Hoja de problemas 2: Sobolev Spaces

1. Study Hölder regularity of the functions for all $\alpha>0$

$$
f_{\alpha}(x)= \begin{cases}x^{\alpha} \operatorname{sen}(1 / x), & 0<x \leq 1 \\ 0, & x=0\end{cases}
$$

Solution. A simple calculation shows that when $\alpha \geq 2$ we have $f_{\alpha} \in C^{1}([0,1])$, in particular f_{α} is Lipschitz. Therefore we consider the case $\alpha \in(0,2)$.
Let $x_{n}=\frac{1}{\left(1+\frac{1}{n}\right) \pi}, y_{n}=\frac{1}{n \pi}$, so that

$$
\frac{\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|}{\left|x_{n}-y_{n}\right|^{\gamma}}=2^{\gamma} \pi^{\gamma-\alpha} n^{2 \gamma-\alpha}\left(1+\frac{1}{2 n}\right)^{\gamma-\alpha} \rightarrow \infty \quad \text { cuando } n \rightarrow \infty \quad \text { si } \gamma>\alpha / 2 .
$$

As a consequence, the Hölder exponent has to be at most $\alpha / 2$. Let us check that it is exactly $\alpha / 2$: consider the function

$$
\begin{aligned}
\phi(x) & =\left(x^{\alpha} \sin \frac{1}{x}-a^{\alpha} \sin \frac{1}{a}\right)^{2 / \alpha}=\phi(x)-\phi(a) \\
& =\frac{2}{\alpha}\left(\xi^{\alpha} \sin \frac{1}{\xi}-a^{\alpha} \sin \frac{1}{a}\right)^{\frac{2}{\alpha}-1}\left(\alpha \xi^{\alpha-1} \sin \frac{1}{\xi}-\xi^{\alpha-2} \cos \frac{1}{\xi}\right)(x-a),
\end{aligned}
$$

where we have used the Mean Value Theorem with $0 \leq a<\xi<x \leq 1$. As a consequence,

$$
\begin{aligned}
\frac{\phi(x)}{x-a}= & \frac{2}{\alpha}\left(\alpha^{\frac{\alpha}{2-\alpha}} \xi^{\frac{2}{2-\alpha}} \sin ^{\frac{2}{2-\alpha}} \frac{1}{\xi}-\left(\frac{a}{\xi}\right)^{\alpha} \xi^{\frac{2}{2-\alpha}} \sin \frac{1}{a} \sin ^{\frac{\alpha}{2-\alpha}} \frac{1}{\xi}\right)^{\frac{2-\alpha}{\alpha}} \\
& -\frac{2}{\alpha}\left(\xi^{\frac{\alpha}{2-\alpha}} \sin \frac{1}{\xi} \cos ^{\frac{\alpha}{2-\alpha}} \frac{1}{\xi}-\left(\frac{a}{\xi}\right)^{\alpha} \sin \frac{1}{a} \cos ^{\frac{\alpha}{2-\alpha}} \frac{1}{\xi}\right)^{\frac{2-\alpha}{\alpha}} \leq C,
\end{aligned}
$$

the result follows.
2. Let $\alpha \in(0,1)$ and consider the function

$$
u(x)=\left(1+x^{2}\right)^{-\alpha / 2}\left(\log \left(2+x^{2}\right)\right)^{-1}, \quad x \in \mathbb{R} .
$$

Show that $u \in W^{1, p}(\mathbb{R})$ for any $p \in[1 / \alpha, \infty]$, and that $u \notin L^{q}(\mathbb{R})$ when $q \in[1,1 / \alpha)$.

Solution. We will use the following statements, whose proof is left as an (easy) exercise

$$
\int_{1}^{\infty} \frac{d x}{x^{\alpha}}<\infty \Leftrightarrow \alpha>1, \quad \int_{2}^{\infty} \frac{d x}{x \log ^{\beta} x}<\infty \Leftrightarrow \beta>1 .
$$

On one hand, the function u is clearly bounded for any $\alpha \in(0,1), u \in L^{\infty}(\mathbb{R})$.
On the other hand, if $p \in(1 / \alpha, \infty)$,

$$
\int_{\mathbb{R}}|u|^{p}=2 \int_{0}^{1}|u|^{p}+2 \int_{1}^{\infty}|u|^{p}=C+2 \int_{1}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{\alpha p / 2}\left(\log \left(2+x^{2}\right)\right)^{p}} \leq C+\frac{2}{\log ^{p} 2} \int_{1}^{\infty} \frac{d x}{x^{\alpha p}}<\infty .
$$

The critical case, $p=1 / \alpha$,

$$
\int_{\mathbb{R}}|u|^{p}=C+2 \int_{2}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{1 / 2}\left(\log \left(2+x^{2}\right)\right)^{1 / \alpha}} \leq C+\frac{2}{2^{1 / \alpha}} \int_{2}^{\infty} \frac{d x}{x \log ^{1 / \alpha} x}<\infty .
$$

Finally, the derivatives

$$
u^{\prime}(x)=-\alpha\left(1+x^{2}\right)^{-\frac{\alpha}{2}-1} x\left(\log \left(2+x^{2}\right)\right)^{-1}-\left(1+x^{2}\right)^{-\alpha / 2}\left(\log \left(2+x^{2}\right)\right)^{-2} \frac{2 x}{2+x^{2}},
$$

has a decay at infinity which is faster than the function u, therefore it lies (at least) in the same $L^{p}(\mathbb{R})$ space as u. We can conclude that $u \in W^{1, p}(\mathbb{R}), p \in[1 / \alpha, \infty]$.
If $q \in[1,1 / \alpha$), taking $\varepsilon>0$ so that $\alpha q+\varepsilon<1$ (we can do it since $\alpha q<1$),

$$
\int_{\mathbb{R}}|u|^{q}=C+2 \int_{2}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{\alpha q / 2}\left(\log \left(2+x^{2}\right)\right)^{q}} \geq C+C \int_{2}^{\infty} \frac{d x}{x^{\alpha q+\varepsilon}}=\infty
$$

3. Let $\Omega=\left\{x \in \mathbb{R}^{2}:\left|x_{1}\right|<1,\left|x_{2}\right|<1\right\}$ and

$$
u(x)= \begin{cases}1-x_{1} & \text { si } x_{1}>0,\left|x_{2}\right|<x_{1} \\ 1+x_{1} & \text { si } x_{1}<0,\left|x_{2}\right|<-x_{1} \\ 1-x_{2} & \text { si } x_{2}>0,\left|x_{1}\right|<x_{2} \\ 1+x_{2} & \text { si } x_{2}<0,\left|x_{1}\right|<-x_{2}\end{cases}
$$

Find the values of $p, 1 \leq p \leq \infty$, such that $u \in W^{1, p}(\Omega)$.

Solution \#1. It is trivial to check that $u \in L^{\infty}(\Omega)$, with $\|u\|_{L^{\infty}(\Omega)}=1$. Since Ω is a bounded domain, then $u \in L^{p}(\Omega)$, for all $1 \leq p \leq \infty$.
Given $\phi \in C_{c}^{\infty}(\Omega)$ we have that

$$
\int_{\Omega} u \partial_{x_{1}} \phi=\sum_{j=1}^{4} \int_{T_{j}} u \partial_{x_{1}} \phi=-\sum_{j=1}^{4} \int_{T_{j}} \phi \partial_{x_{1}} u+\sum_{j=1}^{4} \int_{\partial T_{j}} u \phi \mathrm{e}_{1} \cdot \nu^{j},
$$

where ν^{j} is the unit exterior normal to T_{j} in ∂T_{j}. On one hand we get

$$
-\sum_{j=1}^{4} \int_{T_{j}} \phi \partial_{x_{1}} u=-\int_{\Omega}\left(-\chi_{T_{1}}+\chi_{T_{2}}\right) \phi
$$

On the other hand, since ϕ is compactly supported in Ω, and observing that T_{i} and T_{j} have a common a side, it follows that $\nu^{i}=-\nu^{j}$ on that common side,

$$
\sum_{j=1}^{4} \int_{\partial T_{j}} u \phi \mathrm{e}_{1} \cdot \nu^{j}=0
$$

We conclude

$$
\int_{\Omega} u \partial_{x_{1}} \phi=-\int_{\Omega}\left(-\chi_{T_{1}}+\chi_{T_{2}}\right) \phi
$$

that is

$$
\partial_{x_{1}} u=-\chi_{T_{1}}+\chi_{T_{2}}
$$

in the distributional sense. We notice that $\partial_{x_{1}} u \in L^{\infty}(\Omega)$. As a consequence, since the domain is bounded, $\partial_{x_{1}} u \in L^{p}(\Omega), 1 \leq p \leq \infty$. The same holds for $\partial_{x_{2}} u$ (simply by switching x_{1} and x_{2}), we conclude that $u \in W^{1, p}(\Omega)$ for all $1 \leq p \leq \infty$.

Solution \#2. It is easy to check that mín $\{f, g\}=-\{f-g\}_{+}+f$. We know that $h \in W^{1, p}(\Omega)$, therefore $\{h\}_{+} \in W^{1, p}(\Omega)$ (cf. Problem 11), and we can conclude that if $f, g \in W^{1, p}(\Omega)$, then mín $\{f, g\} \in$ $W^{1, p}(\Omega)$.
The function u satisfies

$$
\left.u\left(x_{1}, x_{2}\right)\right)=\operatorname{mín}\left\{1-x_{1}, 1+x_{1}, 1-x_{2}, 1+x_{2}\right\}
$$

Being the minimum of $W^{1, \infty}(\Omega)$ functions, it lies in the same space, hence in all $W^{1, p}(\Omega)$, with $1 \leq p \leq \infty$, since Ω is bounded.
Remark. The same holds true also for $\operatorname{máx}\{f, g\}=\{f-g\}_{+}+g$: indeed, if $f, g \in W^{1, p}(\Omega)$, then $\operatorname{máx}\{f, g\} \in W^{1, p}(\Omega)$.
4. Let $N>1$. Check that the unbounded fucntion $u(x)=\log \log \left(1+\frac{1}{|x|}\right)$ lies in $W^{1, n}\left(B_{1}(0)\right)$.

Solution. Change to polar coordinates:

$$
\int_{B_{1}(0)}|u|^{n}=C \int_{0}^{1} r^{n-1}\left|\log \log \left(1+\frac{1}{r}\right)\right|^{n} d r<\infty \quad \text { si } n \geq 2
$$

the function under integral has a continuous extension on the whole interval $[0,1]$, since its limit as $r \rightarrow 0^{+}$is 0).
A simple calculation shows that

$$
\partial_{x_{i}} u(x)=-\frac{x_{i}}{\left(|x|^{3}+|x|^{2}\right) \log \left(1+\frac{1}{|x|}\right)} \quad \text { si } x \neq 0 .
$$

Change again to polar coordinates

$$
\int_{B_{1}(0)}\left|\frac{x_{i}}{\left(|x|^{3}+|x|^{2}\right) \log \left(1+\frac{1}{|x|}\right)}\right|^{n} d x \leq C \int_{0}^{1} \frac{r^{n-1}}{\left(\left(r^{2}+r\right) \log \left(1+\frac{1}{r}\right)\right)^{n}} d r \leq C-\int_{0}^{1 / 2} \frac{d r}{r \log ^{n} r}<\infty
$$

if $N \geq 2$.
Let $T_{k} u(x)=$ mín $\{u(x), k\}$. for each constant $k \geq 0$ this function is in $W^{1, n}\left(B_{1}(0)\right)$, its weak derivatives are

$$
\partial_{x_{i}} T_{k} u(x)=-\chi_{\{u<k\}} \frac{x_{i}}{\left(|x|^{3}+|x|^{2}\right) \log \left(1+\frac{1}{|x|}\right)},
$$

which are functions belonging to $L^{n}\left(B_{1}(0)\right)$ uniformly in k, and also to $L^{1}\left(B_{1}(0)\right)$. By Dominated convergence, the limit as $k \rightarrow \infty$ becomes

$$
\int_{B_{1}(0)} T_{k} u \partial_{x_{i}} \phi=-\int_{B_{1}(0)} \phi \partial_{x_{i}} T_{k} u
$$

from which we deduce

$$
\partial_{x_{i}} u(x)=-\frac{x_{i}}{\left(|x|^{3}+|x|^{2}\right) \log \left(1+\frac{1}{|x|}\right)} \quad \text { en } \mathcal{D}^{\prime}\left(B_{1}(0)\right)
$$

which concludes the proof.
5. Let $\Omega \subseteq \mathbb{R}^{N}$ be open and connected and $u \in W^{1, p}(\Omega)$. Show that if $D u=0$ a.e. in Ω, then u is constant a.e. in Ω.

Solution. For any $\varepsilon>0$ consider the regularization $u^{\varepsilon}=\eta_{\varepsilon} \star u$, and we know that $u^{\varepsilon}: \Omega_{\varepsilon} \mapsto \mathbb{R} \in$ $C^{\infty}\left(\Omega_{\varepsilon}\right)$. Its first order derivatives, $\partial^{\alpha} u^{\varepsilon}=\eta_{\varepsilon} \star \partial^{\alpha} u,|\alpha|=1$, are also zero on Ω_{ε}. As a consequence u is constant on each connected component of Ω_{ε}.
Let $x, y \in \Omega$. Since Ω open and connected, there is a continuous path $\Gamma \subset \Omega$ joining x and y. Let $\delta=\min _{z \in \Gamma} \operatorname{dist}(z, \partial \Omega)$. For all $\varepsilon<\delta$ the whole path Γ lies in Ω_{ε}, hence x and y lie in the same connected component of Ω_{ε}. Therefore, $u^{\varepsilon}(x)=u^{\varepsilon}(y)$.
Let $\tilde{u}(x)=\lim _{\varepsilon \rightarrow 0} u^{\varepsilon}(x)$. As a consequence of the above results, \tilde{u} is constant in Ω. We also know that $\tilde{u}(x)=u(x)$ a.e. in Ω, and the proof is concluded.
6. (Fundamental Theorem of Calculus) Let $I \subset \mathbb{R}$ an interval (not necessarily bounded). Let $g \in L_{\text {loc }}^{1}(I)$. For any fixed $y_{0} \in I$ we define

$$
v(x)=\int_{y_{0}}^{x} g(t) d t, \quad x \in I .
$$

Prove that $v \in C(I)$ and that

$$
\int_{I} v \varphi^{\prime}=-\int_{I} g \varphi \quad \text { for any } \varphi \in C_{\mathrm{c}}^{1}(I) .
$$

Solution. We have that

$$
\begin{aligned}
\int_{I} v \varphi^{\prime} & =\int_{I}\left(\int_{y_{0}}^{x} g(t) d t\right) \varphi^{\prime}(x) \\
& =-\int_{a}^{y_{0}}\left(\int_{x}^{y_{0}} g(t) \varphi^{\prime}(x) d t\right) d x+\int_{y_{0}}^{b}\left(\int_{y_{0}}^{x} g(t) \varphi^{\prime}(x) d t\right) d x
\end{aligned}
$$

By Fubini's Theorem,

$$
\begin{aligned}
\int_{I} v \varphi^{\prime} & =-\int_{a}^{y_{0}} g(t)\left(\int_{a}^{t} \varphi^{\prime}(t) d x\right) d t+\int_{y_{0}}^{b} g(t)\left(\int_{t}^{b} \varphi^{\prime}(x) d x\right) d t \\
& =-\int_{I} g(t) \varphi(t) d t
\end{aligned}
$$

7. Let $I \subset \mathbb{R}$ an interval (not necessarily bounded). Let $u \in W^{1, p}(I), 1 \leq p \leq \infty$. Prove that there exists a function $\tilde{u} \in C(\bar{I})$ such that $u=\tilde{u}$ a.e. in I, and that moreover we have

$$
\tilde{u}(x)-\tilde{u}(y)=\int_{x}^{y} u^{\prime}(t) d t \quad \text { para todo } x, y \in \bar{I} \text {. }
$$

Hint. Use the two previous exercises

Solution. Fix $y_{0} \in I$ and let $\bar{u}(x)=\int_{y_{0}}^{x} u^{\prime}(t) d t$. Thanks to the previous exercise, we have

$$
\int_{I} \bar{u} \varphi^{\prime}=-\int_{I} u^{\prime} \varphi \quad \forall \varphi \in C_{\mathrm{c}}^{1}(I) .
$$

As a consequence, $\int_{I}(u-\bar{u}) \varphi^{\prime}=0$ for all $\varphi \in C_{\mathrm{c}}^{1}(I)$. Thanks to Problem 5, $u-\bar{u}=C$ a.e. in I. The function $\tilde{u}=\bar{u}+C$ has the required properties.
8. Let $u, v \in H^{1}(\mathbb{R})$. Show that

$$
\int_{\mathbb{R}} u v^{\prime}=-\int_{\mathbb{R}} u^{\prime} v .
$$

Solution. If $u \in H^{1}(\mathbb{R})$ and $v \in C_{\mathrm{c}}^{\infty}(\mathbb{R})$, the identity is nothing but the definition of distributional derivative of u. For the general case, $v \in H^{1}(\mathbb{R})$, let us take a sequence $\left\{v_{n}\right\} \subset C_{\mathrm{c}}^{\infty}(\mathbb{R})$ so that $v_{n} \rightarrow v$ en $H^{1}(\mathbb{R})$. We obtain the result just by taking the limits in

$$
\int_{\mathbb{R}} u v_{n}^{\prime}=-\int_{\mathbb{R}} u^{\prime} v_{n} .
$$

Remark. The very same proof works in ANY dimension $N \geq 1$.
9. (Leibnitz rule in Sobolev Spaces) Let $u, v \in W^{1, p}(\Omega) \cap L^{\infty}(\Omega)$. Show that $u v \in W^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ and that

$$
\partial_{x_{i}}(u v)=v \partial_{x_{i}} u+u \partial_{x_{i}} v, \quad i=1, \ldots, n .
$$

Solution. Let $\left\{u_{n}\right\},\left\{v_{k}\right\} \subset C_{\mathrm{c}}^{\infty}(\Omega)$ such that $u_{n} \rightarrow u, v_{k} \rightarrow v$ en $W_{\text {loc }}^{1, p}(\Omega),\left\|u_{n}\right\|_{L^{\infty}(\Omega)} \leq\|u\|_{L^{\infty}(\Omega)}$, $\left\|v_{k}\right\|_{L^{\infty}(\Omega)} \leq\|v\|_{L^{\infty}(\Omega)}$. We immediately get

$$
-\int_{\Omega} u_{n} v_{k} \partial_{x_{i}} \phi=\int_{\Omega} \partial_{x_{i}}\left(u_{n} v_{k}\right) \phi=\int_{\Omega}\left(v_{k} \partial_{x_{i}} u_{n}+u_{n} \partial_{x_{i}} v_{k}\right) \phi .
$$

Taking the limits, first in n then in k at the first and last terms of the above inequality, we obtain

$$
-\int_{\Omega} u v \partial_{x_{i}} \phi=\int_{\Omega}\left(v \partial_{x_{i}} u+u \partial_{x_{i}} v\right) \phi,
$$

This means that we satisfy Leibnitz rule for the derivative of a product, in the distributional sense. We then take the limit, recalling that the product of a bounded function with a function of $C_{\mathrm{c}}^{\infty}(\Omega)$ lies $L^{p^{\prime}}$.
Once we have checked the identity in the distributional sense, we conclude by recalling that the product of a bounded function (in L^{∞}) with a function of L^{p} is still in L^{p}.
10. (Chain Rule) Let $F: \mathbb{R} \rightarrow \mathbb{R}$ a C^{1} function with bounded F^{\prime} and $F(0)=0$. Let $\Omega \subset \mathbb{R}^{N}$ be an open and bounded set. Let $u \in W^{1, p}(\Omega)$ for some $p, 1 \leq p \leq \infty$. Show that $v=F(u)$ lies in $W^{1, p}(\Omega)$ and that $v_{x_{i}}=F^{\prime}(u) u_{x_{i}}, i=1, \ldots, n$.

Solution. Given $\phi \in C_{\mathrm{c}}^{\infty}(\Omega)$, there is a sequence $\left\{u_{n}\right\} \subset C^{\infty}(\Omega)$ so that $u_{n} \rightarrow u$ in $W^{1, p}(\operatorname{sop} \phi)$ and $u_{n} \rightarrow u$ a.e. in Ω. We then have

$$
\begin{equation*}
-\int_{\Omega} F\left(u_{n}\right) \partial_{x_{i}} \phi=\int_{\Omega} \phi F^{\prime}\left(u_{n}\right) \partial_{x_{i}} u_{n} . \tag{1}
\end{equation*}
$$

Moreover,

$$
\left|\int_{\Omega}\left(F\left(u_{n}\right)-F(u)\right) \partial_{x_{i}} \phi d x\right| \leq\left\|\partial_{x_{i}} \phi\right\|_{\infty} \sup \left|F^{\prime}\right| \int_{\text {sop } \phi}\left|u_{n}-u\right| d x \rightarrow 0 \quad \text { cuando } n \rightarrow \infty .
$$

We also have

$$
\begin{aligned}
& \left|\int_{\Omega}\left(F^{\prime}\left(u_{n}\right) \partial_{x_{i}} u_{n}-F^{\prime}(u) \partial_{x_{i}} u\right) \phi d x\right| \\
& \quad \leq\|\phi\|_{\infty} \sup \left|F^{\prime}\right| \int_{\text {sop } \phi}\left|\partial_{x_{i}} u_{n}-\partial_{x_{i}} u\right| d x+\int_{\text {sop } \phi}\left|F^{\prime}\left(u_{n}\right)-F^{\prime}(u) \| D u\right| d x \rightarrow 0 \quad \text { cuando } n \rightarrow \infty .
\end{aligned}
$$

We have used Dominated Convergence together with the pointwise convergence of $\left|F^{\prime}\left(u_{n}\right)-F^{\prime}(u)\right|$ to 0 , in order to prove the convergence of the second term in the right-hand side. Take the limit in (1), to get

$$
-\int_{\Omega} F(u) \partial_{x_{i}} \phi=\int_{\Omega} \phi F^{\prime}(u) \partial_{x_{i}} u,
$$

which is equivalent to $v_{x_{i}}=F^{\prime}(u) \partial_{x_{i}} u$. Under our assumptions on F and u, we know that the righthand side is in $L^{p}(\Omega)$, therefore also $v_{x_{i}} \in L^{p}(\Omega)$.
Finally,

$$
\int_{\Omega}|v|^{p}=\int_{\Omega}|F(u)-F(0)|^{p} \leq\left(\sup \left|F^{\prime}\right|\right)^{p} \int_{\Omega}|u|^{p}<\infty,
$$

which gives the result.
11. Let $\Omega \subset \mathbb{R}^{N}$ be an open bounded domain, and let $1 \leq p \leq \infty$.
(a) Prove that $u \in W^{1, p}(\Omega)$, implies $|u| \in W^{1, p}(\Omega)$.
(b) Prove that $u \in W^{1, p}(\Omega)$ implies $u^{+}, u^{-} \in W^{1, p}(\Omega)$, with

$$
\begin{aligned}
& D u^{+}= \begin{cases}D u & \text { a.e. in }\{u>0\} \\
0 & \text { a.e. in }\{u \leq 0\}\end{cases} \\
& D u^{-}= \begin{cases}0 & \text { a.e. in }\{u \geq 0\} \\
-D u & \text { a.e. in }\{u<0\}\end{cases}
\end{aligned}
$$

Hint. $u^{+}=\operatorname{lím}_{\varepsilon \rightarrow 0} F_{\varepsilon}(u)$, where

$$
F_{\varepsilon}(z)= \begin{cases}\left(z^{2}+\varepsilon^{2}\right)^{1 / 2}-\varepsilon & \text { if } z \geq 0 \\ 0 & \text { if } z<0\end{cases}
$$

(c) Prove that if $u \in W^{1, p}(\Omega)$, then $D u=0$ a.e. on the set $\{u=0\}$.

Solution. It is sufficient to prove part (b). Parts (a) and (c) follow immediately, since $|u|=u^{+}+u^{-}$ and $u=u^{+}-u^{-}$.

Let us show part (b). It is sufficient to prove it for u^{+}, since $u^{-}=(-u)^{+}$. Following the hint, we use the Chain Rule of Exercise 10, with $\phi \in C_{c}^{\infty}(\Omega)$

$$
\int_{\Omega} F_{\varepsilon}(u) \partial_{x_{i}} \phi d x=-\int_{\{u>0\}} \phi \frac{u \partial_{x_{i}} u}{\left(u^{2}+\varepsilon^{2}\right)^{\frac{1}{2}}} d x
$$

Letting $\varepsilon \rightarrow 0$ and using Dominated Convergence, we get

$$
\int_{\Omega} u^{+} \partial_{x_{i}} \phi d x=-\int_{\{u>0\}} \phi \partial_{x_{i}} u d x
$$

This concludes the proof.
12. Let $\Omega \subset \mathbb{R}^{N}$ an open set with C^{1} boundary. Show by means of an example that $L^{p}(\Omega)$ functions, with $p \in[1, \infty)$, do not necessarily have a trace on $\partial \Omega$. More precisely, show that there can not exist a linear bounded operator $T: L^{p}(\Omega) \rightarrow L^{p}(\partial \Omega)$ such that $T u=u_{\mid \partial \Omega}$ for all $u \in C(\bar{\Omega}) \cap L^{p}(\Omega)$.

Solution. Let us show a counterexample in dimension $N=1$. We want to show that there there does not exists a constant $C>0$ such that $\|T u\|_{L^{p}(\partial \Omega)} \leq C\|u\|_{L^{p}(\Omega)}$ for all $u \in C(\bar{\Omega}) \cap L^{p}(\Omega)$. Assume by contradiction that this holds true. Choose a family of continuous functions on $\Omega=(0,1)$ given by

$$
f_{n}(x)=n^{\alpha+1}\left\{\frac{1}{n^{\alpha}}-x\right\}_{+}
$$

We have that

$$
\int_{0}^{1}\left|f_{n}\right|^{p} \leq n^{p-\alpha}=1 \quad \text { si } \alpha=p
$$

But we also have

$$
\left\|T f_{n}\right\|_{L^{p}(\partial \Omega)}^{p}=\left|f_{n}(0)\right|^{p}+\left|f_{n}(1)\right|^{p}=n^{p}
$$

which clearly contradicts the hypothesis.
Analogous counterexamples can be constructed in any dimension $N>1$.
13. (a) Show that there does not exists any constant $C>0$ such that

$$
\int_{\mathbb{R}^{N}} u^{2} \leq C \int_{\mathbb{R}^{N}}|\nabla u|^{2} \quad \text { for all } u \in H^{1}\left(\mathbb{R}^{N}\right) .
$$

(b) (Hardy Inequality) For all $N \geq 3$ there exists $C>0$ such that

$$
\int_{\mathbb{R}^{N}} \frac{u^{2}}{|x|^{2}} d x \leq C \int_{\mathbb{R}^{N}}|\nabla u|^{2} d x \quad \text { for all } u \in H^{1}\left(\mathbb{R}^{N}\right)
$$

Hint. $\left|\nabla u+\lambda \frac{x}{|x|^{2}} u\right|^{2} \geq 0$ for all $\lambda \in \mathbb{R}$.

Solution. (a) Let $\zeta \in C^{\infty}\left(\mathbb{R}^{N}\right)$, be so that $\zeta \geq 0, \zeta(x)=1$ if $|x| \leq 1, \zeta(x)=0$ if $|x| \geq 2$. Define $\zeta_{k}(x)=\zeta(x / k)$. If there would exist $C>0$ for all functions of $H^{1}\left(\mathbb{R}^{N}\right)$, we shall have

$$
\int_{\mathbb{R}^{N}} \zeta^{2}(x / k) d x \leq \frac{C}{k^{2}} \int_{\mathbb{R}^{N}}|\nabla \zeta|^{2}(x / k) d x \quad \text { for all } k .
$$

Changing variables $x=k y$,

$$
\int_{\mathbb{R}^{N}} \zeta^{2} \leq \frac{C}{k^{2}} \int_{\mathbb{R}^{N}}|\nabla \zeta|^{2} \quad \text { for all } k
$$

We can let $k \rightarrow \infty$ to get a contradiction.
(b) Follow the hint and expand the square:

$$
0 \leq \int_{\mathbb{R}^{N}}\left|\nabla u+\lambda \frac{x}{|x|^{2}} u\right|^{2} d x=\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+\frac{\lambda x \cdot \nabla\left(u^{2}\right)}{|x|^{2}}+\lambda^{2} \frac{u^{2}}{|x|^{2}}\right) d x .
$$

Recalling that $\nabla \cdot\left(\frac{x}{|x|^{2}}\right)=\frac{N-2}{|x|^{2}}$, we obtain

$$
0 \leq \int_{\mathbb{R}^{N}}|\nabla u|^{2}-\lambda(N-2) \int_{\mathbb{R}^{N}} \frac{u^{2}}{|x|^{2}} d x+\lambda^{2} \int_{\mathbb{R}^{N}} \frac{u^{2}}{|x|^{2}} d x
$$

The (positive) minimum of the quadratic polynomial in λ is attained at $\lambda=(N-2) / 2$. Substitute this value in the above inequality, gives the result with $C=4 /(N-2)^{2}$.
14. Let $\alpha>0$. Show that there exists $C=C(N, \alpha)>0$ so that

$$
\int_{B_{1}(0)} u^{2} \leq C \int_{B_{1}(0)}|\nabla u|^{2}
$$

for all $u \in H^{1}\left(B_{1}(0)\right)$ such that $\left|\left\{x \in B_{1}(0): u(x)=0\right\}\right| \geq \alpha$.

Solution. Let $B=B_{1}(0)$ and $A=\{x \in B: u(x)=0\}$. Using Poincaré inequality, we know that there exists $C>0$ so that

$$
C\|\nabla u\|_{L^{2}(B)} \geq\left\|u-\frac{1}{|B|} \int_{B} u\right\|_{L^{2}(B)} \geq\left|\|u\|_{L^{2}(B)}-\left\|\frac{1}{|B|} \int_{B} u\right\|_{L^{2}(B)}\right| .
$$

By Hölder inequality,

$$
\left\|\frac{1}{|B|} \int_{B} u\right\|_{L^{2}(B)}^{2}=\frac{1}{|B|}\left(\int_{B \backslash A} u\right)^{2} \leq \frac{|B \backslash A|}{|B|}\|u\|_{L^{2}(B)}^{2}
$$

As a consequence,

$$
C\|\nabla u\|_{L^{2}(B)} \geq\|u\|_{L^{2}(B)}\left(1-\left(\frac{|B|-\alpha}{|B|}\right)^{1 / 2}\right) .
$$

The result follows, since $1-\left(\frac{|B|-\alpha}{|B|}\right)^{1 / 2}>0$.
15. (Friedrichs' Inequality) Let $\Omega \subset \mathbb{R}^{N}$ be an open connected domain, with smooth boundary and let $\Gamma \subset \partial \Omega$ a set with positive $(N-1)$-dimensional measure. Show that there exists a constant $C>0$ so that

$$
\|u\|_{H^{1}(\Omega)}^{2} \leq C\left(\|u\|_{L^{2}(\Gamma)}^{2}+\|\nabla u\|_{L^{2}(\Omega)}^{2}\right) \quad \forall u \in H^{1}(\Omega)
$$

Solution. We proceed by contradiction. Suppose that the inequality is false. Therefore, for all $k \in \mathbb{N}$ there exists a a function $u_{k} \in H^{1}(U)$ such that

$$
\left\|u_{k}\right\|_{H^{1}(U)}^{2} \geq k\left(\left\|u_{k}\right\|_{L^{2}(\Gamma)}^{2}+\left\|\nabla u_{k}\right\|_{L^{2}(U)}^{2}\right)
$$

Let $v_{k}=u_{k} /\left\|u_{k}\right\|_{H^{1}(U)}$. As a consequence, $\left\|v_{k}\right\|_{H^{1}(U)}=1$ and $\left\|v_{k}\right\|_{L^{2}(\Gamma)}^{2}+\left\|\nabla v_{k}\right\|_{L^{2}(U)}^{2}<1 / k$. We deduce that $v_{k} \rightarrow 0$ in $L^{2}(\Gamma)$ and that $\partial_{x_{i}} v_{k} \rightarrow 0$ in $L^{2}(U), i=1, \ldots, N$. Next, since the sequence $\left\{v_{k}\right\}_{k=1}^{\infty}$ is bounded in $H^{1}(U)$, using Rellich-Kondrachov Theorem, we can extract a subsequence, that we call $\left\{v_{k}\right\}$ for simplicity, which is convergent in $L^{2}(U)$ to a limit function v. Let us show that v_{k} also converges to v in $H^{1}(U)$. Indeed,

$$
\left\|v_{m}-v_{l}\right\|_{H^{1}(U)} \leq C\left(\left\|v_{m}-v_{l}\right\|_{L^{2}(U)}+\left\|\nabla v_{m}\right\|_{L^{2}(U)}+\left\|\nabla v_{l}\right\|_{L^{2}(U)}\right)
$$

Since $\left\{v_{k}\right\}$ converges in $L^{2}(U)$, it is a Cauchy sequence in that space, and since its gradient converges to 0 , taking sufficiently big m and l we have that $\left\|v_{m}-v_{l}\right\|_{H^{1}(U)}$ can be as small as we want. As a consequence, $v_{k} \rightarrow v$ in $H^{1}(U)$. This implies that $\nabla v_{k} \rightarrow \nabla v$ in $L^{2}(U)$. But we already know that $\nabla v_{k} \rightarrow(0, \ldots, 0)$ in $L^{2}(U)$. Since U is connected, hence v is constant in U.
On the other hand, recall that Γ has positive $(N-1)$-dimensional measure, hence, by trace inequality we get $\left\|v_{k}-v\right\|_{L^{2}(\Gamma)} \leq C\left\|v_{k}-v\right\|_{H^{1}(U)}$. As a consequence, $v_{k} \rightarrow v$ in $L^{2}(\Gamma)$. But we have shown that $v_{k} \rightarrow 0$ in $L^{2}(\Gamma)$, which implies $v=0$ in Γ in the trace sense. We deduce that $v=0$ a.e. in U, and that $v_{k} \rightarrow 0$ in $H^{1}(U)$. This gives a contradiction, since $\left\|v_{k}\right\|_{H^{1}(U)}=1$.
16. Integrate by parts to prove the following inequality

$$
\|D u\|_{L^{2}} \leq C\|u\|_{L^{2}}^{1 / 2}\left\|D^{2} u\right\|_{L^{2}}^{1 / 2} \quad \text { for all } u \in C_{\mathrm{c}}^{\infty}(\Omega)
$$

Prove also that the inequality holds for $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ if Ω is a bounded domain with smooth boundary.
Hint. Take two sequences $\left\{v_{k}\right\}_{k=1}^{\infty} \subset C_{\mathrm{c}}^{\infty}(\Omega)$ converging to u in $H_{0}^{1}(\Omega)$ and $\left\{w_{k}\right\}_{k=1}^{\infty}$ converging to u in $H^{2}(\Omega)$.

Solution. We follow the hint, and we integrate by parts and using Hölder inequality,

$$
\sum_{i=1}^{n} \int_{\Omega} \partial_{x_{i}} v_{k} \partial_{x_{i}} w_{k}=-\sum_{i=1}^{n} \int_{\Omega} v_{k} \partial_{x_{i}}^{2} w_{k} \leq \sum_{i=1}^{n}\left\|v_{k}\right\|_{L^{2}(\Omega)}\left\|\partial_{x_{i}}^{2} w_{k}\right\|_{L^{2}(\Omega)} \leq C\left\|v_{k}\right\|_{L^{2}(\Omega)}\left\|D^{2} w_{k}\right\|_{L^{2}(\Omega)}
$$

Taking the limit as $k \rightarrow \infty$ gives the result.
17. (Gagliardo-Nirenberg Inequality - First form, dimension $N=1$) Let $\Omega=(0,1)$.
(a) Let $1 \leq q<\infty$ and $1<r \leq \infty$. Show that

$$
\|u\|_{L^{\infty}(\Omega)} \leq C\|u\|_{W^{1, r}(\Omega)}^{a}\|u\|_{L^{q}(\Omega)}^{1-a} \quad \text { para toda } u \in W^{1, r}(\Omega)
$$

for some constant $C=C(q, r)>0$, where $a \in(0,1)$ is given by

$$
a\left(\frac{1}{q}+1-\frac{1}{r}\right)=\frac{1}{q}
$$

Hint. Begin with the case $u(0)=0$ write $G(u(x))=\int_{0}^{x} G^{\prime}(u(t)) u^{\prime}(t) d t$, where $G(t)=|t|^{\alpha-1} t$ and $\alpha=1 / a$. When $u(0) \neq 0$, use the above inequality with ζu, where $\zeta \in C^{1}([0,1]), \zeta(0)=0, \zeta(t)=1$ for all $t \in[1 / 2,1]$.
(b) Let $1 \leq q<p<\infty$ y $1 \leq r \leq \infty$. Show that

$$
\|u\|_{L^{p}(\Omega)} \leq C\|u\|_{W^{1, r}(\Omega)}^{b}\|u\|_{L^{q}(\Omega)}^{1-b} \quad \text { para toda } u \in W^{1, r}(\Omega)
$$

for some constant $C=C(p, q, r)>0$, where $b \in(0,1)$ is given by

$$
b\left(\frac{1}{q}+1-\frac{1}{r}\right)=\frac{1}{q}-\frac{1}{p}
$$

Hint. Write $\|u\|_{L^{p}(\Omega)}^{p}=\int_{\Omega}|u|^{q}|u|^{p-q} \leq\|u\|_{L^{q}(\Omega)}^{q}\|u\|_{L^{\infty}(\Omega)}^{p-q}$ and use part (a) when $r>1$.
(c) Under the same assumptions as in part (b), show that

$$
\|u\|_{L^{p}(\Omega)} \leq C\left\|u^{\prime}\right\|_{L^{r}(\Omega)}^{b}\|u\|_{L^{q}(\Omega)}^{1-b} \quad \text { for all } u \in W^{1, r}(\Omega) \text { tal que } \int_{\Omega} u=0
$$

Solution. (a) Following the hint, using that $G^{\prime}(t)=\alpha|t|^{\alpha-1}$, and Hölder inequality with conjugate exponents r and r^{\prime}, we get

$$
|u(x)|^{\alpha}=|G(u(x))| \leq \int_{0}^{1}\left|G^{\prime}(u(t))\right|\left|u^{\prime}(t)\right| d t \leq \alpha\left\|u^{\prime}\right\|_{L^{r}(\Omega)}\|u\|_{L^{(\alpha-1) r^{\prime}}(\Omega)}^{\alpha-1}
$$

The result for functions such that $u(0)=0$ follows immediately, taking $q=(\alpha-1) r^{\prime}$, and recalling that $\alpha=1 / a$. The definition of q is equivalent to $a\left(\frac{1}{q}+1-\frac{1}{r}\right)=\frac{1}{q}$. Let us notice that we actually get something better: instead of the norm $W^{1, r}$ we get L^{r} norm of the derivative.
The general case follows again by the hint. Apply the previous case to

$$
|(\zeta u)(x)| \leq C\left\|(\zeta u)^{\prime}\right\|_{L^{r}(\Omega)}^{a}\|\zeta u\|_{L^{q}(\Omega)}^{1-a}
$$

Recall that $(\zeta u)^{\prime}=\zeta^{\prime} u+\zeta u^{\prime}$, so that

$$
\left\|(\zeta u)^{\prime}\right\|_{L^{r}(\Omega)} \leq C\left(\left\|\zeta u^{\prime}\right\|_{L^{r}(\Omega)}+\left\|\zeta^{\prime} u\right\|_{L^{r}(\Omega)}\right) \leq C\left(\left\|u^{\prime}\right\|_{L^{r}(\Omega)}+\|u\|_{L^{r}(\Omega)}\right) \leq C\|u\|_{W^{1, r}(\Omega)}
$$

We also have $\|\zeta u\|_{L^{q}(\Omega)} \leq C\|u\|_{L^{q}(\Omega)}$, which leads to

$$
|u(x)|=|(\zeta u)(x)| \leq C\|u\|_{W^{1, r}(\Omega)}^{a}\|u\|_{L^{q}(\Omega)}^{1-a} \quad \text { si } x \in[1 / 2,1] .
$$

To analyze the other half of the interval, let us consider the function $\tilde{u}(x)=u(1-x)$ and let us apply the result on $[1 / 2,1]$ to \tilde{u}. We then get

$$
|u(x)|=|\tilde{u}(1-x)| \leq C\|\tilde{u}\|_{W^{1, r}(\Omega)}^{a}\|\tilde{u}\|_{L^{q}(\Omega)}^{1-a} \quad \text { si } x \in[0,1 / 2] .
$$

The result follows once we notice that

$$
\|\tilde{u}\|_{W^{1, r}(\Omega)}=\|u\|_{W^{1, r}(\Omega)}, \quad\|\tilde{u}\|_{L^{q}(\Omega)}=\|u\|_{L^{q}(\Omega)}
$$

(b) If $r>1$, let us just follow the hint, taking $b=a\left(1-\frac{q}{p}\right)$. If $r=1$, we use again the hint, but instead of part (a) we now use the Sobolev inequality $\|u\|_{L^{\infty}(\Omega)} \leq C\|u\|_{W^{1,1}(\Omega)}$ (NOTICE that we are in DIMENSION $N=1$), and recall that in this case we have $b=1-\frac{p}{q}$.
(c) Combine Poincaré-Wirtinger inequality with the result of part (b) as follows:

$$
\left\|u-\frac{1}{|\Omega|} \int_{\Omega} u\right\|_{L^{r}(\Omega)} \leq C\left\|u^{\prime}\right\|_{L^{r}(\Omega)},
$$

which implies $\|u\|_{L^{r}(\Omega)} \leq C\left\|u^{\prime}\right\|_{L^{r}(\Omega)}$; hence we have $\|u\|_{W^{1, r}(\Omega)} \leq C\left\|u^{\prime}\right\|_{L^{r}(\Omega)}$, which combined with the result of part (b) proves the claim.

