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Hoja de problemas 1: Laplace and Poisson Equations

1. Prove that Laplace equation ∆u = 0 is invariant under rotations: let O be an orthogonal matrix n×n
and define

v(x) := u(Ox), x ∈ RN .

Show that ∆v = 0.

Solution. By the chain rule,

∂v

∂xi
(x) =

N∑
j=1

∂u

∂xj
(Ox)Oji,

∂2v

∂x2
i

(x) =
N∑

k,j=1

∂2u

∂xk∂xj
(Ox)OkiOji.

Then use the fact that since O is a orthogonal matrix we have
∑N

i=1OkiOji = δkj , so that

∆v(x) =
N∑
i=1

∂2v

∂x2
i

(x) =
N∑

k,j=1

∂2u

∂xk∂xj
(Ox)

N∑
i=1

OkiOji

=
N∑

k,j=1

∂2u

∂xk∂xj
(Ox)δkj =

N∑
k=1

∂2u

∂x2
k

(Ox) = ∆u(Ox) = 0.

2. Let u be an harmonic function and let φ : R 7→ R be a smooth convex function. Prove that v := φ(u)
is a subharmonic function.

Solution. Let us calculate

∂v

∂xi
= φ′(u)

∂u

∂xi
,

∂2v

∂x2
i

= φ′′(u)

(
∂u

∂xi

)2

+ φ′(u)
∂2u

∂x2
i

.

Hence we have

∆v =

N∑
i=1

∂2v

∂x2
i

= φ′′(u)

N∑
i=1

(
∂u

∂xi

)2

+ φ′(u)∆u.

Recall that u is harmonic, i.e. ∆u = 0, and that φ is convex and smooth, so that φ′′ ≥ 0; therefore we
get

∆v = φ′′(u)
N∑
i=1

(
∂u

∂xi

)2

≥ 0.

3. Show that x 7→ log |x| is a subharmonic function in the domain RN \ {0} if N ≥ 2.

Solution. Let us calculate

∂u

∂xi
(x) =

xi
|x|2

,
∂2u

∂x2
i

(x) =
|x|2 − 2x2

i

|x|4
.

As a consequence,

∆u(x) =

N∑
i=1

∂2u

∂x2
i

(x) =
n− 2

|x|2
≥ 0 si n ≥ 2.
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4. Show that v := |Du|2 a subharmonic function if u is harmonic.

Solution. Let us calculate directly, starting from the expression v =
∑N

i=1

(
∂u
∂xi

)2
. Indeed,

∂v

∂xj
=

N∑
i=1

2
∂u

∂xj

∂2u

∂xi∂xj
,

∂2v

∂x2
j

= 2
N∑
i=1

(
∂2u

∂xi∂xj

)2

+
N∑
i=1

∂u

∂xi

∂

∂xi

(
∂2u

∂x2
j

)
.

As a consequence, −∆v ≤ 0 :

∆v =
N∑
j=1

∂2v

∂x2
j

= 2
N∑

i,j=1

(
∂2u

∂xi∂xj

)2

+
N∑
i=1

∂u

∂xi

∂

∂xi
(∆u) = 2

N∑
i,j=1

(
∂2u

∂xi∂xj

)2

≥ 0,

since u is harmonic.

5. Let Ω ⊂ RN be a bounded domain and u ∈ C2(Ω) ∩ C(Ω) a solution to

∆u = −1 en Ω, u|∂Ω = 0.

Prove that ∀x0 ∈ Ω we have that

u(x0) ≥ 1

2N
min
x∈∂Ω

|x− x0|2.

Solution. Fixed x0 ∈ Ω, it is easy to check that the function v(x) = |x−x0|2
2N satisfies ∆v = 1. As a

consequence ∆(u+ v) = 0. By the maximum principle u+ v has minimum on ∂Ω, namely

(u+ v)(x) ≥ min
x∈∂Ω

(u+ v)(x) = min
x∈∂Ω

v(x) =
1

2n
min
x∈∂Ω

|x− x0|2.

Since v(x0) = 0, the result follows.

6. Let u be a classical solution to

−∆u = f en B1(0), u = g en ∂B1(0).

Show that there exists a constant C > 0, independent of u, such that

max
B1(0)

|u| ≤ C( max
∂B1(0)

|g|+ max
B1(0)

|f |).

Solution. On one hand, we first let v(x) = ‖g‖L∞(∂B1(0)) +
‖f‖L∞(B1(0))

2n (1 − |x|2). It is easy to see
that ∆v = −‖f‖L∞(B1(0)). Therefore we have −∆(u− v) = f − ‖f‖L∞(B1(0)) ≤ 0 en B1(0),

u− v = g − ‖g‖L∞(∂B1(0)) ≤ 0 en ∂B1(0).

By the maximum principle, u ≤ v en B1(0).

On the other hand,  −∆(u+ v) = f + ‖f‖L∞(B1(0)) ≥ 0 en B1(0),

u+ v = g + ‖g‖L∞(∂B1(0)) ≥ 0 en ∂B1(0).

Again by the maximum principle, u ≥ −v en B1(0).

Summing up, |u| ≤ v in B1(0), hence the result holds with C = 1.
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7. Let u be a positive harmonic function in Br(0). Use Poisson formula to show that

rN−2 r − |x|
(r + |x|)N−1

u(0) ≤ u(x) ≤ rN−2 r + |x|
(r − |x|)N−1

u(0).

This is an explicit form of the Harnack inequality.

Solution. Let us recall Poisson formula for harmonic functions:

u(x) =
r2 − |x|2

ωNr

ˆ
∂Br(0)

u(y)

|x− y|N
dσy,

where ωN is the area (or (N-1)-dimensional volume) of the unit sphere of RN . Next we use that
|x− y| ≥ ||y| − |x||, to get

u(x) ≤ r2 − |x|2

(r − |x|)N
rN−2

 
∂Br(0)

u dσ.

Using the the mean value property for u (which is harmonic) and simplifying the fraction, we obtain

u(x) ≤ rN−2 r + |x|
(r − |x|)N−1

u(0).

A similar argument allows to prove the analogous estimates from below, using |x− y| ≤ |y|+ |x|.

8. Consider the problem {
∆u(x) + c(x)u(x) = 0, x ∈ Ω,
u(x) = g(x), x ∈ ∂Ω,

where we assume c(x) < 0. Show that this problem has a unique solution. Show by an example that
when c(x) > 0 uniqueness fails.

Solution. Given two solutions u and v, then w = u− v satisfies

∆w(x) + c(x)w(x) = 0, x ∈ Ω, w(x) = 0, x ∈ ∂Ω.

Let us first show an “energy method” to prove uniqueness: multiply the equation by w and integrate
by parts to get

0 = −
ˆ

Ω

(
|∇w|2 + c(x)w2

)
≤ 0,

this clearly shows that w = 0 in Ω.

This proof requires that w is C1 up to the boundary ∂Ω, for the integration by parts to be true. This
requirement seems not natural for the problem at hand, since usually we just have C2(Ω) ∩ C0(Ω).
This can be avoided by using weak solutions and Sobolev functions; on the other hand, there is another
proof, that uses the Maximum Principle arguments.

Assume that w is positive at some point of Ω. Therefore w will have a positive maximum at a point
x0 ∈ Ω. Hence,

0 ≥ ∆w(x0) = −c(x0)w(x0) > 0,

which is a contradiction, therefore we have w ≤ 0. An analogous argument allow to conclude that
w ≥ 0, hence we conclude that w = 0.

The non-uniqueness can be shown by means of an example in dimension N = 1, on the interval (0, π)
and with c(x) = 1. All the functions of the form uc(x) = c sinx are clearly solutions to the problem.
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9. (Schwartz Reflection Principle) Consider the open semiball U+ = {x ∈ RN : |x| < 1, xN > 0}. Let
u ∈ C2(U+) be harmonic in U+ with u = 0 on ∂U+ ∩ {xN = 0}. Given x ∈ U = B1(0) we define

v(x) :=

{
u(x) si xN ≥ 0,
−u(x1, . . . , xn−1,−xN ) si xN < 0.

Show that v is harmonic in U .

Solution. The function is clearly harmonic both when xN > 0 and when xN < 0. Hence the Mean
Value Property is satisfied in balls centered at points of those sets, provided the radii are small enough.
Let us show that the same holds for sufficiently small balls centered at points with xN = 0. Indeed,
taking r > 0 small enough, Br(x) ⊂ B1(0), and

 
∂Br(x)

v =
1

|Br(0)|

(ˆ
∂Br(x)∩{yN>0}

v(y) dσy +

ˆ
∂Br(x)∩{yN<0}

v(y) dσy

)
= 0 = v(x).

Since v is continuous, we can conclude that v is harmonic in B1(0).

10. Let Ω ⊂ RN , be a domain, N ≥ 2, and x0 ∈ Ω. Let u be a bounded harmonic function in Ω0 := Ω\{x0}.
Show that we can define a value u(x0) such that the extended function is harmonic on the whole Ω.

Solution. Let ρ > 0 be such that Bρ(0) ⊂ Ω. Consider the unique solution v to the problem

∆v = 0 in Bρ(x0), v = u on ∂Bρ(x0).

We will see that v = u in Bρ(x0)\{x0}. Let us prove the result for N ≥ 3 (the case N = 2 is analogous)

Mε = ‖u− v‖L∞(∂Bε(x0)) ≤ K <∞.

Here, ε ∈ (0, ρ) is arbitrary. The two functions

w± = Mε

(
ε

|x− x0|

)N−2

± (u− v)

are harmonic in the annulus {ε < |x−x0| < ρ}. Moreover, they are both nonnegative for |x−x0| = ρ,
since u = v on ∂Bρ(x0). On the sphere |x− x0| = ε we have

w±
∣∣∣
|x−p|=ε

= Mε ± (u− v)
∣∣∣
|x−p|=ε

≥ 0.

By the Maximum Principle we have that for all ε < |x− x0| < ρ,

|u− v|(x) ≤ Mεε
N−2

|x− x0|N−2
≤ KεN−2

|x− x0|N−2
.

The result follows by letting ε→ 0.

Remarks. (i) We can substitute the condition of boundedness of u with limx→x0 |x− x0|N−2u(x) = 0
if N ≥ 3 or limx→x0 u(x)/ log |x−x0| = 0 if N = 2. (ii) When N ≥ 3 and limx→x0 |x−x0|N−2u(x) = C
we have that u(x) = v+C|x− x0|2−N , where v is an harmonic function in Ω. The result for N = 2 is
also true.

The proof of the remarks is left as an exercise.
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11. Let Ω ⊂ RN , be a bounded domain, N ≥ 2, and let x0 ∈ Ω. Define Ω0 := Ω \ {x0} and let u and
v be two harmonic functions in Ω0, continuous in Ω1 = Ω0 ∪ ∂Ω and such that: (i) u(x) ≤ v(x) for
all x ∈ ∂Ω; (ii) |u(x)| ≤ M , |v(x)| ≤ M for all x ∈ Ω1. Use the Maximum Principle to show that
u(x) ≤ v(x) for all x ∈ Ω1.

Solution. Using Problem 10, we can extend u − v to an harmonic funtion in Ω. Aa a consequence,
since u− v ≤ 0 in ∂Ω, by the Maximum Principle we have that u ≤ v in Ω.

12. Find an expression for the Green function of the Dirichlet problem for the Laplace equations in an
annular region BR(x0) \Br(x0), with 0 < r < R.

Solution. Assume that the region is Ω = BR(0) \Br(0). Let

λ =
r

R
< 1, x̄ =

R2x

|x|2
, x̃ =

r2x

|x|2
.

Consider first

h1 = Γ(|x− y|)− Γ(
|x|
R
|x̄− y|), x, y ∈ Ω, x 6= y.

Then you shall look at the web page:

http://sunlimingbit.wordpress.com/2013/05/24/green-function-for-annular-region/

13. Show that a solution to ∆u− u2 = 0 in a domain Ω cannot attain its maximum in Ω, except if u ≡ 0.

Solution. First notice that u is subharmonic, since −∆u = −u2 ≤ 0. As a consequence, if u attains
the maximum in Ω, then necessarily u is a constant function, hence −∆u = 0. Finally, since u solves
∆u = u2, it follows that u ≡ 0.

14. Let u ∈ C2(B1(0)) ∩ C(B1(0)) be a solution to the Dirichlet problem{
∆u = u2 + f(|x|), x ∈ B1(0),
u(x) = 1, x ∈ ∂B1(0),

where f(|x|) ≥ 0 is of class C1(Ω). Calculate the maximum of u in B1(0) and show that it does not
depend on f .

Solution. We have that −∆u = −u2−f(|x|) ≤ 0, hence u is subharmonic; as a consequence u attains
the maximum on the boundary, maxΩ u = max

∂Ω
u = 1.
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