The Nonlinear Case

Nonlinear and Nonlocal Diffusions. Smoothing effects, Green functions and functional inequalities

Matteo Bonforte

Departamento de Matemáticas Universidad Autónoma de Madrid, and ICMAT - Instituto de Ciencias Matemáticas, Campus de Cantoblanco 28049 Madrid, Spain

matteo.bonforte@uam.es

http://verso.mat.uam.es/~matteo.bonforte

Nonlocal Equations: Analysis and Numerics

Bielefeld University, Germany Bielefeld, February 21, 2022

The Cauchy Problem for Nonlinear Nonlocal Diffusion Equations in \mathbb{R}^N

$$\left\{ \begin{array}{ll} \partial_t u = \mathcal{L}[F(u)], & \text{in } (0, +\infty) \times \mathbb{R}^N \\ u(0, \cdot) = u_0, & \text{in } \mathbb{R}^N \end{array} \right.$$

where:

- The linear operator is allowed to be local, nonlocal, ... Think $\mathcal{L} = -\Delta$ or $\mathcal{L} = (-\Delta)^s$, but we shall see many other examples
- The most studied nonlinearity is F(u) = |u|^{m-1}u, with m > 1.
 We deal with Degenerate diffusion of Porous Medium type.
 More general classes of "degenerate" nonlinearities F are allowed

The Question

Are solution bounded?

The Precise Question

Under which conditions on \mathcal{L} and F, $u_0 \in L^p$ generates a bounded solution?

The Cauchy Problem for Nonlinear Nonlocal Diffusion Equations in \mathbb{R}^N

$$\left\{\begin{array}{ll}\partial_t u = \mathcal{L}[F(u)], & \text{in } (0, +\infty) \times \mathbb{R}^N\\ u(0, \cdot) = u_0, & \text{in } \mathbb{R}^N\end{array}\right.$$

where:

- The linear operator is allowed to be local, nonlocal, ... Think $\mathcal{L} = -\Delta$ or $\mathcal{L} = (-\Delta)^s$, but we shall see many other examples
- The most studied nonlinearity is $F(u) = |u|^{m-1}u$, with m > 1. We deal with Degenerate diffusion of Porous Medium type. More general classes of "degenerate" nonlinearities *F* are allowed

The Question

Are solution bounded?

The Precise Question

Under which conditions on \mathcal{L} and F, $u_0 \in \mathbf{L}^p$ generates a bounded solution?

The Cauchy Problem for Nonlinear Nonlocal Diffusion Equations in \mathbb{R}^N

$$\left\{\begin{array}{ll}\partial_t u = \mathcal{L}[F(u)], & \text{in } (0, +\infty) \times \mathbb{R}^N\\ u(0, \cdot) = u_0, & \text{in } \mathbb{R}^N\end{array}\right.$$

where:

- The linear operator is allowed to be local, nonlocal, ... Think $\mathcal{L} = -\Delta$ or $\mathcal{L} = (-\Delta)^s$, but we shall see many other examples
- The most studied nonlinearity is F(u) = |u|^{m-1}u, with m > 1.
 We deal with Degenerate diffusion of Porous Medium type.
 More general classes of "degenerate" nonlinearities F are allowed.

The Question

Are solution bounded?

The Precise Question

Under which conditions on \mathcal{L} and F, $u_0 \in L^p$ generates a bounded solution?

The Cauchy Problem for Nonlinear Nonlocal Diffusion Equations in \mathbb{R}^N

$$\begin{cases} \partial_t u = \mathcal{L}[F(u)], & \text{in } (0, +\infty) \times \mathbb{R}^N \\ u(0, \cdot) = u_0, & \text{in } \mathbb{R}^N \end{cases}$$

where:

- The linear operator is allowed to be local, nonlocal, ... Think $\mathcal{L} = -\Delta$ or $\mathcal{L} = (-\Delta)^s$, but we shall see many other examples
- The most studied nonlinearity is F(u) = |u|^{m-1}u, with m > 1.
 We deal with Degenerate diffusion of Porous Medium type.
 More general classes of "degenerate" nonlinearities F are allowed.

The Question

Are solution bounded?

The Precise Question

Under which conditions on \mathcal{L} and F, $\mu_0 \in L^p$ generates a bounded solution?

The Cauchy Problem for Nonlinear Nonlocal Diffusion Equations in \mathbb{R}^N

$$\begin{cases} \partial_t u = \mathcal{L}[F(u)], & \text{in } (0, +\infty) \times \mathbb{R}^N \\ u(0, \cdot) = u_0, & \text{in } \mathbb{R}^N \end{cases}$$

where:

- The linear operator is allowed to be local, nonlocal, ... Think $\mathcal{L} = -\Delta$ or $\mathcal{L} = (-\Delta)^s$, but we shall see many other examples
- The most studied nonlinearity is F(u) = |u|^{m-1}u, with m > 1.
 We deal with Degenerate diffusion of Porous Medium type.
 More general classes of "degenerate" nonlinearities F are allowed.

The Question

Are solution bounded?

The Precise Question

Under which conditions on \mathcal{L} and F, $u_0 \in L^p$ generates a bounded solution?

$$\begin{cases} \partial_t u = \mathcal{L}[u^m], & \text{in } (0, +\infty) \times \mathbb{R}^N \\ u(0, \cdot) = u_0, & \text{in } \mathbb{R}^N \end{cases}$$

Our goal is investigate the relations between

Smoothing Effects, i.e. L^p - L[∞] estimates (Ultracontractivity, linear eq.)
 Functional inequalities of Gagliardo-Nirenberg-Sobolev type (GNS)

 $\|f\|_{2^*} \leq S \|\nabla f\|_2$ or $\|f\|_p \leq S \|\mathcal{L}^{\frac{1}{2}}f\|^{\theta} \|f\|_q^{1-\theta}$

• "Dual" functional inequalities of Hardy-Littlewood-Sobolev type (HLS) $\|\mathcal{L}^{-\frac{1}{2}}\|_2 \leq S \|f\|_{(2^*)'}$

- Moser Iteration (nowadays classical, by J. Moser 1964) Relies on GNS and Stroock-Varopoulos type inequalities in this setting
- The Green Function Method (by J. L. Vázquez & MB in 2014) Relies on Green function and Benilan-Crandall time monotonicity estimates
- J. Moser, *A Harnack inequality for parabolic differential equations*, Comm. Pure Appl. Math **17** (1964).
- MB, J. L. Vázquez, A Priori Estimates for Fractional Nonlinear Degenerate Diffusion Equations on bounded domains. Arch. Rat. Mech. Anal. (2015).

The Cauchy Problem for Nonlinear Nonlocal Diffusion Equations

$$\begin{aligned} \partial_t u &= \mathcal{L}[u^m], & \text{in } (0, +\infty) \times \mathbb{R}^N \\ u(0, \cdot) &= u_0, & \text{in } \mathbb{R}^N \end{aligned}$$

Our goal is investigate the relations between

- Smoothing Effects, i.e. $L^p L^\infty$ estimates (Ultracontractivity, linear eq.)
- Functional inequalities of Gagliardo-Nirenberg-Sobolev type (GNS)

 $\|f\|_{2^*} \le \mathcal{S} \|\nabla f\|_2 \quad \text{or} \quad \|f\|_p \le \mathcal{S} \|\mathcal{L}^{\frac{1}{2}} f\|^{\theta} \|f\|_q^{1-\theta}$

• "Dual" functional inequalities of Hardy-Littlewood-Sobolev type (HLS) $\|\mathcal{L}^{-\frac{1}{2}}\|_2 \leq S \|f\|_{(2^*)'}$

- Moser Iteration (nowadays classical, by J. Moser 1964) Relies on GNS and Stroock-Varopoulos type inequalities in this setting
- The Green Function Method (by J. L. Vázquez & MB in 2014) Relies on Green function and Benilan-Crandall time monotonicity estimates
- J. Moser, *A Harnack inequality for parabolic differential equations*, Comm. Pure Appl. Math **17** (1964).
- MB, J. L. Vázquez, A Priori Estimates for Fractional Nonlinear Degenerate Diffusion Equations on bounded domains. Arch. Rat. Mech. Anal. (2015).

The Cauchy Problem for Nonlinear Nonlocal Diffusion Equations

$$\begin{aligned} \partial_t u &= \mathcal{L}[u^m], & \text{in } (0, +\infty) \times \mathbb{R}^N \\ u(0, \cdot) &= u_0, & \text{in } \mathbb{R}^N \end{aligned}$$

Our goal is investigate the relations between

- Smoothing Effects, i.e. $L^p L^\infty$ estimates (Ultracontractivity, linear eq.)
- Functional inequalities of Gagliardo-Nirenberg-Sobolev type (GNS)

 $\|f\|_{2^*} \le \mathcal{S} \|\nabla f\|_2$ or $\|f\|_p \le \mathcal{S} \|\mathcal{L}^{\frac{1}{2}} f\|^{\theta} \|f\|_q^{1-\theta}$

• "Dual" functional inequalities of Hardy-Littlewood-Sobolev type (HLS) $\|\mathcal{L}^{-\frac{1}{2}}\|_2 \leq S \|f\|_{(2^*)'}$

- Moser Iteration (nowadays classical, by J. Moser 1964) Relies on GNS and Stroock-Varopoulos type inequalities in this setting
- The Green Function Method (by J. L. Vázquez & MB in 2014) Relies on Green function and Benilan-Crandall time monotonicity estimates
- J. Moser, *A Harnack inequality for parabolic differential equations*, Comm. Pure Appl. Math **17** (1964).
- MB, J. L. Vázquez, A Priori Estimates for Fractional Nonlinear Degenerate Diffusion Equations on bounded domains. Arch. Rat. Mech. Anal. (2015).

The Cauchy Problem for Nonlinear Nonlocal Diffusion Equations

$$\begin{array}{ll} \partial_t u = \mathcal{L}[u^m], & \text{in } (0, +\infty) \times \mathbb{R}^N \\ u(0, \cdot) = u_0, & \text{in } \mathbb{R}^N \end{array}$$

Our goal is investigate the relations between

- Smoothing Effects, i.e. $L^p L^{\infty}$ estimates (Ultracontractivity, linear eq.)
- Functional inequalities of Gagliardo-Nirenberg-Sobolev type (GNS)

 $\|f\|_{2^*} \leq \mathcal{S} \|\nabla f\|_2 \quad \text{or} \quad \|f\|_p \leq \mathcal{S} \|\mathcal{L}^{\frac{1}{2}} f\|^{\theta} \|f\|_q^{1-\theta}$

• "Dual" functional inequalities of Hardy-Littlewood-Sobolev type (HLS) $\|\mathcal{L}^{-\frac{1}{2}}\|_2 \leq \mathcal{S} \|f\|_{(2^*)'}$

- Moser Iteration (nowadays classical, by J. Moser 1964) Relies on GNS and Stroock-Varopoulos type inequalities in this setting
- The Green Function Method (by J. L. Vázquez & MB in 2014) Relies on Green function and Benilan-Crandall time monotonicity estimates
- J. Moser, *A Harnack inequality for parabolic differential equations*, Comm. Pure Appl. Math **17** (1964).
- MB, J. L. Vázquez, A Priori Estimates for Fractional Nonlinear Degenerate Diffusion Equations on bounded domains. Arch. Rat. Mech. Anal. (2015).

The Cauchy Problem for Nonlinear Nonlocal Diffusion Equations

$$\begin{array}{ll} \partial_t u = \mathcal{L}[u^m], & \text{in } (0, +\infty) \times \mathbb{R}^N \\ u(0, \cdot) = u_0, & \text{in } \mathbb{R}^N \end{array}$$

Our goal is investigate the relations between

- Smoothing Effects, i.e. $L^p L^{\infty}$ estimates (Ultracontractivity, linear eq.)
- Functional inequalities of Gagliardo-Nirenberg-Sobolev type (GNS)

 $\|f\|_{2^*} \le \mathcal{S}\|\nabla f\|_2$ or $\|f\|_p \le \mathcal{S}\|\mathcal{L}^{\frac{1}{2}}f\|^{\theta}\|f\|_q^{1-\theta}$

• "Dual" functional inequalities of Hardy-Littlewood-Sobolev type (HLS) $\|\mathcal{L}^{-\frac{1}{2}}\|_2 \leq \mathcal{S} \|f\|_{(2^*)'}$

- Moser Iteration (nowadays classical, by J. Moser 1964) Relies on GNS and Stroock-Varopoulos type inequalities in this setting
- The Green Function Method (by J. L. Vázquez & MB in 2014) Relies on Green function and Benilan-Crandall time monotonicity estimates
- J. Moser, *A Harnack inequality for parabolic differential equations*, Comm. Pure Appl. Math **17** (1964).
- MB, J. L. Vázquez, A Priori Estimates for Fractional Nonlinear Degenerate Diffusion Equations on bounded domains. Arch. Rat. Mech. Anal. (2015).

The Cauchy Problem for Nonlinear Nonlocal Diffusion Equations

$$\begin{bmatrix} \partial_t u = \mathcal{L}[u^m], & \text{in } (0, +\infty) \times \mathbb{R}^N \\ u(0, \cdot) = u_0, & \text{in } \mathbb{R}^N \end{bmatrix}$$

Our goal is investigate the relations between

- Smoothing Effects, i.e. $L^p L^{\infty}$ estimates (Ultracontractivity, linear eq.)
- Functional inequalities of Gagliardo-Nirenberg-Sobolev type (GNS)

 $\|f\|_{2^*} \le \mathcal{S}\|\nabla f\|_2$ or $\|f\|_p \le \mathcal{S}\|\mathcal{L}^{\frac{1}{2}}f\|^{\theta}\|f\|_q^{1-\theta}$

• "Dual" functional inequalities of Hardy-Littlewood-Sobolev type (HLS) $\|\mathcal{L}^{-\frac{1}{2}}\|_2 \leq \mathcal{S} \|f\|_{(2^*)'}$

- Moser Iteration (nowadays classical, by J. Moser 1964) Relies on GNS and Stroock-Varopoulos type inequalities in this settin
- The Green Function Method (by J. L. Vázquez & MB in 2014) Relies on Green function and Benilan-Crandall time monotonicity estimates
- J. Moser, *A Harnack inequality for parabolic differential equations*, Comm. Pure Appl. Math **17** (1964).
- MB, J. L. Vázquez, A Priori Estimates for Fractional Nonlinear Degenerate Diffusion Equations on bounded domains. Arch. Rat. Mech. Anal. (2015).

The Cauchy Problem for Nonlinear Nonlocal Diffusion Equations

$$\begin{aligned} \partial_t u &= \mathcal{L}[u^m], & \text{in } (0, +\infty) \times \mathbb{R}^N \\ u(0, \cdot) &= u_0, & \text{in } \mathbb{R}^N \end{aligned}$$

Our goal is investigate the relations between

- Smoothing Effects, i.e. $L^p L^{\infty}$ estimates (Ultracontractivity, linear eq.)
- Functional inequalities of Gagliardo-Nirenberg-Sobolev type (GNS)

 $\|f\|_{2^*} \le \mathcal{S}\|\nabla f\|_2$ or $\|f\|_p \le \mathcal{S}\|\mathcal{L}^{\frac{1}{2}}f\|^{\theta}\|f\|_q^{1-\theta}$

• "Dual" functional inequalities of Hardy-Littlewood-Sobolev type (HLS)

 $\|\mathcal{L}^{-\frac{1}{2}}\|_{2} \leq S \|f\|_{(2^{*})'}$

Comparing two methods:

• Moser Iteration (nowadays classical, by J. Moser 1964)

Relies on GNS and Stroock-Varopoulos type inequalities in this setting

- The Green Function Method (by J. L. Vázquez & MB in 2014) Relies on Green function and Benilan-Crandall time monotonicity estimates
- J. Moser, *A Harnack inequality for parabolic differential equations*, Comm. Pure Appl. Math **17** (1964).

The Cauchy Problem for Nonlinear Nonlocal Diffusion Equations

$$\begin{cases} \partial_t u = \mathcal{L}[u^m], & \text{in } (0, +\infty) \times \mathbb{R}^N \\ u(0, \cdot) = u_0, & \text{in } \mathbb{R}^N \end{cases}$$

Our goal is investigate the relations between

- Smoothing Effects, i.e. $L^p L^{\infty}$ estimates (Ultracontractivity, linear eq.)
- Functional inequalities of Gagliardo-Nirenberg-Sobolev type (GNS)

 $\|f\|_{2^*} \le \mathcal{S}\|\nabla f\|_2$ or $\|f\|_p \le \mathcal{S}\|\mathcal{L}^{\frac{1}{2}}f\|^{\theta}\|f\|_q^{1-\theta}$

• "Dual" functional inequalities of Hardy-Littlewood-Sobolev type (HLS)

 $\|\mathcal{L}^{-\frac{1}{2}}\|_{2} \leq S \|f\|_{(2^{*})'}$

Comparing two methods:

- Moser Iteration (nowadays classical, by J. Moser 1964) Relies on GNS and Stroock-Varopoulos type inequalities in this setting
- The Green Function Method (by J. L. Vázquez & MB in 2014) Relies on Green function and Benilan-Crandall time monotonicity estimates
- J. Moser, *A Harnack inequality for parabolic differential equations*, Comm. Pure Appl. Math **17** (1964).

The Cauchy Problem for Nonlinear Nonlocal Diffusion Equations

$$\begin{cases} \partial_t u = \mathcal{L}[u^m], & \text{in } (0, +\infty) \times \mathbb{R}^N \\ u(0, \cdot) = u_0, & \text{in } \mathbb{R}^N \end{cases}$$

Our goal is investigate the relations between

- Smoothing Effects, i.e. $L^p L^{\infty}$ estimates (Ultracontractivity, linear eq.)
- Functional inequalities of Gagliardo-Nirenberg-Sobolev type (GNS)

 $\|f\|_{2^*} \le \mathcal{S}\|\nabla f\|_2$ or $\|f\|_p \le \mathcal{S}\|\mathcal{L}^{\frac{1}{2}}f\|^{\theta}\|f\|_q^{1-\theta}$

• "Dual" functional inequalities of Hardy-Littlewood-Sobolev type (HLS)

 $\|\mathcal{L}^{-\frac{1}{2}}\|_{2} \leq S \|f\|_{(2^{*})'}$

Comparing two methods:

- Moser Iteration (nowadays classical, by J. Moser 1964) Relies on GNS and Stroock-Varopoulos type inequalities in this setting
- The Green Function Method (by J. L. Vázquez & MB in 2014) Relies on Green function and Benilan-Crandall time monotonicity estimate
- J. Moser, *A Harnack inequality for parabolic differential equations*, Comm. Pure Appl. Math **17** (1964).

The Cauchy Problem for Nonlinear Nonlocal Diffusion Equations

$$\begin{cases} \partial_t u = \mathcal{L}[u^m], & \text{in } (0, +\infty) \times \mathbb{R}^N \\ u(0, \cdot) = u_0, & \text{in } \mathbb{R}^N \end{cases}$$

Our goal is investigate the relations between

- Smoothing Effects, i.e. $L^p L^{\infty}$ estimates (Ultracontractivity, linear eq.)
- Functional inequalities of Gagliardo-Nirenberg-Sobolev type (GNS)

 $\|f\|_{2^*} \le \mathcal{S}\|\nabla f\|_2$ or $\|f\|_p \le \mathcal{S}\|\mathcal{L}^{\frac{1}{2}}f\|^{\theta}\|f\|_q^{1-\theta}$

• "Dual" functional inequalities of Hardy-Littlewood-Sobolev type (HLS)

 $\|\mathcal{L}^{-\frac{1}{2}}\|_{2} \leq S \|f\|_{(2^{*})'}$

Comparing two methods:

- Moser Iteration (nowadays classical, by J. Moser 1964) Relies on GNS and Stroock-Varopoulos type inequalities in this setting
- The Green Function Method (by J. L. Vázquez & MB in 2014) Relies on Green function and Benilan-Crandall time monotonicity estimates

J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math 17 (1964).

The Cauchy Problem for Nonlinear Nonlocal Diffusion Equations

$$\begin{array}{ll} \partial_t u = \mathcal{L}[u^m], & \text{in } (0, +\infty) \times \mathbb{R}^N \\ u(0, \cdot) = u_0, & \text{in } \mathbb{R}^N \end{array}$$

Our goal is investigate the relations between

- Smoothing Effects, i.e. $L^p L^{\infty}$ estimates (Ultracontractivity, linear eq.)
- Functional inequalities of Gagliardo-Nirenberg-Sobolev type (GNS)

 $\|f\|_{2^*} \le \mathcal{S} \|\nabla f\|_2$ or $\|f\|_p \le \mathcal{S} \|\mathcal{L}^{\frac{1}{2}} f\|^{\theta} \|f\|_q^{1-\theta}$

• "Dual" functional inequalities of Hardy-Littlewood-Sobolev type (HLS)

 $\|\mathcal{L}^{-\frac{1}{2}}\|_{2} \leq S \|f\|_{(2^{*})'}$

Comparing two methods:

- Moser Iteration (nowadays classical, by J. Moser 1964) Relies on GNS and Stroock-Varopoulos type inequalities in this setting
- The Green Function Method (by J. L. Vázquez & MB in 2014) Relies on Green function and Benilan-Crandall time monotonicity estimates

The Linear case m = 1

(HE)
$$\begin{cases} \partial_t u = \Delta u & \text{in } \mathbb{R}^N \times (0, T), \\ u(\cdot, 0) = u_0 & \text{on } \mathbb{R}^N. \end{cases}$$

Solutions satisfy the ultracontractive estimates (smoothing effects)

$$\|u(t)\|_{\infty} \le C \frac{\|u_0\|_1^{\alpha}}{t^{\beta}}$$

the powers α, β are fixed by space-time scalings (and mass cons.). The representation formula makes it easy to prove smoothings

$$|u(x,t)| = \left| \int_{\mathbb{R}^N} u_0(y) H_{\Delta}(x-y,t) \, \mathrm{d}y \right| \le \overline{\kappa} \frac{||u_0||_1}{t^{N/2}}$$

just using the **on diagonal bounds** on $H_{-\Delta}$

$$0 \le H_{\Delta}(x - y, t) = \frac{e^{-\frac{|x - y|^2}{4t}}}{(4\pi t)^{N/2}} \le \frac{\overline{\kappa}}{t^{N/2}}$$

The Cauchy Problem for Nonlinear Nonlocal Diffusion Equations

The Linear case m = 1

(HE)
$$\begin{cases} \partial_t u = \Delta u & \text{ in } \mathbb{R}^N \times (0, T), \\ u(\cdot, 0) = u_0 & \text{ on } \mathbb{R}^N. \end{cases}$$

Solutions satisfy the ultracontractive estimates (smoothing effects)

$$\|u(t)\|_{\infty} \le C \frac{\|u_0\|_1^{\alpha}}{t^{\beta}}$$

the powers α , β are fixed by space-time scalings (and mass cons.). The representation formula makes it easy to prove smoothings

$$|u(x,t)| = \left| \int_{\mathbb{R}^N} u_0(y) H_{\Delta}(x-y,t) \, \mathrm{d}y \right| \le \overline{\kappa} \frac{\|u_0\|_1}{t^{N/2}}$$

just using the **on diagonal bounds** on $H_{-\Delta}$

$$0 \leq H_{\Delta}(x-y,t) = \frac{e^{-\frac{|x-y|^2}{4t}}}{(4\pi t)^{N/2}} \leq \frac{\overline{\kappa}}{t^{N/2}}$$

The Nash/GNS Inequality via Smoothing Effect.

 $\|f\|_2 \leq \mathcal{S} \|\nabla f\|_2^{\theta} \|f\|_1^{1-\theta}$

Derive the L^2 -Norm:

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^N} u(t)^2 \,\mathrm{d}x = -2\int_{\mathbb{R}^N} |\nabla u(t)|^2 \,\mathrm{d}x \ge -\int_{\mathbb{R}^N} |\nabla u_0|^2 \,\mathrm{d}x$$

where the latter follows by

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^N}|\nabla u(t)|^2\,\mathrm{d}x=2\int_{\mathbb{R}^N}\nabla u\cdot\nabla\partial_t u\,\mathrm{d}x=-\int_{\mathbb{R}^N}(\Delta u)^2\,\mathrm{d}x\leq 0$$

Integrating the diff. ineq. and using the smoothing effects we obtain

$$\|u_0\|_2^2 \le t \|\nabla u_0\|_2^2 + \|u(t)\|_2^2 \le t \|\nabla u_0\|_2^2 + \overline{\kappa} \frac{\|u_0\|_1^2}{t^{N/2}}$$

Optimizing in t gives the Nash inequality for $f = u_0$.

- Nash proved that the smoothing are implied by "his" inequality, using a nice duality trick, exploiting the symmetry of the heat semigroup.
- Moser showed that the symmetry of the semigroup is not needed, if one uses his celebrated iteration.
- Nash/GNS inequalities and smoothing effects for the HE are equivalent!

The Nash/GNS Inequality via Smoothing Effect.

 $\|f\|_2 \leq \mathcal{S} \|\nabla f\|_2^{\theta} \|f\|_1^{1-\theta}$

Derive the L^2 -Norm:

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^N} u(t)^2 \,\mathrm{d}x = -2\int_{\mathbb{R}^N} |\nabla u(t)|^2 \,\mathrm{d}x \ge -\int_{\mathbb{R}^N} |\nabla u_0|^2 \,\mathrm{d}x$$

where the latter follows by

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^N}|\nabla u(t)|^2\,\mathrm{d}x=2\int_{\mathbb{R}^N}\nabla u\cdot\nabla\partial_t u\,\mathrm{d}x=-\int_{\mathbb{R}^N}(\Delta u)^2\,\mathrm{d}x\leq 0$$

Integrating the diff. ineq. and using the smoothing effects we obtain

$$\|u_0\|_2^2 \le t \|\nabla u_0\|_2^2 + \|u(t)\|_2^2 \le t \|\nabla u_0\|_2^2 + \overline{\kappa} \frac{\|u_0\|_1^2}{t^{N/2}}$$

Optimizing in t gives the Nash inequality for $f = u_0$.

- Nash proved that the smoothing are implied by "his" inequality, using a nice duality trick, exploiting the symmetry of the heat semigroup.
- Moser showed that the symmetry of the semigroup is not needed, if one uses his celebrated iteration.
- Nash/GNS inequalities and smoothing effects for the HE are equivalent!

The Nash/GNS Inequality via Smoothing Effect.

 $\|f\|_2 \leq \mathcal{S} \|\nabla f\|_2^{\theta} \|f\|_1^{1-\theta}$

Derive the L^2 -Norm:

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^N} u(t)^2 \,\mathrm{d}x = -2\int_{\mathbb{R}^N} |\nabla u(t)|^2 \,\mathrm{d}x \ge -\int_{\mathbb{R}^N} |\nabla u_0|^2 \,\mathrm{d}x$$

where the latter follows by

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^N}|\nabla u(t)|^2\,\mathrm{d}x=2\int_{\mathbb{R}^N}\nabla u\cdot\nabla\partial_t u\,\mathrm{d}x=-\int_{\mathbb{R}^N}(\Delta u)^2\,\mathrm{d}x\leq 0$$

Integrating the diff. ineq. and using the smoothing effects we obtain

$$\|u_0\|_2^2 \le t \|\nabla u_0\|_2^2 + \|u(t)\|_2^2 \le t \|\nabla u_0\|_2^2 + \overline{\kappa} \frac{\|u_0\|_1^2}{t^{N/2}}$$

Optimizing in t gives the Nash inequality for $f = u_0$.

- Nash proved that the smoothing are implied by "his" inequality, using a nice duality trick, exploiting the symmetry of the heat semigroup.
- Moser showed that the symmetry of the semigroup is not needed, if one uses his celebrated iteration.
- Nash/GNS inequalities and smoothing effects for the HE are equivalent!

The Nash/GNS Inequality via Smoothing Effect.

 $\|f\|_2 \leq \mathcal{S} \|\nabla f\|_2^{\theta} \|f\|_1^{1-\theta}$

Derive the L^2 -Norm:

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^N} u(t)^2 \,\mathrm{d}x = -2\int_{\mathbb{R}^N} |\nabla u(t)|^2 \,\mathrm{d}x \ge -\int_{\mathbb{R}^N} |\nabla u_0|^2 \,\mathrm{d}x$$

where the latter follows by

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^N}|\nabla u(t)|^2\,\mathrm{d}x=2\int_{\mathbb{R}^N}\nabla u\cdot\nabla\partial_t u\,\mathrm{d}x=-\int_{\mathbb{R}^N}(\Delta u)^2\,\mathrm{d}x\leq 0$$

Integrating the diff. ineq. and using the smoothing effects we obtain

$$\|u_0\|_2^2 \le t \|\nabla u_0\|_2^2 + \|u(t)\|_2^2 \le t \|\nabla u_0\|_2^2 + \overline{\kappa} \frac{\|u_0\|_1^2}{t^{N/2}}$$

Optimizing in t gives the Nash inequality for $f = u_0$.

- Nash proved that the smoothing are implied by "his" inequality, using a nice duality trick, exploiting the symmetry of the heat semigroup.
- Moser showed that the symmetry of the semigroup is not needed, if one uses his celebrated iteration.
- Nash/GNS inequalities and smoothing effects for the HE are equivalent!

The Nash/GNS Inequality via Smoothing Effect.

 $\|f\|_2 \leq \mathcal{S} \|\nabla f\|_2^{\theta} \|f\|_1^{1-\theta}$

Derive the L^2 -Norm:

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^N} u(t)^2 \,\mathrm{d}x = -2\int_{\mathbb{R}^N} |\nabla u(t)|^2 \,\mathrm{d}x \ge -\int_{\mathbb{R}^N} |\nabla u_0|^2 \,\mathrm{d}x$$

where the latter follows by

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^N}|\nabla u(t)|^2\,\mathrm{d}x=2\int_{\mathbb{R}^N}\nabla u\cdot\nabla\partial_t u\,\mathrm{d}x=-\int_{\mathbb{R}^N}(\Delta u)^2\,\mathrm{d}x\leq 0$$

Integrating the diff. ineq. and using the smoothing effects we obtain

$$\|u_0\|_2^2 \le t \|\nabla u_0\|_2^2 + \|u(t)\|_2^2 \le t \|\nabla u_0\|_2^2 + \overline{\kappa} \frac{\|u_0\|_1^2}{t^{N/2}}$$

Optimizing in t gives the Nash inequality for $f = u_0$.

- Nash proved that the smoothing are implied by "his" inequality, using a nice duality trick, exploiting the symmetry of the heat semigroup.
- Moser showed that the symmetry of the semigroup is not needed, if one uses his celebrated iteration.
- Nash/GNS inequalities and smoothing effects for the HE are equivalent!

The Nash/GNS Inequality via Smoothing Effect.

 $\|f\|_2 \leq \mathcal{S} \|\nabla f\|_2^{\theta} \|f\|_1^{1-\theta}$

Derive the L^2 -Norm:

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^N} u(t)^2 \,\mathrm{d}x = -2\int_{\mathbb{R}^N} |\nabla u(t)|^2 \,\mathrm{d}x \ge -\int_{\mathbb{R}^N} |\nabla u_0|^2 \,\mathrm{d}x$$

where the latter follows by

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^N}|\nabla u(t)|^2\,\mathrm{d}x=2\int_{\mathbb{R}^N}\nabla u\cdot\nabla\partial_t u\,\mathrm{d}x=-\int_{\mathbb{R}^N}(\Delta u)^2\,\mathrm{d}x\leq 0$$

Integrating the diff. ineq. and using the smoothing effects we obtain

$$\|u_0\|_2^2 \le t \|\nabla u_0\|_2^2 + \|u(t)\|_2^2 \le t \|\nabla u_0\|_2^2 + \overline{\kappa} \frac{\|u_0\|_1^2}{t^{N/2}}$$

Optimizing in t gives the Nash inequality for $f = u_0$.

- Nash proved that the smoothing are implied by "his" inequality, using a nice duality trick, exploiting the symmetry of the heat semigroup.
- Moser showed that the symmetry of the semigroup is not needed, if one uses his celebrated iteration.
- Nash/GNS inequalities and smoothing effects for the HE are equivalent!

The Nash/GNS Inequality via Smoothing Effect.

 $\|f\|_2 \leq \mathcal{S} \|\nabla f\|_2^{\theta} \|f\|_1^{1-\theta}$

Derive the L^2 -Norm:

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^N} u(t)^2 \,\mathrm{d}x = -2\int_{\mathbb{R}^N} |\nabla u(t)|^2 \,\mathrm{d}x \ge -\int_{\mathbb{R}^N} |\nabla u_0|^2 \,\mathrm{d}x$$

where the latter follows by

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^N}|\nabla u(t)|^2\,\mathrm{d}x=2\int_{\mathbb{R}^N}\nabla u\cdot\nabla\partial_t u\,\mathrm{d}x=-\int_{\mathbb{R}^N}(\Delta u)^2\,\mathrm{d}x\leq 0$$

Integrating the diff. ineq. and using the smoothing effects we obtain

$$\|u_0\|_2^2 \le t \|\nabla u_0\|_2^2 + \|u(t)\|_2^2 \le t \|\nabla u_0\|_2^2 + \overline{\kappa} \frac{\|u_0\|_1^2}{t^{N/2}}$$

Optimizing in t gives the Nash inequality for $f = u_0$.

- Nash proved that the smoothing are implied by "his" inequality, using a nice duality trick, exploiting the symmetry of the heat semigroup.
- Moser showed that the symmetry of the semigroup is not needed, if one uses his celebrated iteration.
- Nash/GNS inequalities and smoothing effects for the HE are equivalent!

 Operation
 <t

The Nonlinear Case

$$\partial_t u = -\mathcal{L} u^m$$

Nonlinear Nonlocal diffusion.

Nonlinear case (m > 1). Introduction

(GPME)
$$\begin{cases} \partial_t u + \mathcal{L}[u^m] = 0 & \text{in } \mathbb{R}^N \times (0, T), \\ u(\cdot, 0) = u_0 & \text{on } \mathbb{R}^N. \end{cases}$$

Cons:

- We do not have a representation formula.
- It is harder to find the correct functional set-up.

- We still have scaling (always time-scaling).
- Some estimates are true in the nonlinear, but not true in the linear.

Nonlinear case (m > 1). Introduction

(GPME)
$$\begin{cases} \partial_t u + \mathcal{L}[u^m] = 0 & \text{in } \mathbb{R}^N \times (0, T), \\ u(\cdot, 0) = u_0 & \text{on } \mathbb{R}^N. \end{cases}$$

Cons:

• We do not have a representation formula.

• It is harder to find the correct functional set-up.

- We still have scaling (always time-scaling).
- Some estimates are true in the nonlinear, but not true in the linear.

Nonlinear case (m > 1). Introduction

(GPME)
$$\begin{cases} \partial_t u + \mathcal{L}[u^m] = 0 & \text{in } \mathbb{R}^N \times (0, T), \\ u(\cdot, 0) = u_0 & \text{on } \mathbb{R}^N. \end{cases}$$

Cons:

- We do not have a representation formula.
- It is harder to find the correct functional set-up.

- We still have scaling (always time-scaling).
- Some estimates are true in the nonlinear, but not true in the linear.

Nonlinear case (m > 1). Introduction

(GPME)
$$\begin{cases} \partial_t u + \mathcal{L}[u^m] = 0 & \text{in } \mathbb{R}^N \times (0, T), \\ u(\cdot, 0) = u_0 & \text{on } \mathbb{R}^N. \end{cases}$$

Cons:

- We do not have a representation formula.
- It is harder to find the correct functional set-up.

- We still have scaling (always time-scaling).
- Some estimates are true in the nonlinear, but not true in the linear.

Nonlinear case (m > 1). Introduction

(GPME)
$$\begin{cases} \partial_t u + \mathcal{L}[u^m] = 0 & \text{in } \mathbb{R}^N \times (0, T), \\ u(\cdot, 0) = u_0 & \text{on } \mathbb{R}^N. \end{cases}$$

Cons:

- We do not have a representation formula.
- It is harder to find the correct functional set-up.

- We still have scaling (always time-scaling).
- Some estimates are true in the nonlinear, but not true in the linear.

Nonlinear case (m > 1). Introduction

(GPME)
$$\begin{cases} \partial_t u + \mathcal{L}[u^m] = 0 & \text{in } \mathbb{R}^N \times (0, T), \\ u(\cdot, 0) = u_0 & \text{on } \mathbb{R}^N. \end{cases}$$

Cons:

- We do not have a representation formula.
- It is harder to find the correct functional set-up.

- We still have scaling (always time-scaling).
- Some estimates are true in the nonlinear, but not true in the linear.

 Operation
 <t

Smoothing Effects VS GNS inequalities

Smoothing Effects

$$\|u(t)\|_{\infty} \leq \overline{\kappa} \frac{\|u_0\|_p^{2sp\vartheta_p}}{t^{N\vartheta_p}} \quad \text{with} \quad \vartheta_p = \frac{1}{2sp - N(1-m)}$$

GNS inequalities

$$\|f\|_{\frac{2q}{q+m-1}} \leq \mathcal{S}_{\mathcal{L}}^{\vartheta} \|\mathcal{L}^{\frac{1}{2}}u\|_{2}^{\vartheta} \|f\|_{\frac{2p}{q+m-1}}^{1-\vartheta}$$

The Nash/GNS Inequality via Smoothing Effect. Nonlinear Setting: $\partial_t u = \mathcal{L} u^m$

$$\|f\|_{1+\frac{1}{m}} \le S \|\mathcal{L}^{\frac{1}{2}}f\|_{2}^{\theta} \|f\|_{\frac{1}{m}}^{1-\theta}$$

Derive the L^{1+m} -Norm: (assume $u \ge 0$ for simplicity)

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^N} u(t)^{1+m} \,\mathrm{d}x = -(1+m)\int_{\mathbb{R}^N} |\mathcal{L}^{\frac{1}{2}}u^m(t)|^2 \,\mathrm{d}x \ge -\int_{\mathbb{R}^N} |\mathcal{L}^{\frac{1}{2}}u^m_0|^2 \,\mathrm{d}x$$

where the latter follows by

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}^N} |\mathcal{L}^{\frac{1}{2}} u^m(t)|^2 \,\mathrm{d}x = 2 \int_{\mathbb{R}^N} \mathcal{L}^{\frac{1}{2}} [u^m] \,\mathcal{L}^{\frac{1}{2}} [\partial_t (u^m)] \,\mathrm{d}x = -2m \int_{\mathbb{R}^N} u^{m-1} (\mathcal{L} u^m)^2 \,\mathrm{d}x \le 0$$

Integrating the diff. ineq. and using the smoothing effects we obtain $(\alpha, \beta \text{ are different from the case } m = 1)$

$$\|u_0\|_{1+m}^{1+m} \le t \, \|\mathcal{L}^{\frac{1}{2}} u_0^m\|_2^2 + \|u(t)\|_{1+m}^{1+m} \le t \, \|\mathcal{L}^{\frac{1}{2}} u_0^m\|_2^2 + \overline{\kappa} \frac{\|u_0\|_1^{\alpha}}{t^{\beta}}$$

Optimizing in t gives a GNS inequality for $f = u_0^m$.

- We have proved that the smoothing effects are implied by GNS inequalities, using a nonlinear version of Moser iteration or a variant of Gross' method (MB, Grillo, Vazquez 2005-2010)
- GNS and smoothing effects are equivalent also for nonlinear flows!

The Nash/GNS Inequality via Smoothing Effect. Nonlinear Setting: $\partial_t u = \mathcal{L} u^m$

$$\|f\|_{1+\frac{1}{m}} \le S \|\mathcal{L}^{\frac{1}{2}}f\|_{2}^{\theta} \|f\|_{\frac{1}{m}}^{1-\theta}$$

Derive the L^{1+m} -Norm: (assume $u \ge 0$ for simplicity)

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}^N} u(t)^{1+m} \,\mathrm{d}x = -(1+m) \int_{\mathbb{R}^N} |\mathcal{L}^{\frac{1}{2}} u^m(t)|^2 \,\mathrm{d}x \ge -\int_{\mathbb{R}^N} |\mathcal{L}^{\frac{1}{2}} u^m_0|^2 \,\mathrm{d}x$$

where the latter follows by

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^{N}}|\mathcal{L}^{\frac{1}{2}}u^{m}(t)|^{2}\,\mathrm{d}x=2\int_{\mathbb{R}^{N}}\mathcal{L}^{\frac{1}{2}}[u^{m}]\,\mathcal{L}^{\frac{1}{2}}[\partial_{t}(u^{m})]\,\mathrm{d}x=-2m\int_{\mathbb{R}^{N}}u^{m-1}(\mathcal{L}u^{m})^{2}\,\mathrm{d}x\leq0$$

Integrating the diff. ineq. and using the smoothing effects we obtain $(\alpha, \beta \text{ are different from the case } m = 1)$

$$\|u_0\|_{1+m}^{1+m} \le t \, \|\mathcal{L}^{\frac{1}{2}} u_0^m\|_2^2 + \|u(t)\|_{1+m}^{1+m} \le t \, \|\mathcal{L}^{\frac{1}{2}} u_0^m\|_2^2 + \overline{\kappa} \frac{\|u_0\|_1^{\alpha}}{t^{\beta}}$$

Optimizing in t gives a GNS inequality for $f = u_0^m$.

- We have proved that the smoothing effects are implied by GNS inequalities, using a nonlinear version of Moser iteration or a variant of Gross' method (MB, Grillo, Vazquez 2005-2010)
- GNS and smoothing effects are equivalent also for nonlinear flows!
$$\|f\|_{1+\frac{1}{m}} \le S \|\mathcal{L}^{\frac{1}{2}}f\|_{2}^{\theta} \|f\|_{\frac{1}{m}}^{1-\theta}$$

Derive the L^{1+m} -Norm: (assume $u \ge 0$ for simplicity)

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}^N} u(t)^{1+m} \,\mathrm{d}x = -(1+m) \int_{\mathbb{R}^N} |\mathcal{L}^{\frac{1}{2}} u^m(t)|^2 \,\mathrm{d}x \ge -\int_{\mathbb{R}^N} |\mathcal{L}^{\frac{1}{2}} u^m_0|^2 \,\mathrm{d}x$$

where the latter follows by

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}^N} |\mathcal{L}^{\frac{1}{2}} u^m(t)|^2 \,\mathrm{d}x = 2 \int_{\mathbb{R}^N} \mathcal{L}^{\frac{1}{2}} [u^m] \,\mathcal{L}^{\frac{1}{2}} [\partial_t(u^m)] \,\mathrm{d}x = -2m \int_{\mathbb{R}^N} u^{m-1} (\mathcal{L} u^m)^2 \,\mathrm{d}x \le 0$$

Integrating the diff. ineq. and using the smoothing effects we obtain $(\alpha, \beta \text{ are different from the case } m = 1)$

$$\|u_0\|_{1+m}^{1+m} \le t \, \|\mathcal{L}^{\frac{1}{2}} u_0^m\|_2^2 + \|u(t)\|_{1+m}^{1+m} \le t \, \|\mathcal{L}^{\frac{1}{2}} u_0^m\|_2^2 + \overline{\kappa} \frac{\|u_0\|_1^{\alpha}}{t^{\beta}}$$

Optimizing in t gives a GNS inequality for $f = u_0^m$.

- We have proved that the smoothing effects are implied by GNS inequalities, using a nonlinear version of Moser iteration or a variant of Gross' method (MB, Grillo, Vazquez 2005-2010)
- GNS and smoothing effects are equivalent also for nonlinear flows!

$$\|f\|_{1+\frac{1}{m}} \le S \|\mathcal{L}^{\frac{1}{2}}f\|_{2}^{\theta} \|f\|_{\frac{1}{m}}^{1-\theta}$$

Derive the L^{1+m} -Norm: (assume $u \ge 0$ for simplicity)

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}^N} u(t)^{1+m} \,\mathrm{d}x = -(1+m) \int_{\mathbb{R}^N} |\mathcal{L}^{\frac{1}{2}} u^m(t)|^2 \,\mathrm{d}x \ge -\int_{\mathbb{R}^N} |\mathcal{L}^{\frac{1}{2}} u^m_0|^2 \,\mathrm{d}x$$

where the latter follows by

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}^N} |\mathcal{L}^{\frac{1}{2}} u^m(t)|^2 \,\mathrm{d}x = 2 \int_{\mathbb{R}^N} \mathcal{L}^{\frac{1}{2}} [u^m] \,\mathcal{L}^{\frac{1}{2}} [\partial_t(u^m)] \,\mathrm{d}x = -2m \int_{\mathbb{R}^N} u^{m-1} (\mathcal{L} u^m)^2 \,\mathrm{d}x \le 0$$

Integrating the diff. ineq. and using the smoothing effects we obtain $(\alpha, \beta \text{ are different from the case } m = 1)$

$$\|u_0\|_{1+m}^{1+m} \le t \, \|\mathcal{L}^{\frac{1}{2}} u_0^m\|_2^2 + \|u(t)\|_{1+m}^{1+m} \le t \, \|\mathcal{L}^{\frac{1}{2}} u_0^m\|_2^2 + \overline{\kappa} \frac{\|u_0\|_1^{\alpha}}{t^{\beta}}$$

Optimizing in t gives a GNS inequality for $f = u_0^m$.

- We have proved that the smoothing effects are implied by GNS inequalities, using a nonlinear version of Moser iteration or a variant of Gross' method (MB, Grillo, Vazquez 2005-2010)
- GNS and smoothing effects are equivalent also for nonlinear flows!

$$\|f\|_{1+\frac{1}{m}} \le S \|\mathcal{L}^{\frac{1}{2}}f\|_{2}^{\theta} \|f\|_{\frac{1}{m}}^{1-\theta}$$

Derive the L^{1+m} -Norm: (assume $u \ge 0$ for simplicity)

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}^N} u(t)^{1+m} \,\mathrm{d}x = -(1+m) \int_{\mathbb{R}^N} |\mathcal{L}^{\frac{1}{2}} u^m(t)|^2 \,\mathrm{d}x \ge -\int_{\mathbb{R}^N} |\mathcal{L}^{\frac{1}{2}} u^m_0|^2 \,\mathrm{d}x$$

where the latter follows by

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}^N} |\mathcal{L}^{\frac{1}{2}} u^m(t)|^2 \,\mathrm{d}x = 2 \int_{\mathbb{R}^N} \mathcal{L}^{\frac{1}{2}} [u^m] \,\mathcal{L}^{\frac{1}{2}} [\partial_t(u^m)] \,\mathrm{d}x = -2m \int_{\mathbb{R}^N} u^{m-1} (\mathcal{L} u^m)^2 \,\mathrm{d}x \le 0$$

Integrating the diff. ineq. and using the smoothing effects we obtain $(\alpha, \beta \text{ are different from the case } m = 1)$

$$\|u_0\|_{1+m}^{1+m} \le t \, \|\mathcal{L}^{\frac{1}{2}} u_0^m\|_2^2 + \|u(t)\|_{1+m}^{1+m} \le t \, \|\mathcal{L}^{\frac{1}{2}} u_0^m\|_2^2 + \overline{\kappa} \frac{\|u_0\|_1^{\alpha}}{t^{\beta}}$$

Optimizing in t gives a GNS inequality for $f = u_0^m$.

- We have proved that the smoothing effects are implied by GNS inequalities, using a nonlinear version of Moser iteration or a variant of Gross' method (MB, Grillo, Vazquez 2005-2010)
- GNS and smoothing effects are equivalent also for nonlinear flows!

$$\|f\|_{1+\frac{1}{m}} \le S \|\mathcal{L}^{\frac{1}{2}}f\|_{2}^{\theta} \|f\|_{\frac{1}{m}}^{1-\theta}$$

Derive the L^{1+m} -Norm: (assume $u \ge 0$ for simplicity)

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}^N} u(t)^{1+m} \,\mathrm{d}x = -(1+m) \int_{\mathbb{R}^N} |\mathcal{L}^{\frac{1}{2}} u^m(t)|^2 \,\mathrm{d}x \ge -\int_{\mathbb{R}^N} |\mathcal{L}^{\frac{1}{2}} u^m_0|^2 \,\mathrm{d}x$$

where the latter follows by

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}^N} |\mathcal{L}^{\frac{1}{2}} u^m(t)|^2 \,\mathrm{d}x = 2 \int_{\mathbb{R}^N} \mathcal{L}^{\frac{1}{2}} [u^m] \,\mathcal{L}^{\frac{1}{2}} [\partial_t(u^m)] \,\mathrm{d}x = -2m \int_{\mathbb{R}^N} u^{m-1} (\mathcal{L} u^m)^2 \,\mathrm{d}x \le 0$$

Integrating the diff. ineq. and using the smoothing effects we obtain $(\alpha, \beta \text{ are different from the case } m = 1)$

$$\|u_0\|_{1+m}^{1+m} \le t \, \|\mathcal{L}^{\frac{1}{2}} u_0^m\|_2^2 + \|u(t)\|_{1+m}^{1+m} \le t \, \|\mathcal{L}^{\frac{1}{2}} u_0^m\|_2^2 + \overline{\kappa} \frac{\|u_0\|_1^{\alpha}}{t^{\beta}}$$

Optimizing in t gives a GNS inequality for $f = u_0^m$.

- We have proved that the smoothing effects are implied by GNS inequalities, using a nonlinear version of Moser iteration or a variant of Gross' method (MB, Grillo, Vazquez 2005-2010)
- GNS and smoothing effects are equivalent also for nonlinear flows!

Introduction

Moser Iteration in the nonlinear setting I. Main Ingredients

GNS inequalities: there exists $2^* > 2$ such that the Sobolev-type ineq. holds:

$$\|f\|_{2^*}^2 \leq \mathcal{S}_{\mathcal{L}}^2 \|\mathcal{L}^{\frac{1}{2}}u\|_2^2 = \mathcal{S}_{\mathcal{L}}^2 \int_{\Omega} f\mathcal{L}f \,\mathrm{d}x.$$

Interpolate to get a family of GNS inequalities: let p > q > 0 and

$$\frac{2q}{q+m-1} \leq 2^*, \qquad \text{and} \qquad \frac{q+m-1}{2q} = \frac{\vartheta}{2^*} + (1-\vartheta)\frac{q+m-1}{2p}\,,$$

so that

(GNS)
$$\|f\|_{\frac{2q}{q+m-1}} \le \|f\|_{2^*}^\vartheta \|f\|_{\frac{2p}{q+m-1}}^{1-\vartheta} \le \mathcal{S}_{\mathcal{L}}^\vartheta \|\mathcal{L}^{\frac{1}{2}}u\|_{2}^\vartheta \|f\|_{\frac{2p}{q+m-1}}^{1-\vartheta}$$

Stroock-Varopoulos inequality: that there exists a constant $c_{m,q} > 0$

$$\int_{\Omega} u^{q-1} \mathcal{L} u^m \, \mathrm{d} x \ge c_{m,q} \int_{\Omega} u^{\frac{q+m-1}{2}} \mathcal{L} u^{\frac{q+m-1}{2}} \, \mathrm{d} x = c_{m,q} \left\| \mathcal{L}^{1/2} u^{\frac{q+m-1}{2}} \right\|_2^2$$

Combining the two above inequalities, one gets

(M1)
$$\int_{\Omega} u^{q-1} \mathcal{L} u^m \, \mathrm{d} x \ge c_{m,q} \left\| \mathcal{L}^{1/2} u^{\frac{q+m-1}{2}} \right\|_2^2 \ge c_{m,q} \mathcal{S}_{\mathcal{L}}^{-2} \frac{\|u\|_q^{\frac{q+m-1}{2\theta}}}{\|u\|_p^{\frac{1-\theta}{\theta}}}.$$

Moser Iteration in the nonlinear setting I. Main Ingredients

GNS inequalities: there exists $2^* > 2$ such that the Sobolev-type ineq. holds:

$$\|f\|_{2^*}^2 \leq \mathcal{S}_{\mathcal{L}}^2 \|\mathcal{L}^{\frac{1}{2}}u\|_2^2 = \mathcal{S}_{\mathcal{L}}^2 \int_{\Omega} f\mathcal{L}f \,\mathrm{d}x.$$

Interpolate to get a family of GNS inequalities: let p > q > 0 and

$$\frac{2q}{q+m-1} \le 2^*$$
, and $\frac{q+m-1}{2q} = \frac{\vartheta}{2^*} + (1-\vartheta)\frac{q+m-1}{2p}$,

so that

(GNS)
$$\|f\|_{\frac{2q}{q+m-1}} \le \|f\|_{2^*}^\vartheta \|f\|_{\frac{2p}{q+m-1}}^{1-\vartheta} \le \mathcal{S}_{\mathcal{L}}^\vartheta \|\mathcal{L}^{\frac{1}{2}}u\|_{2}^\vartheta \|f\|_{\frac{2p}{q+m-1}}^{1-\vartheta}$$

Stroock-Varopoulos inequality: that there exists a constant $c_{m,q} > 0$

$$\int_{\Omega} u^{q-1} \mathcal{L} u^m \, \mathrm{d} x \ge c_{m,q} \int_{\Omega} u^{\frac{q+m-1}{2}} \mathcal{L} u^{\frac{q+m-1}{2}} \, \mathrm{d} x = c_{m,q} \left\| \mathcal{L}^{1/2} u^{\frac{q+m-1}{2}} \right\|_2^2$$

Combining the two above inequalities, one gets

(M1)
$$\int_{\Omega} u^{q-1} \mathcal{L} u^m \, \mathrm{d} x \ge c_{m,q} \left\| \mathcal{L}^{1/2} u^{\frac{q+m-1}{2}} \right\|_2^2 \ge c_{m,q} \mathcal{S}_{\mathcal{L}}^{-2} \frac{\|u\|_q^{\frac{q+m-1}{2\theta}}}{\|u\|_p^{\frac{1-\vartheta}{\theta}} \frac{q+m-1}{2}}$$

Moser Iteration in the nonlinear setting II. $L^p - L^q$ Smoothing Effects. We shall prove first:

(1)
$$\|u(t)\|_q \leq \overline{\kappa}_{p,q} \frac{\|u(t_0)\|_p^{\frac{p\partial_p}{q\partial_q}}}{(t-t_0)^{\frac{N(q-p)}{q}}\vartheta_p}, \quad \text{with} \quad \vartheta_r = \frac{1}{2sr + N(1-m)}$$

The proof is formally simple:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} u^{q} \,\mathrm{d}x = q \int_{\Omega} u^{q-1} \partial_{t} u \,\mathrm{d}x = -q \int_{\Omega} u^{q-1} \mathcal{L} u^{m} \,\mathrm{d}x$$

$$(M1) \leq -\mathcal{S}_{\mathcal{L}}^{-2} \frac{4q(q-1)m}{(q+m-1)^{2}} \frac{\|u\|_{q}^{\frac{q+m-1}{2}}}{\|u\|_{p}^{\frac{1-\vartheta}{\vartheta} \frac{q+m-1}{2}}} \,.$$

Then integrate the differential inequality to get (1).

Moser Iteration in the nonlinear setting II. $L^p - L^q$ Smoothing Effects. We shall prove first:

(1)
$$\|u(t)\|_q \leq \overline{\kappa}_{p,q} \frac{\|u(t_0)\|_p^{\frac{p\partial_p}{q\partial_q}}}{(t-t_0)^{\frac{N(q-p)}{q}}\vartheta_p}, \quad \text{with} \quad \vartheta_r = \frac{1}{2sr + N(1-m)}$$

The proof is formally simple:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} u^{q} \,\mathrm{d}x = q \int_{\Omega} u^{q-1} \partial_{t} u \,\mathrm{d}x = -q \int_{\Omega} u^{q-1} \mathcal{L} u^{m} \,\mathrm{d}x$$

$$(M1) \leq -\mathcal{S}_{\mathcal{L}}^{-2} \frac{4q(q-1)m}{(q+m-1)^{2}} \frac{\|u\|_{q}^{\frac{q+m-1}{2\theta}}}{\|u\|_{p}^{\frac{1-\theta}{2\theta}}} \,.$$

Then integrate the differential inequality to get (1).

Moser Iteration in the nonlinear setting II. $L^p - L^q$ Smoothing Effects. We shall prove first:

(1)
$$\|u(t)\|_q \leq \overline{\kappa}_{p,q} \frac{\|u(t_0)\|_p^{\frac{p\partial_p}{q\partial_q}}}{(t-t_0)^{\frac{N(q-p)}{q}}\vartheta_p}, \quad \text{with} \quad \vartheta_r = \frac{1}{2sr + N(1-m)}$$

The proof is formally simple:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} u^{q} \,\mathrm{d}x = q \int_{\Omega} u^{q-1} \partial_{t} u \,\mathrm{d}x = -q \int_{\Omega} u^{q-1} \mathcal{L} u^{m} \,\mathrm{d}x$$

(M1) $\leq -\mathcal{S}_{\mathcal{L}}^{-2} \frac{4q(q-1)m}{(q+m-1)^{2}} \frac{\|u\|_{q}^{\frac{q+m-1}{2\theta}}}{\|u\|_{p}^{\frac{1-\vartheta}{\theta}\frac{q+m-1}{2}}}.$

Then integrate the differential inequality to get (1).

Introduction

Moser Iteration in the nonlinear setting III. $L^p - L^\infty$ Smoothing Effects. Rewrite (1) for each $k \ge 1$ with $p_k = 2^k p$ and t_k such that $t_k - t_{k-1} = \frac{t-t_0}{2^k}$,

$$\|u(t_k)\|_{p_k} \le I_k^{\frac{N(p_k-p_{k-1})}{p_k}\vartheta_{k-1}} \|u(t_{k-1})\|_{p_{k-1}}^{\frac{p_{k-1}\vartheta_{k-1}}{p_k}\vartheta_k} \quad \text{with} \quad I_k \sim \frac{p_k}{t_k - t_{k-1}} \sim 4^k$$

where $\vartheta_k := \vartheta_{p_k} = (2sp_k - N(1 - m))^{-1}$. Then we iterate

 $\begin{aligned} \|u(t_{k})\|_{p_{k}} &\leq I_{k}^{\frac{N(p_{k}-p_{k-1})}{p_{k}}\vartheta_{k-1}} \|u(t_{k-1})\|_{p_{k-1}}^{\frac{p_{k-1}}{p_{k}}\vartheta_{k-1}} \\ &\leq I_{k}^{\frac{N(p_{k}-p_{k-1})}{p_{k}}\vartheta_{k-1}} I_{k-1}^{\frac{N(p_{k-1}-p_{k-2})}{p_{k}}\vartheta_{k-2}} \vartheta_{k-2}^{\frac{p_{k-1}}{p_{k}}\vartheta_{k-1}}} \|u(t_{k-2})\|_{p_{k-2}}^{\frac{p_{k-2}}{p_{k-2}}\vartheta_{k-2}} \\ &\vdots \\ &\leq \prod_{j=1}^{k} I_{j}^{\frac{N(p_{j}-p_{j-1})}{p_{k}}} \frac{\vartheta_{j}\vartheta_{j-1}}{\vartheta_{k}}}{|u(t_{0}}|\|_{q}^{\frac{q}{p_{k}}\vartheta_{k}}} \leq \left[\prod_{j=1}^{k} \left(4^{j}\frac{\overline{C}}{t-t_{0}}\right)^{\frac{N(\vartheta_{j-1}-\vartheta_{j})}{2s}}\right]^{\frac{1}{p_{k}}\vartheta_{k}}} \|u(t_{0})\|_{q}^{\frac{q}{p_{k}}\vartheta_{k}}} \end{aligned}$

$$\|u(t)\|_{\infty} \leq \lim_{k \to \infty} \|u(t_k)\|_{p_k} \leq \overline{\kappa} \, \frac{\|u(t_0)\|_p^{2sp \,\vartheta_p}}{(t-t_0)^{N\vartheta_p}} \, .$$

$$\|u(t_k)\|_{p_k} \le I_k^{\frac{N(p_k-p_{k-1})}{p_k}\vartheta_{k-1}} \|u(t_{k-1})\|_{p_{k-1}}^{\frac{p_{k-1}\vartheta_{k-1}}{p_k}\vartheta_k} \quad \text{with} \quad I_k \sim \frac{p_k}{t_k - t_{k-1}} \sim 4^k$$

where $\vartheta_k := \vartheta_{p_k} = (2sp_k - N(1 - m))^{-1}$. Then we iterate

$$\begin{split} \|u(t_{k})\|_{p_{k}} &\leq I_{k}^{\frac{N(p_{k}-p_{k-1})}{p_{k}}\vartheta_{k-1}} \|u(t_{k-1})\|_{p_{k-1}}^{\frac{p_{k-1}\vartheta_{k-1}}{p_{k}\vartheta_{k}}} \\ &\leq I_{k}^{\frac{N(p_{k}-p_{k-1})}{p_{k}}\vartheta_{k-1}} I_{k-1}^{\frac{N(p_{k-1}-p_{k-2})}{p_{k}}\vartheta_{k-2}\frac{p_{k}-1\vartheta_{k-1}}{p_{k}\vartheta_{k}}} \|u(t_{k-2})\|_{p_{k-2}}^{\frac{p_{k-2}\vartheta_{k-2}}{p_{k}}\frac{p_{k-1}\vartheta_{k-1}}{p_{k}\vartheta_{k}}} \\ &\vdots \\ &\leq \prod_{j=1}^{k} I_{j}^{\frac{N(p_{j}-p_{j-1})}{p_{k}}\frac{\vartheta_{j}\vartheta_{j-1}}{\vartheta_{k}}} \|u(t_{0})\|_{q}^{\frac{\vartheta}{\eta_{k}}\vartheta_{k}} \leq \left[\prod_{j=1}^{k} \left(4^{j}\frac{\overline{c}}{t-t_{0}}\right)^{\frac{N(\vartheta_{j-1}-\vartheta_{j})}{2s}}\right]^{\frac{1}{p_{k}}\vartheta_{k}} \|u(t_{0})\|_{q}^{\frac{\vartheta}{\eta_{k}}\vartheta_{k}} \end{split}$$

$$\|u(t)\|_{\infty} \leq \lim_{k \to \infty} \|u(t_k)\|_{p_k} \leq \overline{\kappa} \, \frac{\|u(t_0)\|_p^{2sp \,\vartheta_p}}{(t-t_0)^{N\vartheta_p}} \, .$$

$$\|u(t_k)\|_{p_k} \le I_k^{\frac{N(p_k-p_{k-1})}{p_k}\vartheta_{k-1}} \|u(t_{k-1})\|_{p_{k-1}}^{\frac{p_{k-1}\vartheta_{k-1}}{p_k}\vartheta_k} \quad \text{with} \quad I_k \sim \frac{p_k}{t_k - t_{k-1}} \sim 4^k$$

where $\vartheta_k := \vartheta_{p_k} = (2sp_k - N(1 - m))^{-1}$. Then we iterate

$$\begin{aligned} \|u(t_{k})\|_{p_{k}} &\leq I_{k}^{\frac{N(p_{k}-p_{k-1})}{p_{k}}\vartheta_{k-1}}\|u(t_{k-1})\|_{p_{k-1}}^{\frac{p_{k-1}}{p_{k}}\vartheta_{k-1}} \\ &\leq I_{k}^{\frac{N(p_{k}-p_{k-1})}{p_{k}}\vartheta_{k-1}}I_{k-1}^{\frac{N(p_{k}-1-p_{k}-2)}{p_{k-1}}\vartheta_{k-2}\frac{p_{k-1}\vartheta_{k-1}}{p_{k}}}\|u(t_{k-2})\|_{p_{k-2}}^{\frac{p_{k-2}\vartheta_{k-2}}{p_{k}}\frac{p_{k-1}}{q_{k}}}\|\frac{\vartheta_{k-1}}{p_{k}}\|_{p_{k-2}}^{\frac{p_{k-1}}{p_{k}}} \\ &\vdots \\ &\leq \prod_{j=1}^{k}I_{j}^{\frac{N(p_{j}-p_{j-1})}{p_{k}}\frac{\vartheta_{j}\vartheta_{j-1}}{\vartheta_{k}}}\|u(t_{0})\|_{q}^{\frac{\vartheta_{j}\vartheta_{q}}{p_{k}}} \leq \left[\prod_{j=1}^{k}\left(4^{j}\frac{\overline{c}}{t-t_{0}}\right)^{\frac{N(\vartheta_{j-1}-\vartheta_{j})}{2^{s}}}\right]^{\frac{1}{p_{k}}\frac{\vartheta_{q}}{q_{k}}}\|u(t_{0})\|_{q}^{\frac{\vartheta_{q}\vartheta_{q}}{p_{k}}} \end{aligned}$$

$$\|u(t)\|_{\infty} \leq \lim_{k \to \infty} \|u(t_k)\|_{p_k} \leq \overline{\kappa} \, \frac{\|u(t_0)\|_p^{2sp \,\vartheta_p}}{(t-t_0)^{N\vartheta_p}} \, .$$

$$\|u(t_k)\|_{p_k} \le I_k^{\frac{N(p_k-p_{k-1})}{p_k}\vartheta_{k-1}} \|u(t_{k-1})\|_{p_{k-1}}^{\frac{p_{k-1}\vartheta_{k-1}}{p_k}\vartheta_k} \quad \text{with} \quad I_k \sim \frac{p_k}{t_k - t_{k-1}} \sim 4^k$$

where $\vartheta_k := \vartheta_{p_k} = (2sp_k - N(1 - m))^{-1}$. Then we iterate

$$\begin{aligned} \|u(t_{k})\|_{p_{k}} &\leq I_{k}^{\frac{N(p_{k}-p_{k-1})}{p_{k}}\vartheta_{k-1}} \|u(t_{k-1})\|_{p_{k-1}}^{\frac{p_{k-1}}{p_{k}}\vartheta_{k-1}} \\ &\leq I_{k}^{\frac{N(p_{k}-p_{k-1})}{p_{k}}\vartheta_{k-1}} I_{k-1}^{\frac{N(p_{k}-1-p_{k-2})}{p_{k-1}}\vartheta_{k-2}\frac{p_{k-1}\vartheta_{k-1}}{p_{k}}} \|u(t_{k-2})\|_{p_{k-2}}^{\frac{p_{k-2}\vartheta_{k-2}}{p_{k}}\frac{p_{k-1}}{q_{k}}} \\ &\vdots \\ &\leq \prod_{j=1}^{k} I_{j}^{\frac{N(p_{j}-p_{j-1})}{p_{k}}\frac{\vartheta_{j}\vartheta_{j-1}}{\vartheta_{k}}} \|u(t_{0})\|_{q}^{\frac{q}\vartheta_{q}} \leq \left[\prod_{j=1}^{k} \left(4^{j}\frac{\overline{c}}{t-t_{0}}\right)^{\frac{N(\vartheta_{j-1}-\vartheta_{j})}{2^{j}}}\right]^{\frac{1}{p_{k}}\vartheta_{k}} \|u(t_{0})\|_{q}^{\frac{q}\vartheta_{q}} \end{aligned}$$

$$\|u(t)\|_{\infty} \leq \lim_{k \to \infty} \|u(t_k)\|_{p_k} \leq \overline{\kappa} \, \frac{\|u(t_0)\|_p^{2sp \,\vartheta_p}}{(t-t_0)^{N\vartheta_p}} \, .$$

$$\|u(t_k)\|_{p_k} \le I_k^{\frac{N(p_k-p_{k-1})}{p_k}\vartheta_{k-1}} \|u(t_{k-1})\|_{p_{k-1}}^{\frac{p_{k-1}\vartheta_{k-1}}{p_k}\vartheta_k} \quad \text{with} \quad I_k \sim \frac{p_k}{t_k - t_{k-1}} \sim 4^k$$

where $\vartheta_k := \vartheta_{p_k} = (2sp_k - N(1 - m))^{-1}$. Then we iterate

$$\begin{split} \|u(t_{k})\|_{p_{k}} &\leq I_{k}^{\frac{N(p_{k}-p_{k-1})}{p_{k}}\vartheta_{k-1}} \|u(t_{k-1})\|_{p_{k-1}}^{\frac{p_{k-1}}{p_{k}}\vartheta_{k-1}} \\ &\leq I_{k}^{\frac{N(p_{k}-p_{k-1})}{p_{k}}\vartheta_{k-1}} I_{k-1}^{\frac{N(p_{k}-1-p_{k-2})}{p_{k-1}}\vartheta_{k-2}\frac{p_{k-1}\vartheta_{k-1}}{p_{k}\vartheta_{k}}} \|u(t_{k-2})\|_{p_{k-2}}^{\frac{p_{k-2}\vartheta_{k-2}}{p_{k-2}}\frac{p_{k-1}\vartheta_{k-1}}{p_{k}}} \\ &\vdots \\ &\leq \prod_{j=1}^{k} I_{j}^{\frac{N(p_{j}-p_{j-1})}{p_{k}}\frac{\vartheta_{j}\vartheta_{j-1}}{\vartheta_{k}}} \|u(t_{0})\|_{q}^{\frac{q}\vartheta_{q}} \leq \left[\prod_{j=1}^{k} \left(4^{j}\frac{\overline{c}}{t-t_{0}}\right)^{\frac{N(\vartheta_{j-1}-\vartheta_{j})}{2s}}\right]^{\frac{1}{p_{k}\vartheta_{k}}} \|u(t_{0})\|_{q}^{\frac{q}\vartheta_{q}} \end{split}$$

$$\|u(t)\|_{\infty} \leq \lim_{k \to \infty} \|u(t_k)\|_{p_k} \leq \overline{\kappa} \frac{\|u(t_0)\|_p^{2sp \cdot \vartheta_p}}{(t-t_0)^{N\vartheta_p}}.$$

$$\|u(t_k)\|_{p_k} \le I_k^{\frac{N(p_k-p_{k-1})}{p_k}\vartheta_{k-1}} \|u(t_{k-1})\|_{p_{k-1}}^{\frac{p_{k-1}\vartheta_{k-1}}{p_k}\vartheta_k} \quad \text{with} \quad I_k \sim \frac{p_k}{t_k - t_{k-1}} \sim 4^k$$

where $\vartheta_k := \vartheta_{p_k} = (2sp_k - N(1 - m))^{-1}$. Then we iterate

$$\begin{split} \|u(t_{k})\|_{p_{k}} &\leq I_{k}^{\frac{N(p_{k}-p_{k-1})}{p_{k}}\vartheta_{k-1}} \|u(t_{k-1})\|_{p_{k-1}}^{\frac{p_{k-1}}{p_{k}}\vartheta_{k-1}} \\ &\leq I_{k}^{\frac{N(p_{k}-p_{k-1})}{p_{k}}\vartheta_{k-1}} I_{k-1}^{\frac{N(p_{k}-1-p_{k-2})}{p_{k-1}}\vartheta_{k-2}\frac{p_{k-1}\vartheta_{k-1}}{p_{k}\vartheta_{k}}} \|u(t_{k-2})\|_{p_{k-2}}^{\frac{p_{k-2}\vartheta_{k-2}}{p_{k-2}}\frac{p_{k-1}\vartheta_{k-1}}{p_{k}}} \\ &\vdots \\ &\leq \prod_{j=1}^{k} I_{j}^{\frac{N(p_{j}-p_{j-1})}{p_{k}}\frac{\vartheta_{j}\vartheta_{j-1}}{\vartheta_{k}}} \|u(t_{0})\|_{q}^{\frac{q}\vartheta_{q}} \leq \left[\prod_{j=1}^{k} \left(4^{j}\frac{\overline{c}}{t-t_{0}}\right)^{\frac{N(\vartheta_{j-1}-\vartheta_{j})}{2s}}\right]^{\frac{1}{p_{k}\vartheta_{k}}} \|u(t_{0})\|_{q}^{\frac{q}\vartheta_{q}} \end{split}$$

$$\|u(t)\|_{\infty} \leq \lim_{k\to\infty} \|u(t_k)\|_{p_k} \leq \overline{\kappa} \frac{\|u(t_0)\|_p^{2sp\,\vartheta_p}}{(t-t_0)^{N\vartheta_p}}$$

Introduction

The Green Function Method

(GPME)
$$\begin{cases} \partial_t u = -\mathcal{L}[u^m] & \text{in } \mathbb{R}^N \times (0, T), \\ u(\cdot, 0) = u_0 & \text{on } \mathbb{R}^N. \end{cases}$$

We need:

(1a) Dual formulation of the problem

(1b)
$$\mathcal{L}^{-1}$$
 with kernel $\mathbb{G}_{\mathcal{L}}(x-y) = \int_0^\infty H_{\mathcal{L}}(x-y,t) dt$.

(2a) Time scaling. $u_{\Lambda}(x,t) := \Lambda^{\frac{1}{m-1}} u(x,\Lambda t)$ solution when u is.

- (2b) Comparison principle.
 - (c) L^p -norm decay

(GPME)
$$\begin{cases} \partial_t u = -\mathcal{L}[u^m] & \text{in } \mathbb{R}^N \times (0, T), \\ u(\cdot, 0) = u_0 & \text{on } \mathbb{R}^N. \end{cases}$$

We need:

(1a) Dual formulation of the problem

- (1b) \mathcal{L}^{-1} with kernel $\mathbb{G}_{\mathcal{L}}(x-y) = \int_0^\infty H_{\mathcal{L}}(x-y,t) dt$.
- (2a) Time scaling. $u_{\Lambda}(x,t) := \Lambda^{\frac{1}{m-1}} u(x,\Lambda t)$ solution when u is.
- (2b) Comparison principle.
 - (c) L^p -norm decay

(GPME)
$$\begin{cases} \partial_t u = -\mathcal{L}[u^m] & \text{in } \mathbb{R}^N \times (0, T), \\ u(\cdot, 0) = u_0 & \text{on } \mathbb{R}^N. \end{cases}$$

- (1a) Dual formulation of the problem
- (1b) \mathcal{L}^{-1} with kernel $\mathbb{G}_{\mathcal{L}}(x-y) = \int_0^\infty H_{\mathcal{L}}(x-y,t) dt$.
- (2a) Time scaling. $u_{\Lambda}(x,t) := \Lambda^{\frac{1}{m-1}} u(x,\Lambda t)$ solution when u is.
- (2b) Comparison principle.
 - (c) L^p -norm decay

(GPME)
$$\begin{cases} \partial_t u = -\mathcal{L}[u^m] & \text{in } \mathbb{R}^N \times (0, T), \\ u(\cdot, 0) = u_0 & \text{on } \mathbb{R}^N. \end{cases}$$

- (1a) Dual formulation of the problem
- (1b) \mathcal{L}^{-1} with kernel $\mathbb{G}_{\mathcal{L}}(x-y) = \int_0^\infty H_{\mathcal{L}}(x-y,t) dt$.
- (2a) Time scaling. $u_{\Lambda}(x,t) := \Lambda^{\frac{1}{m-1}} u(x,\Lambda t)$ solution when u is.
- (2b) Comparison principle.
 - (c) L^p -norm decay

(GPME)
$$\begin{cases} \partial_t u = -\mathcal{L}[u^m] & \text{in } \mathbb{R}^N \times (0, T), \\ u(\cdot, 0) = u_0 & \text{on } \mathbb{R}^N. \end{cases}$$

- (1a) Dual formulation of the problem
- (1b) \mathcal{L}^{-1} with kernel $\mathbb{G}_{\mathcal{L}}(x-y) = \int_0^\infty H_{\mathcal{L}}(x-y,t) dt$.
- (2a) Time scaling. $u_{\Lambda}(x,t) := \Lambda^{\frac{1}{m-1}} u(x,\Lambda t)$ solution when *u* is.
- (2b) Comparison principle.
 - (c) L^p -norm decay

(GPME)
$$\begin{cases} \partial_t u = -\mathcal{L}[u^m] & \text{in } \mathbb{R}^N \times (0, T), \\ u(\cdot, 0) = u_0 & \text{on } \mathbb{R}^N. \end{cases}$$

- (1a) Dual formulation of the problem
- (1b) \mathcal{L}^{-1} with kernel $\mathbb{G}_{\mathcal{L}}(x-y) = \int_0^\infty H_{\mathcal{L}}(x-y,t) dt$.
- (2a) Time scaling. $u_{\Lambda}(x,t) := \Lambda^{\frac{1}{m-1}} u(x,\Lambda t)$ solution when *u* is.
- (2b) Comparison principle.
 - (c) L^p -norm decay

(GPME)
$$\begin{cases} \partial_t u = -\mathcal{L}[u^m] & \text{in } \mathbb{R}^N \times (0, T), \\ u(\cdot, 0) = u_0 & \text{on } \mathbb{R}^N. \end{cases}$$

We need:

- (1a) Dual formulation of the problem
- (1b) \mathcal{L}^{-1} with kernel $\mathbb{G}_{\mathcal{L}}(x-y) = \int_0^\infty H_{\mathcal{L}}(x-y,t) dt$.
- (2a) Time scaling. $u_{\Lambda}(x,t) := \Lambda^{\frac{1}{m-1}} u(x,\Lambda t)$ solution when *u* is.
- (2b) Comparison principle.
- (c) L^p -norm decay

We can formulate a "dual problem", using the inverse \mathcal{L}^{-1} as follows

$$\partial_t U = -F(u)\,,$$

where

$$U(t,x) := \mathcal{L}^{-1}[u(t,\cdot)](x) = \int_{\mathbb{R}^N} \mathbb{G}(x,y)u(t,y)\,\mathrm{d}y\,.$$

In the case of bounded domains, this formulation encodes the lateral boundary conditions in the inverse operator \mathcal{L}^{-1} .

(GPME)
$$\begin{cases} \partial_t u = -\mathcal{L}[u^m] & \text{in } \mathbb{R}^N \times (0, T), \\ u(\cdot, 0) = u_0 & \text{on } \mathbb{R}^N. \end{cases}$$

We need:

- (1a) Dual formulation of the problem
- (1b) \mathcal{L}^{-1} with kernel $\mathbb{G}_{\mathcal{L}}(x-y) = \int_0^\infty H_{\mathcal{L}}(x-y,t) dt$.
- (2a) Time scaling. $u_{\Lambda}(x,t) := \Lambda^{\frac{1}{m-1}} u(x,\Lambda t)$ solution when *u* is.
- (2b) Comparison principle.
- (c) L^p -norm decay

We can formulate a "dual problem", using the inverse \mathcal{L}^{-1} as follows

$$\partial_t U = -\boldsymbol{F}(\boldsymbol{u})\,,$$

where

$$U(t,x) := \mathcal{L}^{-1}[u(t,\cdot)](x) = \int_{\mathbb{R}^N} \mathbb{G}(x,y)u(t,y)\,\mathrm{d}y\,.$$

In the case of bounded domains, this formulation encodes the lateral boundary conditions in the inverse operator \mathcal{L}^{-1} .

(GPME)
$$\begin{cases} \partial_t u = -\mathcal{L}[u^m] & \text{in } \mathbb{R}^N \times (0, T), \\ u(\cdot, 0) = u_0 & \text{on } \mathbb{R}^N. \end{cases}$$

We need:

- (1a) Dual formulation of the problem
- (1b) \mathcal{L}^{-1} with kernel $\mathbb{G}_{\mathcal{L}}(x-y) = \int_0^\infty H_{\mathcal{L}}(x-y,t) dt$.
- (2a) Time scaling. $u_{\Lambda}(x,t) := \Lambda^{\frac{1}{m-1}} u(x,\Lambda t)$ solution when *u* is.
- (2b) Comparison principle.
- (c) L^p -norm decay

We can formulate a "dual problem", using the inverse \mathcal{L}^{-1} as follows

$$\partial_t U = -\boldsymbol{F}(\boldsymbol{u})\,,$$

where

$$U(t,x) := \mathcal{L}^{-1}[u(t,\cdot)](x) = \int_{\mathbb{R}^N} \mathbb{G}(x,y)u(t,y)\,\mathrm{d}y\,.$$

In the case of bounded domains, this formulation encodes the lateral boundary conditions in the inverse operator \mathcal{L}^{-1} .

(GPME)
$$\begin{cases} \partial_t u = -\mathcal{L}[u^m] & \text{in } \mathbb{R}^N \times (0, T), \\ u(\cdot, 0) = u_0 & \text{on } \mathbb{R}^N. \end{cases}$$

We need:

- (1a) Dual formulation of the problem
- (1b) \mathcal{L}^{-1} with kernel $\mathbb{G}_{\mathcal{L}}(x-y) = \int_0^\infty H_{\mathcal{L}}(x-y,t) dt$.
- (2a) Time scaling. $u_{\Lambda}(x,t) := \Lambda^{\frac{1}{m-1}} u(x,\Lambda t)$ solution when *u* is.
- (2b) Comparison principle.
- (c) L^p -norm decay

We can formulate a "dual problem", using the inverse \mathcal{L}^{-1} as follows

$$\partial_t U = -F(u)\,,$$

where

$$U(t,x) := \mathcal{L}^{-1}[u(t,\cdot)](x) = \int_{\mathbb{R}^N} \mathbb{G}(x,y)u(t,y)\,\mathrm{d}y\,.$$

In the case of bounded domains, this formulation encodes the lateral boundary conditions in the inverse operator \mathcal{L}^{-1} .

(GPME)
$$\begin{cases} \partial_t u = -\mathcal{L}[u^m] & \text{in } \mathbb{R}^N \times (0, T), \\ u(\cdot, 0) = u_0 & \text{on } \mathbb{R}^N. \end{cases}$$

Given the "dual problem" $\partial_t U = -F(u)$,

Weak Dual Solutions (WDS)

We say that a nonnegative measurable function *u* is a *Weak Dual Solution* WDS of (GPME) if:

- $u \in C([0,T]; L^1(\mathbb{R}^N))$ and $u^m \in L^1((0,T); L^1_{loc}(\mathbb{R}^N))$.
- For all $0 < \tau_1 \leq \tau_2 \leq T$, and all $\psi \in C_c^1([\tau_1, \tau_2]; L_c^{\infty}(\mathbb{R}^N))$,

(2)
$$\int_{\tau_1}^{\tau_2} \int_{\mathbb{R}^N} \left(\mathcal{L}^{-1}[u] \partial_t \psi - u^m \psi \right) dx dt$$
$$= \int_{\mathbb{R}^N} \mathcal{L}^{-1}[u(\cdot, \tau_2)](x) \psi(x, \tau_2) dx - \int_{\mathbb{R}^N} \mathcal{L}^{-1}[u(\cdot, \tau_1)](x) \psi(x, \tau_1) dx.$$

• $u(\cdot, 0) = u_0$ a.e. in \mathbb{R}^N .

- WDS are Very Weak or Distributional Solutions
- Weak, Weak Energy, Mild (Gradient Flow, semigroup), Strong solutions are WDS.

(GPME)
$$\begin{cases} \partial_t u = -\mathcal{L}[u^m] & \text{in } \mathbb{R}^N \times (0, T), \\ u(\cdot, 0) = u_0 & \text{on } \mathbb{R}^N. \end{cases}$$

Given the "dual problem" $\partial_t U = -F(u)$,

Weak Dual Solutions (WDS)

We say that a nonnegative measurable function *u* is a *Weak Dual Solution* WDS of (GPME) if:

- $u \in C([0,T]; L^1(\mathbb{R}^N))$ and $u^m \in L^1((0,T); L^1_{loc}(\mathbb{R}^N))$.
- For all $0 < \tau_1 \leq \tau_2 \leq T$, and all $\psi \in C_c^1([\tau_1, \tau_2]; L_c^{\infty}(\mathbb{R}^N))$,

(2)
$$\int_{\tau_1}^{\tau_2} \int_{\mathbb{R}^N} \left(\mathcal{L}^{-1}[u] \partial_t \psi - u^m \psi \right) dx dt$$
$$= \int_{\mathbb{R}^N} \mathcal{L}^{-1}[u(\cdot, \tau_2)](x) \psi(x, \tau_2) dx - \int_{\mathbb{R}^N} \mathcal{L}^{-1}[u(\cdot, \tau_1)](x) \psi(x, \tau_1) dx.$$

• $u(\cdot, 0) = u_0$ a.e. in \mathbb{R}^N .

• WDS are Very Weak or Distributional Solutions

• Weak, Weak Energy, Mild (Gradient Flow, semigroup), Strong solutions are WDS.

(GPME)
$$\begin{cases} \partial_t u = -\mathcal{L}[u^m] & \text{in } \mathbb{R}^N \times (0, T), \\ u(\cdot, 0) = u_0 & \text{on } \mathbb{R}^N. \end{cases}$$

Given the "dual problem" $\partial_t U = -F(u)$,

Weak Dual Solutions (WDS)

We say that a nonnegative measurable function *u* is a *Weak Dual Solution* WDS of (GPME) if:

- $u \in C([0,T]; L^1(\mathbb{R}^N))$ and $u^m \in L^1((0,T); L^1_{loc}(\mathbb{R}^N))$.
- For all $0 < \tau_1 \leq \tau_2 \leq T$, and all $\psi \in C_c^1([\tau_1, \tau_2]; L_c^{\infty}(\mathbb{R}^N))$,

(2)
$$\int_{\tau_1}^{\tau_2} \int_{\mathbb{R}^N} \left(\mathcal{L}^{-1}[u] \partial_t \psi - u^m \psi \right) dx dt$$
$$= \int_{\mathbb{R}^N} \mathcal{L}^{-1}[u(\cdot, \tau_2)](x) \psi(x, \tau_2) dx - \int_{\mathbb{R}^N} \mathcal{L}^{-1}[u(\cdot, \tau_1)](x) \psi(x, \tau_1) dx.$$

• $u(\cdot, 0) = u_0$ a.e. in \mathbb{R}^N .

- WDS are Very Weak or Distributional Solutions
- Weak, Weak Energy, Mild (Gradient Flow, semigroup), Strong solutions are WDS.

The Green Function Method (2) Time Monotonicity

(GPME)
$$\begin{cases} \partial_t u = -\mathcal{L}[u^m] & \text{in } \mathbb{R}^N \times (0, T), \\ u(\cdot, 0) = u_0 & \text{on } \mathbb{R}^N. \end{cases}$$

We need:

(1a) Dual formulation of the problem

(1b)
$$\mathcal{L}^{-1}$$
 with kernel $\mathbb{G}_{\mathcal{L}}(x-y) = \int_0^\infty H_{\mathcal{L}}(x-y,t) dt$.

(2a) Time scaling. $u_{\Lambda}(x,t) := \Lambda^{\frac{1}{m-1}} u(x,\Lambda t)$ solution when *u* is.

- (2b) Comparison principle.
- (c) L^p -norm decay

Benilan-Crandall Time Monotonicity Estimates

$$\partial_t u \ge -\frac{u}{(m-1)t}$$
 (in the distributional sense)

This is a "weak formulation" of the fact that

 $t \mapsto t^{\frac{1}{m-1}}u(t,x)$ is nondecreasing in t > 0 for a.e. $x \in \Omega$.

The Green Function Method (2) Time Monotonicity

(GPME)
$$\begin{cases} \partial_t u = -\mathcal{L}[u^m] & \text{in } \mathbb{R}^N \times (0, T), \\ u(\cdot, 0) = u_0 & \text{on } \mathbb{R}^N. \end{cases}$$

We need:

(1a) Dual formulation of the problem

(1b)
$$\mathcal{L}^{-1}$$
 with kernel $\mathbb{G}_{\mathcal{L}}(x-y) = \int_0^\infty H_{\mathcal{L}}(x-y,t) dt$.

- (2a) Time scaling. $u_{\Lambda}(x,t) := \Lambda^{\frac{1}{m-1}} u(x,\Lambda t)$ solution when *u* is.
- (2b) Comparison principle.
- (c) L^p -norm decay

Benilan-Crandall Time Monotonicity Estimates

$$\partial_t u \ge -\frac{u}{(m-1)t}$$
 (in the distributional sense)

This is a "weak formulation" of the fact that

 $t \mapsto t^{\frac{1}{m-1}}u(t,x)$ is nondecreasing in t > 0 for a.e. $x \in \Omega$.

The Green Function Method (2) Time Monotonicity

(GPME)
$$\begin{cases} \partial_t u = -\mathcal{L}[u^m] & \text{in } \mathbb{R}^N \times (0, T), \\ u(\cdot, 0) = u_0 & \text{on } \mathbb{R}^N. \end{cases}$$

We need:

- (1a) Dual formulation of the problem
- (1b) \mathcal{L}^{-1} with kernel $\mathbb{G}_{\mathcal{L}}(x-y) = \int_0^\infty H_{\mathcal{L}}(x-y,t) dt$.
- (2a) Time scaling. $u_{\Lambda}(x,t) := \Lambda^{\frac{1}{m-1}} u(x,\Lambda t)$ solution when u is.
- (2b) Comparison principle.
 - (c) L^p -norm decay

Benilan-Crandall Time Monotonicity Estimates

$$\partial_t u \ge -\frac{u}{(m-1)t}$$
 (in the distributional sense)

This is a "weak formulation" of the fact that

 $t \mapsto t^{\frac{1}{m-1}}u(t,x)$ is nondecreasing in t > 0 for a.e. $x \in \Omega$.

An "Almost" Representation Formula

Theorem. (First Pointwise Estimates)

(M.B. and J. L. Vázquez)

Let $u \ge 0$ be a weak dual solution to Problem (*CDP*) with $u_0 \in L^p(\Omega)$, p > N/2s. Then,

$$\int_{\mathbb{R}^N} u(t_1, x) \mathbb{G}(x, x_0) \, \mathrm{d}x \le \int_{\mathbb{R}^N} u(t_0, x) \mathbb{G}(x, x_0) \, \mathrm{d}x \,, \qquad \text{for all } t_1 \ge t_0 \ge 0 \,.$$

Moreover, for almost every $0 \le t_0 \le t_1$ and almost every $x_0 \in \Omega$, we have

$$\frac{u^m(t_0,x_0)}{t_0^{\frac{m}{m-1}}} \leq \frac{1}{m-1} \int_{\mathbb{R}^N} \frac{u(t_0,x) - u(t_1,x)}{t_1^{\frac{1}{m-1}} - t_0^{\frac{1}{m-1}}} \,\mathbb{G}(x,x_0) \,\mathrm{d}x \leq \frac{u^m(t_1,x_0)}{t_1^{\frac{m}{m-1}}} \,.$$

Remark. As a consequence of the above inequality and Hölder inequality, we have that $u(t) \in L^{\infty}(\Omega)$ when u_0 is sufficiently integrable

An "Almost" Representation Formula

Theorem. (First Pointwise Estimates)

(M.B. and J. L. Vázquez)

Let $u \ge 0$ be a weak dual solution to Problem (*CDP*) with $u_0 \in L^p(\Omega)$, p > N/2s. Then,

$$\int_{\mathbb{R}^N} u(t_1, x) \mathbb{G}(x, x_0) \, \mathrm{d}x \le \int_{\mathbb{R}^N} u(t_0, x) \mathbb{G}(x, x_0) \, \mathrm{d}x \,, \qquad \text{for all } t_1 \ge t_0 \ge 0 \,.$$

Moreover, for almost every $0 \le t_0 \le t_1$ and almost every $x_0 \in \Omega$, we have

$$\frac{u^m(t_0,x_0)}{t_0^{\frac{m}{m-1}}} \leq \frac{1}{m-1} \int_{\mathbb{R}^N} \frac{u(t_0,x) - u(t_1,x)}{t_1^{\frac{1}{m-1}} - t_0^{\frac{1}{m-1}}} \mathbb{G}(x,x_0) \, \mathrm{d}x \leq \frac{u^m(t_1,x_0)}{t_1^{\frac{m}{m-1}}} \, .$$

Remark. As a consequence of the above inequality and Hölder inequality, we have that $u(t) \in L^{\infty}(\Omega)$ when u_0 is sufficiently integrable

Sketch of the proof of the First Pointwise Estimates We would like to take as test function

$$\psi(t,x) = \psi_1(t)\psi_2(x) = \chi_{[t_0,t_1]}(t) \mathbb{G}(x_0,x) \,,$$

(This is NOT an admissible test in the Definition of WDS: approximation needed) Idea: plug such test function in very weak formulation, use $\mathcal{LG}(x_0, \cdot) = \delta_{x_0}$ to get

$$\int_{\mathbb{R}^N} u(t_0, x) \mathbb{G}(x_0, x) \, \mathrm{d}x - \int_{\mathbb{R}^N} u(t_1, x) \mathbb{G}(x_0, x) \, \mathrm{d}x = \int_{t_0}^{t_1} u^m(\tau, x_0) \mathrm{d}\tau \, .$$

This formula can be proven rigorously though careful approximation. Next, we use the monotonicity estimates, $t \mapsto t^{\frac{1}{m-1}} u(t, x)$ non-decreasin

$$\left(\frac{t_0}{t}\right)^{\frac{1}{m-1}}u(t_0) \le u(t) \le u(t_1)\left(\frac{t_1}{t}\right)^{\frac{1}{m-1}}$$

so that

$$\frac{u^{m}(t_{0}, x_{0})}{t_{0}^{\frac{m}{m-1}}} \leq \frac{\int_{t_{0}}^{t_{1}} u^{m}(\tau, x_{0}) \mathrm{d}\tau}{(1-m)\left(t_{1}^{\frac{1}{m-1}} - t_{0}^{\frac{1}{m-1}}\right)} \leq \frac{u^{m}(t_{1}, x_{0})}{t_{1}^{\frac{m}{m-1}}}$$

Sketch of the proof of the First Pointwise Estimates We would like to take as test function

$$\psi(t,x) = \psi_1(t)\psi_2(x) = \chi_{[t_0,t_1]}(t) \mathbb{G}(x_0,x) \,,$$

(This is NOT an admissible test in the Definition of WDS: approximation needed) Idea: plug such test function in very weak formulation, use $\mathcal{LG}(x_0, \cdot) = \delta_{x_0}$ to get

$$\int_{\mathbb{R}^N} u(t_0, x) \mathbb{G}(x_0, x) \, \mathrm{d}x - \int_{\mathbb{R}^N} u(t_1, x) \mathbb{G}(x_0, x) \, \mathrm{d}x = \int_{t_0}^{t_1} u^m(\tau, x_0) \mathrm{d}\tau \, .$$

This formula can be proven rigorously though careful approximation. Next, we use the monotonicity estimates, $t \mapsto t^{\frac{1}{m-1}} u(t, x)$ non-decreasing

$$\left(\frac{t_0}{t}\right)^{\frac{1}{m-1}}u(t_0) \le u(t) \le u(t_1)\left(\frac{t_1}{t}\right)^{\frac{1}{m-1}}$$

so that

$$\frac{u^{m}(t_{0}, x_{0})}{t_{0}^{\frac{m}{m-1}}} \leq \frac{\int_{t_{0}}^{t_{1}} u^{m}(\tau, x_{0}) d\tau}{(1-m) \left(t_{1}^{\frac{1}{m-1}} - t_{0}^{\frac{1}{m-1}}\right)} \leq \frac{u^{m}(t_{1}, x_{0})}{t_{1}^{\frac{m}{m-1}}}$$

Introduction

An "Almost Representation" Formula

Absolute bounds when $\mathbb{G}(x_0, \cdot) \in L^1$ In the case when $\mathbb{G}(x_0, \cdot)$ is globally integrable:

Theorem. (Absolute upper bounds)(M.B. & J. Endal & J. L. Vázquez)

Let *u* be a WDS, then there exists constants $\overline{\kappa} > 0$ depending only on *N*, *s*, *m* (but not on $u_0 !!$), such that

$$\|u(t)\|_{\mathrm{L}^{\infty}(\mathbb{R}^{N})} \leq \frac{\overline{\kappa}}{t^{\frac{1}{m-1}}},$$
 for all $t > 0$.

- This is a very strong regularization *independent* of the initial datum u_0 .
- Time decay is sharp, but only for large times, say t ≥ 1. For small times when 0 < t < 1 a better time decay is obtained in the form of smoothing effects.
Absolute bounds when $\mathbb{G}(x_0, \cdot) \in L^1$ In the case when $\mathbb{G}(x_0, \cdot)$ is globally integrable:

Theorem. (Absolute upper bounds)(M.B. & J. Endal & J. L. Vázquez)

Let *u* be a WDS, then there exists constants $\overline{\kappa} > 0$ depending only on *N*, *s*, *m* (but not on $u_0 !!$), such that

$$\|u(t)\|_{L^{\infty}(\mathbb{R}^N)} \leq \frac{\overline{\kappa}}{t^{\frac{1}{m-1}}},$$
 for all $t > 0.$

• This is a very strong regularization *independent* of the initial datum *u*₀.

 Time decay is sharp, but only for large times, say t ≥ 1. For small times when 0 < t < 1 a better time decay is obtained in the form of smoothing effects. ntroduction

An "Almost Representation" Formula

Absolute bounds when $\mathbb{G}(x_0, \cdot) \in L^1$ In the case when $\mathbb{G}(x_0, \cdot)$ is globally integrable:

Theorem. (Absolute upper bounds)(M.B. & J. Endal & J. L. Vázquez)

Let *u* be a WDS, then there exists constants $\overline{\kappa} > 0$ depending only on *N*, *s*, *m* (but not on $u_0 !!$), such that

$$\|u(t)\|_{\mathrm{L}^{\infty}(\mathbb{R}^N)} \leq \frac{\overline{\kappa}}{t^{\frac{1}{m-1}}},$$
 for all $t > 0.$

- This is a very strong regularization *independent* of the initial datum *u*₀.
- Time decay is sharp, but only for large times, say $t \ge 1$. For small times when 0 < t < 1 a better time decay is obtained in the form of smoothing effects.

Sketch of the proof of Absolute Bounds on bounded domains

Assume that we are on bounded domains

$$0 \leq \mathbb{G}(x_0, x) \leq \frac{c_{\Omega}}{|x - x_0|^{N - 2s}} \quad \text{hence} \quad \sup_{x_0 \in \Omega} \mathbb{G}(x_0, \cdot) \in L^q(\Omega) \text{ with } q < \frac{N}{N - 2s}$$

• STEP 1. First upper estimates. Recall the pointwise estimate:

$$\left(\frac{t_0}{t_1}\right)^{\frac{m}{m-1}}(t_1-t_0)u^m(t_0,x_0) \le \int_{\Omega} u(t_0,x)\mathbb{G}(x,x_0)\,\mathrm{d}x - \int_{\Omega} u(t_1,x)\mathbb{G}(x,x_0)\,\mathrm{d}x.$$

for any $u \in L^p$, p > N/2s all $0 \le t_0 \le t_1$ and all $x_0 \in \Omega$. Choose $t_1 = 2t_0$ to get

(*)
$$u^{m}(t_{0}, x_{0}) \leq \frac{2^{\frac{m}{m-1}}}{t_{0}} \int_{\Omega} u(t_{0}, x) \mathbb{G}(x, x_{0}) \, \mathrm{d}x \, .$$

Recall that $u \in L^p(\Omega)$ with p > N/(2s), means $u(t) \in L^p(\Omega)$ for all t > 0, so that: $u^m(t_0, x_0) \le \frac{c_0}{t_0} \int_{\Omega} u(t_0, x) \mathbb{G}(x, x_0) \, \mathrm{d}x \le \frac{c_0}{t_0} \|u(t_0)\|_{L^p(\Omega)} \|\mathbb{G}(\cdot, x_0)\|_{L^q(\Omega)} < +\infty$

so that $u(t_0) \in L^{\infty}(\Omega)$ for all $t_0 > 0$.

• STEP 2. Let us estimate the r.h.s. of (*) as follows:

$$u^{m}(t_{0}, x_{0}) \leq \frac{c_{0}}{t_{0}} \int_{\Omega} u(t_{0}, x) \mathbb{G}(x, x_{0}) dx \leq \|u(t_{0})\|_{L^{\infty}(\Omega)} \frac{c_{0}}{t_{0}} \int_{\Omega} \mathbb{G}(x, x_{0}) dx.$$

Taking the supremum over $x_{0} \in \Omega$ of both sides, we get:

$$\|u(t_0)\|_{L^{\infty}(\Omega)}^{m-1} \leq \frac{c_0}{t_0} \sup_{x_0 \in \Omega} \int_{\Omega} \mathbb{G}(x, x_0) \, \mathrm{d}x \leq \frac{K_1^{m-1}}{t_0}$$

Sketch of the proof of Absolute Bounds on bounded domains

Assume that we are on bounded domains

$$0 \leq \mathbb{G}(x_0, x) \leq \frac{c_{\Omega}}{|x - x_0|^{N - 2s}} \quad \text{hence} \quad \sup_{x_0 \in \Omega} \mathbb{G}(x_0, \cdot) \in L^q(\Omega) \text{ with } q < \frac{N}{N - 2s}$$

• STEP 1. First upper estimates. Recall the pointwise estimate:

$$\left(\frac{t_0}{t_1}\right)^{\frac{m}{m-1}}(t_1-t_0)u^m(t_0,x_0) \le \int_{\Omega} u(t_0,x)\mathbb{G}(x,x_0)\,\mathrm{d}x - \int_{\Omega} u(t_1,x)\mathbb{G}(x,x_0)\,\mathrm{d}x.$$

for any $u \in L^p$, p > N/2s all $0 \le t_0 \le t_1$ and all $x_0 \in \Omega$. Choose $t_1 = 2t_0$ to get

(*)
$$u^{m}(t_{0}, x_{0}) \leq \frac{2^{\frac{m}{m-1}}}{t_{0}} \int_{\Omega} u(t_{0}, x) \mathbb{G}(x, x_{0}) \, \mathrm{d}x \, .$$

Recall that $u \in L^p(\Omega)$ with p > N/(2s), means $u(t) \in L^p(\Omega)$ for all t > 0, so that: $u^m(t_0, x_0) \le \frac{c_0}{t_0} \int_{\Omega} u(t_0, x) \mathbb{G}(x, x_0) \, \mathrm{d}x \le \frac{c_0}{t_0} \|u(t_0)\|_{L^p(\Omega)} \|\mathbb{G}(\cdot, x_0)\|_{L^q(\Omega)} < +\infty$

so that $u(t_0) \in L^{\infty}(\Omega)$ for all $t_0 > 0$.

• STEP 2. Let us estimate the r.h.s. of (*) as follows:

$$u^{m}(t_{0}, x_{0}) \leq \frac{c_{0}}{t_{0}} \int_{\Omega} u(t_{0}, x) \mathbb{G}(x, x_{0}) dx \leq \|u(t_{0})\|_{L^{\infty}(\Omega)} \frac{c_{0}}{t_{0}} \int_{\Omega} \mathbb{G}(x, x_{0}) dx.$$

Faking the supremum over $x_{0} \in \Omega$ of both sides, we get:

$$\|u(t_0)\|_{\mathrm{L}^{\infty}(\Omega)}^{m-1} \leq \frac{c_0}{t_0} \sup_{x_0 \in \Omega} \int_{\Omega} \mathbb{G}(x, x_0) \,\mathrm{d}x \leq \frac{K_1^{m-1}}{t_0}$$

Sketch of the proof of Absolute Bounds on bounded domains

Assume that we are on bounded domains

$$0 \leq \mathbb{G}(x_0, x) \leq \frac{c_{\Omega}}{|x - x_0|^{N - 2s}} \quad \text{hence} \quad \sup_{x_0 \in \Omega} \mathbb{G}(x_0, \cdot) \in L^q(\Omega) \text{ with } q < \frac{N}{N - 2s}$$

• STEP 1. First upper estimates. Recall the pointwise estimate:

$$\left(\frac{t_0}{t_1}\right)^{\frac{m}{m-1}}(t_1-t_0)u^m(t_0,x_0) \le \int_{\Omega} u(t_0,x)\mathbb{G}(x,x_0)\,\mathrm{d}x - \int_{\Omega} u(t_1,x)\mathbb{G}(x,x_0)\,\mathrm{d}x.$$

for any $u \in L^p$, p > N/2s all $0 \le t_0 \le t_1$ and all $x_0 \in \Omega$. Choose $t_1 = 2t_0$ to get

(*)
$$u^{m}(t_{0}, x_{0}) \leq \frac{2^{\frac{m}{m-1}}}{t_{0}} \int_{\Omega} u(t_{0}, x) \mathbb{G}(x, x_{0}) \, \mathrm{d}x \, .$$

Recall that $u \in L^p(\Omega)$ with p > N/(2s), means $u(t) \in L^p(\Omega)$ for all t > 0, so that:

$$u^{m}(t_{0},x_{0}) \leq \frac{c_{0}}{t_{0}} \int_{\Omega} u(t_{0},x) \mathbb{G}(x,x_{0}) \, \mathrm{d}x \leq \frac{c_{0}}{t_{0}} \|u(t_{0})\|_{L^{p}(\Omega)} \|\mathbb{G}(\cdot,x_{0})\|_{L^{q}(\Omega)} < +\infty$$

so that $u(t_0) \in L^{\infty}(\Omega)$ for all $t_0 > 0$.

• STEP 2. Let us estimate the r.h.s. of (*) as follows:

$$u^{m}(t_{0}, x_{0}) \leq \frac{c_{0}}{t_{0}} \int_{\Omega} u(t_{0}, x) \mathbb{G}(x, x_{0}) dx \leq ||u(t_{0})||_{L^{\infty}(\Omega)} \frac{c_{0}}{t_{0}} \int_{\Omega} \mathbb{G}(x, x_{0}) dx.$$

Taking the supremum over $x_{0} \in \Omega$ of both sides, we get:

$$\left\| \|u(t_0)\|_{L^{\infty}(\Omega)}^{m-1} \le \frac{c_0}{t_0} \sup_{x_0 \in \Omega} \int_{\Omega} \mathbb{G}(x, x_0) \, \mathrm{d}x \le \frac{K_1^{m-1}}{t_0} \right\| =$$

Nonlinear case 2.0: Using Green function of $I + \mathcal{L}$ (MB & J. Endal) Consider the operator $\mathcal{L} \mapsto I + \mathcal{L}$, i.e.,

 $\partial_t u + (I + \mathcal{L})[u^m] = 0 \qquad \Longleftrightarrow \qquad \partial_t u + \mathcal{L}[u^m] = -u^m.$

x-independent supersolution: $t \mapsto Y(t)$ solves $Y'(t) = -Y(t)^{1+(m-1)}$, hence

$$Y(t) \le \left[\frac{1}{(m-1)t}\right]^{\frac{1}{m-1}} = \frac{c_m}{t^{\frac{1}{m-1}}}$$

Moreover, comparison yields (with $Y(0) = \infty$)

$$\|u(t)\|_{L^{\infty}(\mathbb{R}^N)} \leq Y(t) \leq \frac{c_m}{t^{\frac{1}{m-1}}}.$$

Holds independently of the operator! But needs "good" nonlinearity.

L. VÉRON. Effets régularisants de semi-groupes non linéaires dans des espaces de Banach. Ann. Fac. Sci. Toulouse Math. (5), 1(2):171–200, 1979.

Nonlinear case 2.0: Using Green function of $I + \mathcal{L}$ (MB & J. Endal) Consider the operator $\mathcal{L} \mapsto I + \mathcal{L}$, i.e.,

 $\partial_t u + (I + \mathcal{L})[u^m] = 0 \qquad \Longleftrightarrow \qquad \partial_t u + \mathcal{L}[u^m] = -u^m.$

x-independent supersolution: $t \mapsto Y(t)$ solves $Y'(t) = -Y(t)^{1+(m-1)}$, hence

$$Y(t) \le \left[\frac{1}{(m-1)t}\right]^{rac{1}{m-1}} = rac{c_m}{t^{rac{1}{m-1}}}$$

Moreover, comparison yields (with $Y(0) = \infty$)

$$||u(t)||_{L^{\infty}(\mathbb{R}^{N})} \le Y(t) \le \frac{c_{m}}{t^{\frac{1}{m-1}}}.$$

Holds independently of the operator! But needs "good" nonlinearity.

L. VÉRON. Effets régularisants de semi-groupes non linéaires dans des espaces de Banach. *Ann. Fac. Sci. Toulouse Math.* (5), 1(2):171–200, 1979.

Nonlinear case 2.0: Using Green function of $I + \mathcal{L}$ (MB & J. Endal) Consider the operator $\mathcal{L} \mapsto I + \mathcal{L}$, i.e.,

 $\partial_t u + (I + \mathcal{L})[u^m] = 0 \qquad \Longleftrightarrow \qquad \partial_t u + \mathcal{L}[u^m] = -u^m.$

x-independent supersolution: $t \mapsto Y(t)$ solves $Y'(t) = -Y(t)^{1+(m-1)}$, hence

$$Y(t) \le \left[\frac{1}{(m-1)t}\right]^{rac{1}{m-1}} = rac{c_m}{t^{rac{1}{m-1}}}$$

Moreover, comparison yields (with $Y(0) = \infty$)

$$\|u(t)\|_{L^{\infty}(\mathbb{R}^N)} \leq Y(t) \leq \frac{c_m}{t^{\frac{1}{m-1}}}.$$

Holds independently of the operator! But needs "good" nonlinearity.

L. VÉRON. Effets régularisants de semi-groupes non linéaires dans des espaces de Banach. Ann. Fac. Sci. Toulouse Math. (5), 1(2):171–200, 1979.

Nonlinear case 2.0: Using Green function of $I + \mathcal{L}$ (MB & J. Endal) Consider the operator $\mathcal{L} \mapsto I + \mathcal{L}$, i.e.,

 $\partial_t u + (I + \mathcal{L})[u^m] = 0 \qquad \Longleftrightarrow \qquad \partial_t u + \mathcal{L}[u^m] = -u^m.$

x-independent supersolution: $t \mapsto Y(t)$ solves $Y'(t) = -Y(t)^{1+(m-1)}$, hence

$$Y(t) \le \left[\frac{1}{(m-1)t}\right]^{\frac{1}{m-1}} = \frac{c_m}{t^{\frac{1}{m-1}}}$$

Moreover, comparison yields (with $Y(0) = \infty$)

$$\|u(t)\|_{L^{\infty}(\mathbb{R}^N)} \leq Y(t) \leq \frac{c_m}{t^{\frac{1}{m-1}}}.$$

Holds independently of the operator! But needs "good" nonlinearity.

L. VÉRON. Effets régularisants de semi-groupes non linéaires dans des espaces de Banach. Ann. Fac. Sci. Toulouse Math. (5), 1(2):171–200, 1979.

Nonlinear case 2.0: Using Green function of $I + \mathcal{L}$ (MB & J. Endal) Consider the operator $\mathcal{L} \mapsto I + \mathcal{L}$, i.e.,

 $\partial_t u + (I + \mathcal{L})[u^m] = 0 \qquad \Longleftrightarrow \qquad \partial_t u + \mathcal{L}[u^m] = -u^m.$

x-independent supersolution: $t \mapsto Y(t)$ solves $Y'(t) = -Y(t)^{1+(m-1)}$, hence

$$Y(t) \le \left[\frac{1}{(m-1)t}\right]^{rac{1}{m-1}} = rac{c_m}{t^{rac{1}{m-1}}}$$

Moreover, comparison yields (with $Y(0) = \infty$)

$$\|u(t)\|_{L^{\infty}(\mathbb{R}^N)} \leq Y(t) \leq \frac{c_m}{t^{\frac{1}{m-1}}}.$$

Holds independently of the operator! But needs "good" nonlinearity.

L. VÉRON. Effets régularisants de semi-groupes non linéaires dans des espaces de Banach. *Ann. Fac. Sci. Toulouse Math.* (5), 1(2):171–200, 1979.

General Assumptions

$$\begin{aligned} (\mathbf{G}_{1}) & \begin{cases} \int_{B_{R}(x_{0})} \mathbb{G}_{\mathcal{L}}^{x_{0}}(x) \, \mathrm{d}x \leq K_{1}R^{\alpha} & \text{ for all } R > 0 \text{ and some } \alpha \in (0,2], \\ \mathbb{G}_{\mathcal{L}}^{x_{0}}(x) \leq K_{2}R^{-(N-\alpha)} & \text{ when } x \in \mathbb{R}^{N} \setminus B_{R}(x_{0}). \end{cases} \\ (\mathbf{G}_{1}') & \begin{cases} \int_{B_{R}(x_{0})} \mathbb{G}_{\mathcal{L}}^{x_{0}}(x) \, \mathrm{d}x \leq K_{1}R^{\alpha} & \text{ for all } R > 0 \text{ and some } \alpha \in (0,2], \\ \mathbb{G}_{\mathcal{L}}^{x_{0}}(x) \leq K_{3} & \text{ when } x \in \mathbb{R}^{N} \setminus B_{R}(x_{0}). \end{cases} \\ (\mathbf{G}_{2}) & \|\mathbb{G}_{\mathcal{L}}^{x_{0}}\|_{L^{1}(\mathbb{R}^{N})} = \|\mathbb{G}_{\mathcal{L}}^{0}\|_{L^{1}(\mathbb{R}^{N})} \leq C_{1} < \infty. \end{aligned}$$

(G₃)
$$\|\mathbb{G}_{I+\mathcal{L}}^{x_0}\|_{L^p(\mathbb{R}^N)} = \|\mathbb{G}_{I+\mathcal{L}}^0\|_{L^p(\mathbb{R}^N)} \le C_p < \infty \text{ for some } p \in (1,\infty).$$

Notation. We systematically identify $\alpha = 2s$

Introduction

Theorem $(L^1 - L^\infty$ -smoothing under (G_1)

MB & J. Endal)

Let u be a weak dual solution of (GPME) with initial data u_0 . If (G₁) hold with $\alpha \in (0, 2)$ when $0 < R \le 1$ and with $\alpha = 2$ when R > 1, then:

$$\|u(\cdot,t)\|_{L^{\infty}(\mathbb{R}^{N})} \leq \tilde{C}(m) \begin{cases} t^{-N\theta_{\alpha}} \|u_{0}\|_{L^{1}(\mathbb{R}^{N})}^{\alpha\theta_{\alpha}} & \text{if } 0 < t \leq \|u_{0}\|_{L^{1}(\mathbb{R}^{N})}^{-(m-1)}, \\ t^{-N\theta_{2}} \|u_{0}\|_{L^{1}(\mathbb{R}^{N})}^{2\theta_{2}} & \text{if } t > \|u_{0}\|_{L^{1}(\mathbb{R}^{N})}^{-(m-1)}, \end{cases}$$

where $\theta_{\alpha} = (\alpha + N(m-1))^{-1}$ (defined for $\alpha \in (0, 2]$)

If moreover we have scaling in *x* properties of \mathcal{L} , $\mathcal{L}[u(rx)] = r^{\alpha} \mathcal{L}[u](x)$ then we can prove the stronger smoothing

$$\|u(t)\|_{\infty} \leq \overline{\kappa} \frac{\|u_0\|_1^{\alpha\vartheta_{\alpha}}}{t^{N\vartheta_{\alpha}}}$$

Introduction

MB & J. Endal)

Theorem $(L^1 - L^\infty$ -smoothing under (G_3)

Let u be a weak dual solution of (GPME) with initial data u_0 . If (G₃) hold, then:

$$\|u(\cdot,t)\|_{L^{\infty}(\mathbb{R}^{N})} \leq \begin{cases} c_{m}t^{-\frac{1}{m-1}} & \text{if } 0 < t \le t_{0} \\ c_{2}\|u_{0}\|_{L^{1}(\mathbb{R}^{N})} & \text{if } t > t_{0}, \end{cases}$$

where

$$t_0 := c_0 \|u_0\|_{L^1(\mathbb{R}^N)}^{-(m-1)}$$

We can also rewrite it as

$$\|u(\cdot,t)\|_{L^{\infty}(\mathbb{R}^{N})} \leq \frac{c'_{m}}{t^{\frac{1}{m-1}}} + c'_{2}\|u_{0}\|_{L^{1}(\mathbb{R}^{N})}$$

Nonlinear case (m > 1). Examples

 $\partial_t u = -\mathcal{L}[u^m]$

•
$$\mathcal{L} = (-\Delta)^{\frac{\alpha}{2}}$$
 with $\alpha \in (0, 2]$ gives

$$\|u(t)\|_{L^{\infty}(\mathbb{R}^{N})} \lesssim \frac{\|u_{0}\|_{L^{1}(\mathbb{R}^{N})}^{\alpha\theta}}{t^{-N\theta}} \quad \text{where } \theta := (\alpha + N(m-1))$$

A. DE PABLO, F. QUIRÓS, A. RODRÍGUEZ, AND J. L. VÁZQUEZ. A general fractional porous medium equation. *Comm. Pure Appl. Math.*, 65(9):1242–1284, 2012.

Nonlinear case (m > 1). Examples

$$\partial_t u = -\mathcal{L}[u^m]$$

•
$$\mathcal{L} = (-\Delta)^{\frac{\alpha}{2}}$$
 with $\alpha \in (0,2]$ gives

$$\|u(t)\|_{L^{\infty}(\mathbb{R}^{N})} \lesssim \frac{\|u_{0}\|_{L^{1}(\mathbb{R}^{N})}^{\alpha\theta}}{t^{-N\theta}} \quad \text{where } \theta := (\alpha + N(m-1))^{-1}.$$

A. DE PABLO, F. QUIRÓS, A. RODRÍGUEZ, AND J. L. VÁZQUEZ. A general fractional porous medium equation. *Comm. Pure Appl. Math.*, 65(9):1242–1284, 2012.

Nonlinear case (m > 1). Examples

$$\partial_t u = -\mathcal{L}[u^m]$$

•
$$\mathcal{L} = (-\Delta)^{\frac{\alpha}{2}}$$
 with $\alpha \in (0, 2]$ gives

$$\|u(t)\|_{L^{\infty}(\mathbb{R}^{N})} \lesssim \frac{\|u_{0}\|_{L^{1}(\mathbb{R}^{N})}^{\alpha\theta}}{t^{-N\theta}} \quad \text{where } \theta := (\alpha + N(m-1))^{-1}.$$

A. DE PABLO, F. QUIRÓS, A. RODRÍGUEZ, AND J. L. VÁZQUEZ. A general fractional porous medium equation. *Comm. Pure Appl. Math.*, 65(9):1242–1284, 2012.

Nonlinear case (m > 1). More Examples

$$\partial_t u + \mathcal{L}[u^m] = 0$$

• $\mathcal{L} = (-\Delta)^{\frac{\alpha}{2}}$ with $\alpha \in (0,2]$ gives • $\mathcal{L} = (\kappa^2 I - \Delta)^{\frac{\alpha}{2}} - \kappa^{\alpha} I$ with $\kappa > 0$ and $\alpha \in (0, 2)$ gives • $\mathcal{L} = \sum_{i=1}^{N} (-\partial_{r,r_i}^2)^{\frac{\alpha}{2}}$ with $\alpha \in (0,2)$ gives

Nonlinear case (m > 1). More Examples

$$\partial_t u + \mathcal{L}[u^m] = 0$$

•
$$\mathcal{L} = (-\Delta)^{\frac{\alpha}{2}}$$
 with $\alpha \in (0, 2]$ gives
 $\|u(t)\|_{L^{\infty}(\mathbb{R}^{N})} \lesssim t^{-N\theta} \|u_{0}\|_{L^{1}(\mathbb{R}^{N})}^{\alpha\theta}$ where $\theta := (\alpha + N(m-1))^{-1}$.
Here, $\mathbb{G}_{\mathcal{L}} \equiv |x - x_{0}|^{-(N-\alpha)}$. The "standard" case (also coeff. are allowed).
• $\mathcal{L} = (\kappa^{2}I - \Delta)^{\frac{\alpha}{2}} - \kappa^{\alpha}I$ with $\kappa > 0$ and $\alpha \in (0, 2)$ gives
 $\|u(t)\|_{L^{\infty}(\mathbb{R}^{N})} \lesssim \frac{c'_{m}}{t^{\frac{m}{m-1}}} + c'_{2}\|u_{0}\|_{L^{1}(\mathbb{R}^{N})}$

Here $\mathbb{G}_{\mathcal{L}}$ satisfies (G₃) (plus *x*-scaling, hence it can be improved). • $\mathcal{L} = \sum_{i=1}^{N} (-\partial_{x_i x_i}^2)^{\frac{\alpha}{2}}$ with $\alpha \in (0, 2)$ gives

$$||u(t)||_{L^{\infty}(\mathbb{R}^{N})} \lesssim t^{-\frac{1}{m-1}} + ||u_{0}||_{L^{1}(\mathbb{R}^{N})}.$$

Nonlinear case (m > 1). More Examples

$$\partial_t u + \mathcal{L}[u^m] = 0$$

•
$$\mathcal{L} = (-\Delta)^{\frac{\alpha}{2}}$$
 with $\alpha \in (0, 2]$ gives
 $\|u(t)\|_{L^{\infty}(\mathbb{R}^{N})} \lesssim t^{-N\theta} \|u_{0}\|_{L^{1}(\mathbb{R}^{N})}^{\alpha\theta}$ where $\theta := (\alpha + N(m-1))^{-1}$.
Here, $\mathbb{G}_{\mathcal{L}} \equiv |x - x_{0}|^{-(N-\alpha)}$. The "standard" case (also coeff. are allowed).
• $\mathcal{L} = (\kappa^{2}I - \Delta)^{\frac{\alpha}{2}} - \kappa^{\alpha}I$ with $\kappa > 0$ and $\alpha \in (0, 2)$ gives
 $\|u(t)\|_{L^{\infty}(\mathbb{R}^{N})} \lesssim \frac{c'_{m}}{t^{\frac{1}{m-1}}} + c'_{2}\|u_{0}\|_{L^{1}(\mathbb{R}^{N})}$

Here $\mathbb{G}_{\mathcal{L}}$ satisfies (G₃) (plus *x*-scaling, hence it can be improved). • $\mathcal{L} = \sum_{i=1}^{N} (-\partial_{x_i x_i}^2)^{\frac{\alpha}{2}}$ with $\alpha \in (0, 2)$ gives

$$||u(t)||_{L^{\infty}(\mathbb{R}^{N})} \lesssim t^{-\frac{1}{m-1}} + ||u_{0}||_{L^{1}(\mathbb{R}^{N})}.$$

Nonlinear case (m > 1). More Examples

$$\partial_t u + \mathcal{L}[u^m] = 0$$

•
$$\mathcal{L} = (-\Delta)^{\frac{\alpha}{2}}$$
 with $\alpha \in (0, 2]$ gives
 $\|u(t)\|_{L^{\infty}(\mathbb{R}^{N})} \lesssim t^{-N\theta} \|u_{0}\|_{L^{1}(\mathbb{R}^{N})}^{\alpha\theta}$ where $\theta := (\alpha + N(m-1))^{-1}$.
Here, $\mathbb{G}_{\mathcal{L}} \equiv |x - x_{0}|^{-(N-\alpha)}$. The "standard" case (also coeff. are allowed).
• $\mathcal{L} = (\kappa^{2}I - \Delta)^{\frac{\alpha}{2}} - \kappa^{\alpha}I$ with $\kappa > 0$ and $\alpha \in (0, 2)$ gives
 $\|u(t)\|_{L^{\infty}(\mathbb{R}^{N})} \lesssim \frac{c'_{m}}{t^{\frac{1}{m-1}}} + c'_{2}\|u_{0}\|_{L^{1}(\mathbb{R}^{N})}$

Here $\mathbb{G}_{\mathcal{L}}$ satisfies (G₃) (plus *x*-scaling, hence it can be improved). • $\mathcal{L} = \sum_{i=1}^{N} (-\partial_{x_i x_i}^2)^{\frac{\alpha}{2}}$ with $\alpha \in (0, 2)$ gives

$$||u(t)||_{L^{\infty}(\mathbb{R}^{N})} \lesssim t^{-\frac{1}{m-1}} + ||u_{0}||_{L^{1}(\mathbb{R}^{N})}.$$

Introduction

Nonlinear does *not* imply linear Consider

$$\partial_t u + \mathcal{L}[u^m] = 0,$$

with

$$\mathcal{L}[\psi](x) = \psi(x) - \int_{\mathbb{R}^N} \psi(z) J(x-z) \mathrm{d}z = (I - J *_x) [\psi](x)$$

where $J \ge 0$ such that $||J||_{L^1(\mathbb{R}^N)} = 1$ and $J \in L^p(\mathbb{R}^N)$.

• If m = 1, then $u(x,t) = u_0(x)e^{-t} + W(x, t)$

where $W \ge 0$ is some smooth function. Hence, no smoothing.

F. ANDREU-VAILLO, J. M. MAZÓN, J. D. ROSSI, J. TOLEDO-MELERO. Nonlocal diffusion problems. Mathematical Surveys and Monographs, volume 165. American Mathematical Society, Providence, RI; Real Sociedad Matemática Española, Madrid, 2010. Introduction

An "Almost Representation" Formula

Nonlinear does *not* **imply linear** Consider

$$\partial_t u + \mathcal{L}[u^m] = 0,$$

with

$$\mathcal{L}[\psi](x) = \psi(x) - \int_{\mathbb{R}^N} \psi(z) J(x-z) \mathrm{d}z = (I - J *_x) [\psi](x)$$

where $J \ge 0$ such that $||J||_{L^1(\mathbb{R}^N)} = 1$ and $J \in L^p(\mathbb{R}^N)$.

• If m = 1, then

$$u(x,t) = u_0(x)e^{-t} + W(x,t),$$

where $W \ge 0$ is some smooth function. Hence, no smoothing.

F. ANDREU-VAILLO, J. M. MAZÓN, J. D. ROSSI, J. TOLEDO-MELERO. Nonlocal diffusion problems. Mathematical Surveys and Monographs, volume 165. American Mathematical Society, Providence, RI; Real Sociedad Matemática Española, Madrid, 2010.

Nonlinear does *not* **imply linear** Consider

$$\partial_t u + \mathcal{L}[u^m] = 0,$$

with

$$\mathcal{L}[\psi](x) = \psi(x) - \int_{\mathbb{R}^N} \psi(z) J(x-z) \mathrm{d}z = (I - J *_x) [\psi](x)$$

where $J \ge 0$ such that $||J||_{L^1(\mathbb{R}^N)} = 1$ and $J \in L^p(\mathbb{R}^N)$.

• If m = 1, then

$$u(x,t) = u_0(x)e^{-t} + W(x,t),$$

where $W \ge 0$ is some smooth function. Hence, no smoothing.

F. ANDREU-VAILLO, J. M. MAZÓN, J. D. ROSSI, J. TOLEDO-MELERO. Nonlocal diffusion problems. Mathematical Surveys and Monographs, volume 165. American Mathematical Society, Providence, RI; Real Sociedad Matemática Española, Madrid, 2010.

Nonlinear does *not* imply linear Consider

$$\partial_t u + \mathcal{L}[u^m] = 0,$$

with

•

$$\mathcal{L}[\psi](x) = \psi(x) - \int_{\mathbb{R}^N} \psi(z) J(x-z) dz = (I - J *_x) [\psi](x)$$

where $J \ge 0$ such that $||J||_{L^1(\mathbb{R}^N)} = 1$ and $J \in L^p(\mathbb{R}^N)$.

If
$$m = 1$$
, then
 $u(x, t) = u_0(x)e^{-t} + W(x, t)$,

where $W \ge 0$ is some smooth function. Hence, no smoothing.

• If m > 1, then

$$||u(t)||_{L^{\infty}(\mathbb{R}^{N})} \lesssim t^{-\frac{1}{m-1}} + ||u_{0}||_{L^{1}(\mathbb{R}^{N})}.$$

Theorem (MB & J. Endal)

Assume m > 1 and $0 \le u_0 \in L^1(\mathbb{R}^N)$. Then solutions u of (GPME) are bounded when t > 0 in the following cases:

• (Linear implies nonlinear) The operator \mathcal{L} is such that $H_{\mathcal{L}}^{x_0}$ satisfies

$$\|H^{x_0}_{\mathcal{L}}(\cdot,t)\|_{L^{\infty}(\mathbb{R}^N)} \leq C(t) \quad and \quad \int_0^{\infty} e^{-t}C(t)^{\frac{p-1}{p}} dt < \infty.$$

$$\|J\|_{L^p(\mathbb{R}^N)} \leq C_{J,p} < \infty.$$

- The smoothing effects (SE) (both linear and nonlinear) are equivalent to GNS
- Green function estimates imply SE that imply GNS and by Lieb's duality also HLS.
- This method is flexible and allow to do also PME on Manifolds (E. Berchio, MB, G. Grillo, M. Muratori)
- When we assume more on the Green function we can get sharp boundary behaviour and boundary Harnack on domains (MB, A. Figalli, J. L. Vazquez)

Theorem (MB & J. Endal)

Assume m > 1 and $0 \le u_0 \in L^1(\mathbb{R}^N)$. Then solutions u of (GPME) are bounded when t > 0 in the following cases:

• (Linear implies nonlinear) The operator \mathcal{L} is such that $H_{\mathcal{L}}^{x_0}$ satisfies

$$\|H^{x_0}_{\mathcal{L}}(\cdot,t)\|_{L^{\infty}(\mathbb{R}^N)} \leq C(t) \quad and \quad \int_0^{\infty} e^{-t}C(t)^{\frac{p-1}{p}} dt < \infty.$$

$$\|J\|_{L^p(\mathbb{R}^N)} \leq C_{J,p} < \infty.$$

- The smoothing effects (SE) (both linear and nonlinear) are equivalent to GNS
- Green function estimates imply SE that imply GNS and by Lieb's duality also HLS.
- This method is flexible and allow to do also PME on Manifolds (E. Berchio, MB, G. Grillo, M. Muratori)
- When we assume more on the Green function we can get sharp boundary behaviour and boundary Harnack on domains (MB, A. Figalli, J. L. Vazquez)

Theorem (MB & J. Endal)

Assume m > 1 and $0 \le u_0 \in L^1(\mathbb{R}^N)$. Then solutions u of (GPME) are bounded when t > 0 in the following cases:

• (Linear implies nonlinear) The operator \mathcal{L} is such that $H_{\mathcal{L}}^{x_0}$ satisfies

$$\|H^{x_0}_{\mathcal{L}}(\cdot,t)\|_{L^{\infty}(\mathbb{R}^N)} \leq C(t) \quad and \quad \int_0^{\infty} e^{-t}C(t)^{\frac{p-1}{p}} dt < \infty.$$

$$\|J\|_{L^p(\mathbb{R}^N)} \leq C_{J,p} < \infty.$$

- The smoothing effects (SE) (both linear and nonlinear) are equivalent to GNS
- Green function estimates imply SE that imply GNS and by Lieb's duality also HLS.
- This method is flexible and allow to do also PME on Manifolds (E. Berchio, MB, G. Grillo, M. Muratori)
- When we assume more on the Green function we can get sharp boundary behaviour and boundary Harnack on domains (MB, A. Figalli, J. L. Vazquez)

Theorem (MB & J. Endal)

Assume m > 1 and $0 \le u_0 \in L^1(\mathbb{R}^N)$. Then solutions u of (GPME) are bounded when t > 0 in the following cases:

• (Linear implies nonlinear) The operator \mathcal{L} is such that $H_{\mathcal{L}}^{x_0}$ satisfies

$$\|H^{x_0}_{\mathcal{L}}(\cdot,t)\|_{L^{\infty}(\mathbb{R}^N)} \leq C(t) \quad and \quad \int_0^{\infty} e^{-t}C(t)^{\frac{p-1}{p}} dt < \infty.$$

$$\|J\|_{L^p(\mathbb{R}^N)} \leq C_{J,p} < \infty.$$

- The smoothing effects (SE) (both linear and nonlinear) are equivalent to GNS
- Green function estimates imply SE that imply GNS and by Lieb's duality also HLS.
- This method is flexible and allow to do also PME on Manifolds (E. Berchio, MB, G. Grillo, M. Muratori)
- When we assume more on the Green function we can get sharp boundary behaviour and boundary Harnack on domains (MB, A. Figalli, J. L. Vazquez)

On negatively curved manifolds...

Theorem (Smoothing effects on M

(E. Berchio, MB, G. Grillo, M. Muratori))

Let u be the WDS to $u_t = -(-\Delta_M)^s u^m$, corresponding to any nonnegative initial datum $u_0 \in L^1(M)$. Then there exists C = C(N, k, c, s, m) > 0 such that

$$(3) \quad \|u(t)\|_{L^{\infty}(M)} \leq C\left(\frac{\|u(t)\|_{L^{1}(M)}^{2s\vartheta_{1}}}{t^{N\vartheta_{1}}} \vee \|u_{0}\|_{L^{1}(M)}\right) \leq C\left(\frac{\|u_{0}\|_{L^{1}(M)}^{2s\vartheta_{1}}}{t^{N\vartheta_{1}}} \vee \|u_{0}\|_{L^{1}(M)}\right)$$

If, in addition, M is Cartan-Hadamard with negative curvature, then for some C = C(N, s, m) > 0 we have

(4)
$$\|u(t)\|_{L^{\infty}(M)} \leq C \, \frac{\|u(t)\|_{L^{1}(M)}^{2s\vartheta_{1}}}{t^{N\vartheta_{1}}} \leq C \, \frac{\|u_{0}\|_{L^{1}(M)}^{2s\vartheta_{1}}}{t^{N\vartheta_{1}}} \,,$$

Furthermore, if M has negative sectional curvature, (and $u_0 \neq 0$), then (5)

$$\|u(t)\|_{L^{\infty}(M)} \leq \frac{C}{t^{\frac{1}{m-1}}} \left[\log \left(t \|u_0\|_{L^1(M)}^{m-1} \right) \right]^{\frac{s}{m-1}} \qquad \forall t \geq e^{(N-1)(m-1)\sqrt{c}} \|u_0\|_{L^1(M)}^{-(m-1)},$$

for another C = C(N, s, c, m) > 0.

Introduction

 Operation
 <t

An "Almost Representation" Formula

The End

Thank You!!! Grazie Mille!!!

Dankeschön!!!

Some References: (in inverse chronological order)

- [BE22] M. B., J. ENDAL, Boundeness of solutions to Nonlinear and Nonlocal Diffusion equations driven by a convex nonlinearity of Porous medium type. In preparation (2022)
- [BV2] M. B., J. L. VÁZQUEZ, Fractional Nonlinear Degenerate Diffusion Equations on Bounded Domains Part I. Existence, Uniqueness and Upper Bounds *Nonlin. Anal. TMA (2016).*
- [BSV] M. B., Y. SIRE, J. L. VÁZQUEZ, Existence, Uniqueness and Asymptotic behaviour for fractional porous medium equations on bounded domains. *Discr. Cont. Dyn. Sys.* (2015).
- [BFR] M. B., A. FIGALLI, X. ROS-OTON, Infinite speed of propagation and regularity of solutions to the fractional porous medium equation in general domains. *Comm. Pure Appl. Math* (2017).
- [BFV1] M. B., A. FIGALLI, J. L. VÁZQUEZ, Sharp boundary estimates and higher regularity for nonlocal porous medium-type equations in bounded domains. *Analysis & PDE (2018)*
- [BFV2] M. B., A. FIGALLI, J. L. VÁZQUEZ, Sharp boundary behaviour of solutions to semilinear nonlocal elliptic equations. *Calc. Var. PDE (2018).*
 - See my web-page for slides and some videos: http://verso.mat.uam.es/~matteo.bonforte