$$\int_{\mathbb{R}} uv' = -\int_{\mathbb{R}} u'v.$$

Solution. If $u \in H^1(\mathbb{R})$ and $v \in C_c^{\infty}(\mathbb{R})$, the identity is nothing but the definition of distributional derivative of u. For the general case, $v \in H^1(\mathbb{R})$, let us take a sequence $\{v_n\} \subset C_c^{\infty}(\mathbb{R})$ so that $v_n \to v$ en $H^1(\mathbb{R})$. We obtain the result just by taking the limits in

$$\int_{\mathbb{R}} u v'_n = -\int_{\mathbb{R}} u' v_n.$$

Remark. The very same proof works in ANY dimension $N \ge 1$.

9. (Leibnitz rule in Sobolev Spaces) Let $u, v \in W^{1,p}(\Omega) \cap L^{\infty}(\Omega)$. Show that $uv \in W^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ and that

$$\partial_{x_i}(uv) = v\partial_{x_i}u + u\partial_{x_i}v, \quad i = 1, \dots, n.$$

Solution. Let $\{u_n\}, \{v_k\} \subset C_c^{\infty}(\Omega)$ such that $u_n \to u, v_k \to v$ en $W_{\text{loc}}^{1,p}(\Omega), \|u_n\|_{L^{\infty}(\Omega)} \leq \|u\|_{L^{\infty}(\Omega)}, \|v_k\|_{L^{\infty}(\Omega)} \leq \|v\|_{L^{\infty}(\Omega)}$. We immediately get

$$-\int_{\Omega} u_n v_k \partial_{x_i} \phi = \int_{\Omega} \partial_{x_i} (u_n v_k) \phi = \int_{\Omega} (v_k \partial_{x_i} u_n + u_n \partial_{x_i} v_k) \phi.$$

Taking the limits, first in n then in k at the first and last terms of the above inequality, we obtain

$$-\int_{\Omega} uv\partial_{x_i}\phi = \int_{\Omega} (v\partial_{x_i}u + u\partial_{x_i}v)\phi,$$

This means that we satisfy Leibnitz rule for the derivative of a product, in the distributional sense. We then take the limit, recalling that the product of a bounded function with a function of $C_{\rm c}^{\infty}(\Omega)$ lies $L^{p'}$.

Once we have checked the identity in the distributional sense, we conclude by recalling that the product of a bounded function (in L^{∞}) with a function of L^p is still in L^p .

10. (Chain Rule) Let $F : \mathbb{R} \to \mathbb{R}$ a C^1 function with bounded F' and F(0) = 0. Let $\Omega \subset \mathbb{R}^N$ be an open and bounded set. Let $u \in W^{1,p}(\Omega)$ for some $p, 1 \le p \le \infty$. Show that v = F(u) lies in $W^{1,p}(\Omega)$ and that $v_{x_i} = F'(u)u_{x_i}, i = 1, ..., n$.

Solution. Given $\phi \in C_c^{\infty}(\Omega)$, there is a sequence $\{u_n\} \subset C^{\infty}(\Omega)$ so that $u_n \to u$ in $W^{1,p}(\operatorname{sop} \phi)$ and $u_n \to u$ a.e. in Ω . We then have

$$-\int_{\Omega} F(u_n)\partial_{x_i}\phi = \int_{\Omega} \phi F'(u_n)\partial_{x_i}u_n.$$
(1)

Moreover,

$$\left| \int_{\Omega} (F(u_n) - F(u)) \partial_{x_i} \phi \, dx \right| \le \|\partial_{x_i} \phi\|_{\infty} \sup |F'| \int_{\operatorname{sop} \phi} |u_n - u| dx \to 0 \quad \text{cuando } n \to \infty$$

We also have

$$\left| \int_{\Omega} (F'(u_n)\partial_{x_i}u_n - F'(u)\partial_{x_i}u)\phi \, dx \right|$$

$$\leq \|\phi\|_{\infty} \sup |F'| \int_{\operatorname{sop} \phi} |\partial_{x_i}u_n - \partial_{x_i}u| \, dx + \int_{\operatorname{sop} \phi} |F'(u_n) - F'(u)| |Du| \, dx \to 0 \quad \text{cuando } n \to \infty.$$

We have used Dominated Convergence together with the pointwise convergence of $|F'(u_n) - F'(u)|$ to 0, in order to prove the convergence of the second term in the right-hand side. Take the limit in (1), to get

$$-\int_{\Omega} F(u)\partial_{x_i}\phi = \int_{\Omega} \phi F'(u)\partial_{x_i}u,$$

which is equivalent to $v_{x_i} = F'(u)\partial_{x_i}u$. Under our assumptions on F and u, we know that the righthand side is in $L^p(\Omega)$, therefore also $v_{x_i} \in L^p(\Omega)$.

Finally,

$$\int_{\Omega} |v|^p = \int_{\Omega} |F(u) - F(0)|^p \le (\sup |F'|)^p \int_{\Omega} |u|^p < \infty$$

which gives the result.

11. Let $\Omega \subset \mathbb{R}^N$ be an open bounded domain, and let $1 \leq p \leq \infty$.

- (a) Prove that $u \in W^{1,p}(\Omega)$, implies $|u| \in W^{1,p}(\Omega)$.
- (b) Prove that $u \in W^{1,p}(\Omega)$ implies $u^+, u^- \in W^{1,p}(\Omega)$, with

$$Du^{+} = \begin{cases} Du & \text{a.e. in } \{u > 0\}, \\ 0 & \text{a.e. in } \{u \le 0\}, \end{cases}$$
$$Du^{-} = \begin{cases} 0 & \text{a.e. in } \{u \ge 0\}, \\ -Du & \text{a.e. in } \{u < 0\}. \end{cases}$$

Hint. $u^+ = \lim_{\varepsilon \to 0} F_{\varepsilon}(u)$, where

$$F_{\varepsilon}(z) = \begin{cases} (z^2 + \varepsilon^2)^{1/2} - \varepsilon & \text{if } z \ge 0, \\ 0 & \text{if } z < 0. \end{cases}$$

(c) Prove that if $u \in W^{1,p}(\Omega)$, then Du = 0 a.e. on the set $\{u = 0\}$.

Solution. It is sufficient to prove part (b). Parts (a) and (c) follow immediately, since $|u| = u^+ + u^$ and $u = u^+ - u^-$.

Let us show part (b). It is sufficient to prove it for u^+ , since $u^- = (-u)^+$. Following the hint, we use the Chain Rule of Exercise 10, with $\phi \in C_c^{\infty}(\Omega)$

$$\int_{\Omega} F_{\varepsilon}(u) \partial_{x_i} \phi \, dx = - \int_{\{u > 0\}} \phi \frac{u \partial_{x_i} u}{(u^2 + \varepsilon^2)^{\frac{1}{2}}} \, dx$$

Letting $\varepsilon \to 0$ and using Dominated Convergence, we get

$$\int_{\Omega} u^+ \partial_{x_i} \phi \, dx = - \int_{\{u>0\}} \phi \partial_{x_i} u \, dx.$$

This concludes the proof.

12. Let $\Omega \subset \mathbb{R}^N$ an open set with C^1 boundary. Show by means of an example that $L^p(\Omega)$ functions, with $p \in [1, \infty)$, do not necessarily have a trace on $\partial \Omega$. More precisely, show that there can not exist a linear bounded operator $T : L^p(\Omega) \to L^p(\partial \Omega)$ such that $Tu = u_{|\partial\Omega}$ for all $u \in C(\overline{\Omega}) \cap L^p(\Omega)$.

Solution. Let us show a counterexample in dimension N = 1. We want to show that there there does not exists a constant C > 0 such that $||Tu||_{L^p(\partial\Omega)} \leq C||u||_{L^p(\Omega)}$ for all $u \in C(\overline{\Omega}) \cap L^p(\Omega)$. Assume by contradiction that this holds true. Choose a family of continuous functions on $\Omega = (0, 1)$ given by

$$f_n(x) = n^{\alpha+1} \left\{ \frac{1}{n^{\alpha}} - x \right\}_+$$

We have that

$$\int_0^1 |f_n|^p \le n^{p-\alpha} = 1 \quad \text{si } \alpha = p.$$

But we also have

$$||Tf_n||_{L^p(\partial\Omega)}^p = |f_n(0)|^p + |f_n(1)|^p = n^p,$$

which clearly contradicts the hypothesis.

Analogous counterexamples can be constructed in any dimension N > 1.

13. (a) Show that there does not exists any constant C > 0 such that

$$\int_{\mathbb{R}^N} u^2 \le C \int_{\mathbb{R}^N} |\nabla u|^2 \quad \text{for all } u \in H^1(\mathbb{R}^N).$$

(b) (Hardy Inequality) For all $N \ge 3$ there exists C > 0 such that

$$\int_{\mathbb{R}^N} \frac{u^2}{|x|^2} \, dx \le C \int_{\mathbb{R}^N} |\nabla u|^2 \, dx \quad \text{for all } u \in H^1(\mathbb{R}^N).$$

Hint. $|\nabla u + \lambda \frac{x}{|x|^2} u|^2 \ge 0$ for all $\lambda \in \mathbb{R}$.

Solution. (a) Let $\zeta \in C^{\infty}(\mathbb{R}^N)$, be so that $\zeta \geq 0$, $\zeta(x) = 1$ if $|x| \leq 1$, $\zeta(x) = 0$ if $|x| \geq 2$. Define $\zeta_k(x) = \zeta(x/k)$. If there would exist C > 0 for all functions of $H^1(\mathbb{R}^N)$, we shall have

$$\int_{\mathbb{R}^N} \zeta^2(x/k) \, dx \le \frac{C}{k^2} \int_{\mathbb{R}^N} |\nabla \zeta|^2(x/k) \, dx \quad \text{for all } k$$

Changing variables x = ky,

$$\int_{\mathbb{R}^N} \zeta^2 \le \frac{C}{k^2} \int_{\mathbb{R}^N} |\nabla \zeta|^2 \quad \text{for all } k.$$

We can let $k \to \infty$ to get a contradiction.

(b) Follow the hint and expand the square:

$$0 \le \int_{\mathbb{R}^N} \left| \nabla u + \lambda \frac{x}{|x|^2} u \right|^2 \, dx = \int_{\mathbb{R}^N} \left(|\nabla u|^2 + \frac{\lambda x \cdot \nabla (u^2)}{|x|^2} + \lambda^2 \frac{u^2}{|x|^2} \right) \, dx.$$

Recalling that $\nabla \cdot \left(\frac{x}{|x|^2}\right) = \frac{N-2}{|x|^2}$, we obtain

$$0 \le \int_{\mathbb{R}^N} |\nabla u|^2 - \lambda (N-2) \int_{\mathbb{R}^N} \frac{u^2}{|x|^2} \, dx + \lambda^2 \int_{\mathbb{R}^N} \frac{u^2}{|x|^2} \, dx$$

The (positive) minimum of the quadratic polynomial in λ is attained at $\lambda = (N-2)/2$. Substitute this value in the above inequality, gives the result with $C = 4/(N-2)^2$.

14. Let $\alpha > 0$. Show that there exists $C = C(N, \alpha) > 0$ so that

$$\int_{B_1(0)} u^2 \le C \int_{B_1(0)} |\nabla u|^2$$

for all $u \in H^1(B_1(0))$ such that $|\{x \in B_1(0) : u(x) = 0\}| \ge \alpha$.

Solution. Let $B = B_1(0)$ and $A = \{x \in B : u(x) = 0\}$. Using Poincaré inequality, we know that there exists C > 0 so that

$$C\|\nabla u\|_{L^{2}(B)} \ge \left\|u - \frac{1}{|B|} \int_{B} u\right\|_{L^{2}(B)} \ge \left\|\|u\|_{L^{2}(B)} - \left\|\frac{1}{|B|} \int_{B} u\right\|_{L^{2}(B)}\right|.$$

By Hölder inequality,

$$\left\|\frac{1}{|B|} \int_{B} u\right\|_{L^{2}(B)}^{2} = \frac{1}{|B|} \left(\int_{B \setminus A} u\right)^{2} \le \frac{|B \setminus A|}{|B|} \|u\|_{L^{2}(B)}^{2}.$$

As a consequence,

$$C \|\nabla u\|_{L^{2}(B)} \ge \|u\|_{L^{2}(B)} \left(1 - \left(\frac{|B| - \alpha}{|B|}\right)^{1/2}\right).$$

The result follows, since $1 - \left(\frac{|B| - \alpha}{|B|}\right)^{1/2} > 0.$

15. (Friedrichs' Inequality) Let $\Omega \subset \mathbb{R}^N$ be an open connected domain, with smooth boundary and let $\Gamma \subset \partial \Omega$ a set with positive (N-1)-dimensional measure. Show that there exists a constant C > 0 so that

$$\|u\|_{H^{1}(\Omega)}^{2} \leq C\left(\|u\|_{L^{2}(\Gamma)}^{2} + \|\nabla u\|_{L^{2}(\Omega)}^{2}\right) \qquad \forall \ u \in H^{1}(\Omega)$$

Solution. We proceed by contradiction. Suppose that the inequality is false. Therefore, for all $k \in \mathbb{N}$ there exists a function $u_k \in H^1(U)$ such that

$$||u_k||_{H^1(U)}^2 \ge k \left(||u_k||_{L^2(\Gamma)}^2 + ||\nabla u_k||_{L^2(U)}^2 \right).$$

Let $v_k = u_k/||u_k||_{H^1(U)}$. As a consequence, $||v_k||_{H^1(U)} = 1$ and $||v_k||_{L^2(\Gamma)}^2 + ||\nabla v_k||_{L^2(U)}^2 < 1/k$. We deduce that $v_k \to 0$ in $L^2(\Gamma)$ and that $\partial_{x_i} v_k \to 0$ in $L^2(U)$, $i = 1, \ldots, N$. Next, since the sequence $\{v_k\}_{k=1}^{\infty}$ is bounded in $H^1(U)$, using Rellich-Kondrachov Theorem, we can extract a subsequence, that we call $\{v_k\}$ for simplicity, which is convergent in $L^2(U)$ to a limit function v. Let us show that v_k also converges to v in $H^1(U)$. Indeed,

$$\|v_m - v_l\|_{H^1(U)} \le C \left(\|v_m - v_l\|_{L^2(U)} + \|\nabla v_m\|_{L^2(U)} + \|\nabla v_l\|_{L^2(U)} \right).$$

Since $\{v_k\}$ converges in $L^2(U)$, it is a Cauchy sequence in that space, and since its gradient converges to 0, taking sufficiently big m and l we have that $\|v_m - v_l\|_{H^1(U)}$ can be as small as we want. As a consequence, $v_k \to v$ in $H^1(U)$. This implies that $\nabla v_k \to \nabla v$ in $L^2(U)$. But we already know that $\nabla v_k \to (0, \ldots, 0)$ in $L^2(U)$. Since U is connected, hence v is constant in U.

On the other hand, recall that Γ has positive (N-1)-dimensional measure, hence, by trace inequality we get $||v_k - v||_{L^2(\Gamma)} \leq C ||v_k - v||_{H^1(U)}$. As a consequence, $v_k \to v$ in $L^2(\Gamma)$. But we have shown that $v_k \to 0$ in $L^2(\Gamma)$, which implies v = 0 in Γ in the trace sense. We deduce that v = 0 a.e. in U, and that $v_k \to 0$ in $H^1(U)$. This gives a contradiction, since $||v_k||_{H^1(U)} = 1$.

16. Integrate by parts to prove the following inequality

$$||Du||_{L^2} \le C ||u||_{L^2}^{1/2} ||D^2u||_{L^2}^{1/2}$$
 for all $u \in C_c^{\infty}(\Omega)$.

Prove also that the inequality holds for $u \in H^2(\Omega) \cap H^1_0(\Omega)$ if Ω is a bounded domain with smooth boundary.

Hint. Take two sequences $\{v_k\}_{k=1}^{\infty} \subset C_c^{\infty}(\Omega)$ converging to u in $H_0^1(\Omega)$ and $\{w_k\}_{k=1}^{\infty}$ converging to u in $H^2(\Omega)$.

Solution. We follow the hint, and we integrate by parts and using Hölder inequality,

$$\sum_{i=1}^{n} \int_{\Omega} \partial_{x_{i}} v_{k} \partial_{x_{i}} w_{k} = -\sum_{i=1}^{n} \int_{\Omega} v_{k} \partial_{x_{i}}^{2} w_{k} \leq \sum_{i=1}^{n} \|v_{k}\|_{L^{2}(\Omega)} \|\partial_{x_{i}}^{2} w_{k}\|_{L^{2}(\Omega)} \leq C \|v_{k}\|_{L^{2}(\Omega)} \|D^{2} w_{k}\|_{L^{2}(\Omega)}.$$

Taking the limit as $k \to \infty$ gives the result.

17. (Gagliardo-Nirenberg Inequality – First form, dimension N = 1) Let $\Omega = (0, 1)$. (a) Let $1 \le q < \infty$ and $1 < r \le \infty$. Show that

$$||u||_{L^{\infty}(\Omega)} \leq C ||u||^{a}_{W^{1,r}(\Omega)} ||u||^{1-a}_{L^{q}(\Omega)} \text{ para toda } u \in W^{1,r}(\Omega)$$

for some constant C = C(q, r) > 0, where $a \in (0, 1)$ is given by

$$a\left(\frac{1}{q}+1-\frac{1}{r}\right) = \frac{1}{q}$$

Hint. Begin with the case u(0) = 0 write $G(u(x)) = \int_0^x G'(u(t))u'(t) dt$, where $G(t) = |t|^{\alpha-1}t$ and $\alpha = 1/a$. When $u(0) \neq 0$, use the above inequality with ζu , where $\zeta \in C^1([0,1]), \zeta(0) = 0, \zeta(t) = 1$ for all $t \in [1/2, 1]$.

(b) Let $1 \le q y <math>1 \le r \le \infty$. Show that

$$||u||_{L^{p}(\Omega)} \leq C ||u||_{W^{1,r}(\Omega)}^{b} ||u||_{L^{q}(\Omega)}^{1-b}$$
 para toda $u \in W^{1,r}(\Omega)$

for some constant C = C(p, q, r) > 0, where $b \in (0, 1)$ is given by

$$b\left(\frac{1}{q}+1-\frac{1}{r}\right) = \frac{1}{q} - \frac{1}{p}$$

Hint. Write $||u||_{L^p(\Omega)}^p = \int_{\Omega} |u|^q |u|^{p-q} \le ||u||_{L^q(\Omega)}^q ||u||_{L^{\infty}(\Omega)}^{p-q}$ and use part (a) when r > 1. (c) Under the same assumptions as in part (b), show that

 $||u||_{L^{p}(\Omega)} \leq C||u'||_{L^{r}(\Omega)}^{b} ||u||_{L^{q}(\Omega)}^{1-b}$ for all $u \in W^{1,r}(\Omega)$ tal que $\int_{\Omega} u = 0.$

Solution. (a) Following the hint, using that $G'(t) = \alpha |t|^{\alpha-1}$, and Hölder inequality with conjugate exponents r and r', we get

$$|u(x)|^{\alpha} = |G(u(x))| \le \int_0^1 |G'(u(t))| \, |u'(t)| \, dt \le \alpha ||u'||_{L^r(\Omega)} ||u||_{L^{(\alpha-1)r'}(\Omega)}^{\alpha-1}$$

The result for functions such that u(0) = 0 follows immediately, taking $q = (\alpha - 1)r'$, and recalling that $\alpha = 1/a$. The definition of q is equivalent to $a\left(\frac{1}{q} + 1 - \frac{1}{r}\right) = \frac{1}{q}$. Let us notice that we actually get something better: instead of the norm $W^{1,r}$ we get L^r norm of the derivative.

The general case follows again by the hint. Apply the previous case to

$$|(\zeta u)(x)| \le C ||(\zeta u)'||^a_{L^r(\Omega)} ||\zeta u||^{1-a}_{L^q(\Omega)}.$$

Recall that $(\zeta u)' = \zeta' u + \zeta u'$, so that

$$\|(\zeta u)'\|_{L^{r}(\Omega)} \leq C\left(\|\zeta u'\|_{L^{r}(\Omega)} + \|\zeta' u\|_{L^{r}(\Omega)}\right) \leq C\left(\|u'\|_{L^{r}(\Omega)} + \|u\|_{L^{r}(\Omega)}\right) \leq C\|u\|_{W^{1,r}(\Omega)}.$$

We also have $\|\zeta u\|_{L^q(\Omega)} \leq C \|u\|_{L^q(\Omega)}$, which leads to

$$|u(x)| = |(\zeta u)(x)| \le C ||u||_{W^{1,r}(\Omega)}^a ||u||_{L^q(\Omega)}^{1-a} \quad \text{si } x \in [1/2, 1].$$

To analyze the other half of the interval, let us consider the function $\tilde{u}(x) = u(1-x)$ and let us apply the result on [1/2, 1] to \tilde{u} . We then get

$$|u(x)| = |\tilde{u}(1-x)| \le C \|\tilde{u}\|_{W^{1,r}(\Omega)}^a \|\tilde{u}\|_{L^q(\Omega)}^{1-a} \quad \text{si } x \in [0, 1/2].$$

The result follows once we notice that

$$\|\tilde{u}\|_{W^{1,r}(\Omega)} = \|u\|_{W^{1,r}(\Omega)}, \qquad \|\tilde{u}\|_{L^{q}(\Omega)} = \|u\|_{L^{q}(\Omega)}.$$

(b) If r > 1, let us just follow the hint, taking $b = a \left(1 - \frac{q}{p}\right)$. If r = 1, we use again the hint, but instead of part (a) we now use the Sobolev inequality $||u||_{L^{\infty}(\Omega)} \leq C||u||_{W^{1,1}(\Omega)}$ (NOTICE that we are in DIMENSION N = 1), and recall that in this case we have $b = 1 - \frac{p}{q}$.

(c) Combine Poincaré-Wirtinger inequality with the result of part (b) as follows:

$$\left\| u - \frac{1}{|\Omega|} \int_{\Omega} u \right\|_{L^{r}(\Omega)} \le C \| u' \|_{L^{r}(\Omega)},$$

which implies $||u||_{L^r(\Omega)} \leq C ||u'||_{L^r(\Omega)}$; hence we have $||u||_{W^{1,r}(\Omega)} \leq C ||u'||_{L^r(\Omega)}$, which combined with the result of part (b) proves the claim.