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Hoja de problemas 2: SOBOLEV SPACES

1. Study Holder regularity of the functions for all a > 0

_ Ja%sen(l/z), 0<ux <1,
Jalz) = {0, z =0.

Solution. A simple calculation shows that when a > 2 we have f, € C1([0,1]), in particular f, is
Lipschitz. Therefore we consider the case a € (0, 2).

Let x, = ﬁ, Yn = %, so that

— 1\ ¢
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|$n - yn‘7 2n

As a consequence, the Holder exponent has to be at most a/2. Let us check that it is exactly a/2:
consider the function

p(z) = (3:0‘ sin% — a%sin %)2/0‘2: o(x) — p(a)
% (fa sin% —a%sin %) - (afa_l sin% — &9 2 ¢cos %) (x —a),

where we have used the Mean Value Theorem with 0 < a < £ < x < 1. As a consequence,
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the result follows.

2. Let o € (0,1) and consider the function
w(z) = (1+22)"*?(log(2+2?))"', zeR.

Show that u € WHP(R) for any p € [1/a, oc], and that u ¢ LY(R) when ¢ € [1,1/a).

Solution. We will use the following statements, whose proof is left as an (easy) exercise

* dx *  dx
— <oosa>l, 3 <o f>1.
1z 2 zloghx

On one hand, the function w is clearly bounded for any « € (0,1), u € L>*(R).
On the other hand, if p € (1/a, 00),

/||p 2/1|p+2/oo|yp C+2/OO de <C+ 2 /Oodx<
ulP = u ulf = — < o0.
R 0 1 1 (1 +22)o2/2(log(2 + 22))P — logP2 J; xop

The critical case, p = 1/a,

& dx 2 > dx
P=C+2 <C < 0.
=02 | o SOt i ), gy <

Finally, the derivatives
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has a decay at infinity which is faster than the function u, therefore it lies (at least) in the same LP(R)
space as u. We can conclude that u € W1P(R), p € [1/a, c0].

If g € [1,1/a), taking € > 0 so that ag +¢ < 1 (we can do it since ag < 1),

dx *® dx
1=C+2 >C+C =
/R|u| t /2 (1 + 22)24/2(log(2 + 22)) + / roate

. Let Q= {z € R?: |1] < 1, |z2| < 1} and

1—x1 six >0, ‘xg‘ < i,

14+x; six <O, |£L‘2‘ < —xi,

u(z) = .
1—x29 sizo >0, |$1‘ < X2,

1+mze sizg <0, |21] < —mo.

Find the values of p, 1 < p < 0o, such that u € W1P(Q).

Solution #1. Tt is trivial to check that u € L>°(Q2), with [[u| fe(q) = 1. Since 2 is a bounded domain,
then u € LP(Q), for all 1 < p < oo.

Given ¢ € C2°(Q2) we have that

4 4 4
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where /7 is the unit exterior normal to T} in T}. On one hand we get

On the other hand, since ¢ is compactly supported in €2, and observing that T; and 7} have a common
a side, it follows that v* = —17 on that common side,

4 .
Z/ uger - v = 0.
j=1"9T;

We conclude
/ uamd) = - / (_XT1 + XT2)¢7
Q Q

that is

Opy = =Xy + XT3
in the distributional sense. We notice that 0y, u € L(2). As a consequence, since the domain is
bounded, 0z, u € LP(Q2), 1 < p < oco. The same holds for 0,,u (simply by switching z; and z2), we
conclude that v € WHP(Q) for all 1 < p < oco.

Solution #2. It is easy to check that mi{f, g} = —{f—g}+ + f. We know that h € W1P(Q), therefore
{h}y € WHP(Q) (cf. Problem 11), and we can conclude that if f,g € WHP(Q), then min{f,g} €
WhP(Q).

The function u satisfies
u(z1,x2)) = min{l —z1,1 +x1,1 — x2,1 + x2}.

Being the minimum of W1h%°(€) functions, it lies in the same space, hence in all WP(Q), with
1 < p < o0, since €2 is bounded.

Remark. The same holds true also for méx{f,g} = {f — g}+ + g: indeed, if f,g € W1P(Q), then
wix{f, g} € WHP(9).




4. Let N > 1. Check that the unbounded fucntion u(z) = loglog (1 + ‘?1|> lies in W1 (B1(0)).

Solution. Change to polar coordinates:
! 1
/ !u\”:C/ L loglog(l+ =)["dr < 0o sin > 2,
Bl(O) 0 T

the function under integral has a continuous extension on the whole interval [0, 1], since its limit as
r— 0% is 0).

A simple calculation shows that

T

(J]? + |2[2) log(1 + 77)

||

Op,u(z) = — six #0.

Change again to polar coordinates

/31(0)

it N> 2.

Let Tpu(x) = min{u(x), k}. for each constant k > 0 this function is in W1"(B1(0)), its weak derivatives
are

n
pn—l dr
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O, Tiu(T) = —X{u<k)

which are functions belonging to L"(B(0)) uniformly in k, and also to L'(B1(0)). By Dominated
convergence, the limit as k — oo becomes

/ Tkuamzqﬁ = —/ ¢812Tku
B1(0) B1(0)

from which we deduce
T;

(Jz] + |2[?) log(1 + 1)

||

D, u(z) = — en D'(B1(0)),

which concludes the proof.

5. Let © C RY be open and connected and v € WP(Q). Show that if Du = 0 a.e. in Q, then u is
constant a.e. in €.

Solution. For any € > 0 consider the regularization u® = 7. * u, and we know that u® : Q. — R €
C>(Qe). Its first order derivatives, 0%u® = n. x 0%u, |a| = 1, are also zero on {2.. As a consequence u
is constant on each connected component of ..

Let z,y € Q. Since 2 open and connected, there is a continuous path I' C €2 joining x and y. Let
d = min,ep dist(z,00). For all ¢ < § the whole path T' lies in €., hence z and y lie in the same
connected component of .. Therefore, u(x) = u®(y).

Let @(z) = lim._,o u®(x). As a consequence of the above results, @ is constant in 2. We also know that
(z) = u(z) a.e.in Q, and the proof is concluded.

6. (Fundamental Theorem of Calculus) Let I C R an interval (not necessarily bounded). Let g € L. (I).
For any fixed yg € I we define

v(:c):/mg(t)dt, z el

Yo
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Prove that v € C(I) and that

/vgp’:—/ggp for any ¢ € CL(I).
I I

Solution. We have that

[o = [( / K i) ¢'o)

By Fubini’s Theorem,

7. Let I C R an interval (not necessarily bounded). Let u € W1P(I), 1 < p < co. Prove that there exists
a function @ € C'(I) such that u = @ a.e. in I, and that moreover we have

y _
a(z) — u(y) = / u'(t)dt para todo z,y € I.

Hint. Use the two previous exercises

Solution. Fix yo € I and let u(x) = fyf) u'(t) dt. Thanks to the previous exercise, we have

/ﬂ(p’z—/u’gp Vo € CL(I).
1 I

As a consequence, [i(u— )¢’ =0 for all ¢ € CZ(I). Thanks to Problem 5, u — 4 = C a.e.in 1. The
function @ = u 4+ C has the required properties.

8. Let u,v € H'(R). Show that

Solution. If u € HY(R) and v € C°(R), the identity is nothing but the definition of distributional
derivative of u. For the general case, v € H!(R), let us take a sequence {v,} C C°(R) so that v, — v
en H'(R). We obtain the result just by taking the limits in

/ /
/uvn:—/uvn.
R R

Remark. The very same proof works in ANY dimension N > 1.




9.

(Leibnitz rule in Sobolev Spaces) Let u,v € W1P(Q) N L>(Q2). Show that uv € WHP(Q) N L>(Q) and
that
O, (uv) = 00z, u +udgv, i=1,...,n.

7

Solution. Let {un}, {vg} € C(Q) such that u, — u, vy — v en I/Vli’Cp(Q), unll Loy < llull oo (o)
vkl oo () < N|vllLoo(@)- We immediately get

/unvkﬁ = /é& Up Uk qb—/(vk@miun—i—un@xivkm.
Q

Taking the limits, first in n then in k at the first and last terms of the above inequality, we obtain

—/ uv@xiqﬁ:/(v@xiu—{—u@xiv)qb,
Q Q

This means that we satisfy Leibnitz rule for the derivative of a product, in the distributional sense.
We then take the limit, recalling that the product of a bounded function with a function of C2°(2)
lies LP'.

Once we have checked the identity in the distributional sense, we conclude by recalling that the product
of a bounded function (in L*°) with a function of LP is still in LP.

10.

(Chain Rule) Let F: R — R a C! function with bounded F’ and F(0) = 0. Let © € RY be an open
and bounded set. Let u € WHP(Q) for some p, 1 < p < co. Show that v = F(u) lies in WHP(Q) and
that vy, = F'(u)ug,, it =1,...,n.

Solution. Given ¢ € C°(Q), there is a sequence {u,} C C*(2) so that u, — u in W'P(sop ¢) and
u, — u a.e.in 2. We then have

_/Qp(un)axigs:/ng)F’(un)amun. (1)

Moreover,

/ (F(un) — F ()0, da
Q

< |0z, || o0 SUP |F’|/ |y, — uldx — 0 cuando n — oo.
sop ¢

We also have

/Q (F'(un )0z, un — F'(u)0p,u)p dx

< [|¢]|co sup | F| / |0, U, — Op;ul| dx +/ |F'(un) — F'(u)||Du|dx — 0 cuando n — oc.
sop ¢ sop ¢

We have used Dominated Convergence together with the pointwise convergence of |F'(u,,) — F'(u)| to
0, in order to prove the convergence of the second term in the right-hand side. Take the limit in (1),

to get
- / F(w)0y.6 / SF ().t
Q Q

which is equivalent to v,, = F'(u)d,,u. Under our assumptions on F and u, we know that the right-
hand side is in LP(S2), therefore also v, € LP(2).

Finally,
Lior = [ 1P = PO < sl P [ jup <o,

which gives the result.




11.

Let © € RY be an open bounded domain, and let 1 < p < oo.
(a) Prove that u € WHP(Q), implies |u| € W1P(Q).
(b) Prove that u € W1P(Q) implies u*,u~ € W1P(Q), with

Dt Du a.e. in {u> 0},
U =
0 ae. in {u <0},

Du- — 0 a.e. in {u > 0},
—Du ae. in {u < 0}.

Hint. u™ = lim._,o F-(u), where

242 ifz>0,
Fs(z):{( ) B

0 if z < 0.

(c) Prove that if u € WHP(Q2), then Du = 0 a.e. on the set {u = 0}.

Solution. 1Tt is sufficient to prove part (b). Parts (a) and (c) follow immediately, since |u| = ut + u~
and v = ut —u”.

Let us show part (b). It is sufficient to prove it for u™, since v~ = (—u)™". Following the hint, we use
the Chain Rule of Exercise 10, with ¢ € C2°(12)

/QFE(u)amgbdx: / p—10nt g

{u>0}  (u?+ 52)%

Letting ¢ — 0 and using Dominated Convergence, we get

/u+8$i¢da: = —/ @O0z, udx.
Q {u>0}

This concludes the proof.

12.

Let Q € RY an open set with C'! boundary. Show by means of an example that LP(f2) functions, with
p € [1,00), do not necessarily have a trace on 9. More precisely, show that there can not exist a

linear bounded operator T : LP(2) — LP(92) such that Tu = u}aﬂ for all u € C(2) N LP(Q).

Solution. Let us show a counterexample in dimension N = 1. We want to show that there there does

not exists a constant C' > 0 such that ||Tu||rr(a0) < Cllul|eq) for all u € C(22) N LP(§2). Assume by
contradiction that this holds true. Choose a family of continuous functions on 2 = (0,1) given by

ful(z) = nott {104 - $} .
n +
We have that )
/0 [foP <nP7* =1 sia=p.
But we also have
1T all oy = 1O + | Fu (D = P,
which clearly contradicts the hypothesis.

Analogous counterexamples can be constructed in any dimension N > 1.




13. (a) Show that there does not exists any constant C' > 0 such that
/ u? < C |Vul|?  for all u € HY(RY).
RN RN
(b) (Hardy Inequality) For all N > 3 there exists C' > 0 such that

2
/ Lodz<C | |VuPdr forallue H'(RY).
RN |Z] RN

Hint. |Vu + )\#UP >0 for all A € R.

Solution. (a) Let ¢ € C*®°(RY), be so that ¢ > 0, ((z) = 1if |z| < 1, {(x) = 0 if |z| > 2. Define
Cr(z) = ¢(x/k). If there would exist C' > 0 for all functions of H!'(RY), we shall have

c
. C(x/k)dx < = /RN |V¢2(z/k)dz for all k.

Changing variables z = ky,
/ 2 < C;/ V¢ for all k.
RN k RN

We can let k — oo to get a contradiction.

(b) Follow the hint and expand the square:

2 9 9
AT -
o< [ |Turadz] ao= [ (wep+ 2 et ae
RN =1 =Y 2f? 2]
Recalling that V - (#) = ]I\; T22’ we obtain

u2 u2
og/ |Vu|2—)\(N—2)/ dx+)\2/ — dax.
RN RN 2|2 RN |7[?

The (positive) minimum of the quadratic polynomial in A is attained at A = (N — 2)/2. Substitute
this value in the above inequality, gives the result with C' = 4/(N — 2)2.

14. Let a > 0. Show that there exists C' = C(N, ) > 0 so that

/ u? < C |Vu)?
B1(0) B1(0)

for all u € H*(B1(0)) such that [{z € B1(0) : u(z) =0} > a.

Solution. Let B = B1(0) and A = {zx € B : u(z) = 0}. Using Poincaré inequality, we know that there
exists C' > 0 so that

1
- ——

>
CHVU||L2(B) = |B| Bu

>
L*(B)

2
1 / ? 1 / IB\A| 9
&/, o) |B<B\A> B M)

Bl — o\ /2
C||Vull g2 = lull2(s) (1—<| ||B! > >

1/2
‘B““) > 0.

i),
Ul 72 — || = u
ol - 157 /.

128)|

By Holder inequality,

As a consequence,

The result follows, since 1 — ( 1]




15.

(Friedrichs’ Inequality) Let © C RY be an open connected domain, with smooth boundary and let
I' C 09 a set with positive (N — 1)-dimensional measure. Show that there exists a constant C' > 0 so
that

lulBn ey < C (lulBaqy + IVl Vue HY(@),

Solution. We proceed by contradiction. Suppose that the inequality is false. Therefore, for all £ € N
there exists a a function uy € H'(U) such that

sl oy = b (o) + 1900220 ) -

Let vg = wp/|lul| (- As a consequence, [[vg| g1y = 1 and ||/Uk‘H%2(1") + HVka%g(U) < 1/k. We
deduce that vy, — 0 in L?(T") and that d,,v — 0 in L?(U), i = 1,..., N. Next, since the sequence
{vg}22, is bounded in H'(U), using Rellich-Kondrachov Theorem, we can extract a subsequence, that
we call {v;,} for simplicity, which is convergent in L?(U) to a limit function v. Let us show that vy, also
converges to v in H'(U). Indeed,

lvm = villgr @y < C (lvm = vill 2@y + IVl 2@y + VOl 2) -

Since {v},} converges in L2(U), it is a Cauchy sequence in that space, and since its gradient converges
to 0, taking sufficiently big m and I we have that |[vm — v 1) can be as small as we want. As a
consequence, vy — v in H1(U). This implies that Vv, — Vv in L?2(U). But we already know that
Vg — (0,...,0) in L2(U). Since U is connected, hence v is constant in U.

On the other hand, recall that I" has positive (N — 1)-dimensional measure, hence, by trace inequality
we get [|og — vl 2y < Cllog — vl g1y~ As a consequence, vy — v in L?(T'). But we have shown that
v, — 0 in L?(I"), which implies v = 0 in I in the trace sense. We deduce that v = 0 a.e. in U, and
that v — 0 in H'(U). This gives a contradiction, since |[vg|| 1) = 1.

16.

Integrate by parts to prove the following inequality

1Dul| 2 < Cllu| 221D}y for all u € C(Q).

Prove also that the inequality holds for u € H?(Q) N H}(Q) if Q is a bounded domain with smooth
boundary.

Hint. Take two sequences {v;}52, C C°(€) converging to u in HJ(Q) and {wy}52, converging to u
in H2(Q).

Solution. We follow the hint, and we integrate by parts and using Hélder inequality,

Z/Qamivkamwk = - Z/Q’Ukagiwk < okl e 192, will L2y < Cllvell 2oy 1D wrl r2(q)-
=1 i=1 =1

Taking the limit as k — oo gives the result.

17.

(Gagliardo-Nirenberg Inequality — First form, dimension N = 1) Let Q = (0, 1).
(a) Let 1 < ¢ < oo and 1 <r < oo. Show that

lull o) < Cllullfyr oy llull ooy para toda uw e WH(Q)

for some constant C' = C(q,r) > 0, where a € (0,1) is given by

(1 1) 1
al=+1-=)=-.
q r) q



Hint. Begin with the case u(0) = 0 write G(u(z)) = [ G'(u(t))v'(t) dt, where G(t) = [t|* 't and
a = 1/a. When u(0) # 0, use the above 1nequahty w1th Cu, where ¢ € C1([0,1]), ¢(0) = 0, ((t) =
for all t € [1/2,1].

(b)Let 1 <g<p<ooyl<r<oc. Show that
HUHLp < CHUHI/Vl T ||u||Lq(Q) para toda u S Wl’T(Q)

for some constant C' = C(p, q,r) > 0, where b € (0, 1) is given by

1 1 1 1
s(z+1-7) =15
q r q D

Hint. Write HUHZP(Q) = [ [ul?uP~? < ||quLq(Q)HuH7£;q(Q) and use part (a) when r > 1.

(c) Under the same assumptions as in part (b), show that

lullis@) < Clle [y lull izl for all w e W (Q) tal que /Qu 0.

Solution. (a) Following the hint, using that G’(t) = a|t|*!, and Holder inequality with conjugate
exponents r and 7/, we get

1
ju(@)|* = |G (u(2))| S/O |G ()] W/ )] dt < ol ey llul il g

The result for functions such that u(0) = 0 follows immediately, taking ¢ = (o — 1)7’, and recalling
that a = 1/a. The definition of ¢ is equivalent to a (% +1-— %) = %. Let us notice that we actually
get something better: instead of the norm W' we get L" norm of the derivative.

The general case follows again by the hint. Apply the previous case to
|(Cu)(@)] < Cll(Cu) - @ lISul 1o
Recall that ((u)’ = ('u + (u/, so that
1w | 2r ) < C (IIKW |y + IS ullr ) < C (14| r ) + Nlullr@) < Cllullwrrq)-
We also have [|ul|za(q) < C|lul|Lq(q), which leads to
Ju(z)] = [(u)(@)] < Cllullfyrrollullpay, siee[l/2,1].

To analyze the other half of the interval, let us consider the function @(x) = u(1 — z) and let us apply
the result on [1/2,1] to . We then get

lu(x)| = |a(1l —z)| < Cllﬂll‘évl,r(g)llﬂ\llﬁfm six € [0,1/2].
The result follows once we notice that

allwr @) = llullwir @), @l () = llullago)

(b) If » > 1, let us just follow the hint, taking b = a (1 — %). If » = 1, we use again the hint, but

instead of part (a) we now use the Sobolev inequality ||u|z~(q) < Cllullw1.1q) (NOTICE that we are

in DIMENSION N = 1), and recall that in this case we have b =1 — g.

(c) Combine Poincaré-Wirtinger inequality with the result of part (b) as follows:

u—l/u
2] Jo

which implies [|ul| 1) < Cu'||1r(q); hence we have ||ul[y 1) < C||W'||r ), which combined with
the result of part (b) proves the claim.

< Ol r (e
()




