Hoja de problemas 2: Sobolev Spaces

1. Study Hölder regularity of the functions for all $\alpha>0$

$$
f_{\alpha}(x)= \begin{cases}x^{\alpha} \operatorname{sen}(1 / x), & 0<x \leq 1 \\ 0, & x=0\end{cases}
$$

2. Let $\alpha \in(0,1)$ and consider the function

$$
u(x)=\left(1+x^{2}\right)^{-\alpha / 2}\left(\log \left(2+x^{2}\right)\right)^{-1}, \quad x \in \mathbb{R}
$$

Show that $u \in W^{1, p}(\mathbb{R})$ for any $p \in[1 / \alpha, \infty]$, and that $u \notin L^{q}(\mathbb{R})$ when $q \in[1,1 / \alpha)$.
3. Let $\Omega=\left\{x \in \mathbb{R}^{2}:\left|x_{1}\right|<1,\left|x_{2}\right|<1\right\}$ and

$$
u(x)= \begin{cases}1-x_{1} & \text { si } x_{1}>0,\left|x_{2}\right|<x_{1} \\ 1+x_{1} & \text { si } x_{1}<0,\left|x_{2}\right|<-x_{1} \\ 1-x_{2} & \text { si } x_{2}>0,\left|x_{1}\right|<x_{2} \\ 1+x_{2} & \text { si } x_{2}<0,\left|x_{1}\right|<-x_{2}\end{cases}
$$

Find the values of $p, 1 \leq p \leq \infty$, such that $u \in W^{1, p}(\Omega)$.
4. Let $N>1$. Check that the unbounded fucntion $u(x)=\log \log \left(1+\frac{1}{|x|}\right) \operatorname{lies}$ in $W^{1, n}\left(B_{1}(0)\right)$.
5. Let $\Omega \subseteq \mathbb{R}^{N}$ be open and connected and $u \in W^{1, p}(\Omega)$. Show that if $D u=0$ a.e. in Ω, then u is constant a.e. in Ω.
6. (Fundamental Theorem of Calculus) Let $I \subset \mathbb{R}$ an interval (not necessarily bounded). Let $g \in L_{\mathrm{loc}}^{1}(I)$. For any fixed $y_{0} \in I$ we define

$$
v(x)=\int_{y_{0}}^{x} g(t) d t, \quad x \in I .
$$

Prove that $v \in C(I)$ and that

$$
\int_{I} v \varphi^{\prime}=-\int_{I} g \varphi \quad \text { for any } \varphi \in C_{\mathrm{c}}^{1}(I) .
$$

7. Let $I \subset \mathbb{R}$ an interval (not necessarily bounded). Let $u \in W^{1, p}(I), 1 \leq p \leq \infty$. Prove that there exists a function $\tilde{u} \in C(\bar{I})$ such that $u=\tilde{u}$ a.e. in I, and that moreover we have

$$
\tilde{u}(x)-\tilde{u}(y)=\int_{x}^{y} u^{\prime}(t) d t \quad \text { para todo } x, y \in \bar{I} .
$$

Hint. Use the two previous exercises
8. Let $u, v \in H^{1}(\mathbb{R})$. Show that

$$
\int_{\mathbb{R}} u v^{\prime}=-\int_{\mathbb{R}} u^{\prime} v .
$$

9. (Leibnitz rule in Sobolev Spaces) Let $u, v \in W^{1, p}(\Omega) \cap L^{\infty}(\Omega)$. Show that $u v \in W^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ and that

$$
\partial_{x_{i}}(u v)=v \partial_{x_{i}} u+u \partial_{x_{i}} v, \quad i=1, \ldots, n .
$$

10. (Chain Rule) Let $F: \mathbb{R} \rightarrow \mathbb{R}$ a C^{1} function with bounded F^{\prime} and $F(0)=0$. Let $\Omega \subset \mathbb{R}^{N}$ be an open and bounded set. Let $u \in W^{1, p}(\Omega)$ for some $p, 1 \leq p \leq \infty$. Show that $v=F(u)$ lies in $W^{1, p}(\Omega)$ and that $v_{x_{i}}=F^{\prime}(u) u_{x_{i}}, i=1, \ldots, n$.
11. Let $\Omega \subset \mathbb{R}^{N}$ be an open bounded domain, and let $1 \leq p \leq \infty$.
(a) Prove that $u \in W^{1, p}(\Omega)$, implies $|u| \in W^{1, p}(\Omega)$.
(b) Prove that $u \in W^{1, p}(\Omega)$ implies $u^{+}, u^{-} \in W^{1, p}(\Omega)$, with

$$
\begin{aligned}
D u^{+} & = \begin{cases}D u & \text { a.e. in }\{u>0\}, \\
0 & \text { a.e. in }\{u \leq 0\},\end{cases} \\
D u^{-} & = \begin{cases}\text {a.e. in }\{u \geq 0\}, \\
-D u & \text { a.e. in }\{u<0\} .\end{cases}
\end{aligned}
$$

Hint. $u^{+}=\lim _{\varepsilon \rightarrow 0} F_{\varepsilon}(u)$, where

$$
F_{\varepsilon}(z)= \begin{cases}\left(z^{2}+\varepsilon^{2}\right)^{1 / 2}-\varepsilon & \text { if } z \geq 0 \\ 0 & \text { if } z<0\end{cases}
$$

(c) Prove that if $u \in W^{1, p}(\Omega)$, then $D u=0$ a.e. on the set $\{u=0\}$.
12. Let $\Omega \subset \mathbb{R}^{N}$ an open set with C^{1} boundary. Show by means of an example that $L^{p}(\Omega)$ functions, with $p \in[1, \infty)$, do not necessarily have a trace on $\partial \Omega$. More precisely, show that there can not exist a linear bounded operator $T: L^{p}(\Omega) \rightarrow L^{p}(\partial \Omega)$ such that $T u=u_{\mid \partial \Omega}$ for all $u \in C(\bar{\Omega}) \cap L^{p}(\Omega)$.
13. (a) Show that there does not exists any constant $C>0$ such that

$$
\int_{\mathbb{R}^{N}} u^{2} \leq C \int_{\mathbb{R}^{N}}|\nabla u|^{2} \quad \text { for all } u \in H^{1}\left(\mathbb{R}^{N}\right) .
$$

(b) (Hardy Inequality) For all $N \geq 3$ there exists $C>0$ such that

$$
\int_{\mathbb{R}^{N}} \frac{u^{2}}{|x|^{2}} d x \leq C \int_{\mathbb{R}^{N}}|\nabla u|^{2} d x \quad \text { for all } u \in H^{1}\left(\mathbb{R}^{N}\right)
$$

Hint. $\left|\nabla u+\lambda \frac{x}{|x|^{2}} u\right|^{2} \geq 0$ for all $\lambda \in \mathbb{R}$.
14. Let $\alpha>0$. Show that there exists $C=C(N, \alpha)>0$ so that

$$
\int_{B_{1}(0)} u^{2} \leq C \int_{B_{1}(0)}|\nabla u|^{2}
$$

for all $u \in H^{1}\left(B_{1}(0)\right)$ such that $\left|\left\{x \in B_{1}(0): u(x)=0\right\}\right| \geq \alpha$.
15. (Friedrichs' Inequality) Let $\Omega \subset \mathbb{R}^{N}$ be an open connected domain, with smooth boundary and let $\Gamma \subset \partial \Omega$ a set with positive ($N-1$)-dimensional measure. Show that there exists a constant $C>0$ so that

$$
\|u\|_{H^{1}(\Omega)}^{2} \leq C\left(\|u\|_{L^{2}(\Gamma)}^{2}+\|\nabla u\|_{L^{2}(\Omega)}^{2}\right) \quad \forall u \in H^{1}(\Omega) .
$$

16. Integrate by parts to prove the following inequality

$$
\|D u\|_{L^{2}} \leq C\|u\|_{L^{2}}^{1 / 2}\left\|D^{2} u\right\|_{L^{2}}^{1 / 2} \quad \text { for all } u \in C_{\mathrm{c}}^{\infty}(\Omega) .
$$

Prove also that the inequality holds for $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ if Ω is a bounded domain with smooth boundary.
Hint. Take two sequences $\left\{v_{k}\right\}_{k=1}^{\infty} \subset C_{\mathrm{c}}^{\infty}(\Omega)$ converging to u in $H_{0}^{1}(\Omega)$ and $\left\{w_{k}\right\}_{k=1}^{\infty}$ converging to u in $H^{2}(\Omega)$.
17. (Gagliardo-Nirenberg Inequality - First form, dimension $N=1$) Let $\Omega=(0,1)$.
(a) Let $1 \leq q<\infty$ and $1<r \leq \infty$. Show that

$$
\|u\|_{L^{\infty}(\Omega)} \leq C\|u\|_{W^{1, r}(\Omega)}^{a}\|u\|_{L^{q}(\Omega)}^{1-a} \quad \text { para toda } u \in W^{1, r}(\Omega)
$$

for some constant $C=C(q, r)>0$, where $a \in(0,1)$ is given by

$$
a\left(\frac{1}{q}+1-\frac{1}{r}\right)=\frac{1}{q} .
$$

Hint. Begin with the case $u(0)=0$ write $G(u(x))=\int_{0}^{x} G^{\prime}(u(t)) u^{\prime}(t) d t$, where $G(t)=|t|^{\alpha-1} t$ and $\alpha=1 / a$. When $u(0) \neq 0$, use the above inequality with ζu, where $\zeta \in C^{1}([0,1]), \zeta(0)=0, \zeta(t)=1$ for all $t \in[1 / 2,1]$.
(b) Let $1 \leq q<p<\infty$ y $1 \leq r \leq \infty$. Show that

$$
\|u\|_{L^{p}(\Omega)} \leq C\|u\|_{W^{1, r}(\Omega)}^{b}\|u\|_{L^{q}(\Omega)}^{1-b} \quad \text { para toda } u \in W^{1, r}(\Omega)
$$

for some constant $C=C(p, q, r)>0$, where $b \in(0,1)$ is given by

$$
b\left(\frac{1}{q}+1-\frac{1}{r}\right)=\frac{1}{q}-\frac{1}{p} .
$$

Hint. Write $\|u\|_{L^{p}(\Omega)}^{p}=\int_{\Omega}|u|^{q}|u|^{p-q} \leq\|u\|_{L^{q}(\Omega)}^{q}\|u\|_{L^{\infty}(\Omega)}^{p-q}$ and use part (a) when $r>1$.
(c) Under the same assumptions as in part (b), show that

$$
\|u\|_{L^{p}(\Omega)} \leq C\left\|u^{\prime}\right\|_{L^{r}(\Omega)}^{b}\|u\|_{L^{q}(\Omega)}^{1-b} \quad \text { for all } u \in W^{1, r}(\Omega) \text { tal que } \int_{\Omega} u=0 .
$$

