Hoja de problemas 1: Laplace and Poisson Equations

1. Prove that Laplace equation $\Delta u=0$ is invariant under rotations: let O be an orthogonal matrix $n \times n$ and define

$$
v(x):=u(O x), \quad x \in \mathbb{R}^{N} .
$$

Show that $\Delta v=0$.
2. Let u be an harmonic function and let $\phi: \mathbb{R} \mapsto \mathbb{R}$ be a smooth convex function. Prove that $v:=\phi(u)$ is a subharmonic function.
3. Show that $x \mapsto \log |x|$ is a subharmonic function in the domain $\mathbb{R}^{N} \backslash\{0\}$ if $N \geq 2$.
4. Show that $v:=|D u|^{2}$ a subharmonic function if u is harmonic.
5. Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain and $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ a solution to

$$
\Delta u=-1 \quad \text { en } \Omega,\left.\quad u\right|_{\partial \Omega}=0 .
$$

Prove that $\forall x_{0} \in \Omega$ we have that

$$
u\left(x_{0}\right) \geq \frac{1}{2 N} \min _{x \in \partial \Omega}\left|x-x_{0}\right|^{2} .
$$

6. Let u be a classical solution to

$$
-\Delta u=f \quad \text { en } B_{1}(0), \quad u=g \quad \text { en } \partial B_{1}(0) .
$$

Show that there exists a constant $C>0$, independent of u, such that

$$
\max _{B_{1}(0)}|u| \leq C\left(\max _{\partial B_{1}(0)}|g|+\max _{B_{1}(0)}|f|\right) .
$$

7. Let u be a positive harmonic function in $B_{r}(0)$. Use Poisson formula to show that

$$
r^{N-2} \frac{r-|x|}{(r+|x|)^{N-1}} u(0) \leq u(x) \leq r^{N-2} \frac{r+|x|}{(r-|x|)^{N-1}} u(0) .
$$

This is an explicit form of the Harnack inequality.
8. Consider the problem

$$
\begin{cases}\Delta u(x)+c(x) u(x)=0, & x \in \Omega \\ u(x)=g(x), & x \in \partial \Omega\end{cases}
$$

where we assume $c(x)<0$. Show that this problem has a unique solution. Show by an example that when $c(x)>0$ uniqueness fails.
9. (Schwartz Reflection Principle) Consider the open semiball $U^{+}=\left\{x \in \mathbb{R}^{N}:|x|<1, x_{N}>0\right\}$. Let $u \in C^{2}\left(U^{+}\right)$be harmonic in U^{+}with $u=0$ on $\partial U^{+} \cap\left\{x_{N}=0\right\}$. Given $x \in U=B_{1}(0)$ we define

$$
v(x):= \begin{cases}u(x) & \text { si } x_{N} \geq 0 \\ -u\left(x_{1}, \ldots, x_{n-1},-x_{N}\right) & \text { si } x_{N}<0 .\end{cases}
$$

Show that v is harmonic in U.
10. Let $\Omega \subset \mathbb{R}^{N}$, be a domain, $N \geq 2$, and $x_{0} \in \Omega$. Let u be a bounded harmonic function in $\Omega_{0}:=\Omega \backslash\left\{x_{0}\right\}$. Show that we can define a value $u\left(x_{0}\right)$ such that the extended function is harmonic on the whole Ω.
11. Let $\Omega \subset \mathbb{R}^{N}$, be a bounded domain, $N \geq 2$, and let $x_{0} \in \Omega$. Define $\Omega_{0}:=\Omega \backslash\left\{x_{0}\right\}$ and let u and v be two harmonic functions in Ω_{0}, continuous in $\Omega_{1}=\Omega_{0} \cup \partial \Omega$ and such that: (i) $u(x) \leq v(x)$ for all $x \in \partial \Omega$; (ii) $|u(x)| \leq M,|v(x)| \leq M$ for all $x \in \Omega_{1}$. Use the Maximum Principle to show that $u(x) \leq v(x)$ for all $x \in \Omega_{1}$.
12. Find an expression for the Green function of the Dirichlet problem for the Laplace equations in an annular region $B_{R}\left(x_{0}\right) \backslash B_{r}\left(x_{0}\right)$, with $0<r<R$.
13. Show that a solution to $\Delta u-u^{2}=0$ in a domain Ω cannot attain its maximum in Ω, except if $u \equiv 0$.
14. Let $u \in C^{2}\left(B_{1}(0)\right) \cap C\left(\overline{B_{1}(0)}\right)$ be a solution to the Dirichlet problem

$$
\begin{cases}\Delta u=u^{2}+f(|x|), & x \in B_{1}(0) \\ u(x)=1, & x \in \partial B_{1}(0)\end{cases}
$$

where $f(|x|) \geq 0$ is of class $C^{1}(\Omega)$. Calculate the maximum of u in $\overline{B_{1}(0)}$ and show that it does not depend on f.

