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The Dirichlet Problem for Diffusion Equations

The Dirichlet Problem for Diffusion Equations in Ω ⊂ RN

We consider, in a bounded and smooth domain Ω ⊂ RN solutions to ∂τu = 1
m ∆ (um) = ∇ ·

(
um−1∇u

)
, in (0,+∞)× Ω

u(0, ·) = u0 , in Ω
u = 0 , on (0,+∞)× ∂Ω

Existence and uniqueness of weak solutions for this problem is well understood:

m = 1: Heat Equation. (Fourier)
m > 1: Porous Medium regime (slow diffusion, finite speed of propagation)

0 < m < 1: Fast Diffusion regime (extinction in finite time)
Complete references for PME/FDE: Vázquez books (2006-07).

m ≤ 0: Ultra Fast Diffusion regime. (possible non-existence)
Dirichlet problem: solutions fail to exists, Vázquez (1992).
Cauchy problem: non-existence for L1-data, Vázquez (1992).
Optimal Lp-conditions on data for existence, Daskalopoulos-DelPino (1994-97).
Neumann/periodic: Gradient flow approach (JKO-scheme), Iacobelli (2019),
Iacobelli-Patacchini-Santambrogio (2019).
Dynamical and other boundary conditions: Schimperna-Segatti-Zelik (2012-16).
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The Dirichlet Problem for Diffusion Equations

About Nonlinear Diffusions
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Asymptotic behaviour of Heat and Porous Medium Equations

Asymptotic behaviour of the Heat Equation ut = ∆u. (Fourier ∼1822)
Let u0 ≥ 0 and let (λk, φk) be the eigen-elements of the Dirichlet Laplacian:

u(τ, x) =

∞∑
k=1

e−λkτ û0,k φk(x) where û0,k =

∫
Ω

u0φk dx

From the above formula it is quite simple to deduce that

eλ1τu(τ, ·) −−−−→
τ→∞

û0,1φ1 in Lp(Ω), ∀p ∈ [1,∞]

Actually, one can do better:

Relative Error Convergence∥∥∥∥ u(τ, ·)
eλ1τ û0,1φ1

− 1
∥∥∥∥

L∞
≤ e−(λ2−λ1)τ

∞∑
k=2

e−(λk−λ2)τ |û0,k|
∥∥∥∥φk

φ1

∥∥∥∥
L∞(Ω)︸ ︷︷ ︸

<+∞

Essential ingredients: second spectral gap λ2 − λ1 > 0, and
boundary behaviour of eigenfunctions: |φk| . |φ1|

Sharp result. Relies on representation formula, Fourier and Spectral analysis
More general linear operators can be treated essentially in the same way.
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e−λkτ û0,k φk(x) where û0,k =
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Asymptotic behaviour of Heat and Porous Medium Equations

Asymptotic behaviour of the Porous Medium Equation ut = ∆um, m > 1

The asymptotic behaviour is described in terms of the “Friendly Giant”:

U(τ, x) = S(x) τ−1/(m−1) , with U(0, x) = +∞ .

Here, S is the unique nonnegative solution to the stationary problem

(EDP) −∆Sm = c S in Ω, S = 0 on ∂Ω,

with c = 1/(m− 1) > 0, since m > 1.
Logarithmic time rescaling:

t = log(τ + 1) and w(t, x) = τ 1/(m−1)u(τ, x) ,

we transform the parabolic problem into ∂tw(t, x) = ∆wm(t, x) + c w(t, x) , (t, x) ∈ (0,∞)× Ω ,
w(t, x) = 0 , (t, x) ∈ (0,∞)× ∂Ω ,
w(0, x) = u0(x) , x ∈ Ω .

The separation of variables solution U becomes stationary.
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Asymptotic behaviour of Heat and Porous Medium Equations

Asymptotic behaviour of the Porous Medium Equation (continued)

Relative Error Convergence, rescaled variables∥∥∥∥w(t, ·)
S
− 1
∥∥∥∥

L∞(Ω)

. e−t for all t� 1

Relative Error Convergence, original variables∥∥∥∥∥u(τ, ·)
U(τ, )̇

− 1

∥∥∥∥∥
L∞(Ω)

≤ 2
m− 1

t0

t0 + τ
for all τ ≥ t0

t0 ∼
(∫

Ω
u0φ1 dx

)−(m−1), where φ1 is the first eigenfunction of the Laplacian.

The decay rate 1/τ is sharp: it is realized by

U(τ + 1, x) =
S(x)

(1 + τ)
1

m−1
with initial datum U(1, x) = S(x).

Result obtained first by Aronson-Peletier (1981), then generalized by Vázquez
(2004). New (quantitative) proof for more general (even nonlocal) diffusion
equations of PME-type, by M.B.-Figalli-Sire-Vázquez (2015-18).
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Asymptotic behaviour of Heat and Porous Medium Equations
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Some properties of Solutions to FDE

Some Properties of Solutions to the FDE, 0 < m < 1.
The initial datum is chosen to be

0 ≤ u0 ∈ Lr(Ω) with r ≥ 1 and r >
N(1− m)

2
,

hence the corresponding solution is bounded and nonnegative.
Notice that r > 1 only when m < N−2

N : in the very fast diffusion range.
The mass

∫
Ω

u(y, τ)dy is NOT preserved along the evolution
hence solutions extinguish in finite time

∃ T = T(u0) : u(τ, ·) ≡ 0 ∀ τ ≥ T
(Consequence of Sobolev and Poincaré inequalities).

When u0 ≥ 0, solutions are indeed strictly positive in Ω× (0,T)
as a consequence of parabolic (intrinsic) Harnack inequalities:

Good FDE regime: when m ∈
(

N−2
N , 1

)
,

Dibenedetto, Gianazza, Kwong, Vespri (Indiana 1991, Ann.SNS 2010, LNM2012)

Very FDE regime: when m ∈
(
0, N−2

N

]
, Bonforte-Vázquez (Adv. Math. 2010)

Bounded positive solutions are regular:
DiBenedetto-Kwong-Vespri (Indiana 1991)

They are regular up to the boundary: at least C1(Ω).
They are smooth in the interior: C∞t,x (Ω× (0, T)), and even analytic!
Sharp boundary regularity recently obtained by Jin-Xiong (Preprint 2020)

The question is: what happens close to the extinction time T?
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Time rescaling and the stationary problem

Asymptotic behaviour of the Fast Diffusion Equation, m < 1

The rescaled Problem and stationary solutions
uτ = ∆(um) ,
u(0, ·) = u0,
u|∂Ω ≡ 0 ,

−−−−−−−−−−→
Time-Rescaling


wt = ∆(wm) + cw,
w(0, ·) = u0,
w|∂Ω ≡ 0 ,

where τ ∈ [0, T(u0))
log-rescaling−−−−−→

“rallenty”
t ∈ [0,∞) , and

w(t, x) = e
t

(1−m)T u
(

T − Te−t/T , x
)

and c :=
1

(1− m)T
.

or
u(τ, x) =

(
T − τ

T

) 1
1−m

w(t, x) with t = T log

(
T

T − τ

)
.

The asymptotic behaviour is related to the stationary equation

(EDP) −∆Sm = c S in Ω, S = 0 on ∂Ω,

through the separate variables solution:

U(τ, x) = S(x)

(
T − τ

T

) 1
1−m

−−−−−−−→
Rescaling

S(x)

Here, a crucial exponent naturally arises: ms = (N − 2)/(N + 2).
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Time rescaling and the stationary problem

Statement of the Problem

We are interested in describing the behaviour near the extinction time:

u(τ, x)
???∼

τ → T−
S(x)

(
T − τ

T

) 1
1−m

After rescaling, the precise question becomes:
Problem. Given a nonnegative solution w to the (rescaled) FDE: wt = ∆(wm) + cw,

w(0, ·) = u0,
w|∂Ω ≡ 0 ,

is it true that there exists a stationary solution S such that

w(t, ·) ???−−−→
t→∞

S

and in which sense? If yes, what can we say about convergence rates?
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Previous results

Previous results
Recall that positive bounded stationary solution exist only when m ∈ (ms, 1), with
ms = (N − 2)/(N + 2). Hence the analysis will be resticted to this range.

(First Pioneering Result) Berryman-Holland (ARMA 1980)

Let w be a bounded solution to the rescaled problem, and m ∈ (ms, 1).
Then for any sequence of times tn →∞ as n→∞, there exist a stationary
solution S such that

w(tn)
W1,2

0 (Ω)
−−−−−→

n→∞
S .

DIFFICULTY: Stationary solutions need not to be unique!
Different time sequences can a priori converge to different stationary solutions.
However, the asymptotic profile may be unique also when the set of stationary solu-
tions contains more than one element.

(Uniqueness of asymptotic profile) Feiresl-Simondon (JDDE 2000)

Let w be a bounded solution to the rescaled problem, and m ∈ (ms, 1).
Then there exists one stationary solution S such that

w(t)
C(Ω)−−−→
t→∞

S .



Outline of the talk Introduction Asymptotic behaviour of the Fast Diffusion Equation, m < 1 The Linear Problem The Nonlinear Entropy Method

Previous results

Previous results
Recall that positive bounded stationary solution exist only when m ∈ (ms, 1), with
ms = (N − 2)/(N + 2). Hence the analysis will be resticted to this range.

(First Pioneering Result) Berryman-Holland (ARMA 1980)

Let w be a bounded solution to the rescaled problem, and m ∈ (ms, 1).
Then for any sequence of times tn →∞ as n→∞, there exist a stationary
solution S such that

w(tn)
W1,2

0 (Ω)
−−−−−→

n→∞
S .

DIFFICULTY: Stationary solutions need not to be unique!
Different time sequences can a priori converge to different stationary solutions.
However, the asymptotic profile may be unique also when the set of stationary solu-
tions contains more than one element.

(Uniqueness of asymptotic profile) Feiresl-Simondon (JDDE 2000)

Let w be a bounded solution to the rescaled problem, and m ∈ (ms, 1).
Then there exists one stationary solution S such that

w(t)
C(Ω)−−−→
t→∞

S .



Outline of the talk Introduction Asymptotic behaviour of the Fast Diffusion Equation, m < 1 The Linear Problem The Nonlinear Entropy Method

Previous results

Previous results
Recall that positive bounded stationary solution exist only when m ∈ (ms, 1), with
ms = (N − 2)/(N + 2). Hence the analysis will be resticted to this range.

(First Pioneering Result) Berryman-Holland (ARMA 1980)

Let w be a bounded solution to the rescaled problem, and m ∈ (ms, 1).
Then for any sequence of times tn →∞ as n→∞, there exist a stationary
solution S such that

w(tn)
W1,2

0 (Ω)
−−−−−→

n→∞
S .

DIFFICULTY: Stationary solutions need not to be unique!
Different time sequences can a priori converge to different stationary solutions.
However, the asymptotic profile may be unique also when the set of stationary solu-
tions contains more than one element.

(Uniqueness of asymptotic profile) Feiresl-Simondon (JDDE 2000)

Let w be a bounded solution to the rescaled problem, and m ∈ (ms, 1).
Then there exists one stationary solution S such that

w(t)
C(Ω)−−−→
t→∞

S .



Outline of the talk Introduction Asymptotic behaviour of the Fast Diffusion Equation, m < 1 The Linear Problem The Nonlinear Entropy Method

Previous results

Previous results
Recall that positive bounded stationary solution exist only when m ∈ (ms, 1), with
ms = (N − 2)/(N + 2). Hence the analysis will be resticted to this range.

(First Pioneering Result) Berryman-Holland (ARMA 1980)

Let w be a bounded solution to the rescaled problem, and m ∈ (ms, 1).
Then for any sequence of times tn →∞ as n→∞, there exist a stationary
solution S such that

w(tn)
W1,2

0 (Ω)
−−−−−→

n→∞
S .

DIFFICULTY: Stationary solutions need not to be unique!
Different time sequences can a priori converge to different stationary solutions.
However, the asymptotic profile may be unique also when the set of stationary solu-
tions contains more than one element.

(Uniqueness of asymptotic profile) Feiresl-Simondon (JDDE 2000)

Let w be a bounded solution to the rescaled problem, and m ∈ (ms, 1).
Then there exists one stationary solution S such that

w(t)
C(Ω)−−−→
t→∞

S .



























Outline of the talk Introduction Asymptotic behaviour of the Fast Diffusion Equation, m < 1 The Linear Problem The Nonlinear Entropy Method

Previous results

(Convergence in Relative Error) M.B.-Grillo-Vázquez (JMPA 2012)

Let m ∈ (ms, 1) and let u be the solution to the Dirichlet problem and
T = T(m, d, u0) be its extinction time. Let S be the positive classical
solution to the elliptic problem (EDP), such that ‖w(t)− S‖L∞(Ω) → 0 as
t→∞. Then we have

lim
τ→T−

∥∥∥∥ u(τ, ·)
U(τ, ·)

− 1
∥∥∥∥

L∞(Ω)

= lim
t→∞

∥∥∥∥w(t, ·)
S
− 1
∥∥∥∥

L∞(Ω)

= 0

where U(τ, x) = S(x) [(T − τ)/T]
1/(1−m).

Equivalently, the following improved Global Harnack Principle (GHP) holds

c(τ)−1 S(x) (T − τ)1/(1−m) ≤ u(τ, x) ≤ c(τ) S(x) (T − τ)1/(1−m).

with
0 < c(τ) −−−−→

τ→T−
1 , and S(x) � dist

(
x, ∂Ω

) 1
m

The GHP (with constants c(τ) 6→ 1) was firstly proven by DiBenedetto-Kwong-Vespri (Indiana
1991) and used as a key-tool for higher regularity estimates. It has been used more recently by
Jin-Xiong to prove sharp boundary regularity (Preprint 2020).
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Rates of convergence

Rates of convergence
Let us define the set

O :=
{

Ω ⊂ RN , Ω open : Ω is compact and ∂Ω ∈ C2,α}
The topology onO can be defined through a family of neighborhoods as follows:
Nε(Ω) := {Ω′ ∈ O : ∃ Φ ∈ C2,α(RN ;RN) with ‖Φ− Id‖C2,α < ε s.t. Ω′ = Φ(Ω) }.

(Sharp Rates of Convergence) M.B.-Figalli (CPAM 2020, to appear)

There exists a open and dense set in G ⊂ O such that for any domain Ω ∈ G
the following holds. Let w be a bounded solution to the rescaled problem,
and m ∈ (ms, 1). Let S be the stationary solution s. t. ‖w(t)− S‖L∞(Ω) → 0
as t→∞. Then, there exist λm, κ > 0 such that for all t0 > 0 and all t ≥ t0∫

Ω

∣∣∣∣wm(t, x)

Sm(x)
− 1
∣∣∣∣2 S1+m(x) dx ≤ κ e−2λm t ,

and the decay rate λm > 0 is sharp. Also, for all t0 > 0 and all t ≥ t0∥∥∥∥w(t, ·)
S(·)

− 1
∥∥∥∥

L∞(Ω)

≤ κ e−
λm
4N t.
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Rates of convergence

In original variables, our main results read:
(recall that here T = T(u0) is the finite extinction time)∫

Ω

∣∣∣∣ um(τ, x)

Um(τ, x)
− 1
∣∣∣∣2 S1+m(x) dx ≤ κ′

(
T − τ

T

) 2
T λm

for all τ ∈ (τ0,T].

where U(τ, x) = S(x) [(T − τ)/T]
1/(1−m). Also,

∥∥∥∥ u(τ, ·)
U(τ, ·)

− 1
∥∥∥∥

L∞(Ω)

≤ κ′
(

T − τ
T

) λm
4N T

for all τ ∈ (τ0,T].

Remark. When m is close to 1, more precisely for m] < m < 1, some first (non
sharp) rates of convergence were obtained by M.B.- Grillo-Vázquez (JMPA 2012), by
entropy methods based on quantitative continuity with respect to m. The expression of
m] 	 ms = N−2

N+2 is explicit, but complicated (it depends on the constant in the elliptic
Harnack inequality).
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Change of notations

Change of notations
In what follows we change functions and parameters as follows: let

p = 1/m > 1, v(t, x) = wm(t, x) and V = Sm ,
so that wt = ∆(wm) + cw,

w(0, ·) = u0,
w|∂Ω ≡ 0 ,

−−−−−−−−−−−−→
Notation-Change

 ∂tvp = ∆v + cvp,
v(0, ·) = um

0 ,
v|∂Ω ≡ 0 ,

and
∆Sm = cS −−−−−−−−−−−−→

Notation-Change
−∆V = cVp

both with homogeneous Dirichlet lateral boundary condition. Recall that

ms :=
N − 2
N + 2

< m < 1 −−−−−−−−−−−−→
Notation-Change

1 < p <
N + 2
N − 2

:= ps .

For our new entropy method to work, we will need to use (H1)δ , which reads:
given a δ ∈ (0, 1) (to be fixed later) there exists a t0 > 0 such that

(H1)δ |f (t, x)| = |v(t, x)− V(x)| ≤ δV(x) for a.e. (t, x) ∈ [t0,∞)× Ω

Note that (H1)δ is always true, since we know that ‖v(t)/V − 1‖L∞
t→∞−−−→ 0,

as proven by M.B.-Grillo-Vázquez (JMPA 2012).
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Stationary Solutions and Semilinear Elliptic Equations

Properties of Stationary Solutions
Consider positive classical solutions V to the homogeneous Dirichlet problem
for

−∆V = cVp with 1 < p <
N + 2
N − 2

recall that Ω is a regular domain of class C2,α.
Existence is guaranteed in all the exponent range
Boundedness is guaranteed via DeGiorgi-Nash-Moser techniques.
Absolute bounds: there exists C = C(Ω) > 0 such that ‖V‖L∞ ≤ C.
(Gidas-Spruck, DeFiguereido-Lions-Nussbaum, ’80s)
Nonnegative solutions are indeed positive in Ω by Harnack inequalities,
and have the precise boundary behaviour V � dist(·, ∂Ω).
Regularity: solutions are classical in the interior, even C∞(Ω), and
regular up to the boundary, C2,α(Ω).
Uniqueness depends on the domain.

Holds on balls
Does not hold on annuli
Several conditions are present in the literature.
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Linearization

The linearized Problem

Consider the linear parabolic (weighted) equation

pVp−1∂t f = ∆f + cpVp−1f
(

ε→0←−−−−−−−−
v=V+εf

∂tvp = ∆v + cvp
)

i.e. the linearization around the stationary state of the rescaled nonlinear FDE.

Notice that V is not a stationary solution to the linearized equation:
indeed −∆V = cVp 6= cpVp, since p > 1.
Natural question: which are the stationary states of such equation?
Stationary solutions ϕ must satisfy the homogeneous Dirichlet problem
associated to the linear elliptic equation

−∆ϕ = cpVp−1ϕ .

understanding wether or not the above linear elliptic equation admits
nontrivial solutions, is essential.
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The spectrum

The Spectrum of −∆ on L2
V := L2

Vp−1(Ω)

(−∆) is a linear unbounded selfadjoint operator on L2
V , associated to the

Dirichlet form Q(f ) =
∫

Ω
|∇f |2 dx, and has a discrete spectrum:

0 < λV,1 < λV,2 < · · · < λV,k < λV,k+1 →∞

Denote by πVk : L2
V → Vk the projections on the eigenspaces Vk, Nk =

dim(Vk), and by {φk,j}j=1,...,Nk the basis of Vk of normalized eigenfunctions.

ψ =

∞∑
k=1
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Linear Entropy Method and Improved Poincaré Inequalities

Linear Entropy Method and Improved Poincaré Inequalities

Consider solutions to the linearized equation: pVp−1∂t f = ∆f + cpVp−1f

Linear Entropy

E[f ] =

∫
Ω

f 2Vp−1 dx .

Linear Entropy-Production

d
dt

E[f (t)] =−2
p

(∫
Ω

|∇f (t, x)|2 dx− pc
∫

Ω

f 2(t, x)Vp−1(x) dx
)

=−2
p

I[f (t)]

Improved Poincaré inequality ! Entropy-Entropy production inequality

λpE[f ] = λp

∫
Ω

f 2Vp−1 dx ≤
∫

Ω

|∇f |2 dx− cp
∫

Ω

f 2Vp−1 dx = I[f ] .

In order to have λp > 0, suitable orthogonality condition are required.
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Linear Entropy Method and Improved Poincaré Inequalities (continued)

Entropy and Poincaré imply Exponential Decay

d
dt

E[f (t)] = −2
p

I[f (t)] ≤ −2
p
λpE[f (t)] =⇒ E[f (t)] ≤ e−

2
pλp tE[f (0)]

To prove the Improved Poincaré, we need some conditions:
(H2) There is no nontrivial solution (i.e. ϕ 6≡ 0) to the homogeneous Dirichlet
problem for the equation

−∆ϕ = cpVp−1ϕ .

Under assumption (H2), it is convenient to define the integer kp > 1 as the
biggest integer k for which pc > λV,k, so that

0 < λV,1 = c < · · · < λV,kp < pc < λV,kp+1

Under assumption (H2), let ϕk = πVk (ϕ) = 0, for all k ≤ kp. Then

λpE[ϕ] = (λkp+1−cp)

∫
Ω

ϕ2Vp−1 dx ≤
∫

Ω

|∇ϕ|2 dx−cp
∫

Ω

ϕ2Vp−1 dx = I[ϕ] .
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Linear Entropy Method and Improved Poincaré Inequalities

The orthogonality conditions are preserved along the linear flow.

In order to apply the improved Poincaré inequality to the solutions to the linear parabolic
equation, we have to make sure that the orthogonality conditions are preserved along
the evolution, namely:

If πVk (f (t0)) = 0 for all k = 1, . . . , kp,
then πVk (f (t)) = 0 for all t ≥ t0 and all k = 1, . . . , kp .

Indeed, given ψk ∈ Vk, we know that −∆ψk = λV,kVp−1ψk so that:

d
dt

∫
Ω

f (t, x)ψk(x) Vp−1(x) dx = [. . . ] =
pc− λV,k

p

∫
Ω

f (t, x)ψk(x)Vp−1(x) dx

As a consequence, for all ψk ∈ Vk∫
Ω

f (t, x)ψk(x) Vp−1(x) dx = e
pc−λV,k

p (t−t0)
∫

Ω

f (t0, x)ψk(x) Vp−1(x) dx .

If we do not impose the orthogonality condition at the initial time, then
the projections of the solution eventually blow up, since pc− λV,k > 0
(in infinite time and with an exponential rate).
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Assumption (H2) is generically true

Assumption (H2) is generically true
Assumption (H2) admits several equivalent statements:

The homogeneous Dirichlet problem

−∆ϕ = cpVp−1ϕ in Ω , ϕ = 0 on ∂Ω ,

admits no nontrivial solution. Or, the only solution is ϕ ≡ 0.
Equivalently: cp is not an eigenvalue for the Dirichlet Laplacian on L2

V ,
i.e. cp 6∈ SpecL2

V (Ω)(−∆).
This fact is not so easy to check in general, and it depends on the geometry
of the domain. Indeed, it turns out that this result is generically true. Define

O :=
{

Ω ⊂ RN , Ω open : Ω is compact and ∂Ω ∈ C2,α
}

with the topology given by the family of neighborhoods

Nε(Ω) := {Ω′ ∈ O : ∃ Φ ∈ C2,α(RN ;RN) with ‖Φ− Id‖C2,α < ε s.t. Ω′ = Φ(Ω) }
We define the family of (good) sets for which (H2) holds, as follows:

G := {Ω ∈ O : cp 6∈ SpecL2
V (Ω)(−∆)}

Theorem (Good sets are Generic) Saut-Temam (CPDE 1979)

The set G ⊂ O is open and dense (in the topology given byNε).
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Assumption (H2) is generically true

Some examples.
We know that (H2) is true on balls of RN

In dimension N = 2, (H2) holds for domains which are convex in the
direction xi, i = 1, 2 and symmetric with respect to the hyperplanes
xi = 0, i = 1, 2. (Dancer 1990, Damascelli-Grossi-Pacella 1999).

By the results of Zou (1994), (H2) holds for C1 perturbation of balls.
As for Annuli: we know that this is not true, however, if we perturb a
bit the annulus in the C2,α sense above, then (H2) holds true.
Perturbation can be done only on a small part of the boundary of Ω.
For p close to 1 the result is true:

λV,kp+1 − λV,kp ∼ λV,2 − λV,1
p→1+−−−−→ λ2 − λ1

and c = λV,1 � pc � λV,2.
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Comparing linear and nonlinear quantities

Nonlinear Entropy method.
Recall that, as consequence of convergence in relative error: ∀δ ∈ (0, 1) ∃ t0 > 0 :

(H1)δ |f (t, x)| = |v(t, x)− V(x)| ≤ δV(x) for a.e. (t, x) ∈ [t0,∞)× Ω

Nonlinear Entropy

E [v] =

∫
Ω

[(
vp+1 − Vp+1)− p + 1

p
(vp − Vp)V

]
dx ,

Comparing linear and nonlinear Entropy
Assume (H1)δ , then for all t ≥ t0 we have for some cp > 0:

p + 1
2(1 + cpδ)2 E[f ] ≤ E [v] ≤ p + 1

2
(1 + cpδ)

2 E[f ]

Comparing linear and nonlinear Entropy Production
Assume (H1)δ , then for all t ≥ t0 we have for some κp > 0:

d
dt
E [v(t)] = −p + 1

p
I[f (t)] + Rp[f (t)]

where ∣∣Rp[f ]
∣∣ ≤ cκp

∫
Ω

|f |3Vp−2 dx .
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Almost orthogonality and improved Poincaré inequalities

Almost orthogonality conditions
We have defined kp as the largest k such that pc > λV,k and

λp := λV,kp+1 − cp > 0 ,
Let us define Linear Rayleigh-type quotients

Qk,j[ψ] :=

∣∣∫
Ω
ψ φk,j Vp−1 dx

∣∣(∫
Ω
ψ2 Vp−1 dx

) 1
2

=

∣∣〈ψ, φk,j〉L2
V

∣∣
‖ψ‖L2

V

=

∣∣〈ψ, φk,j〉L2
V

∣∣
E[ψ]

1
2

.

We say that a function f ∈ L2
V satisfies the almost-orthogonality condition if

(AOL)ε ∃ ε ∈ (0, 1) s.t. Qk,j[f ] ≤ ε ∀ k = 1, . . . , kp and j = 1, . . . ,Nk .

Let us also define Nonlinear Rayleigh-type quotients

Qk,j[v] :=

∣∣∫
Ω

(
vp − Vp

)
φk,j dx

∣∣(∫
Ω

[
(vp+1 − Vp+1)− p+1

p (vp − Vp)V
]

dx
) 1

2
:=
Ak,j[v]

E [v]
1
2
.

and an analogous almost-orthogonality condition:

(AON)ε ∃ ε ∈ (0, 1) s.t. Qk,j[v] ≤ ε ∀ k = 1, . . . , kp and j = 1, . . . ,Nk .
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Almost orthogonality and improved Poincaré inequalities

Comparing linear and nonlinear Rayleigh quotients
Assume (H1)δ , then for all t ≥ t0 we have

√
2p√

p + 1(1 + cpδ)
Qk,j[f (t)]− c̃k,j,pE[f ]

1
2 ≤ Qk,j[v(t)]

≤
√

2p√
p + 1

(1 + cpδ)Qk,j[f (t)] + c̃k,j,pE[f ]
1
2

Clearly, this implies that the Linear and Nonlinear almost orthogonality con-
ditions are equivalent: when δ � ε we have

(AOL)ε =⇒ (AON)κ1ε =⇒ (AOL)κ2ε
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Almost orthogonality and improved Poincaré inequalities

Almost orthogonality, improved Poincaré inequalities and Entropy-Production

Improved Poincaré inequality for almost-orthogonal functions

Under assumption (H2), let ϕ ∈ L2
V be such that (AOL)ε holds true with

ε > 0. Then, the following improved Poincaré inequality holds

(pc + λp − γpε
2)

∫
Ω

ϕ2Vp−1 dx ≤
∫

Ω

|∇ϕ|2 dx ,

Equivalently:
(λp − γpε

2) E[ϕ] ≤ I[ϕ] .

Entropy Entropy-Production inequality I
Assume (H1)δand (H2) and assume that for some t ≥ t0 we have that f (t)
satisfies (AOL)ε. Then we have that

d
dt
E [v(t)] ≤ −

[
2λp

p
− γp(ε2 + δ)

]
E [v(t)] .
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Almost orthogonality and improved Poincaré inequalities

Entropy Entropy-Production inequality II
Assume (H1)δ and (H2), and assume that for some η > 0 we have:∥∥∥∥v(t)− V

V

∥∥∥∥
L∞(Ω)

≤ κ E [v(t − 1)]η and Qk,j[f (t)] ≤ cp,k,j E [v(t − 1)]
η
2 ,

for all t ≥ t0 ≥ 1 and all k = 1, . . . , kp, j = 1, . . . ,Nk.
Then, for all t ≥ t0 ≥ 1 we obtain

d
dt
E [v(t)] ≤ −

2λp

p
E [v(t)] + κp E [v(t − 1)]η E [v(t)] .

Super solutions to ODEs with delay
Let σ > 0 and Y : [t0,∞)→ [0,∞) satisfy the following ODE for all
t ≥ t0 + 1

Y ′(t) ≤ −λY(t) + Yσ(t − 1)Y(t) .

If C := λY(t0)−σ − 1 > 0, then for all t ≥ t0 + 1:

Y(t) ≤ Y(t) :=
λ

1
σ e−λt[

e−λσ(t−1) + C
] 1
σ

.
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Possible blow up when almost orthogonality fails

Possible blow up when almost orthogonality fails
In order to get the (sharp) rate of decay we have to show that almost orthogo-
nality is true along the nonlinear flow, hence ensuring the hypotheses (AOL)ε
or (AON)ε needed in the previous steps. Recall that

Qk,j[v] :=

∣∣∫
Ω

(
vp − Vp

)
φk,j dx

∣∣(∫
Ω

[
(vp+1 − Vp+1)− p+1

p (vp − Vp)V
]

dx
) 1

2
:=
Ak,j[v]

E [v]
1
2
.

Possible blow up when almost orthogonality fails
Let v = f + V and assume (H1)δ . Fix two integers k ∈ [1, kp] and j ∈ [1,Nk],
and fix also t ≥ t0 ≥ 0 and ε0 ∈ (0, 1/2). There exists κ0 > 0 such that the
following holds: if

δ < κ0 ε0 and Qk,j[f (t)] ≥ ε0

then there exists κ1 > 0 such that
d
dt
Ak,j[v(t)] ≥ κ1ε0Ak,j[v(t)] .

When the quotientsQk,j are relatively big, the corresponding projectionsAk,j

tend to blow up exponentially in infinite time, as in the linear case.
This is the most delicate part of this method and the core of the proof.
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Qk,j[v] :=

∣∣∫
Ω

(
vp − Vp

)
φk,j dx

∣∣(∫
Ω

[
(vp+1 − Vp+1)− p+1

p (vp − Vp)V
]

dx
) 1

2
:=
Ak,j[v]

E [v]
1
2
.

Possible blow up when almost orthogonality fails
Let v = f + V and assume (H1)δ . Fix two integers k ∈ [1, kp] and j ∈ [1,Nk],
and fix also t ≥ t0 ≥ 0 and ε0 ∈ (0, 1/2). There exists κ0 > 0 such that the
following holds: if

δ < κ0 ε0 and Qk,j[f (t)] ≥ ε0

then there exists κ1 > 0 such that
d
dt
Ak,j[v(t)] ≥ κ1ε0Ak,j[v(t)] .

When the quotientsQk,j are relatively big, the corresponding projectionsAk,j

tend to blow up exponentially in infinite time, as in the linear case.
This is the most delicate part of this method and the core of the proof.
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Almost orthogonality improves along the nonlinear flow

Qualitative almost orthogonality along the nonlinear flow
Assume (H1)δ with 0 < δ < 1/p and (H2). Then, for every ε > 0 there
exists tε ≥ t0 ≥ 0 such that for all 1 ≤ k ≤ kp and 1 ≤ j ≤ Nk

Qk,j[v(t)] ≤ ε for all t ≥ tε .

The nonlinear flow turns out to be “more stable” than the linearized one: it is surprising that
the almost orthogonality is eventually true along the nonlinear flow (for any initial data), while it
is false along the linear flow, unless we impose precise orthogonality conditions on the data.

Quantitative almost orthogonality along the nonlinear flow
Assume (H1)δ and (H2). Assume moreover that E [v(t0 − 1)] ≤ 1 and∥∥∥∥v(t)− V

V

∥∥∥∥
L∞(Ω)

≤ κ E [v(t − 1)]η , for all t ≥ t0 ≥ 1.

Then, there exist T0 ≥ t0 and κp > 0 such that for all 1 ≤ k ≤ kp and 1 ≤ j ≤ Nk

Qk,j(v(t)) ≤ κp E [v(t − 1)]
η
2 , for all t ≥ T0 .
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Smoothing effects for the relative error
The last assumption that we have to check is a uniform control of the relative
error in terms of the entropy (delicate).

Weighted smoothing effects
Assume (H1)δ and t0 ≥ 1 ∨ T log 2. Then the following estimates hold true
for any t ≥ t0∥∥∥∥v(t)− V

V

∥∥∥∥
L∞(Ω)

≤ κ∞
e2cm(t−t0)

t − t0
sup
τ∈[t0,t]

E [v(τ)]
1

4N + 2cm(t − t0)e2cm(t−t0) .

As a consequence:

Entropy controls the L∞ norm of the relative error
Under the above assumptions, the following estimates hold true for any
t ≥ t0 + 1 ≥ 0: ∥∥∥∥v(t)− V

V

∥∥∥∥
L∞(Ω)

≤ κ∞E [v(t − 1)]
1

8N .
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