Total Variation Flow and Sign Fast Diffusion in one dimension

Matteo Bonforte

Departamento de Matemáticas, Universidad Autónoma de Madrid,

Campus de Cantoblanco
28049 Madrid, Spain
email: matteo.bonforte@uam.es
http://www.uam.es/matteo.bonforte
[Joint work with Alessio Figalli (UT Austin, USA)]

FBP 2012, Free Boundary Problems Theory and Applications June 14, 2012, Frauenchiemsee (Prien), Germany

Sign-fast diffusion VS total variation flow

Sign-Fast Diffusion Equation (SFDE) as "limit" of Fast Diffusion Eq. (FDE)

$$
\begin{array}{ll}
\partial_{t} v=\Delta\left(v^{m}\right) \\
(\mathrm{FDE}) \quad 0<m<1
\end{array} \longrightarrow \begin{array}{ll}
\\
\partial_{t} v=0^{+} & (\mathrm{SFDE})
\end{array}
$$

[Note that $v^{m}=|v|^{m-1} v$.]

Total Variation Flow (TVF) as "limit" of (parabolic) p-Laplacian

$$
\begin{array}{lll}
\partial_{t} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) \\
\text { (p-Laplacian) } 1<p<2
\end{array} \quad \longrightarrow \quad \partial_{t} u=\operatorname{div}\left(\frac{D u}{|D u|}\right)
$$

Relation between TVF and SFDE in 1 spatial Dimension

If v solves the SFDE, then $u(x):=\int_{0}^{x} v(y) \mathrm{d} y$ solves the TVF

- The above limits and relations are formal and will be justified later.
- We will consider the 1-dimensional case.

Definition of solutions

A function $u \in L^{\infty}([0, \infty), B V(I)) \cap W_{l o c}^{1,2}\left([0, \infty), L^{2}(I)\right)$ is a strong solution of the TVF, $\partial_{t}=\partial_{x}(D u /|D u|)$, if there exists $z \in L_{l o c}^{2}\left([0, \infty), W^{1,2}(I)\right)$, with $\|z\|_{\infty} \leq 1$, such that

$$
\partial_{t} u=\partial_{x} z \quad \text { on } \quad(0, \infty) \times I
$$

and

$$
\int_{0}^{T} \int_{I} z(t, x) D u(t, x) d t \mathrm{~d} x=\int_{0}^{T} \int_{I}|D u(t, x)| \mathrm{d} x d t \quad \forall T>0 .
$$

- Roughly speaking, the above condition says that $z=D u /|D u|$.
- There is a huge literature on this topic, we refer to the book
- F. Andreu, V. Caselles, J. M. Mazon, Parabolic quasilinear equations minimizing linear growth functionals, Progress in Mathematics, 223, Birkhäuser Verlag, Basel.
for a discussion on the different concepts of solution to the TVF. (entropy solutions, mild solutions, semigroup solution, ...)
- For the moment, we do not specify any boundary condition. The following discussion could be applied to the Cauchy problem in \mathbb{R}, as well as the Dirichlet or the Neumann problem on an interval.
- Works on TVF by: (hopeless to quote everybody, I am really sorry if I forgot someone)
L. Ambrosio, F. Andreu, C. Ballester, G. Bellettini, V. Caselles, A. Chambolle, J. I. Diaz, M.-H. Giga, Y. Giga, R. Kobayashi, R. Kohn, S. Masnou, J. M. Mazon, J.-M. Morel, M. Novaga, P. Rybka, ...

Time Discretization

Strong solution u of the TVF is generated via Crandall-Ligget's Theorem, namely the limit of solutions of a time-discretized problem, given by the implicit Euler scheme

$$
\begin{equation*}
\frac{u\left(t_{i+1}\right)-u\left(t_{i}\right)}{t_{i+1}-t_{i}}=\partial_{x}\left(\frac{D u\left(t_{i+1}\right)}{\left|D u\left(t_{i+1}\right)\right|}\right) . \tag{1}
\end{equation*}
$$

the time-discretized solution u_{h} with $h=t_{i+1}-t_{i}>0$ (fixed) can be characterized by

$$
u_{h}=\operatorname{argmin}\left[\Phi_{h}(u)\right], \quad \text { where } \quad \Phi_{h}(u)=\int_{I}|D u|+\frac{1}{2 h} \int_{I}\left|u-u_{0}\right|^{2} \mathrm{~d} x
$$

Φ_{h} is strictly convex (unique minimizer), and (1) is the Euler-Lagrange eq. for Φ_{h}. $u_{0}, u_{h} \in B V(I)$ implies $\partial_{x} z_{h} \in B V(I) \subset L^{\infty}(I)$, so that z_{h} is Lipschitz, therefore differentiable outside a countable set of points:

$$
\begin{equation*}
N\left(z_{h}\right):=\left\{x \in \mathbb{R} \left\lvert\, \lim _{\varepsilon \rightarrow 0} \frac{z_{h}(x+\varepsilon)-z_{h}(x)}{\varepsilon}\right. \text { does not exists }\right\} \tag{2}
\end{equation*}
$$

Finally, equation (1) is equivalent to

$$
\begin{cases}h \partial_{x} z_{h}(x)=u_{h}(x)-u_{0}(x) & \text { for all } x \in \mathbb{R} \backslash N\left(z_{h}\right) \\ \left|z_{h}(x)\right| \leq 1, & \text { for all } x \in \mathbb{R} \\ z_{h}(x)= \pm 1, & \text { for }\left|D u_{h}\right|-\text { a.e. }\end{cases}
$$

Behaviour near continuity points

If u_{h} is different from u_{0} at some common continuity point x, then it is constant in an open neighborhood of x.

Behaviour at discontinuity points (jumps decrease size in time)

Let $u_{0} \in B V(I)$. Then, the following inequalities hold for any $x \in I$:
if $\quad u_{h}\left(x^{-}\right) \leq u_{h}\left(x^{+}\right) \quad$ then $\quad u_{0}\left(x^{-}\right) \leq u_{h}\left(x^{-}\right)<u_{h}\left(x^{+}\right) \leq u_{0}\left(x^{+}\right)$
if $\quad u_{h}\left(x^{+}\right) \leq u_{h}\left(x^{-}\right) \quad$ then $\quad u_{0}\left(x^{+}\right) \leq u_{h}\left(x^{+}\right)<u_{h}\left(x^{-}\right) \leq u_{0}\left(x^{-}\right)$.
Moreover,

$$
\begin{array}{lll}
u_{h}\left(x^{-}\right)<u_{h}\left(x^{+}\right) & \text {implies } & z_{h}(x)=1 \\
u_{h}\left(x^{-}\right)>u_{h}\left(x^{+}\right) & \text {implies } & z_{h}(x)=-1 .
\end{array}
$$

Local continuity

Let $x \in I$. If u_{0} is continuous at x, then u_{h} is continuous at x.

The dynamics of local step functions I. The time discretized case.

Maximum steps.

- Let us fix an interval $I=I_{1} \cup I_{2} \cup I_{3}$
- Assume that $u_{0}=\alpha_{1} \chi_{1}+\alpha_{2} \chi_{2}+\alpha_{3} \chi_{3}$ on I with $\alpha_{2}>\max \left\{\alpha_{1}, \alpha_{3}\right\}$ and $\chi_{k}=\chi_{I_{k}}$ is the char. funct. of $I_{k}=\left(x_{k-1}, x_{k}\right)$.
- We make no assumptions on u_{0} outside I. Fix $h>0$ small.

Figure: Dynamics of a maximum step. This figure shows the dynamic only inside the UAN interval $\left[x_{0}, x_{3}\right]$.

Evolution of a general step function.

- Let $\alpha_{k} \in \mathbb{R}$ for $k=0, \ldots, N+1$, and $\chi_{k}=\chi_{I_{k}}$ is the char. funct. of $I_{k}=\left(x_{k-1}, x_{k}\right)$ (also the values $x_{0}=-\infty$ and $x_{N+1}=+\infty$ are allowed)
- If $0<\ell h<\min _{j=0, \ldots, N}\left\{\left|\alpha_{j}-\alpha_{j+1}\right| \min \left\{\left|I_{j}\right|,\left|I_{j+1}\right|\right\}\right\}$, the discrete solution after ℓ steps is given by

$$
u_{0}=\sum_{k=0}^{N+1} \alpha_{k} \chi_{k} \quad \text { gives } \quad u_{\ell h}=\sum_{k=0}^{N+1} \alpha_{k, \ell h} \chi_{k} \quad \text { on } I
$$

where we are able to explicitly get the values of $\alpha_{k, \ell h}$ for $k=1, \ldots N$, and some information on $\alpha_{0, \ell k}$ and $\alpha_{N+1, \ell k}$: for $k=1, \ldots N$

$$
\alpha_{k, \ell h}= \begin{cases}\alpha_{k}, & \text { if } \alpha_{k-1}<\alpha_{k}<\alpha_{k+1} \text { or if } \alpha_{k+1}<\alpha_{k}<\alpha_{k-1} \\ \alpha_{k}-\frac{2 \ell h}{\left|I_{k}\right|}, & \text { if } \alpha_{k}>\max \left\{\alpha_{k-1}, \alpha_{k+1}\right\} \\ \alpha_{k}+\frac{2 \ell h}{\left|I_{k}\right|}, & \text { if } \alpha_{k}<\min \left\{\alpha_{k-1}, \alpha_{k+1}\right\}\end{cases}
$$

A concluding remark on the smallness of the time step h.

- Since we are mainly interested in the limit $h \rightarrow 0$, condition on smallness of h is always fulfilled.
- Anyway it is interesting to observe that the dynamic becomes more complicated to understand for general values of h, since the "locality" property is lost.
- Figure below shows a situation when a maximum and a minimum disappear in one step (for this to happen, the area A has to be less than $2 h$). Of course one can construct much more complicated examples.
- We can observe that the value of u_{h} inside $\left[x_{1}, x_{2}\right]$ depends on the values of u_{0} on both $\left[x_{1}, x_{2}\right]$ and $\left[x_{2}, x_{3}\right]$.

The dynamics of local step functions II. The continuous time case.

Letting $h \rightarrow 0^{+}$in the time discretized solution we obtain

$$
u_{0}(x)=\sum_{k=0}^{N+1} \alpha_{k} \chi_{I_{k}}(x) \quad \rightsquigarrow \quad u(t, x)=u_{0}(x)+t \sum_{k=0}^{N+1} \beta_{k, \ell h} \chi_{k}(x) \quad \text { on }\left[0, t_{1}\right] \times I,
$$

with $t_{1}<\min _{j=0, \ldots, N}\left\{\left|\alpha_{j}-\alpha_{j+1}\right| \min \left\{\left|I_{j}\right|,\left|I_{j+1}\right|\right\}\right\}$, and

$$
\beta_{k, \ell h}:= \begin{cases}0, & \text { if } \alpha_{k-1}<\alpha_{k}<\alpha_{k+1} \text { or if } \alpha_{k+1}<\alpha_{k}<\alpha_{k-1} \\ -\frac{2}{\left|I_{k}\right|}, & \text { if } \alpha_{k}>\max \left\{\alpha_{k-1}, \alpha_{k+1}\right\} \\ \frac{2}{\left|I_{k}\right|}, & \text { if } \alpha_{k}<\min \left\{\alpha_{k-1}, \alpha_{k+1}\right\}\end{cases}
$$

for $k=1, \ldots, N$, and

$$
\beta_{0, \ell h}\left\{\begin{array} { l l l }
{ \geq 0 , } & { \text { if } \alpha _ { 0 } < \alpha _ { 1 } } \\
{ \leq 0 , } & { \text { if } \alpha _ { 0 } > \alpha _ { 1 } }
\end{array} \quad \beta _ { N + 1 , \ell h } \left\{\begin{array}{ll}
\geq 0, & \text { if } \alpha_{N}>\alpha_{N+1} \\
\leq 0, & \text { if } \alpha_{N}<\alpha_{N+1}
\end{array}\right.\right.
$$

On I_{0} and I_{N+1} it is monotonically increasing/decreasing, depending on the value on I_{1} and I_{N}.

- This formula will then continue to hold until a maximum/minimum disappear.
- After repeating this at most N times, all the maxima and minima inside I disappear, and $u(t)$ is monotonically decreasing/increasing on I
- For instance, if $I=\mathbb{R}$ and the initial data is a compactly supported step function, then $u \equiv 0$ after some finite time T (which we call extinction time).

The dynamics of local step functions II. The continuous time case.

Letting $h \rightarrow 0^{+}$in the time discretized solution we obtain

$$
u_{0}(x)=\sum_{k=0}^{N+1} \alpha_{k} \chi_{I_{k}}(x) \quad \rightsquigarrow \quad u(t, x)=u_{0}(x)+t \sum_{k=0}^{N+1} \beta_{k, \ell h} \chi_{k}(x) \quad \text { on }\left[0, t_{1}\right] \times I
$$

with $t_{1}<\min _{j=0, \ldots, N}\left\{\left|\alpha_{j}-\alpha_{j+1}\right| \min \left\{\left|I_{j}\right|,\left|I_{j+1}\right|\right\}\right\}$, and

$$
\beta_{k, \ell h}:= \begin{cases}0, & \text { if } \alpha_{k-1}<\alpha_{k}<\alpha_{k+1} \text { or if } \alpha_{k+1}<\alpha_{k}<\alpha_{k-1} \\ -\frac{2}{\left|I_{k}\right|}, & \text { if } \alpha_{k}>\max \left\{\alpha_{k-1}, \alpha_{k+1}\right\} \\ \frac{2}{\left|I_{k}\right|}, & \text { if } \alpha_{k}<\min \left\{\alpha_{k-1}, \alpha_{k+1}\right\}\end{cases}
$$

for $k=1, \ldots, N$, and

$$
\beta_{0, \ell h}\left\{\begin{array} { l l }
{ \geq 0 , } & { \text { if } \alpha _ { 0 } < \alpha _ { 1 } } \\
{ \leq 0 , } & { \text { if } \alpha _ { 0 } > \alpha _ { 1 } }
\end{array} \quad \beta _ { N + 1 , \ell h } \left\{\begin{array}{ll}
\geq 0, & \text { if } \alpha_{N}>\alpha_{N+1} \\
\leq 0, & \text { if } \alpha_{N}<\alpha_{N+1}
\end{array}\right.\right.
$$

On I_{0} and I_{N+1} it is monotonically increasing/decreasing, depending on the value on I_{1} and I_{N}.

- This formula will then continue to hold until a maximum/minimum disappear.
- After repeating this at most N times, all the maxima and minima inside I disappear, and $u(t)$ is monotonically decreasing/increasing on I.
- For instance, if $I=\mathbb{R}$ and the initial data is a compactly supported step function, then $u \equiv 0$ after some finite time T (which we call extinction time).
- If u_{0} is an increasing (resp. decreasing) step function, then it will remain constant in time.
- This analysis can be extended to the case of suitable initial value problems on intervals with boundary condition:
- The dynamic of the Dirichlet problem is analogous to the one described above for the Cauchy problem with compactly supported initial data.
- The Neumann problem on some closed interval $[a, b]=I_{0} \cup \ldots \cup I_{N+1}$. The dynamics on $I_{1} \cup \ldots \cup I_{N}$ is known by our analysis (which, as we observed before, is "local"). Neumann condition at the level of discretized problem allows to uniquely characterize the value of u in I_{0} and I_{N+1}.
\star For example, if $u_{0}=\sum_{k=1}^{N+1} \alpha_{k} \chi_{I_{k}}$ with $\alpha_{1} \leq \ldots \leq \alpha_{N+1}$ (i.e. u_{0} is monotonically increasing), then

$$
u(t)=u_{0}+t\left(\frac{1}{\left|I_{0}\right|} \chi_{I_{0}}-\frac{1}{\left|I_{N+1}\right|} \chi_{N+1}\right)
$$

(i.e. the value on I_{0} increases, while the one on I_{N+1} decreases).

This holds true until a jump disappears, and then one simply repeat the construction.

Theorem. (Local continuity)

Assume that u_{0} is continuous on some open interval I. Then also the corresponding solution $u(t)$ is continuous on the same interval I and the oscillation is contractive, namely

$$
\sup _{I} u(t)-\inf _{I} u(t)=: \operatorname{osc}_{I}(u(t)) \leq \operatorname{osc}_{I}\left(u_{0}\right) .
$$

The above theorem still holds if u_{0} is not continuous on I : if $u^{+}(t)$ and $u^{-}(t)$ are the solution starting respectively from

$$
u^{+}(x):=\left\{\begin{array}{ll}
u_{0}(x) & \text { if } x \notin I ; \\
\underset{I}{\operatorname{esssup} u_{0}} & \text { if } x \in I ;
\end{array} \quad u^{-}(x):= \begin{cases}u_{0}(x) & \text { if } x \notin I \\
\operatorname{essinf}_{I} u_{0} & \text { if } x \in I\end{cases}\right.
$$

then $u^{-}(t) \leq u(t) \leq u^{+}(t), u^{+}(t)$ and $u^{-}(t)$ are both constant on I, and

$$
\left\|u^{-}(t, x)-u^{-}(t, x)\right\|_{L^{\infty}(I)} \quad \text { is decreasing in time. }
$$

Further Local Properties of solutions of the TVF.

Arguing by approximation, using the stability in $L^{p}, 1 \leq p \leq \infty$ we deduce local properties of the TVF, valid on any subinterval I where the solution $u(t)$ is considered.
(1) The set of discontinuity points of $u(t)$ is contained in the set of discontinuity points of u_{0}, i.e. "the TVF does not create new discontinuities".
(2) The number of maxima and minima decreases in time.
(3) If u_{0} is monotone on I, then $u(t)$ has the same monotonicity as u_{0} on I. If u_{0} is monotone on \mathbb{R}, then it is a stationary sol. to the Cauchy problem.
(9) $C^{0, \alpha}$-regularity is preserved along the flow for any $\alpha \in(0,1]$.

Similar results for the denoising problem and for the Neumann problem for the TVF in V. Caselles, A. Chambolle, M. Novaga, Rev. Mat. Iberoamericana 27, (2011). Moreover, if $u_{0} \in W^{1,1}(\mathbb{R})$, then $u(t) \in W^{1,1}(\mathbb{R})$
(this is a consequence of the fact that the oscillation does not increase on any subinterval).
(6) If $u_{0} \in B V_{l o c}(\mathbb{R})$, a priori we do not have a well-defined semigroup. However, in this case u_{0} is locally bounded and the set of its discontinuity points is countable, and so in particular has Lebesgue measure zero. Then, by approximation we can still define a dynamics, which will still be contractive in any L^{p} space.

Behaviour near maxima and minima. Assume that u_{0} has a local maximum at x_{0}. Then, at least for short time, the solution is explicitly given near x_{0} by

$$
u(t, x)=\min \left\{u_{0}(x), h(t)\right\}
$$

where the constant value $h(t)$ is implicitly defined by

$$
\int_{I_{0}}\left[u_{0}(x)-h(t)\right]_{+} \mathrm{d} x=2 t
$$

I_{0} being the connected component of $\left\{u_{0}>h(t)\right\}$ containing x_{0}. The dynamics goes on in this way until a local minimum "merges" with a local maximum, and then one can simply start again the above description starting from the new configuration. For a minimum point the argument is analogous.

Loss of mass and extinction time

Let $u(t)$ be the solution to the Cauchy problem in \mathbb{R} for the TVF, starting from a non-negative compactly supported initial datum $u_{0} \in L^{1}(\mathbb{R})$. Then the following estimates hold:

$$
\int_{\mathbb{R}} u(t, x) \mathrm{d} x=\int_{\mathbb{R}} u_{0}(x) \mathrm{d} x-2 t=2(T-t) \quad \text { for all } t \geq 0
$$

and the extinction time for u is given by

$$
T=T\left(u_{0}\right)=\frac{1}{2} \int_{\mathbb{R}} u_{0}(x) \mathrm{d} x
$$

Remark. There is no general explicit formula for the extinction time when u_{0} changes sign.

The rescaled flow.

We now are interested in describing the behavior of the solution near the extinction time.
We perform a logarithmic time rescaling, mapping the interval $[0, T)$ into $[0,+\infty)$, where T is the extinction time corresponding to the initial datum u_{0}. We define

$$
w(s, x)=\frac{T}{T-t} u(t, x), \quad Z(s, x)=z(t, x), \quad s=T \log \left(\frac{T}{T-t}\right)
$$

where $u(t)$ is a solution to the TVF. Then

$$
\partial_{s} w(s, x)=\partial_{x} Z+\frac{w}{T}, \quad Z \cdot D_{x} w=\left|D_{x} w\right|, \quad w(0, x)=u_{0}(x)
$$

Stationary solutions $S(x)$ for the rescaled equation for w correspond to separation of variable solutions in the original variable, namely

$$
-\partial_{x} Z=\frac{S}{T} \quad \text { provides the separate variable solution } \quad U_{T}(t, x):=\frac{T-t}{T} S(x)
$$

The "extended support" of a function f is the smallest interval that includes the support of f :

$$
\operatorname{supp}^{*}(f)=\inf \{[a, b] \mid \operatorname{supp}(f) \subseteq[a, b]\}
$$

Theorem. Stationary solutions

All compactly supported solutions of the equation $-\partial_{x} Z=\frac{S}{T}, \quad Z \cdot D_{x} S=\left|D_{x} S\right|$, are of the form

$$
S(x)=\frac{2 T}{b-a} \chi_{[a, b]}(x), \quad \text { with }[a, b] \subseteq \mathbb{R}
$$

Proposition. Mass conservation for rescaled solutions

Let $w(s)$ be the rescaled solution, corresponding to $0 \leq u_{0} \in B V(\mathbb{R}) \cap L^{1}(\mathbb{R})$. Then

$$
\int_{\mathbb{R}} w(s, x) \mathrm{d} x=\int_{\mathbb{R}} u_{0}(x) \mathrm{d} x .
$$

Corollary. Separate variable solutions

All compactly supported solutions of the TVF obtained by separation of variables are of the form

$$
U_{T}(t, x)=2 \frac{T-t}{b-a} \chi_{(a, b)}(x), \quad \text { where } T>0 \text { and }[a, b] \subseteq \mathbb{R}
$$

Proposition. Stationary solutions are asymptotic profiles

Let $w(s, x)$ be a solution to the rescaled TVF corresponding to a non-negative initial datum $u_{0} \in B V(\mathbb{R}) \cap L^{1}(\mathbb{R})$. Then there exists a subsequence $s_{n} \rightarrow \infty$ such that $w\left(s_{n}, \cdot\right) \rightarrow S$ in $L^{1}(I)$ as $n \rightarrow \infty$ where S is a stationary solution as in (1). Equivalently we have that there exists a sequence of times $t_{n} \rightarrow T$ as $n \rightarrow \infty$ such that

$$
\left\|\frac{u\left(t_{n}, \cdot\right)}{T-t_{n}}-\frac{S}{T}\right\|_{L^{1}} \xrightarrow[n \rightarrow \infty]{ } 0
$$

where S is a stationary solution.
The above result has been proved by F. Andreu, V. Caselles, M. Mazon in a series of paper and in their book, for the Cauchy, Dirichlet or Neumann problem.

Theorem. Extinction profile for solutions to the TVF

Let $u(t, x)$ be a solution to the TVF corresponding to a non negative initial datum $u_{0} \in B V(\mathbb{R})$ with $\operatorname{supp}^{*}\left(u_{0}\right)=[a, b]$, and set

$$
T=\frac{1}{2} \int_{a}^{b} u_{0}(x) \mathrm{d} x
$$

Then $\operatorname{supp}(u(t))=[a, b]$ for all $t \in(0, T)$ and

$$
\left\|\frac{u(t, \cdot)}{T-t}-2 \frac{\chi_{[a, b]}}{b-a}\right\|_{L^{1}([a, b])} \xrightarrow[t \rightarrow T]{ } 0
$$

Remarks. The above theorem shows to important facts:
(i) The support of the solution becomes instantaneously the "extended support" of the initial datum, which is the support of the extinction profile.
(ii) On $[a, b]=\operatorname{supp}^{*}\left(u_{0}\right)$ we consider the quotient $u(t, x) / U_{T}(t, x)$, where U_{T} is the separate variable solution. Then the above convergence result can be rewritten as

$$
\left\|\frac{u(t, \cdot)}{U_{T}(t, \cdot)}-1\right\|_{L^{1}([a, b])} \xrightarrow[t \rightarrow T]{ } 0 . \quad \text { convergence in relative error }
$$

Equivalently, L^{1}-norm of the difference decays at least with the rate

$$
\left\|u(t, \cdot)-U_{T}(t, \cdot)\right\|_{L^{1}(\mathbb{R})} \leq o(T-t) .
$$

We will show that the $o(1)$ appearing in the above rate cannot be quantified/improved, so that the above convergence result is sharp, as we will see in the next slide.

Definition. Let $\xi:[0, \infty) \rightarrow[0, \infty)$ be a continuous increasing function, with $\xi(0)=0$. We say that ξ is a rate function if, for any solution $u(t)$ of the TVF,

$$
\left\|\frac{u(t)}{T-t}-\frac{S}{T}\right\|_{L^{1}(I)} \leq \xi(T-t) \quad \text { for any } t \text { close to the extinction time } T
$$

Theorem. Absence of universal convergence rates

For any rate function $\xi:[0, \infty) \rightarrow[0, \infty)$, there exists an initial datum $u_{0} \in B V(\mathbb{R})$, with $\operatorname{supp}^{*}\left(u_{0}\right)=[0,1]$, such that

$$
2 \xi(T-t) \leq\left\|\frac{u(t)}{T-t}-2 \chi_{[0,1]}\right\|_{L^{1}(I)}, \quad \text { for any } 0 \leq T-t \leq 1
$$

Left: Dynamic of $u(t)$: black: $u_{0}(x)$, blue: $u(t, x)$, red: $u(t+h)$
Right: Rescaled dynamic: black: $u_{0}(x)$ (dashdot) and u_{0} / T (cont.), blue $S(x)=2 \chi_{[0,1]}$, red: $u(t, x) /(T-t)$,

Remark. The above Theorem shows that there cannot be universal rates of convergence. A similar construction will provide (nontrivial) initial data for which the convergence is as fast as desired.

Fast decaying initial data

For any rate function $\xi:[0, \infty) \rightarrow[0, \infty)$, there exists an initial datum $u_{0} \in L^{1}(I)$ such that the corresponding solution $u(t)$ satisfies

$$
\begin{equation*}
\left\|\frac{u(t)}{T-t}-2 \chi_{[0,1]}\right\|_{L^{1}(I)} \leq \xi(8(T-t)), \quad \text { for any } 0 \leq T-t \leq 1 . \tag{4}
\end{equation*}
$$

Left: Dynamic of $u(t)$: black: $u_{0}(x)$, blue: $u(t, x)$, red: $u(t+h, x)$. Right: Rescaled dynamic: black: $u_{0}(x)$, blue: $S(x)=2 \chi_{[0,1]}$, red: $u(t, x) /(T-t)$,

Solutions to the SFDE VS solutions to the TVF

- Formally: The TVF and SFDE are formally related by the fact that " u solves the TVF if and only if $D_{x} u$ solves the SFDE".
- In order to make this rigorous, we need first to explain what do we mean by a solution of the SFDE, and then we will prove the above relation by approximating the TVF with the p-Laplacian and the SFDE by the porous medium equation.
- The notion of solution we consider for the SFDE is the one of mild solution. We use: P. Benilan, M. G. Crandall, Indiana Univ. Math. J. 30 (1981), no. 2, 161-177.
- The multivalued graph of the function $r \mapsto \operatorname{sign}(r)$ is maximal monotone (MMG).
- There exists a unique solution $u \in C\left([0, \infty) ; L^{1}(\mathbb{R})\right) \cap L^{\infty}([0, \infty) \times \mathbb{R})$ corresponding to the initial datum $u_{0} \in L^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ that solves the problem

$$
\begin{cases}u_{t}=\Delta \varphi(u), & \text { in } \mathcal{D}^{\prime}((0, \infty) \times \mathbb{R}) \\ u(0, x)=u_{0}(x), & x \in \mathbb{R}\end{cases}
$$

where the first equation is meant in the sense that

$$
u_{t}=\Delta w \quad \text { in } \mathcal{D}^{\prime}((0, \infty) \times \mathbb{R}), \quad \text { with } w(t, x) \in \varphi(u(t, x)) \quad \text { a.e. } t, x \in \mathbb{R}
$$

- Given an approximating sequence of MMG $\varphi_{n} \rightarrow \varphi$ then one can prove that $u_{n} \rightarrow u$ in $C\left([0, \infty) ; L^{1}(\mathbb{R})\right)$.

TVF vs SFDE

Assume u_{0} is a smooth compactly supported function. Let $1<p \leq 2$, and $m=p-1$.
Then the following diagram is commutative:

$$
\begin{gathered}
T_{t}^{p} u_{0} \in W^{1, p}(\mathbb{R}) \xrightarrow{p \rightarrow 1^{+}} T_{t}^{1} u_{0} \in W^{1,1}(\mathbb{R}) \\
S_{t}^{m}\left(\partial_{x} u_{0}\right) \in L^{1+m}(\mathbb{R}) \xrightarrow[m \rightarrow 0^{+}]{ } S_{t}^{0}\left(\partial_{x} u_{0}\right) \in L^{1}(\mathbb{R}) .
\end{gathered}
$$

Note that the convergence in meant in the sense of distributions

- S_{t}^{m} is the semigroup associated to the FDE equation $\partial_{t} v=\Delta\left(\nu^{m}\right)$. We have that $S_{t}^{m} v_{0} \rightarrow S_{t}^{0} v_{0}$ as $m \rightarrow 0^{+}$, in $C\left([0, \infty) ; L^{1}(\mathbb{R})\right)$, for any initial datum $v_{0} \in L^{1}$.
- We can consider the p-Laplacian semigroup T_{t}^{p} for $p=1+m$. If $u_{0} \in W^{1, p}(\mathbb{R})$, then $T_{t}^{p} u_{0} \in W^{1, p}(\mathbb{R})$, so that as $p \rightarrow 1^{+}$, strong solutions to the p-Laplacian converge to strong solutions to the TVF. So that $T_{t}^{p} u_{0} \rightarrow T_{t}^{1} u_{0}$ in $C\left([0, \infty) ; L^{1}(\mathbb{R})\right)$ as $p \rightarrow 1^{+}$, where T_{t}^{1} denotes the TVF-semigroup.
- If $p=1+m$, we have that $\partial_{x}\left(T_{t}^{p} u_{0}\right)$ solves (in the distributional and semigroup sense) the FDE with initial datum $\partial_{x} u_{0}$, i.e. $\partial_{x}\left(T_{t}^{p} u_{0}\right)=S_{t}^{m}\left(\partial_{x} u_{0}\right)$. Hence, by letting $m \rightarrow 0^{+}$, we recover such a relation in the limit $p=1$ and $m=0$.

Measures as initial data. Once the correspondence between TVF and SFDE is established for smooth initial data, by stability in L^{1} of both semigroups it immediately extends to $u_{0} \in W^{1,1}(\mathbb{R})$, and then by approximation to $B V(\mathbb{R}) \cap L^{1}(\mathbb{R})$ initial data. However, at the level of the SFDE this would correspond to finite measures v_{0} such that $\int_{-\infty}^{x} v_{0}(d y) \in L^{1}(\mathbb{R})$, which is possible if and only if $\int_{-\infty}^{+\infty} v_{0}(d y)=0$. Actually, this class of data correspond exactly to the one for which there is extinction in finite time (as this is the case for L^{1} initial data to the TVF). We can remove this unnatural constraint on v_{0}. Summing up, we have shown that:

- If $v_{0} \in L^{1}(\mathbb{R})$, the unique mild solution of the SFDE is given by

$$
\begin{equation*}
S_{t}^{0} v_{0}=\partial_{x}\left(T_{t}^{1}\left(\int_{-\infty}^{x} v_{0}(d y)\right)\right) \tag{5}
\end{equation*}
$$

- Using (5) we can uniquely extend the generator S_{t}^{0} to measure initial data (actually, since the semigroup T_{t}^{1} is well-defined on $L^{2}(\mathbb{R})$, one could even extend the SFDE to distributional initial data in $W^{-1,2}(\mathbb{R})$).

General properties of the SFDE flow. Arguing by approximation (or again using the direct relation with the TVF), as a consequence we have the following properties of the SFDE flow:

- Nonnegative initial data.

Let $v_{0} \geq 0$ be a locally finite measure, and define $u_{0}(x):=\int_{-\infty}^{x} v_{0}(d y) \geq 0$. Since u_{0} is monotone non-decreasing, it does not evolve under the TVF. Hence v_{0} is a stationary solution to the SFDE.
(Actually, since monotone profiles are the only stationary state for the TVF, the only stationary solutions for the SFDE are nonnegative/nonpositive initial data.)

- Only zero mean valued initial data extinguish in finite time.

If v_{0} is a finite measure, $v(t)$ converges in finite time to a stationary solution \bar{v} such that $\int_{\mathbb{R}} \bar{v}(d y)=\int_{\mathbb{R}} v_{0}(d y)$.
Moreover, $\bar{v} \equiv 0$ (i.e. v_{0} extinguish in finite time) if and only if $\int_{\mathbb{R}} v_{0}(d y)=0$.

Example 1. Delta masses as initial data.

Let us assume that $v_{0}=\sum_{i=1}^{N} a_{i} \delta_{x_{i}}$, with $x_{1}<\cdots<x_{N}$. Then, for $t>0$ small (dep. on $\left|a_{i}\right|$)

$$
\begin{gather*}
v(t)=\sum_{i=1}^{N} a_{i}(t) \delta_{x_{i}}, \quad \quad \text { with } a_{i}(0)=a_{i} \text { and } \\
a_{i}(t)= \begin{cases}a_{i}, & \text { if } \operatorname{sign}\left(a_{i-1}\right)=\operatorname{sign}\left(a_{i+1}\right)=\operatorname{sign}\left(a_{i}\right) \\
\operatorname{sign}\left(a_{i}\right)\left(\left|a_{i}\right|-4 t\right)_{+}, & \text {if } \operatorname{sign}\left(a_{i-1}\right)=\operatorname{sign}\left(a_{i+1}\right)=-\operatorname{sign}\left(a_{i}\right) \\
\operatorname{sign}\left(a_{i}\right)\left(\left|a_{i}\right|-2 t\right)_{+}, & \text {if } \operatorname{sign}\left(a_{i-1}\right) \operatorname{sign}\left(a_{i+1}\right)=-1,\end{cases} \tag{6}
\end{gather*}
$$

where we use the convention $\operatorname{sign}\left(a_{0}\right):=\operatorname{sign}\left(a_{1}\right)$ and $\operatorname{sign}\left(a_{N+1}\right):=\operatorname{sign}\left(a_{N}\right)$. This formula holds true until one mass disappear at some time $t_{1}^{\prime}>0$, and then it suffices to $v\left(t_{1}^{\prime}\right)$ as initial data and repeat the construction
Example 2. Interaction between a delta and a continuous part.

Sign VS Logarithmic Fast Diffusion.

- Consider the fast diffusion equation $u_{t}=\Delta u^{m}$, with $0<m<1$, and assume that $v_{0} \geq 0$ (so $v(t) \geq 0$ for all $t \geq 0$).
- Changing the time scale $t \mapsto m t$, the above equation can be written in two different ways which lead to two different limiting equations, indeed setting $\rho(t, x)=v(t / m, x)$,

$$
\begin{array}{lll}
\partial_{t} v=\Delta\left(v^{m}\right) & \xrightarrow[m \rightarrow 0^{+}]{ } & \partial_{t} v=\Delta(\operatorname{sign}(v)) \\
\partial_{t} \rho=\operatorname{div}\left(\rho^{m-1} \nabla \rho\right) & \xrightarrow[m \rightarrow 0^{+}]{ } & \partial_{t} \rho=\operatorname{div}\left(\rho^{-1} \nabla \rho\right)=\Delta(\log (\rho)) .
\end{array}
$$

- The evolution of $\rho(t, x)$ on $[0, T]$ corresponds to the evolution of $v(t, x)$ on $[0, T / m]$. The diffusion of v is slower than the diffusion of ρ by a factor $1 / \mathrm{m}$.
- So, when analyzing the limit as $m \rightarrow 0^{+}$, one gets two different limits: the evolution of $\rho(t, x)$ on the time interval $0 \leq t \leq T$ corresponds to the evolution of $v(t, x)$ on the time interval $0 \leq t<\infty$ for every $T>0$.
- The solution to the SFDE corresponds to an evolution "infinitely slower" than the LFDE.

	Cauchy Problem	Dirichlet Problem
$u_{0} \geq 0$	SFDE: trivial ${ }^{(*)}$	SFDE: NON-trivial
$u_{0} \geq 0$	LFDE: NON-Trivial	LFDE: trivial ${ }^{(* *)}$
$\operatorname{sign}\left(u_{0}\right)= \pm 1$	SFDE: NON-trivial	SFDE: NON-trivial
$\operatorname{sign}\left(u_{0}\right)= \pm 1$	LFDE: NOT-possbile	LFDE: NOT-possbile

$(*) u(t, \cdot)=u_{0}, \quad(* *)$ Immediate extinction.
Logarithmic Diffusion has been studied by A. Rodriguez, J.L. Vázquez,... and many other authors (hopeless to quote everybody).

The End

Thank you!!!

LA Exale

