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The Setup of the Problem

The Cauchy Problem for the Fast Diffusion Equation in Rd


∂τu = ∆

(
um

m

)
= ∇ ·

(
um−1∇u

)
, (τ, y) ∈ (0, T)× Rd

u(0, ·) = u0 , u0 ∈ L1
loc
(
Rd)

for any m < 1 ( i.e. Fast Diffusion, FDE )

We consider non-negative initial data and solutions.

Note that m ≤ 0 is included and m = 0 corresponds to logarithmic diffusion.

Existence and uniqueness of weak solutions by Herrero and Pierre (1985).

Solutions have different behaviour if mc < m < 1 and if m < mc, where

mc :=
d − 2

d
, and mc > 0 ⇐⇒ d ≥ 3
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Reminder: General Properties

Basic Properties

For m > mc the mass
∫
Rd u(y, t) dy is preserved in time if u0 ∈ L1(Rd) .

Non-negative solutions are positive and smooth for all x ∈ Rd and t > 0.

If m < mc mass is NOT preserved and solutions may extinguish in finite time.

u0 ∈ Lpc (Rd) , pc =
d (1− m)

2
=⇒ ∃ T = T(u0) : u(τ, ·) ≡ 0 ∀ t ≥ T

Semigroup Properties
For any two non-negative solutions u1 and u2 of the FDE defined on a time interval
[0, T), with initial data in L1

loc(Rd), we have

1 L1-Contractivity∫
Rd
|u1(t2)− u2(t2)| dx ≤

∫
Rd
|u1(t1)− u2(t1)| dx ,

for any 0 ≤ t1 ≤ t2 ≤ T .

2 Comparison Principle

u01(x) ≤ u02(x) a.e. ⇒ u1(t, x) ≤ u2(t, x) a.e.
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Reminder: General Properties

Barenblatt and Pseudo-Barenblatt Solutions

When m < mc, assume that u extinguish in finite time T .

When mc < m < 1, T is a free parameter to be suitably chosen later.

Self-similar Structure

UD,T(τ, y) :=
1

R(τ)d

(
D +

1− m
2 m

∣∣∣∣ y
R(τ)

∣∣∣∣2
)− 1

1−m

Time Scaling


R(τ) :=

[
d (m− mc) (T + τ)

] 1
d (m−mc) if mc < m < 1, Super-Critical Range

R(τ) := eT+τ if mc = m , First Critical Exp.

R(τ) :=
[
d (mc − m) (T − τ)

]− 1
d (mc−m) if m < mc, Sub-Critical Range
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Assumptions

Assumption on the Data

(H1) u0 ∈ L1
loc(Rd) , non-negative and there exist positive constants T and D0 > D1

UD0,T(0, y) ≤ u0(y) ≤ UD1,T(0, y) ∀ y ∈ Rd .

(H2) There exist D∗ ∈ [D1,D0] and f ∈ L1(Rd) such that

u0(y) = UD∗,T(0, y) + f (y) ∀ y ∈ Rd .

When mc < m < 1, (H1) implies (H2). Moreover in this range we have the

Theorem. Global Harnack principle (M.B. - J.L. Vazquez, 2006)

Any solution with non-negative initial data u0 ∈ L1
loc(Rd) that decays at infinity like

u0(y) = O(|y|2/(1−m)), is trapped for all t > 0 between two Barenblatt solutions.

If mc < m < 1 we can replace (H1) and (H2) by

u0 ∈ L1
loc(Rd) and u0(y) = O

(
|y|2/(1−m)) when |y| → ∞

Thus if mc < m < 1 , assumption (H1) is less restrictive than one could think.
When m < mc, by Comparison Principle, (H1) implies that the extinction of
u(t, ·) occurs exactly at time T .
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The New Exponent m∗

While analyzing (H1) and (H2), it naturally arises the new exponent

The New Critical Exponent m∗

m∗ =
d − 4
d − 2

< mc =
d − 2

d

When m > m∗, (H2) follows from (H1) since the difference of two Barenblatt
solutions is always integrable. For m ≤ m∗, (H2) is an additional restriction.

In the range m ≤ mc, the pseudo-Barenblatt solutions are not integrable.

For m < mc many solutions vanish in finite time and have various asymptotic
behaviors depending on the initial data.

Solutions with bounded and integrable initial data are described by
self-similar solutions with so-called anomalous exponents.
Even for solutions with initial data not so far from a pseudo-Barenblatt
solution, the asymptotic behavior may significantly differ from the
behavior of a pseudo-Barenblatt solution.
When m ≤ mc, assumption (H1)-(H2) are more restrictive than for
m > mc.
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Conservation of Relative Mass

Proposition - Relative Conservation of Mass
Let m < 1. Consider a solution u of the FDE with initial data u0 satisfying
(H1)-(H2). If for some D > 0,

∫
Rd

[
u0 − UD,T(0, ·)

]
dy is finite, then∫

Rd

[
u(τ, y)− UD,T(τ, y)

]
dy =

∫
Rd

[
u0(y)− UD,T(0, y)

]
dx , ∀ τ ∈ (0, T) .

The map D 7→
∫
Rd (v0 − VD) dx is continuous and monotone increasing.

We can define a unique D∗ ∈ [D1,D0] such that

If m > m∗, then ∫
Rd

[
u(τ, y)− UD∗,T(τ, y)

]
dy = 0 ∀ t > 0 .

If m ∈ (0,m∗], integrals are infinite unless D = D∗ and then,∫
Rd

[
u0 − UD∗,T(0, ·)

]
dy =

∫
Rd

f dx ∀ t > 0 .

The perturbation f ∈ L1(Rd) of UD∗,T , can be with nonzero mass.

In both cases, we summarize the fact that d
dt

∫
Rd

[
u0 − UD∗,T(0, ·)

]
dy = 0 by

saying that the relative mass is conserved.
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Conservation of Relative Mass

Theorem - Intermediate asymptotics
Let d ≥ 3, m < 1, m 6= m∗. Consider a solution u of the FDE, with initial data
satisfying (H1)-(H2). For τ large enough, for any q ∈ (q∗,∞], there exists a positive
constant C such that

‖u(τ)− UD∗(τ)‖q ≤ C R(τ)−α

where the optimal rate is given by

α = Λm,d + d (q− 1)/q

and Λm,d is the inverse of the Hardy-Poincaré constant Cm,d = Λ−1
m,d.

Large means τ → T , if m < mc, and τ →∞ , if m ≥ mc.

The Hardy-Poincaré constant
For any m < 1, m 6= m∗, we define

Λm,d :=
1
Cm,d

:= inf
h

∫
Rd |∇h|2 VD∗ dx∫

Rd |h− h̄|2 V2−m
D∗ dx

.

We shall prove that Λm,d is strictly positive and independent of D∗.
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Recall that m∗ = (d − 4)/(d − 2) and VD = (D + |x|2)−
1

1−m .

Theorem - Spectral Gap: Hardy-Poincaré Inequalities
Let d ≥ 1 and D > 0. There exists Λm,d, not depending on D, such that
POINCARÉ CASE. If m ∈ (0, 1) and 1 ≤ d ≤ 4, or m ∈ (m∗, 1) and d ≥ 5, then

Λm,d

∫
Rd
|g− g|2 V2−m

D dx ≤
∫
Rd
|∇g|2 VD dx , g =

∫
Rd g V2−m

D dx∫
Rd V2−m

D dx
.

HARDY CASE. In case d ≥ 3 and m < m∗, we have

Λm,d

∫
Rd

g2 V2−m
D dx ≤

∫
Rd
|∇g|2 VD dx ,

with optimal constant

Λm,d =



2
1− m

, if
d − 1

d
< m < 1

2
2− d(1− m)

1− m
, if

d
d + 2

< m <
d − 1

d
[(d − 2) (m− m∗)]2

4 (1− m)2 , if m <
d

d + 2
, m 6= m∗

Note: Λm,d = 0 when m = m∗. No Spectral Gap!! Other functional ineq. needed!!



The Fast Diffusion Problem in Rd Hardy-Poincaré Inequalities Results when m 6= m∗ The critical case Complementary Results

Some Remarks

We observe that the weight is a power of the Barenblatt and has a “fat tail”

V2−m
D ∼ VD/|x|2 , as |x| → ∞

m < m∗ , Hardy-type: the weight V2−m
D is not integrable, no average, the

infimum of the spectrum is positive, and Cm,d is the best constant .

m∗ < m < 1 , Poincaré-type: the weight V2−m
D is integrable, and the spectral

gap inequality involves the average as the classical Poincarè inequality, but with
weights.

We have calculated the complete spectrum for any m < 1. Our spectral analysis
completes/complements previous works by Denzler-McCann in the range
m > mc.

The optimal rate of convergence has been calculated by DelPino-Dolbeault
when m > (d− 1)/d, by Carrillo-Vázquez when m > mc while no other results
where known for m < mc.

Our Spectral Gap Theorem is an explicit example for which weighted Poincaré
inequality holds, while the corresponding weighted Logarithmic Sobolev
inequality does not hold, even in dimension d = 1, c.f. Barthe-Roberto.
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Passing to Self-Similar Variables: Nonlinear Fokker-Plank Equation

When m < mc, assume that u extinguish in finite time T .
When mc < m < 1, T is a free parameter to be suitably chosen later.

Let a = (1− m)/2[d(1− m)− 2]. Define the rescaled function v by

v(t, x) := Rd(τ) u(τ, y) , t := a log
(

R(τ)

R(0)

)
, x :=

√
a

y
R(τ)

.

Non-linear Fokker-Planck equation (NLFP)
The function v is solution to the non-linear Fokker-Planck equation:

∂v
∂t

= ∆(vm) +
2

1− m
∇
(
x v
)

= ∇ ·
[

v∇
(

vm−1 − Vm−1
D

m− 1

)]
in (0,+∞)× Rd,

v(0, ·) = v0 = R(0)du0(·R(0)) in Rd ,

T disappeared from the equation but is still in the change of variable.
The stationary solution is the (pseudo)-Barenblatt solution:

VD(x) :=
(

D + |x|2
)− 1

1−m
, we leave D as a free “mass” parameter.
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Assumption on the Data in Self-similar Variables

(H1) u0 ∈ L1
loc(Rd) , non-negative and there exist positive constants D0 > D1

VD0 (x) ≤ v0(x) ≤ VD1 (x) ∀ x ∈ Rd .

(H2) There exist D∗ ∈ [D1,D0] and f ∈ L1(Rd) such that

v0(x) = VD∗(x) + f (x) ∀ x ∈ Rd .

The center of mass of the initial datum is not fixed. Fixing the center of mass
improves the rate in the range mc < m < 1.

Remember that the “mass” parameter D∗ is fixed by conservation of relative
mass.
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Results

Main theorem if m 6= m∗ (Convergence with rate)
Under the assumptions of Theorem 1, if m 6= m∗, there exists t0 ≥ 0, C > 0 such

that, for all q > q∗ with q∗ :=
2 d (1− m)

2 (2− m) + d (1− m)
one has

‖v(t)− VD∗‖Lq(Rd) ≤ Cq e−Λm,d t ∀ t ≥ t0 .

where Λm,d is the eigenvalue in the Hardy-Poincaré inequality. Moreover, for all
p ≥ d/2 one has convergence in relative error, namely∥∥∥∥ v(t)

VD∗
− 1
∥∥∥∥

Lp(Rd)

≤ Cp e−Λm,d t ∀ t ≥ t0

Finally, uniform convergence of all derivatives also hold

‖v(t)− VD∗‖Ck(Rd) ≤ Ck e−Λm,d t ∀ t ≥ t0 , ∀ k ≥ 1.
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Sketch of the proof: relative entropy

We choose D∗ by relative conservation of mass. The function w = v/VD∗ satisfies

(NLOU) wt =
1

VD∗
∇ ·
[

w VD∗∇
(

wm−1 − 1
m− 1

Vm−1
D∗

)]
in (0,+∞)× Rd .

i.e. the NonLinear Ornstein-Uhlenbeck equation, whenever v satisfies (NLFP).

Relative entropy/entropy production
Define the nonlinear relative entropy

F [w] :=

∫
Rd

[
1

m− 1
(wm − 1)− m

m− 1
(w− 1)

]
Vm

D∗ dx

and the nonlinear relative entropy production functional (or Fisher information)

I[w] :=

∫
Rd

∣∣∣∣∇ [(wm−1 − 1
m− 1

)
Vm−1

D∗

]∣∣∣∣ 2

w VD∗ dx .

If v is solution to (NLFP) or, equivalently, if w = v/VD∗ satisfies (NLOU) then

d
dt
F [w] = −I[w] .
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Linearization

A weighted linearization

Define the function g by

w(t, x) = 1 + ε
g(t, x)

Vm−1
D∗ (x)

∀ t > 0 , ∀ x ∈ Rd ,

Letting ε→ 0 we formally get a linear evolution equation for g, namely

gt = Vm−2
D∗ ∇ · [VD∗ ∇g] .

Define the functional
F[g] :=

1
2

∫
Rd
|g|2 V2−m

D∗ dx

and notice that its time derivative (along linear flow) is

d
dt

F[g] = −I[g] := −
∫
Rd
|∇g|2 VD∗ dx .

We use the spectral gap to obtain the convergence with rate for the linearized flow

2 F[g(t)] ≤ 1
Λm,d

I[g] =⇒ F[g(t)] ≤ F[g(0)] e− 2 Λm,d t ∀ t ≥ 0 .
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Comparing linear and nonlinear quantities

Comparing Linear and Nonlinear quantities
Define

h = h(t) = max

{
sup
x∈Rd

w(t, x) ,

[
inf

x∈Rd
w(t, x)

]−1
}

If t is sufficiently large, then

hm−2 F[g] ≤ 2F [w] ≤ h2−m F[g]

and
I[g] ≤

[
1 + X(h)

]
I[w] + Y(h) F[g]

with g := (w− 1) Vm−1
D∗ .

Notice that h(t)→ 1 as t→∞, and

0 < X(h) + 1 = h5−2m → 1 as t→ +∞

0 < Y(h) = d(1− m)
[
h4(2−m) − 1

]
→ 0 as t→ +∞.

This is a consequence of convergence without rate, proved separately.
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Comparing linear and nonlinear quantities

By the Hardy-Poincaré inequality

F[g] ≤ 1
Λm,d

I[g] ≤ 1
Λm,d

[
(1 + X(h)) I[w] + Y(h) F[g]

]
,

we deduce that

F [w] ≤ h2−m

2
F[g] ≤

h2−m[1 + X(h)
]

2
[
Λm,d − Y(h)

] I[w]

as soon as 0 < h < h∗ := min
{

h > 0 : Λm,d − Y(h) ≥ 0
}

. Moreover

0 ≤ h− 1 ≤ CF [w]
1−m

d+2−(d+1)m

for a suitable constant C > 0. Recall that h→ 1, X(h), Y(h)→ 0 as t→∞.
When t is large, there exists a suitable γ > 0:

γ F [w] ≤ I[w] = −dF [w]

dt
=⇒ F [w(t)] ≤ F [w0] e−γ t .

That is, for the L2-norm:

‖v−VD∗‖
2
L2 ≤

∥∥∥V2−m
D∗

∥∥∥
L∞

∫
|v−VD∗ |

2 Vm−2
D∗ dx = C F[g] ≤ C

1
C0
F [w] ≤ C̃ e−γ t .

Improvement of convergence: First we prove uniform convergence of w to 1 by an
interpolation lemma. Letting then h(t) = 1 + C e−γt in the above estimates, we
conclude that γ can be improved up to Λm,d. �
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Comparing linear and nonlinear quantities

Improved Rates in the range m1 < m < 1.

Figures: Spectrum of L1/(1−m),dg = (1− m)Vm−2
D ∇ ·

[
VD∇g

]
as a function of m, for d = 5.

Under the extra assumption
∫
Rd xg dx = 0, we have an improved optimal

constant in the Hardy-Poincaré inequality: Λ̃m,d = 2 2−d(1−m)
1−m ≥ Λm,d = 2

1−m in

Λ̃m,d

∫
Rd
|g− g|2 V2−m

D dx ≤
∫
Rd
|∇g|2 VD dx

As a consequence, under the extra assumption
∫
Rd xv0 dx = 0, keeping∫

Rd v0 − VD∗ dx = 0, we have an improvement of the decay rate of the entropy:

F [w(t)] ≤ K e−Λ̃m,d t
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Statements

The critical case m = m∗
If m = m∗ there is no spectral gap. One may expect, and gets indeed, a polynomial
rate of convergence. In fact we have the following results.

Main theorem in the critical case
Under the running assumption we have:

F [w(t)] ≤ K t−1/2 , ∀ t ≥ t0 . (1)

Moreover for any q ∈ (1,∞], j ∈ N:

‖v(t)− VD∗‖q ≤ K(q) t−1/4 , ∀ t ≥ t0 ;

‖v(t)− VD∗‖C j(Rd) ≤ Hj t−1/4 , ∀ t ≥ t0 .

Rescaling back to the original space–time variables we obtain

Corollary (Intermediate Asymptotics)

For any q ∈ (1,∞], there exists a positive constant C such that:

‖u(t)− UD∗(t)‖q ≤ C (T − t)σ(q) log (T/(T − t))−1/4 .

with σ(∞) = d(d − 2)/4 and σ(q) = (q− 1)σ(∞)/q for q <∞.
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Linearization and geometry

The rate are exactly the one which can be forecasted for the linearized equation.
How to prove this? We introduce a geometrization of the linearized problem.
Consider the operator given on C∞c (Rd) (d ≥ 3)by

Lmv = (D + |x|2)(2−m)/(1−m)∇ ·
(

∇v
(D + |x|2)1/(1−m)

)
= Vm−2

D ∇ · (VD∇v) .

We shall think of this operator as acting on the Hilbert space Hm = L2(Rd,V2−m
D dx).

Its associated quadratic form, or Dirichlet form, is

I[v] =

∫
Rd

|∇v(x)|2

(D + |x|2)1/(1−m)
dx.

Consider the manifold M = Rd endowed with the Riemannian, conformally flat
metric defined, in Euclidean (global) coordinates, by

g(x) = (D + |x|2)−1I ,

where I is the Euclidean metric and | · | is the Euclidean norm. We denote by µg the
Riemannian measure and by ∆g the Laplace-Beltrami operator, defined on L2(µg).

Lemma
The Laplace-Beltrami operator ∆g coincides with Lm precisely when
m = m∗ := (d − 4)/(d − 2), both as concerns its explicit expression (in Euclidean
coordinates) and as concerns the Hilbert space it acts on.
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Curvature

The manifold has a cigar–like structure. Its Ricci curvature of (M, g) is computable
explicitly. In fact:

Lemma. Ricci Curvature
One has the explicit expression

Rij =
(2− d)xixj + δij[(d − 2)|x|2 + 2(d − 1)]

(1 + |x|2)2

In particular the Ricci tensor is positive definite and bounded .

As a consequence, by the celebrated Li–Yau theory we have

Proposition. Li-Yau estimates
For all small positive ε there exists positive constants c1, c2 such that

c1(ε)

Vol[B(x,
√

t)]
e−

d2(x,y)
(4−ε)t ≤ K(t, x, y) ≤ c2(ε)

Vol[B(x,
√

t)]
e−

d2(x,y)
(4+ε)t

for all x, y ∈ M, t > 0. Here Vol is the Riemannian volume and d is the Riemannian
distance.
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Heat kernel bounds

As a first corollary we get a crucial on–diagonal heat kernel bound, proved by
estimating explicitly distances and volumes.

Lemma
The bound

K(t, x, x)≈ 1

t
1
2 + log(1 + |x|)

, ∀t ≥ 1, ∀x ∈ Rd,

holds true.

Here f1(t)≈ f2(t) means: there exists two constants c1, c2 > 0 so that c1 f1 ≤ f ≤ c2 f2 near t.

• In particular this implies that the semigroup is recurrent, so it follows that
no Hardy–type inequality can hold and hence the approach used in the
noncritical case is not applicable.
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Gagliardo–Nirenberg inequality

Gagliardo–Nirenberg inequalities

Let v ∈ L2(Rd, dµ∗) ∩ Dom(Im∗ ) be such that 0 < Im∗ [v]/‖v‖2
1 <∞. Recall that

‖v‖p
p =

∫
Rd

|v(x)|p

(D + |x|2)d/2
dx and Im∗ [v] =

∫
Rd

|∇v(x)|2

(D + |x|2)(d−2)/2
dx

(i) If Im∗ [v]/‖v‖2
1 > 1 we have the following inequality (Rd-like)

‖v‖2(d+2)
2 ≤ c1 Im∗ [v]

d‖v‖4d
1 ,

(ii) If Im∗ [v]/‖v‖2
1 ≤ 1 we have the following inequality (1-dimensional-like)

‖v‖6
2 ≤ c2 Im∗ [v] ‖v‖4

1,

Moreover the constants ci depends on d, but not on v.

(iii) Summing up we have proved that there exists a functionN : (0,∞)→ (0,∞) such that

‖v‖2
2

‖v‖2
1
≤ N

(
Im∗ [v]
‖v‖2

1

)
,

and
lim
ξ→∞

N (ξ)

ξd/(d+2)
> 0, and lim

ξ→0+

N (ξ)

ξ1/3
> 0.

Remark. Inequality (i) is “stronger” than the Hardy-Poincaré, indeed plugging
‖v0‖2

1 ≤ Im∗ [v0] (strong assumption) gives

‖v‖2
2 ≤ c1 Im∗ [v] .
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Hints for a proof

To get a hint of how this inequality helps, consider the linear situation. We have:

dF[v(t)]
dt

= −I[v(t)] ≤ −c
F[v(t)]3

‖v(t)‖4
1

= −c
F[v(t)]3

‖v0‖4
1

Integrating the above differential inequality, we obtain:

F[v(t)] ≤ c̃
‖v0‖2

1

t1/2 .

Is the above use of Gagliardo–Nirenberg inequalities allowed?
Yes, provided

I[v(t)]/‖v(t)‖2
1 ≤ c0,

but this is true e.g. for positive data since the L1 norm is conserved (to be proved) and
the energy decreases.

How can we get the same claim in the nonlinear case? Hard to tell briefly, I sketch
the main points without any proof.
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Hints for a proof

(1) One has, setting g = (w− 1)Vm−1
∗ the following bound:

I[w] ≤ k1I[w] + k2

∫
Rd

g4V4−3m
∗ dx︸ ︷︷ ︸

R[g]

This does not depend on the evolution but only on the assumption on the data
(preserved along it). The remainder term R[g] is hard to estimate when m = m∗.

(2) I(t)→ 0 as t→ +∞. This is usually proved via “Bakry–Emery–like” methods,
but we have no spectral gap here! We use Benilan–Crandall estimate.

(3) The inequality

‖w− 1‖
2+ m

1−m

L
2+ m

1−m (Rd)
≤ Dm F[w]

holds true. Hence, the inequality

I[w] ≤ k1I[w] + k3F1+σ[w]
[
⇒ I[w]→ 0

]
holds along the evolution. Again this depends only on the assumptions (preserved
along the evolution). This inequality is sufficient to conclude when m 6= m∗, while it
is not sufficient when m = m∗: we need a bit more!!
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Hints for a proof

(4) The inequality
I[w(t)] ≤ k4I[w(t)]

holds true along the nonlinear evolution, when m = m∗.
Very Hard to prove:
we have to estimate the reminder term R[g] in terms of I[w(t)]1+ε or F3+ε, but our
weighted Gagliardo–Nirenberg inequality is not sufficient, and the other useful
functional inequalities do not hold for this special class of weights.

(5) Using again the GN inequality and the previous steps then gives

F3[w(t)] ≤ −KdF [w(t)]
dt

Integrating it gives the claim as concerns the decay of F .

(4 + 5)∗ To be precise, the above steps 5 and 6 can only be done on a family of
intervals [tk, tk+1] of length at least 1/2, with tk →∞ as k→∞, but this is sufficient
to conclude.

(6) Regularity theory for the solution of the equation holds, so that one can prove a
priori that supt≥1 ‖w(t)‖Ck ≤ Ak < +∞. This and some interpolation arguments
involving the Ck norms yield the other claims.
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Hints for a proof

The End

Thank you!!!
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Weighted Hardy Inequalities

We now consider the limit D→ 0+, in the Spectral Gap Theorem .
Letting α := 1/(m− 1), we obtain the Weighted Hardy inequality,∫

Rd

|g|2

|x|2 |x|
α dx ≤ Hα

∫
Rd
|∇g|2 |x|α dx , ∀ g ∈ D(Rd) .

with the optimal constant

Hα :=
4

[2α+ d − 2]2 =
8 m (1− m)

[(d − 2) (m− m∗)]2 ·
1− m

2 m
.

SKETCH OF PROOF.

Such an inequality is easy to establish by the “completing the square method” as follows.

0 ≤
∫
Rd

∣∣∣∣∇g + λ
x
|x|2

g
∣∣∣∣2 |x|2α dx

=

∫
Rd
|∇g|2 |x|2α dx +

[
λ2 − λ (2α+ d − 2)

] ∫
Rd

|g|2

|x|2
|x|2α dx .

An optimization of the right hand side with respect to λ gives the desired inequality.
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The Limit m → 1. The Heat Equation

The Limit as m→ 1
In the limit m→ 1, we observe that

lim
m→1−

D1/(1−m)
∗ VD∗ = (2πD∗)d/2 µ with µ(x) =

e−
|x|2
2 D∗

(2πD∗)d/2
.

so that the equation formally converges to the Ornstein-Uhlenbeck equation,

gt = Vm−2
D∗ (x)∇ · [VD∗ ∇ g ] −→ gt = µ−1∇ ·

(
µ∇g

)
.

Also the spectral gap inequality∫
Rd
|g|2 V2−m

D dx ≤ Cm,d

∫
Rd
|∇g|2 VD dx ∀ g ∈ C∞(Rd) such that

∫
Rd

g V2−m
D dx = 0

formally converges to the Gaussian-Poincaré inequality∫
Rd
|φ|2 dµ ≤

∫
Rd
|∇φ|2 dµ ∀ φ ∈ C∞(Rd) such that

∫
Rd
φ dµ = 0 ,

where dµ := µ dx. In the Gaussian case, a logarithmic Sobolev inequality holds, [Gross]∫
Rd
|φ|2 log

(
|φ|2∫

Rd |φ|2 dµ

)
dµ ≤ 2

∫
Rd
|∇φ|2 dµ ,

which is stronger than the Gaussian Poincaré inequality. With the measure VD∗ dx. Although
the spectral gap inequality holds true, there is no corresponding logarithmic Sobolev inequality.
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Estimates for the Heat Equations

Application to the Heat Equation

uτ = ∆u

Logarithmic time-space rescaling gives the

[ Fokker-Plank ] vt = ∆v +∇ · (x v)

Pass to the quotient w =
v
µ

, where µ is the gaussian, to get

[ Ornstein-Uhlenbeck ] wt = µ−1∇ ·
(
µ∇w

)
the Gaussian Poincaré inequality gives then, as before,∫

Rd
|w− 1|2 dµ ≤ e− t

∫
Rd
|w0 − 1|2 dµ ∀ t ≥ 0

Then by interpolation, we get
‖w− 1‖∞ ≤ Ke− t

that means, once we go back to the original variables,

µ(τ, x) Λ0 ≤ u(τ, x) ≤ Λ1 µ(τ, x)

which are the well known Heat Kernel Estimates of solution to the Heat Equation.
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