Hoja de problemas 3: Weak Solutions and Linear Elliptic Equations.

1. Let a, b, c be smooth functions, with a and c strictly positive. Let u be a solution to the boundary value problem

$$
-a u^{\prime \prime}+b u^{\prime}+c u=f \quad \text { en } I=(0,1), \quad u(0)=u(1)=0 .
$$

Show that u solves an equation of the form $-\left(\tilde{a}(x) u^{\prime}\right)^{\prime}+\tilde{c}(x) u=\tilde{f}$: write the corresponding weak formulation and show that there exists a unique solution.
2. Consider the boundary value problem

$$
-u^{\prime \prime}+k u^{\prime}+u=f \text { en } I=(0,1), \quad u^{\prime}(0)=u^{\prime}(1)=0 .
$$

Write the variational formulation and show that for k sufficiently small there is no unique solution. Find (at least) a value of k and (at least) a function $v \in H^{1}$, with $v \not \equiv 0$ such that $a(v, v)=0$.
3. Consider the problem

$$
-u^{\prime \prime}(x)=f(x) \quad \text { en } I=(0,1), \quad u^{\prime}(0)-u(0)=0, u^{\prime}(1)+u(1)=0 .
$$

(a) Define a classical solution of the problem, when $f \in C([0,1])$.
(b) Prove that classical solutions are weak i.e. they satisfy

$$
u(0) v(0)+u(1) v(1)+\int_{0}^{1} u^{\prime} v^{\prime}=\int_{0}^{1} f v, \quad \forall v \in H^{1}(I) .
$$

Define a weak solution to the problem as a function $u \in H^{1}(I)$ satisfying the above equality.
(c) Prove existence and uniqueness of weak solutions to the above problem.

Hint: Prove and use the following Poincaré-type inequality

$$
\int_{0}^{1} u^{2} \leq C\left((u(0))^{2}+(u(1))^{2}+\int_{0}^{1}\left(u^{\prime}\right)^{2}\right) \quad \forall u \in H^{1}(I)
$$

(d) Prove that $f \in C(\bar{I})$ implies $u \in C^{2}(\bar{I})$.
(e) Show that any weak solution which is $C^{2}(\bar{I})$ is indeed a classical solution.
4. Consider the boundary value problem

$$
u^{\prime \prime \prime \prime \prime}(x)=f(x) \quad \text { in } I=(0,1), \quad u(0)=u^{\prime}(0)=u(1)=u^{\prime}(1)=0 .
$$

Here, u represents, for instance, deflection of a bar fixed at the extremals and under the influence of a transversal force of intensity f. Given $f \in C(\bar{I})$:
(a) Define classical solutions.
(b) Define weak solutions (the correct functional space is $H_{0}^{2}(I)$).
(c) Show that every classical solution is a weak solution.
(d) Prove that there exists a unique weak solution.
(e) Prove that if $f \in C(\bar{I})$, then $u \in C^{4}(\bar{I})$.
(f) Prove that if a weak solution is in $C^{4}(\bar{I})$, then it is a classical solution.
5. Let $I=(0,1)$. Show that the functional $F: H^{1}(I) \mapsto \mathbb{R}$ defined by $F(u)=u(0)$ is linear and continuous. Show next that there exists a unique $v_{0} \in H^{1}(I)$ such that

$$
u(0)=\int_{0}^{1}\left(u^{\prime} v_{0}^{\prime}+u v_{0}\right) \quad \forall u \in H^{1}(I)
$$

Show that v_{0} is solution to a certain differential equation with suitable boundary conditions. Find an explicit expression for v_{0}.
6. Find a function $u \in C^{2}([0,1 / 2])$ con $u(0)=u(1 / 2)=0$ such that for any $v \in C^{2}([0,1 / 2])$ we have

$$
\int_{0}^{1 / 2}\left(u^{\prime} v^{\prime}+(4 u-1) v\right)=0 .
$$

7. Consider the boundary value problem $u^{\prime \prime}=2, u(1)=u(-1)=0$, whose solution is given by $\bar{u}(x)=$ $x^{2}-1$; write the variational formulation to conclude that for all $u \in C^{2}$ with $u(1)=u(-1)=0$ we have

$$
\frac{8}{3}+\int_{-1}^{1}\left(\left(u^{\prime}\right)^{2}+4 u\right) \geq 0
$$

8. (Hardy Inequality in dimension $N=1$). Let $I=(0,1)$.
(a) Given $u \in L^{p}(I)$, show that

$$
\left\|\frac{1}{x} \int_{0}^{x} u(t) d t\right\|_{L^{p}(I)} \leq \frac{p}{p-1}\|u\|_{L^{p}(I)} .
$$

Hint. Begin with $u \in C_{\mathrm{c}}(I)$ by defining $\varphi(x)=\int_{0}^{x} u(t) d t$. Check that $|\varphi|^{p} \in C^{1}(\bar{I})$ and calculate the derivative. Finally, use the formula

$$
\int_{0}^{1}|\varphi(x)|^{p} \frac{d x}{x^{p}}=\frac{1}{p-1} \int_{0}^{1}|\varphi(x)|^{p} d\left(-\frac{1}{x^{p-1}}\right)
$$

and integrate by parts.
(b) Let $u \in W^{1, p}(I), 1<p<\infty$. Show that if $u(0)=0$, then

$$
\left\|\frac{u(x)}{x}\right\|_{L^{p}(I)} \leq \frac{p}{p-1}\left\|u^{\prime}\right\|_{L^{p}(I)} .
$$

9. (A problem with Hardy-type weights) Let $I=(0,1)$ and $V=\left\{v \in H^{1}(I): v(0)=0\right\}$.
(a) Given $f \in L^{2}(I)$ such that $\frac{1}{x} f(x) \in L^{2}(I)$, show that there exists a unique $u \in V$ satisfying

$$
\begin{equation*}
\int_{0}^{1} u^{\prime}(x) v^{\prime}(x) d x+\int_{0}^{1} \frac{u(x) v(x)}{x^{2}} d x=\int_{0}^{1} \frac{f(x) v(x)}{x^{2}} d x \quad \forall v \in V \tag{1}
\end{equation*}
$$

(b) Write the minimization problem associated to (1)
(c) Here and in part (d) we will assume that $\frac{1}{x^{2}} f(x) \in L^{2}(I)$. Letting $v(x)=\frac{u(x)}{(x+\varepsilon)^{2}}, \varepsilon>0$, show that

$$
\int_{0}^{1}\left|\frac{d}{d x}\left(\frac{u(x)}{x+\varepsilon}\right)\right|^{2} d x \leq \int_{0}^{1} \frac{f(x)}{x^{2}} \frac{u(x)}{(x+\varepsilon)^{2}} d x
$$

(d) Prove that $\frac{u(x)}{x^{2}} \in L^{2}(I), \frac{u(x)}{x} \in H^{1}(I)$ y $\frac{u^{\prime}(x)}{x} \in L^{2}(I)$.
(e) As a consequence of part (d) show that $u \in H^{2}(I)$ and that

$$
\begin{equation*}
-u^{\prime \prime}(x)+\frac{u(x)}{x^{2}}=\frac{f(x)}{x^{2}} \quad \text { a.e. en } I, \quad u(0)=u^{\prime}(0)=0, \quad u^{\prime}(1)=0 \tag{2}
\end{equation*}
$$

(f) Viceversa, show that if $u \in H^{2}(I)$ with $\frac{u(x)}{x^{2}} \in L^{2}(I)$ satisfies equation (2), hence it satisfies (1).
10. Let $I=(0,1)$ and let us fix a constant $k>0$.
(a) Given $f \in L^{1}(I)$, show that there is a unique $u \in H_{0}^{1}(I)$ such that

$$
\begin{equation*}
\int_{I} u^{\prime} v^{\prime}+k \int_{I} u v=\int_{I} f v \quad \forall v \in H_{0}^{1}(I) \tag{3}
\end{equation*}
$$

(b) Prove that $u \in W^{2,1}(I)$.
(c) Prove that

$$
\|u\|_{L^{1}(I)} \leq \frac{1}{k}\|f\|_{L^{1}(I)}
$$

Hint. Fix a function $\gamma \in C^{1}(\mathbb{R}, \mathbb{R})$ so that $\gamma^{\prime}(t) \geq 0$ for all $t \in \mathbb{R}, \gamma(0)=0, \gamma(t)=1$ and all $t \geq 1$ and such that $\gamma(t)=-1$ for all $t \leq-1$. Take $v=\gamma(n u)$ in (3) and let $n \rightarrow \infty$.
(d) Assume now $f \in L^{p}(I), p \in(1, \infty)$. Show that there exists $\delta>0$ independent of k and p such that

$$
\|u\|_{L^{p}(I)} \leq \frac{1}{k+\delta / p p^{\prime}}\|f\|_{L^{p}(I)}
$$

Hint. If $p \in[2, \infty)$, take $v=\gamma(u)$ in (3), with $\gamma(t)=|t|^{p-1} \operatorname{sign} t$. If $p \in(1,2)$, use duality.
(e) if $f \in L^{\infty}(I)$, show that

$$
\|u\|_{L^{\infty}(I)} \leq C_{k}\|f\|_{L^{\infty}(I)}
$$

and find the best constant C_{k}. Hint. Find the explicit solution to (3) corresponding to $f \equiv 1$.
11. Let $I=(0,1)$.
(a) Prove that for any $\varepsilon>0$ there exists a constant C_{ε} such that

$$
|u(1)|^{2} \leq \varepsilon\left\|u^{\prime}\right\|_{L^{2}(I)}^{2}+C_{\varepsilon}\|u\|_{L^{2}(I)}^{2} \quad \forall u \in H^{1}(I) .
$$

(b) Show that if the constant $k>0$ is big enough, then for all $f \in L^{2}(I)$ there exists a unique $u \in H^{2}(I)$ satisfying

$$
-u^{\prime \prime}+k u=f \quad \text { en } I, \quad u^{\prime}(0)=0, \quad u^{\prime}(1)=u(1) .
$$

Write both the associated weak formulation and the minimization problem.
12. Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain with smooth boundary, let $h \in C^{\infty}(\partial \Omega)$ be such that $\int_{\partial \Omega} h=0$.
(a) Define a reasonable concept of weak solution to the problem

$$
\Delta u=0 \quad \text { en } \Omega, \quad \partial u / \partial n=h \quad \text { en } \partial \Omega .
$$

(b) Prove that there exists a unique weak solution such that $\int_{\Omega} u=0$ and check that the difference between two arbitrary weak solutions has to be constant in Ω.
13. Let $\Omega \subset \mathbb{R}^{N}$ be a bounded connected domain with smooth boundary.
(a) Define weak solutions for the Poisson equation with Robin boundary conditions:

$$
-\Delta u=f \quad \text { en } \Omega, \quad u+\frac{\partial u}{\partial n}=0 \quad \text { sobre } \partial \Omega,
$$

Check that any classical solution to the problem is a weak solution, and that every weak solution which is also smooth enough, is a classical solution.
(b) Show existence and uniqueness of weak solutions to the problem, for any $f \in L^{2}(\Omega)$. Hint. Use Friedrichs' Inequality.

