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Introduction to the Parabolic Problem on Domains

Homogeneous Dirichlet Problem for
Fractional Nonlinear Degenerate Diffusion Equations

(HDP)

 ut + LF(u) = 0 , in (0,+∞)× Ω
u(0, x) = u0(x) , in Ω
u(t, x) = 0 , on the lateral boundary.

where:
Ω ⊂ RN is a bounded domain with smooth boundary and N ≥ 1.
The linear operator L will be:

sub-Markovian operator
densely defined in L1(Ω).

A wide class of linear operators fall in this class:
The classical Laplacian and all fractional Laplacians on domains.
The most studied nonlinearity is F(u) = |u|m−1u , with m > 1.
We deal with Degenerate diffusion of Porous Medium type.
More general classes of “degenerate” nonlinearities F are allowed.
The homogeneous boundary condition is posed on the lateral boundary,
which may take different forms, depending on the particular choice of
the operator L.
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A Brief Summary about the Dirichlet Problem for PME in few “Blackboards”

The Classical Porous Medium Equation (PME)

A Brief Summary about the Dirichlet Problem for PME
in few “Blackboards”
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The Fractional PME I: Basic theory

Three Different Fractional Laplacians on Bounded Domains

Existence, Uniqueness and Boundedness of solutions
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Recalling the General Dirichlet Problem

Homogeneous Dirichlet Problem for
Fractional Nonlinear Degenerate Diffusion Equations

(HDP)

 ut + LF(u) = 0 , in (0,+∞)× Ω
u(0, x) = u0(x) , in Ω
u(t, x) = 0 , on the lateral boundary.

We have seen what happens when L = −∆ is the classical Laplacian

We now focus our attention to a particular scenario:

When L = (−∆)s , with s ∈ (0, 1) is a Fractional Laplacian: there are
three different choices of fractional Laplacian on bounded domains.

When F(u) = |u|m−1u , with m > 1 have the classical PME nonlinearity
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Three Different Fractional Laplacians on Bounded Domains

Reminder about the fractional Laplacian operator on RN

We have several equivalent definitions for (−∆RN )s :

1 By means of Fourier Transform,

((−∆RN )sf )̂(ξ) = |ξ|2s f̂ (ξ) .

This formula can be used for positive and negative values of s.

2 By means of an Hypersingular Kernel:
if 0 < s < 1, we can use the representation

(−∆RN )sg(x) = cN,s P.V.
∫
RN

g(x)− g(z)
|x− z|N+2s dz,

where cN,s > 0 is a normalization constant.
3 Spectral definition, in terms of the heat semigroup associated to the standard

Laplacian operator:

(−∆RN )sg(x) =
1

Γ(−s)

∫ ∞
0

(
et∆RN g(x)− g(x)

) dt
t1+s .



Outline of the talk Classical Porous Medium Equation The Fractional PME I: Basic theory Sharp Boundary Behaviour

Three Different Fractional Laplacians on Bounded Domains

Reminder about the fractional Laplacian operator on RN

We have several equivalent definitions for (−∆RN )s :

1 By means of Fourier Transform,

((−∆RN )sf )̂(ξ) = |ξ|2s f̂ (ξ) .

This formula can be used for positive and negative values of s.

2 By means of an Hypersingular Kernel:
if 0 < s < 1, we can use the representation

(−∆RN )sg(x) = cN,s P.V.
∫
RN

g(x)− g(z)
|x− z|N+2s dz,

where cN,s > 0 is a normalization constant.
3 Spectral definition, in terms of the heat semigroup associated to the standard

Laplacian operator:

(−∆RN )sg(x) =
1

Γ(−s)

∫ ∞
0

(
et∆RN g(x)− g(x)

) dt
t1+s .



Outline of the talk Classical Porous Medium Equation The Fractional PME I: Basic theory Sharp Boundary Behaviour

Three Different Fractional Laplacians on Bounded Domains

Reminder about the fractional Laplacian operator on RN

We have several equivalent definitions for (−∆RN )s :

1 By means of Fourier Transform,

((−∆RN )sf )̂(ξ) = |ξ|2s f̂ (ξ) .

This formula can be used for positive and negative values of s.

2 By means of an Hypersingular Kernel:
if 0 < s < 1, we can use the representation

(−∆RN )sg(x) = cN,s P.V.
∫
RN

g(x)− g(z)
|x− z|N+2s dz,

where cN,s > 0 is a normalization constant.
3 Spectral definition, in terms of the heat semigroup associated to the standard

Laplacian operator:

(−∆RN )sg(x) =
1

Γ(−s)

∫ ∞
0

(
et∆RN g(x)− g(x)

) dt
t1+s .



Outline of the talk Classical Porous Medium Equation The Fractional PME I: Basic theory Sharp Boundary Behaviour

Three Different Fractional Laplacians on Bounded Domains

The Spectral Fractional Laplacian operator (SFL)

(−∆Ω)sg(x) =

∞∑
j=1

λs
j ĝj φj(x) =

1
Γ(−s)

∫ ∞
0

(
et∆Ωg(x)− g(x)

) dt
t1+s .

∆Ω is the classical Dirichlet Laplacian on the domain Ω

EIGENVALUES: 0 < λ1 ≤ λ2 ≤ . . . ≤ λj ≤ λj+1 ≤ . . . and λj � j2/N .

EIGENFUNCTIONS: φj are the eigenfunctions of the classical Laplacian ∆Ω:

φ1 � dist(·, ∂Ω) and |φj| . dist(·, ∂Ω) ,

and φj are as smooth as ∂Ω allows: ∂Ω ∈ Ck ⇒ φj ∈ C∞(Ω) ∩ Ck(Ω)

ĝj =

∫
Ω

g(x)φj(x) dx , with ‖φj‖L2(Ω) = 1 .

The Green function of SFL satisfies, letting δγ( · ) := dist( · , ∂Ω),

(K4) G(x, y) � 1
|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)
, with γ = 1

Lateral boundary conditions for the SFL

u(t, x) = 0 , in (0,∞)× ∂Ω .
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Three Different Fractional Laplacians on Bounded Domains
Definition via the hypersingular kernel in RN , “restricted” to functions that are zero outside Ω.
The (Restricted) Fractional Laplacian operator (RFL)

(−∆|Ω)sg(x) = cN,s P.V.
∫
RN

g(x)− g(z)
|x− z|N+2s dz , with supp(g) ⊆ Ω .

where s ∈ (0, 1) and cN,s > 0 is a normalization constant.

(−∆|Ω)s is a self-adjoint operator on L2(Ω) with a discrete spectrum:

EIGENVALUES: 0 < λ1 ≤ λ2 ≤ . . . ≤ λj ≤ λj+1 ≤ . . . and λj � j2s/N .
Eigenvalues of the RFL are smaller than the ones of SFL: λj ≤ λs

j for all j ∈ N .

EIGENFUNCTIONS: φj ∈ Cs(Ω) ∩ C∞(Ω) (J. Serra - X. Ros Oton), and

φ1 � dist(·, ∂Ω)s and |φj| . dist(·, ∂Ω)s ,

The Green function of RFL satisfies, letting δγ( · ) := dist( · , ∂Ω),

(K4) G(x, y) � 1
|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)
, with γ = s

Lateral boundary conditions for the RFL

u(t, x) = 0 , in (0,∞)×
(
RN \ Ω

)
.

References. (K4) Bounds proven by Bogdan, Grzywny, Jakubowski, Kulczycki, Ryznar (1997-
2010). Eigenvalues: Blumental-Getoor (1959), Chen-Song (2005)



Outline of the talk Classical Porous Medium Equation The Fractional PME I: Basic theory Sharp Boundary Behaviour

Three Different Fractional Laplacians on Bounded Domains
Definition via the hypersingular kernel in RN , “restricted” to functions that are zero outside Ω.
The (Restricted) Fractional Laplacian operator (RFL)

(−∆|Ω)sg(x) = cN,s P.V.
∫
RN

g(x)− g(z)
|x− z|N+2s dz , with supp(g) ⊆ Ω .

where s ∈ (0, 1) and cN,s > 0 is a normalization constant.

(−∆|Ω)s is a self-adjoint operator on L2(Ω) with a discrete spectrum:

EIGENVALUES: 0 < λ1 ≤ λ2 ≤ . . . ≤ λj ≤ λj+1 ≤ . . . and λj � j2s/N .
Eigenvalues of the RFL are smaller than the ones of SFL: λj ≤ λs

j for all j ∈ N .

EIGENFUNCTIONS: φj ∈ Cs(Ω) ∩ C∞(Ω) (J. Serra - X. Ros Oton), and

φ1 � dist(·, ∂Ω)s and |φj| . dist(·, ∂Ω)s ,

The Green function of RFL satisfies, letting δγ( · ) := dist( · , ∂Ω),

(K4) G(x, y) � 1
|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)
, with γ = s

Lateral boundary conditions for the RFL

u(t, x) = 0 , in (0,∞)×
(
RN \ Ω

)
.

References. (K4) Bounds proven by Bogdan, Grzywny, Jakubowski, Kulczycki, Ryznar (1997-
2010). Eigenvalues: Blumental-Getoor (1959), Chen-Song (2005)



Outline of the talk Classical Porous Medium Equation The Fractional PME I: Basic theory Sharp Boundary Behaviour

Three Different Fractional Laplacians on Bounded Domains
Definition via the hypersingular kernel in RN , “restricted” to functions that are zero outside Ω.
The (Restricted) Fractional Laplacian operator (RFL)

(−∆|Ω)sg(x) = cN,s P.V.
∫
RN

g(x)− g(z)
|x− z|N+2s dz , with supp(g) ⊆ Ω .

where s ∈ (0, 1) and cN,s > 0 is a normalization constant.

(−∆|Ω)s is a self-adjoint operator on L2(Ω) with a discrete spectrum:

EIGENVALUES: 0 < λ1 ≤ λ2 ≤ . . . ≤ λj ≤ λj+1 ≤ . . . and λj � j2s/N .
Eigenvalues of the RFL are smaller than the ones of SFL: λj ≤ λs

j for all j ∈ N .

EIGENFUNCTIONS: φj ∈ Cs(Ω) ∩ C∞(Ω) (J. Serra - X. Ros Oton), and

φ1 � dist(·, ∂Ω)s and |φj| . dist(·, ∂Ω)s ,

The Green function of RFL satisfies, letting δγ( · ) := dist( · , ∂Ω),

(K4) G(x, y) � 1
|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)
, with γ = s

Lateral boundary conditions for the RFL

u(t, x) = 0 , in (0,∞)×
(
RN \ Ω

)
.

References. (K4) Bounds proven by Bogdan, Grzywny, Jakubowski, Kulczycki, Ryznar (1997-
2010). Eigenvalues: Blumental-Getoor (1959), Chen-Song (2005)



Outline of the talk Classical Porous Medium Equation The Fractional PME I: Basic theory Sharp Boundary Behaviour

Three Different Fractional Laplacians on Bounded Domains

Introduced in 2003 by Bogdan, Burdzy and Chen.

Censored (Regional) Fractional Laplacians (CFL)

Lf (x) = P.V.
∫

Ω

f (x)− f (y)

|x− y|N+2s dy , with
1
2
< s < 1 ,

It is a self-adjoint operator on L2(Ω) with a discrete spectrum (λj, φj)

EIGENFUNCTIONS: φj ∈ C2s−1(Ω) ∩ C2s+α(Ω) (MB, A.Figalli, J. L. Vázquez)

φ1 � dist(·, ∂Ω)2s−1 and |φj| . dist(·, ∂Ω)2s−1 ,

The Green function G(x, y) satisfies, letting δγ( · ) := dist( · , ∂Ω),

G(x, y) � 1
|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)
, with γ = 2s− 1

Remarks.

This is a third model of Dirichlet fractional Laplacian not equivalent to SFL
nor to RFL.

Roughly speaking, s ∈ (0, 1/2] corresponds to Neumann boundary conditions.
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This is a third model of Dirichlet fractional Laplacian not equivalent to SFL
nor to RFL.

Roughly speaking, s ∈ (0, 1/2] corresponds to Neumann boundary conditions.
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Three Different Fractional Laplacians on Bounded Domains

Introduced in 2003 by Bogdan, Burdzy and Chen.
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Existence, Uniqueness and Boundedness of solutions

Basic theory: existence, uniqueness and boundedness (in one page)

(CDP)


∂tu = −L um , in (0,+∞)× Ω
u(0, x) = u0(x) , in Ω
u(t, x) = 0 , on the lateral boundary.

We can formulate a “dual problem”, using the inverse L−1 as follows

∂tU = −um , where U(t, x) := L−1[u(t, ·)](x) =

∫
Ω

u(t, y)G(x, y) dy .

This formulation encodes the lateral boundary conditions through L−1.

Define the Weak Dual Solutions (WDS), a new concept compatible with more
standard solutions: very weak, weak (energy), mild, strong [...]

Prove Existence and Uniqueness of nonnegative WDS with 0 ≤ u0 ∈ L1
Φ1

(Ω).

Prove a number of new pointwise estimates that provide L∞ bounds:
Absolute bounds: (κ below does NOT depend on u0)

|u(t, x)| ≤ ‖u(t, ·)‖L∞(Ω) ≤ κ t−
1

m−1 ,

Instantaneous Smoothing Effects:

|u(t, x)| ≤ ‖u(t)‖L∞(Ω) ≤
κ

tNϑγ
‖u(t)‖2sϑγ

L1
Φ1

(Ω)
≤ κ

tNϑγ
‖u0‖2sϑγ

L1
Φ1

(Ω)
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Elliptic VS Parabolic: Asymptotic Behaviour

Elliptic VS Parabolic: Asymptotic Behaviour as t→∞
Let S be the unique solution to the Elliptic Dirichlet Problem for LSm = S.

Theorem. (Asymptotic behaviour) (M.B., A. Figalli, Y. Sire, J. L. Vázquez)

Let u ≥ 0 be any nonnegative WDS to the Cauchy-Dirichlet problem. Then,
unless u ≡ 0,

sup
x∈Ω

∣∣∣t 1
m−1 u(t, x)− S(x)

∣∣∣ −−−→
t→∞

0 .

This result, gives a clear suggestion of what the boundary behaviour of para-
bolic solutions should be,

u(t, x) � U(t, x) =
S(x)

t
1

m−1

at least for large times, as it happens in the local case s = 1. Hence the
boundary behaviour shall be dictated by the behaviour of the solution to the
elliptic equation.
We shall see that this is not always the case.
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The Fractional PME II
Sharp Boundary Behaviour

Positivity Estimates and Infinite Speed of Propagation
Global Harnack Principles
Asymptotic Behaviour
Anomalous Boundary Behaviour and Counterexamples
Some Numerics
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Positivity Estimates and Infinite Speed of Propagation

Theorem. (Universal lower bounds) (M.B., A. Figalli and J. L. Vázquez)

Let 0 < s < 1 and u ≥ 0 be a weak dual solution to the (CDP) corresponding to
u0 ∈ L1

Φ1
(Ω). Then there exists a constant κ0 > 0, such that

u(t, x) ≥ κ0

(
1 ∧ t

t∗

) m
m−1 dist(x, ∂Ω)γ

t
1

m−1
for all t > 0 and all x ∈ Ω .

Here t∗ = κ∗‖u0‖−(m−1)
L1
Φ1

(Ω)
and κ0, κ∗ depend only on N, s, γ,m, c0, and Ω .

(recall that γ = 1 for SFL, γ = s for the RFL and γ = 2s− 1 for the CFL)

• Note that, for t ≥ t∗, the dependence on the initial data disappears

u(t, x) ≥ κ0dist(x, ∂Ω)γ t−
1

m−1 ∀ t ≥ t∗.

(like in the local case s = 1)

• But also note that these estimates can not hold for small times when s = 1, by the
finite speed of propagation that holds in the local case...
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Positivity Estimates and Infinite Speed of Propagation

Universal lower bounds and Infinite speed of propagation.

Recall that t∗ = κ∗‖u0‖−(m−1)
L1
Φ1

(Ω)
, and

u(t, x) ≥ κ0

(
1 ∧ t

t∗

) m
m−1 dist(x, ∂Ω)γ

t
1

m−1
for all t > 0 and all x ∈ Ω .

As a consequence, of the above universal bounds for all times, we have proven
that all nonnegative solutions have infinite speed of propagation.

No free boundaries when s < 1, contrary to the “local” case s = 1,
cf. Barenblatt, Aronson, Caffarelli, Vázquez, Wolansky [...]

Qualitative version of infinite speed of propagation for the Cauchy problem on
RN , by De Pablo, Quíros, Rodriguez, Vázquez [Adv. Math. 2011, CPAM 2012]

Different from the so-called Caffarelli-Vázquez model (on RN) that has finite
speed of propagation [ARMA 2011, DCDS 2011] and also Stan, del Teso
Vázquez [CRAS 2014, NLTMA 2015, JDE 2015, ARMA 2019]

Question: Is this estimate sharp?
More precisely, is the power γ of the distance to the boundary the better one?
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Global Harnack Principle I. Matching powers.

Global Harnack Principle I. The non-spectral case. Matching powers.

Theorem. (GHP I) (M.B., A. Figall, X. Ros Oton & J. L. Vázquez)

Let L be either the RFL (γ = s) or the CFL (γ = 2s − 1). Let u ≥ 0 be a weak
dual solution to the (CDP). Then, there exist constants κ, κ > 0, so that the following
inequality holds for all t > 0 and all x ∈ Ω :

κ

(
1 ∧ t

t∗

) m
m−1 dist(x, ∂Ω)

γ
m

t
1

m−1
≤ u(t, x) ≤ κ dist(x, ∂Ω)

γ
m

t
1

m−1
.

Where t∗ = κ∗‖u0‖−(m−1)
L1
Φ1

(Ω)
and κ, κ depend only on N, s, γ,m, c1, κΩ,Ω.

For large times t ≥ t∗ the estimates are independent on the initial datum.

Notice that this result does not apply for s = 1, is purely nonlocal.

In the local case s = 1 the above result holds only for t ≥ t∗
(finite speed of propagation)
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Global Harnack Principle I. Matching powers.

Global Harnack Principle I. The non-spectral case. Matching powers.

Theorem. (GHP I) (M.B., A. Figall, X. Ros Oton & J. L. Vázquez)

Let L be either the RFL (γ = s) or the CFL (γ = 2s − 1). Let u ≥ 0 be a weak
dual solution to the (CDP). Then, there exist constants κ, κ > 0, so that the following
inequality holds for all t > 0 and all x ∈ Ω :

κ

(
1 ∧ t

t∗

) m
m−1 dist(x, ∂Ω)

γ
m

t
1

m−1
≤ u(t, x) ≤ κ dist(x, ∂Ω)

γ
m

t
1

m−1
.

Where t∗ = κ∗‖u0‖−(m−1)
L1
Φ1

(Ω)
and κ, κ depend only on N, s, γ,m, c1, κΩ,Ω.

For large times t ≥ t∗ the estimates are independent on the initial datum.

Notice that this result does not apply for s = 1, is purely nonlocal.

In the local case s = 1 the above result holds only for t ≥ t∗
(finite speed of propagation)



Outline of the talk Classical Porous Medium Equation The Fractional PME I: Basic theory Sharp Boundary Behaviour

Consequences of GHP with matching powers

As a consequence of GHP with matching powers we get:

Theorem. (Sharp Asymptotic behaviour) (M.B., A. Figalli, Y. Sire, J. L. Vázquez)

Assume that a GHP with matching powers hold. Set U(t, x) := t−
1

m−1 S(x). Then
there exists c0 > 0 such that, for all t ≥ t0 := c0‖u0‖−(m−1)

L1
Φ1

(Ω)
, we have

sup
x∈Ω

∣∣∣∣u(t, x)

U(t, )
− 1
∣∣∣∣ ≤ 2

m− 1
t0

t0 + t
.

This asymptotic result is sharp: check by considering u(t, x) = U(t + 1, x). For the
classical case L = ∆, we recover the results of Aronson-Peletier (1981) and Vázquez
(2004) with a different proof.
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Global Harnack Principle II. Non-Matching powers.

Global Harnack Principles II. The Spectral case. Non-Matching powers.
In the case of the SFL, γ = 1, and a new exponent enters the game:

σ = min

{
1,

2sm
γ(m− 1)

}
Theorem. (GHP II) (M.B., A. Figalli and J. L. Vázquez)

Let L be the SFL, and let u ≥ 0 be a weak dual solution to the (CDP) corresponding
to u0 ∈ L1

Φ1
(Ω). Then, there exist κ, κ > 0, such that for all t > 0 and x ∈ Ω

κ

(
1 ∧ t

t∗

) m
m−1 dist(x, ∂Ω)γ

t
1

m−1
≤ u(t, x) ≤ κ dist(x, ∂Ω)

σγ
m

t
1

m−1
.

• This is a universal bound: it holds for all nonlocal operators that we consider s < 1
and shows infinite speed of propagation in a quantitative way.

• This is sufficient to ensure interior regularity, under ‘minimal’ assumptions.

• This bound holds for all times and for a large class of operators.

• This is not sufficient to ensure Cαx boundary regularity.

• Question: Can the estimate be improved to get matching powers also in this case?
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Anomalous Boundary Behaviour and Counterexamples

Anomalous boundary behaviour when σ < 1.
The intriguing case σ < 1 is where new and unexpected phenomena appear.
We consider the SFL, hence γ = 1 from now on. Recall that

σ =
2sm

γ(m− 1)
=

2sm
m− 1

< 1 i.e. 0 < s <
1
2
− 1

2m
.

Solutions by separation of variables: the standard boundary behaviour?

Let S be a solution to the Elliptic Dirichlet problem for LSm = cmS. We can define

U(t, x) = S(x)t−
1

m−1 where S � Φ
σ/m
1 .

which is a solution to the (CDP), which behaves like Φ
σ/m
1 at the boundary.

By comparison, we see that the same lower behaviour is shared ‘big’ solutions:

u0 ≥ ε0S implies u(t) ≥ S(
ε1−m

0 + t
)1/(m−1)

This behaviour seems to be sharp: we have shown matching upper bounds,
and also S represents the large time asymptotic behaviour:

lim
t→∞

∥∥∥t
1

m−1 u(t)− S
∥∥∥

L∞
= 0 for all 0 ≤ u0 ∈ L1

Φ1 (Ω) .

But this is not happening for all solutions...
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Anomalous Boundary Behaviour and Counterexamples

Different boundary behaviour when σ < 1. We now show that, in general, we
cannot hope to prove that u(t) is larger than dist1/m, but always smaller than distσ/m.

Proposition. (Counterexample I) (M.B., A. Figalli and J. L. Vázquez)

Let L be the SFL (γ = 1) and u ≥ 0 be a weak dual solution to the (CDP).
Then, there exists a constant κ̂, depending only N, s, γ,m, and Ω, such that

0 ≤ u0 ≤ c0Φ1 implies u(t, x) ≤ c0κ̂
Φ

1/m
1 (x)

t1/m ∀t > 0 and a.e. x ∈ Ω .

In particular, if σ < 1, then

lim
x→∂Ω

u(t, x)

Φ1(x)σ/m = 0 for any t > 0.

When σ = 1 and 2sm = γ(m− 1), then

lim
x→∂Ω

u(t, x)

Φ1(x)1/m (1 + | log Φ1(x)|)1/(m−1) = 0 for any t > 0.

Idea: The proposition above could make one wonder whether or not the sharp general
lower bound could be actually given by Φ

1/m
1 , as in the case σ = 1.

But again, this is not happening for all solutions...
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Anomalous Boundary Behaviour and Counterexamples

Different boundary behaviour when σ < 1.
We next show that the bound u(t) & Φ

1/m
1 t−1/(m−1) is false for σ < 1.

Proposition. (Counterexample II) (M.B., A. Figalli and J. L. Vázquez)

Let (A1), (A2), and (K4) hold, and let u ≥ 0 be a weak dual solution to the (CDP)
corresponding to a nonnegative initial datum u0 ≤ c0Φ1 for some c0 > 0.
If there exist constants κ, T, α > 0 such that

u(T, x) ≥ κΦα1 (x) for a.e. x ∈ Ω , then α ≥ 1− 2s
γ
.

In particular, when σ < 1, we have α > 1
m > σ

m .

Under mild assumptions on the operator (for example SFL-type), we can prove:

0 ≤ u0 ≤ A Φ
1− 2s

γ

1 ⇒ u(t) ≤ [A1−m − C̃t]−(m−1)Φ
1− 2s

γ

1

for small times t ∈ [0, TA], where TA := 1/(C̃Am−1), for some C̃ > 0.
Recall that we have a universal lower bound

u(t, x) ≥ κ0

(
1 ∧ t

t∗

) m
m−1 Φ1(x)

t
1

m−1
for all t > 0 and all x ∈ Ω .
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Numerics

Numerical Simulations∗

∗ Graphics obtained by numerical methods contained in: N. Cusimano, F. Del Teso, L. Gerardo-
Giorda, G. Pagnini, Discretizations of the spectral fractional Laplacian on general domains with
Dirichlet, Neumann, and Robin boundary conditions, SIAM Num. Anal. (2018)
Graphics and videos: courtesy of F. Del Teso (BCAM, Bilbao, ES)
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Numerics I. Matching

Numerical simulation for the SFL with parameters m = 2 and s = 1/2, hence σ = 1.

Left: the initial condition u0 ≤ C0Φ1

Right: solid line represents Φ
1/m
1

the dotted lines represent t
1

m−1 u(t) at time at t = 1 and t = 5

While u(t) appears to behave as Φ1 � dist(·, ∂Ω) for very short times

already at t = 5 it exhibits the matching boundary behavior t
1

m−1 u(t) � Φ
1/m
1
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Numerics II. Matching VS Non-Matching

Compare σ = 1 VS σ < 1: same u0 ≤ C0Φ1, solutions with different parameters

Left: t
1

m−1 u(t) at time t = 30 and t = 150; m = 4, s = 3/4, σ = 1.

Matching: u(t) behaves like Φ1 � dist(·, ∂Ω) for quite some time,
and only around t = 150 it exhibits the matching boundary behavior u(t) � Φ

1/m
1

Right: t
1

m−1 u(t) at time t = 150 and t = 600; m = 4, s = 1/5, σ = 8/15 < 1.

Non-matching: u(t) � Φ1 even after long time.

Idea: maybe when σ < 1 and u0 . Φ1, we have u(t) � Φ1 for all times...

Not True: there are cases when u(t)� Φ1−2s
1 for large times...
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Numerics III. Non-Matching

Non-matching when σ < 1: same data u0, with m = 2 and s = 1/10, σ = 2/5 < 1

In both pictures, the solid line represents Φ1−2s
1 (anomalous behaviour)

Left: t
1

m−1 u(t) at time t = 4 and t = 25.

u(t) � Φ1 for short times t = 4, then u(t) ∼ Φ1−2s
1 for intermediate times t = 25

Right: t
1

m−1 u(t) at time t = 40 and t = 150. u(t)� Φ1−2s
1 for large times.

Both non-matching always different behaviour from the asymptotic profile Φ
σ/m
1 .

In this case we show that if u0(x) ≤ C0Φ1(x) then for all t > 0

u(t, x) ≤ C1

[
Φ1(x)

t

] 1
m

and lim
x→∂Ω

u(t, x)

Φ1(x)
σ
m

= 0 for any t > 0.
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Numerics III. Non-Matching

The End

Muchas Gracias!!!

Moltes Grácies!!!

Thank You!!!
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