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Sign-fast diffusion VS total variation flow

Sign-fast diffusion VS total variation flow

Sign-Fast Diffusion Equation (SFDE) as “limit” of Fast Diffusion Eq. (FDE)

∂tv = ∆
(
vm
)

(FDE) 0 < m < 1
−−−−−−−−−−−→

m→ 0+

∂tv = ∆
(

sign(v)
)

(SFDE)[
Note that vm = |v|m−1v.

]
Total Variation Flow (TVF) as “limit” of (parabolic) p-Laplacian

∂tu = div
(
|∇u|p−2∇u

)
(p-Laplacian) 1 < p < 2

−−−−−−−−−−−→
p→ 1+

∂tu = div
(

Du
|Du|

)
(TVF)

Relation between TVF and SFDE in 1 spatial Dimension

If v solves the SFDE, then u(x) :=
∫ x

0 v(y) dy solves the TVF

The above limits and relations are formal and will be justified later.

We will consider the 1-dimensional case.
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Some properties of Solutions

Definition of solutions

A function u ∈ L∞([0,∞),BV(I)) ∩W1,2
loc ([0,∞), L2(I)) is a strong solution of the

TVF, ∂t = ∂x(Du/|Du|) , if there exists z ∈ L2
loc([0,∞),W1,2(I)), with ‖z‖∞ ≤ 1,

such that
∂tu = ∂xz on (0,∞)× I ,

and ∫ T

0

∫
I
z(t, x) Du(t, x) dt dx =

∫ T

0

∫
I
|Du(t, x)| dx dt ∀ T > 0.

Roughly speaking, the above condition says that z = Du/|Du|.
There is a huge literature on this topic, we refer to the book

F. Andreu, V. Caselles, J. M. Mazon, Parabolic quasilinear equations minimizing
linear growth functionals, Progress in Mathematics, 223, Birkhäuser Verlag, Basel.

for a discussion on the different concepts of solution to the TVF.
(entropy solutions, mild solutions, semigroup solution, ...)

For the moment, we do not specify any boundary condition. The following discussion
could be applied to the Cauchy problem in R, as well as the Dirichlet or the Neumann
problem on an interval.

Works on TVF by: (hopeless to quote everybody, I am really sorry if I forgot someone)
L. Ambrosio, F. Andreu, C. Ballester, G. Bellettini, V. Caselles, A. Chambolle, J. I. Diaz,
M.-H. Giga, Y. Giga, R. Kobayashi, R. Kohn, S. Masnou, J. M. Mazon, J.-M. Morel,
M. Novaga, P. Rybka, ...



Introduction The TVF in one spatial dimension Asymptotic of the TVF The SFDE in one dimension. End

Some properties of Solutions

Time Discretization
Strong solution u of the TVF is generated via Crandall-Ligget’s Theorem, namely the
limit of solutions of a time-discretized problem, given by the implicit Euler scheme

u(ti+1)− u(ti)
ti+1 − ti

= ∂x

(
Du(ti+1)

|Du(ti+1)|

)
. (1)

the time-discretized solution uh with h = ti+1− ti > 0 (fixed) can be characterized by

uh = argmin
[
Φh(u)

]
, where Φh(u) =

∫
I
|Du|+ 1

2h

∫
I
|u− u0|2 dx .

Φh is strictly convex (unique minimizer), and (1) is the Euler-Lagrange eq. for Φh.
u0 , uh ∈ BV(I) implies ∂xzh ∈ BV(I) ⊂ L∞(I), so that zh is Lipschitz, therefore
differentiable outside a countable set of points:

N(zh) :=

{
x ∈ R

∣∣∣ lim
ε→0

zh(x + ε)− zh(x)

ε
does not exists

}
. (2)

Finally, equation (1) is equivalent to
h ∂xzh(x) = uh(x)− u0(x) for all x ∈ R \ N(zh)
|zh(x)| ≤ 1 , for all x ∈ R
zh(x) = ±1 , for |Duh| − a.e.
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Some properties of Solutions

Behaviour near continuity points
If uh is different from u0 at some common continuity point x, then it is constant in an
open neighborhood of x.

Behaviour at discontinuity points (jumps decrease size in time)

Let u0 ∈ BV(I). Then, the following inequalities hold for any x ∈ I:

if uh(x−) ≤ uh(x+) then u0(x−) ≤ uh(x−) < uh(x+) ≤ u0(x+)

if uh(x+) ≤ uh(x−) then u0(x+) ≤ uh(x+) < uh(x−) ≤ u0(x−) .

Moreover,
uh(x−) < uh(x+) implies zh(x) = 1

uh(x−) > uh(x+) implies zh(x) = −1 .

Local continuity
Let x ∈ I. If u0 is continuous at x, then uh is continuous at x.
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The dynamics of local step functions I. The time discretized case

The dynamics of local step functions I. The time discretized case.
Maximum steps.

Let us fix an interval I = I1 ∪ I2 ∪ I3

Assume that u0 = α1χ1 + α2χ2 + α3χ3 on I
with α2 > max{α1, α3} and χk = χIk is the char. funct. of Ik = (xk−1, xk).
We make no assumptions on u0 outside I. Fix h > 0 small.

Figure: Dynamics of a maximum step. This figure shows the dynamic only inside the
interval [x0, x3].
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The dynamics of local step functions I. The time discretized case

Evolution of a general step function.

Let αk ∈ R for k = 0, . . . ,N + 1, and χk = χIk is the char. funct. of
Ik = (xk−1, xk) (also the values x0 = −∞ and xN+1 = +∞ are allowed)

If 0 < `h < minj=0,...,N

{∣∣αj − αj+1
∣∣min

{
|Ij|, |Ij+1|

}}
, the discrete solution

after ` steps is given by

u0 =

N+1∑
k=0

αkχk gives u`h =

N+1∑
k=0

αk,`hχk on I,

where we are able to explicitly get the values of αk,`h for k = 1, . . .N, and
some information on α0,`k and αN+1,`k: for k = 1, . . .N

αk,`h =



αk , if αk−1 < αk < αk+1 or if αk+1 < αk < αk−1

αk −
2`h
|Ik|

, if αk > max
{
αk−1 , αk+1

}
αk +

2`h
|Ik|

, if αk < min
{
αk−1 , αk+1

}
(3)
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The dynamics of local step functions I. The time discretized case

A concluding remark on the smallness of the time step h.
Since we are mainly interested in the limit h→ 0, condition on smallness of h
is always fulfilled.
Anyway it is interesting to observe that the dynamic becomes more complicated
to understand for general values of h, since the “locality” property is lost.
Figure below shows a situation when a maximum and a minimum disappear in
one step (for this to happen, the area A has to be less than 2h). Of course one
can construct much more complicated examples.
We can observe that the value of uh inside [x1, x2] depends on the values of u0

on both [x1, x2] and [x2, x3].

Figure: Dynamics of a maximum step when h is not necessarily small. This figure
shows the dynamic only inside the interval [x0, x4].
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The dynamics of local step functions II. The continuous time case

The dynamics of local step functions II. The continuous time case.
Letting h→ 0+ in the time discretized solution we obtain

u0(x) =

N+1∑
k=0

αkχIk (x)  u(t, x) = u0(x) + t
N+1∑
k=0

βk,`hχk(x) on [0, t1]× I,

with t1 < minj=0,...,N

{∣∣αj − αj+1
∣∣min

{
|Ij|, |Ij+1|

}}
, and

βk,`h :=



0 , if αk−1 < αk < αk+1 or if αk+1 < αk < αk−1

−
2
|Ik|

, if αk > max
{
αk−1 , αk+1

}
2
|Ik|

, if αk < min
{
αk−1 , αk+1

}
for k = 1, . . . ,N, and

β0,`h

{
≥ 0 , if α0 < α1
≤ 0 , if α0 > α1

βN+1,`h

{
≥ 0 , if αN > αN+1
≤ 0 , if αN < αN+1.

On I0 and IN+1 it is monotonically increasing/decreasing, depending on the value on I1 and IN .
This formula will then continue to hold until a maximum/minimum disappear.
After repeating this at most N times, all the maxima and minima inside I disappear, and
u(t) is monotonically decreasing/increasing on I.
For instance, if I = R and the initial data is a compactly supported step function, then
u ≡ 0 after some finite time T (which we call extinction time).
If u0 is an increasing (resp. decreasing) step function, then it will remain constant in time.
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The dynamics of local step functions II. The continuous time case

The dynamics of local step functions II. The continuous time case.
Letting h→ 0+ in the time discretized solution we obtain

u0(x) =

N+1∑
k=0

αkχIk (x)  u(t, x) = u0(x) + t
N+1∑
k=0

βk,`hχk(x) on [0, t1]× I,

with t1 < minj=0,...,N

{∣∣αj − αj+1
∣∣min

{
|Ij|, |Ij+1|

}}
, and

βk,`h :=



0 , if αk−1 < αk < αk+1 or if αk+1 < αk < αk−1

−
2
|Ik|

, if αk > max
{
αk−1 , αk+1

}
2
|Ik|

, if αk < min
{
αk−1 , αk+1

}
for k = 1, . . . ,N, and

β0,`h

{
≥ 0 , if α0 < α1
≤ 0 , if α0 > α1

βN+1,`h

{
≥ 0 , if αN > αN+1
≤ 0 , if αN < αN+1.

On I0 and IN+1 it is monotonically increasing/decreasing, depending on the value on I1 and IN .
This formula will then continue to hold until a maximum/minimum disappear.
After repeating this at most N times, all the maxima and minima inside I disappear, and
u(t) is monotonically decreasing/increasing on I.
For instance, if I = R and the initial data is a compactly supported step function, then
u ≡ 0 after some finite time T (which we call extinction time).
If u0 is an increasing (resp. decreasing) step function, then it will remain constant in time.
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The dynamics of local step functions II. The continuous time case

This analysis can be extended to the case of suitable initial value problems on
intervals with boundary condition:

The dynamic of the Dirichlet problem is analogous to the one described above
for the Cauchy problem with compactly supported initial data.

The Neumann problem on some closed interval [a, b] = I0 ∪ . . . ∪ IN+1. The
dynamics on I1 ∪ . . . ∪ IN is known by our analysis (which, as we observed
before, is “local”). Neumann condition at the level of discretized problem
allows to uniquely characterize the value of u in I0 and IN+1.

? For example, if u0 =
∑N+1

k=1 αkχIk with α1 ≤ . . . ≤ αN+1 (i.e. u0 is
monotonically increasing), then

u(t) = u0 + t
(

1
|I0|

χI0 −
1
|IN+1|

χN+1

)
(i.e. the value on I0 increases, while the one on IN+1 decreases).
This holds true until a jump disappears, and then one simply repeat the
construction.
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The dynamics of local step functions II. The continuous time case

Theorem. (Local continuity)
Assume that u0 is continuous on some open interval I. Then also the corresponding
solution u(t) is continuous on the same interval I and the oscillation is contractive,
namely

sup
I

u(t)− inf
I

u(t) =: osc
I

(
u(t)
)
≤ osc

I

(
u0
)
.

The above theorem still holds if u0 is not continuous on I:
if u+(t) and u−(t) are the solution starting respectively from

u+(x) :=

{
u0(x) if x 6∈ I;
esssup

I
u0 if x ∈ I; u−(x) :=

{
u0(x) if x 6∈ I;
essinf

I
u0 if x ∈ I;

then u−(t) ≤ u(t) ≤ u+(t), u+(t) and u−(t) are both constant on I, and

‖u−(t, x)− u−(t, x)‖L∞(I) is decreasing in time.
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Further Local Properties

Further Local Properties of solutions of the TVF.
Arguing by approximation, using the stability in Lp, 1 ≤ p ≤ ∞ we deduce
local properties of the TVF, valid on any subinterval I where the solution u(t) is considered.

1 The set of discontinuity points of u(t) is contained in the set of discontinuity
points of u0, i.e. “the TVF does not create new discontinuities”.

2 The number of maxima and minima decreases in time.
3 If u0 is monotone on I, then u(t) has the same monotonicity as u0 on I.

If u0 is monotone on R, then it is a stationary sol. to the Cauchy problem.

4 C0,α-regularity is preserved along the flow for any α ∈ (0, 1].
Similar results for the denoising problem and for the Neumann problem for the TVF in
V. Caselles, A. Chambolle, M. Novaga, Rev. Mat. Iberoamericana 27, (2011).
Moreover, if u0 ∈ W1,1(R), then u(t) ∈ W1,1(R)
(this is a consequence of the fact that the oscillation does not increase on any subinterval).

5 If u0 ∈ BVloc(R), a priori we do not have a well-defined semigroup. However, in this
case u0 is locally bounded and the set of its discontinuity points is countable, and so in
particular has Lebesgue measure zero. Then, by approximation we can still define a
dynamics, which will still be contractive in any Lp space.
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Further Local Properties

Behaviour near maxima and minima. Assume that u0 has a local maximum at x0.
Then, at least for short time, the solution is explicitly given near x0 by

u(t, x) = min{u0(x), h(t)},

where the constant value h(t) is implicitly defined by∫
I0

[
u0(x)− h(t)

]
+

dx = 2t ,

I0 being the connected component of {u0 > h(t)} containing x0. The dynamics goes
on in this way until a local minimum “merges” with a local maximum, and then one
can simply start again the above description starting from the new configuration.
For a minimum point the argument is analogous.

Figure: Dynamic of TVF at maximum and minimum points.
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Loss of Mass, Extinction Time and Rescaled Flow

Loss of mass and extinction time
Let u(t) be the solution to the Cauchy problem in R for the TVF, starting from a non-negative
compactly supported initial datum u0 ∈ L1(R). Then the following estimates hold:∫

R
u(t, x) dx =

∫
R

u0(x) dx− 2t = 2(T − t) for all t ≥ 0 ,

and the extinction time for u is given by T = T(u0) =
1
2
∫
R u0(x) dx .

Remark. There is no general explicit formula for the extinction time when u0 changes sign.
The rescaled flow.
We now are interested in describing the behavior of the solution near the extinction time.
We perform a logarithmic time rescaling, mapping the interval [0, T) into [0,+∞), where T is
the extinction time corresponding to the initial datum u0. We define

w(s, x) =
T

T − t
u (t, x) , Z(s, x) = z(t, x) , s = T log

(
T

T − t

)
where u(t) is a solution to the TVF. Then

∂sw(s, x) = ∂xZ +
w
T
, Z · Dxw = |Dxw| , w(0, x) = u0(x).
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Stationary solutions, Separate Variable Solutions

Stationary solutions S(x) for the rescaled equation for w correspond to separation of variable
solutions in the original variable, namely

−∂xZ =
S
T

provides the separate variable solution UT(t, x) :=
T − t

T
S(x) .

The “extended support”of a function f is the smallest interval that includes the support of f :

supp∗(f ) = inf {[a, b] | supp(f ) ⊆ [a, b]} .

Theorem. Stationary solutions

All compactly supported solutions of the equation −∂xZ = S
T , Z · DxS = |DxS| , are of the

form

S(x) =
2T

b− a
χ[a,b](x) , with [a, b] ⊆ R.

Proposition. Mass conservation for rescaled solutions

Let w(s) be the rescaled solution, corresponding to 0 ≤ u0 ∈ BV(R) ∩ L1(R). Then∫
R

w(s, x) dx =

∫
R

u0(x) dx .
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Corollary. Separate variable solutions
All compactly supported solutions of the TVF obtained by separation of variables are
of the form

UT(t, x) = 2
T − t
b− a

χ(a,b)(x) , where T > 0 and [a, b] ⊆ R.

Proposition. Stationary solutions are asymptotic profiles

Let w(s, x) be a solution to the rescaled TVF corresponding to a non-negative initial
datum u0 ∈ BV(R) ∩ L1(R). Then there exists a subsequence sn →∞ such that
w(sn, ·)→ S in L1(I) as n→∞ where S is a stationary solution as in (1).
Equivalently we have that there exists a sequence of times tn → T as n→∞ such
that ∥∥∥∥u(tn, ·)

T − tn
− S

T

∥∥∥∥
L1
−−−−→
n→∞

0 .

where S is a stationary solution.

The above result has been proved by F. Andreu, V. Caselles, M. Mazon in a series of
paper and in their book, for the Cauchy, Dirichlet or Neumann problem.
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Theorem. Extinction profile for solutions to the TVF
Let u(t, x) be a solution to the TVF corresponding to a non negative initial datum u0 ∈ BV(R)
with supp∗(u0) = [a, b], and set

T =
1
2

∫ b

a
u0(x) dx .

Then supp(u(t)) = [a, b] for all t ∈ (0, T) and∥∥∥∥u(t, ·)
T − t

− 2
χ[a,b]

b− a

∥∥∥∥
L1([a,b])

−−−→
t→ T

0 .

Remarks. The above theorem shows to important facts:

(i) The support of the solution becomes instantaneously the “extended support” of the initial
datum, which is the support of the extinction profile.

(ii) On [a, b] = supp∗(u0) we consider the quotient u(t, x)/UT(t, x), where UT is the
separate variable solution. Then the above convergence result can be rewritten as∥∥∥∥ u(t, ·)

UT(t, ·)
− 1
∥∥∥∥

L1([a,b])
−−−→
t→ T

0 . convergence in relative error

Equivalently, L1-norm of the difference decays at least with the rate∥∥u(t, ·)− UT(t, ·)
∥∥

L1(R) ≤ o(T − t) .

We will show that the o(1) appearing in the above rate cannot be quantified/improved, so
that the above convergence result is sharp, as we will see in the next slide.
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Rates of convergence

Definition. Let ξ : [0,∞)→ [0,∞) be a continuous increasing function, with ξ(0) = 0.
We say that ξ is a rate function if, for any solution u(t) of the TVF,∥∥∥∥ u(t)

T − t
−

S
T

∥∥∥∥
L1(I)

≤ ξ(T − t) for any t close to the extinction time T .

Theorem. Absence of universal convergence rates

For any rate function ξ : [0,∞)→ [0,∞) , there exists an initial datum u0 ∈ BV(R), with
supp∗(u0) = [0, 1], such that

2 ξ(T − t) ≤
∥∥∥∥ u(t)

T − t
− 2χ[0,1]

∥∥∥∥
L1(I)

, for any 0 ≤ T − t ≤ 1.

Left: Dynamic of u(t): black: u0(x) , blue: u(t, x) , red: u(t + h) . Right: Rescaled dynamic: black: u0(x) (dashdot) and u0/T (cont.), blue:

S(x) = 2χ[0,1] , red: u(t, x)/(T − t),
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Rates of convergence

Remark. The above Theorem shows that there cannot be universal rates of convergence. A
similar construction will provide (nontrivial) initial data for which the convergence is as fast as
desired.

Fast decaying initial data

For any rate function ξ : [0,∞)→ [0,∞) , there exists an initial datum u0 ∈ L1(I) such that
the corresponding solution u(t) satisfies∥∥∥∥ u(t)

T − t
− 2χ[0,1]

∥∥∥∥
L1(I)

≤ ξ
(
8(T − t)

)
, for any 0 ≤ T − t ≤ 1 . (4)

Left: Dynamic of u(t): black: u0(x) , blue: u(t, x) , red: u(t + h, x) . Right: Rescaled dynamic: black: u0(x), blue: S(x) = 2χ[0,1] ,

red: u(t, x)/(T − t),
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Solutions to the SFDE and solutions to the TVF

Solutions to the SFDE VS solutions to the TVF
Formally: The TVF and SFDE are formally related by the fact that “u solves the TVF if
and only if Dxu solves the SFDE”.

In order to make this rigorous, we need first to explain what do we mean by a solution of
the SFDE, and then we will prove the above relation by approximating the TVF with the
p-Laplacian and the SFDE by the porous medium equation.

The notion of solution we consider for the SFDE is the one of mild solution. We use:
P. Benilan, M. G. Crandall, Indiana Univ. Math. J. 30 (1981), no. 2, 161–177.

The multivalued graph of the function r 7→ sign(r) is maximal monotone (MMG).

There exists a unique solution u ∈ C([0,∞); L1(R)) ∩ L∞([0,∞)× R) corresponding
to the initial datum u0 ∈ L1(R) ∩ L∞(R) that solves the problem{

ut = ∆ϕ(u) , in D′
(
(0,∞)× R

)
u(0, x) = u0(x) , x ∈ R

where the first equation is meant in the sense that

ut = ∆w in D′
(
(0,∞)× R

)
, with w(t, x) ∈ ϕ(u(t, x)) a.e. t, x ∈ R .

Given an approximating sequence of MMG ϕn → ϕ then one can prove that un → u in
C
(
[0,∞); L1(R)

)
.
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Solutions to the SFDE and solutions to the TVF

TVF vs SFDE

Assume u0 is a smooth compactly supported function. Let 1 < p ≤ 2, and m = p− 1.
Then the following diagram is commutative:

Tp
t u0 ∈ W1,p(R)

p→ 1+

- T1
t u0 ∈ W1,1(R)

∂x ?
∂x?

Sm
t
(
∂xu0

)
∈ L1+m(R)

m→ 0+
- S0

t
(
∂xu0

)
∈ L1(R).

Note that the convergence in meant in the sense of distributions

Sm
t is the semigroup associated to the FDE equation ∂tv = ∆(vm) .

We have that Sm
t v0 → S0

t v0 as m→ 0+, in C([0,∞); L1(R)), for any initial datum
v0 ∈ L1.
We can consider the p-Laplacian semigroup Tp

t for p = 1 + m.
If u0 ∈ W1,p(R), then Tp

t u0 ∈ W1,p(R), so that as p→ 1+, strong solutions to the
p-Laplacian converge to strong solutions to the TVF. So that Tp

t u0 → T1
t u0 in

C
(
[0,∞); L1(R)

)
as p→ 1+, where T1

t denotes the TVF-semigroup.

If p = 1 + m, we have that ∂x
(
Tp

t u0
)

solves (in the distributional and semigroup sense)
the FDE with initial datum ∂xu0, i.e. ∂x

(
Tp

t u0
)

= Sm
t
(
∂xu0

)
.

Hence, by letting m→ 0+, we recover such a relation in the limit p = 1 and m = 0.
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Solutions to the SFDE and solutions to the TVF

Measures as initial data. Once the correspondence between TVF and SFDE is es-
tablished for smooth initial data, by stability in L1 of both semigroups it immediately
extends to u0 ∈ W1,1(R), and then by approximation to BV(R) ∩ L1(R) initial data.
However, at the level of the SFDE this would correspond to finite measures v0 such
that

∫ x
−∞ v0(dy) ∈ L1(R), which is possible if and only if

∫ +∞
−∞ v0(dy) = 0. Actually,

this class of data correspond exactly to the one for which there is extinction in finite
time (as this is the case for L1 initial data to the TVF). We can remove this unnatural
constraint on v0. Summing up, we have shown that:

If v0 ∈ L1(R), the unique mild solution of the SFDE is given by

S0
t v0 = ∂x

(
T1

t

(∫ x

−∞
v0(dy)

))
. (5)

Using (5) we can uniquely extend the generator S0
t to measure initial data

(actually, since the semigroup T1
t is well-defined on L2(R), one could even

extend the SFDE to distributional initial data in W−1,2(R)).
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Dynamic of the 1-dimensional SFDE

General properties of the SFDE flow. Arguing by approximation (or again using the
direct relation with the TVF), as a consequence we have the following properties of
the SFDE flow:

Nonnegative initial data.
Let v0 ≥ 0 be a locally finite measure, and define u0(x) :=

∫ x
−∞ v0(dy) ≥ 0.

Since u0 is monotone non-decreasing, it does not evolve under the TVF.
Hence v0 is a stationary solution to the SFDE.
(Actually, since monotone profiles are the only stationary state for the TVF, the
only stationary solutions for the SFDE are nonnegative/nonpositive initial data.)

Only zero mean valued initial data extinguish in finite time.
If v0 is a finite measure, v(t) converges in finite time to a stationary solution v̄
such that

∫
R v̄(dy) =

∫
R v0(dy).

Moreover, v̄ ≡ 0 (i.e. v0 extinguish in finite time) if and only if
∫
R v0(dy) = 0.
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Dynamic of the 1-dimensional SFDE

Example 1. Delta masses as initial data.
Let us assume that v0 =

∑N
i=1 aiδxi , with x1 < · · · < xN . Then, for t > 0 small (dep. on |ai|)

v(t) =
N∑

i=1

ai(t)δxi , with ai(0) = ai and

ai(t) =


ai , if sign(ai−1) = sign(ai+1) = sign(ai)
sign(ai)

(
|ai| − 4t

)
+
, if sign(ai−1) = sign(ai+1) = − sign(ai)

sign(ai)
(
|ai| − 2t

)
+
, if sign(ai−1) sign(ai+1) = −1,

(6)

where we use the convention sign(a0) := sign(a1) and sign(aN+1) := sign(aN). This formula
holds true until one mass disappear at some time t′1 > 0, and then it suffices to v(t′1) as initial
data and repeat the construction
Example 2. Interaction between a delta and a continuous part.

Figure: black: v0(x) , blue: v(t, x), t < t0, red: v(t1, x) is a stationary state.
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SFDE vs LFDE.

Sign VS Logarithmic Fast Diffusion.
Consider the fast diffusion equation ut = ∆um, with 0 < m < 1 , and assume that v0 ≥ 0
(so v(t) ≥ 0 for all t ≥ 0).

Changing the time scale t 7→ mt, the above equation can be written in two different ways
which lead to two different limiting equations, indeed setting ρ(t, x) = v(t/m, x),

∂tv = ∆
(
vm
)

−−−−−→
m→ 0+

∂tv = ∆
(

sign(v)
)

∂tρ = div
(
ρm−1∇ρ

)
−−−−−→
m→ 0+

∂tρ = div
(
ρ−1∇ρ

)
= ∆

(
log(ρ)

)
.

The evolution of ρ(t, x) on [0, T] corresponds to the evolution of v(t, x) on [0, T/m].
The diffusion of v is slower than the diffusion of ρ by a factor 1/m.

So, when analyzing the limit as m→ 0+, one gets two different limits:
the evolution of ρ(t, x) on the time interval 0 ≤ t ≤ T corresponds to
the evolution of v(t, x) on the time interval 0 ≤ t <∞ for every T > 0.

The solution to the SFDE corresponds to an evolution “infinitely slower” than the LFDE.

Cauchy Problem Dirichlet Problem
u0 ≥ 0 SFDE: trivial(∗) SFDE: NON-trivial
u0 ≥ 0 LFDE: NON-Trivial LFDE: trivial(∗∗)

sign(u0) = ±1 SFDE: NON-trivial SFDE: NON-trivial
sign(u0) = ±1 LFDE: NOT-possbile LFDE: NOT-possbile

(∗) u(t, ·) = u0 , (∗∗) Immediate extinction.
Logarithmic Diffusion has been studied by A. Rodriguez, J.L. Vázquez,...

and many other authors (hopeless to quote everybody).
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The End

Thank you!!!
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