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Homogeneous Dirichlet Problem for
Fractional Nonlinear Degenerate Diffusion Equations

(HDP)

 ut + LF(u) = 0 , in (0,+∞)× Ω
u(0, x) = u0(x) , in Ω
u(t, x) = 0 , on the lateral boundary.

where:
Ω ⊂ RN is a bounded domain with smooth boundary and N ≥ 1.
The linear operator L will be:

sub-Markovian operator
densely defined in L1(Ω).

A wide class of linear operators fall in this class:
all fractional Laplacians on domains.
The most studied nonlinearity is F(u) = |u|m−1u , with m > 1.
We deal with Degenerate diffusion of Porous Medium type.
More general classes of “degenerate” nonlinearities F are allowed.
The homogeneous boundary condition is posed on the lateral boundary,
which may take different forms, depending on the particular choice of
the operator L.



Outline of the talk Introduction Semilinear Elliptic Equations Back to the Parabolic problem Sharp Boundary Behaviour Regularity Estimates

Homogeneous Dirichlet Problem for
Fractional Nonlinear Degenerate Diffusion Equations

(HDP)

 ut + LF(u) = 0 , in (0,+∞)× Ω
u(0, x) = u0(x) , in Ω
u(t, x) = 0 , on the lateral boundary.

where:
Ω ⊂ RN is a bounded domain with smooth boundary and N ≥ 1.
The linear operator L will be:

sub-Markovian operator
densely defined in L1(Ω).

A wide class of linear operators fall in this class:
all fractional Laplacians on domains.
The most studied nonlinearity is F(u) = |u|m−1u , with m > 1.
We deal with Degenerate diffusion of Porous Medium type.
More general classes of “degenerate” nonlinearities F are allowed.
The homogeneous boundary condition is posed on the lateral boundary,
which may take different forms, depending on the particular choice of
the operator L.



Outline of the talk Introduction Semilinear Elliptic Equations Back to the Parabolic problem Sharp Boundary Behaviour Regularity Estimates

Homogeneous Dirichlet Problem for
Fractional Nonlinear Degenerate Diffusion Equations

(HDP)

 ut + LF(u) = 0 , in (0,+∞)× Ω
u(0, x) = u0(x) , in Ω
u(t, x) = 0 , on the lateral boundary.

where:
Ω ⊂ RN is a bounded domain with smooth boundary and N ≥ 1.
The linear operator L will be:

sub-Markovian operator
densely defined in L1(Ω).

A wide class of linear operators fall in this class:
all fractional Laplacians on domains.
The most studied nonlinearity is F(u) = |u|m−1u , with m > 1.
We deal with Degenerate diffusion of Porous Medium type.
More general classes of “degenerate” nonlinearities F are allowed.
The homogeneous boundary condition is posed on the lateral boundary,
which may take different forms, depending on the particular choice of
the operator L.



Outline of the talk Introduction Semilinear Elliptic Equations Back to the Parabolic problem Sharp Boundary Behaviour Regularity Estimates

Homogeneous Dirichlet Problem for
Fractional Nonlinear Degenerate Diffusion Equations

(HDP)

 ut + LF(u) = 0 , in (0,+∞)× Ω
u(0, x) = u0(x) , in Ω
u(t, x) = 0 , on the lateral boundary.

where:
Ω ⊂ RN is a bounded domain with smooth boundary and N ≥ 1.
The linear operator L will be:

sub-Markovian operator
densely defined in L1(Ω).

A wide class of linear operators fall in this class:
all fractional Laplacians on domains.
The most studied nonlinearity is F(u) = |u|m−1u , with m > 1.
We deal with Degenerate diffusion of Porous Medium type.
More general classes of “degenerate” nonlinearities F are allowed.
The homogeneous boundary condition is posed on the lateral boundary,
which may take different forms, depending on the particular choice of
the operator L.



Outline of the talk Introduction Semilinear Elliptic Equations Back to the Parabolic problem Sharp Boundary Behaviour Regularity Estimates

About the operator L and L−1

Assumptions on the inverse of L
The linear operator L : dom(A) ⊆ L1(Ω)→ L1(Ω) is assumed to be densely
defined and sub-Markovian, more precisely satisfying (A1) and (A2) below:

(A1) L is m-accretive on L1(Ω),
(A2) If 0 ≤ f ≤ 1 then 0 ≤ e−tLf ≤ 1 .
Assumptions on the inverse of L
We will assume that the operator L has an inverse L−1 : L1(Ω) → L1(Ω)
with a kernel G - the Green function - such that

L−1f (x) =

∫
Ω

G(x, y) f (y) dy ,

and that satisfies (one of) the following estimates for some γ, s ∈ (0, 1]

(K1) 0 ≤ G(x, y) ≤ c1,Ω

|x− y|N−2s

Assumption (K1) implies that L−1 is compact on L2(Ω) and has discrete spectrum.

(K2) c0,Ωδ
γ(x) δγ(y) ≤ G(x, y) ≤ c1,Ω

|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)

where δγ(x) := dist(x, ∂Ω)γ .

(K2) is needed in the study of the sharp boundary behaviour.
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Examples of operators L

Reminder about the fractional Laplacian operator on RN

We have several equivalent definitions for (−∆RN )s :

1 By means of Fourier Transform,

((−∆RN )sf )̂(ξ) = |ξ|2s f̂ (ξ) .

This formula can be used for positive and negative values of s.

2 By means of an Hypersingular Kernel:
if 0 < s < 1, we can use the representation

(−∆RN )sg(x) = cN,s P.V.
∫
RN

g(x)− g(z)
|x− z|N+2s dz,

where cN,s > 0 is a normalization constant.
3 Spectral definition, in terms of the heat semigroup associated to the standard

Laplacian operator:

(−∆RN )sg(x) =
1

Γ(−s)

∫ ∞
0

(
et∆RN g(x)− g(x)

) dt
t1+s .
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Examples of operators L

The Spectral Fractional Laplacian operator (SFL)

(−∆Ω)sg(x) =
∞∑
j=1

λs
j ĝj φj(x) =

1
Γ(−s)

∫ ∞
0

(
et∆Ωg(x)− g(x)

) dt
t1+s .

∆Ω is the classical Dirichlet Laplacian on the domain Ω

EIGENVALUES: 0 < λ1 ≤ λ2 ≤ . . . ≤ λj ≤ λj+1 ≤ . . . and λj � j2/N .

EIGENFUNCTIONS: φj are the eigenfunctions of the classical Laplacian ∆Ω:

φ1 � dist(·, ∂Ω) and |φj| . dist(·, ∂Ω) ,

and φj are as smooth as ∂Ω allows: ∂Ω ∈ Ck ⇒ φj ∈ C∞(Ω) ∩ Ck(Ω)

ĝj =

∫
Ω

g(x)φj(x) dx , with ‖φj‖L2(Ω) = 1 .

The Green function of SFL satisfies a stronger assumption than (K2) or (K3), i.e.

(K4) G(x, y) � 1
|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)
, with γ = 1

Lateral boundary conditions for the SFL

u(t, x) = 0 , in (0,∞)× ∂Ω .
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Examples of operators L
Definition via the hypersingular kernel in RN , “restricted” to functions that are zero outside Ω.
The (Restricted) Fractional Laplacian operator (RFL)

(−∆|Ω)sg(x) = cN,s P.V.
∫
RN

g(x)− g(z)
|x− z|N+2s dz , with supp(g) ⊆ Ω .

where s ∈ (0, 1) and cN,s > 0 is a normalization constant.

(−∆|Ω)s is a self-adjoint operator on L2(Ω) with a discrete spectrum:

EIGENVALUES: 0 < λ1 ≤ λ2 ≤ . . . ≤ λj ≤ λj+1 ≤ . . . and λj � j2s/N .
Eigenvalues of the RFL are smaller than the ones of SFL: λj ≤ λs

j for all j ∈ N .

EIGENFUNCTIONS: φj ∈ Cs(Ω) ∩ C∞(Ω) (J. Serra - X. Ros-Oton), and

φ1 � dist(·, ∂Ω)s and |φj| . dist(·, ∂Ω)s ,

The Green function of RFL satisfies a stronger assumption than (K2) or (K3), i.e.

(K4) G(x, y) � 1
|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)
, with γ = s

Lateral boundary conditions for the RFL

u(t, x) = 0 , in (0,∞)×
(
RN \ Ω

)
.

References. (K4) Bounds proven by Bogdan, Grzywny, Jakubowski, Kulczycki, Ryznar (1997-
2010). Eigenvalues: Blumental-Getoor (1959), Chen-Song (2005)
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Examples of operators L
Introduced in 2003 by Bogdan, Burdzy and Chen.

Censored (Regional) Fractional Laplacians (CFL)

Lf (x) = P.V.
∫

Ω

f (x)− f (y)

|x− y|N+2s dy , with
1
2
< s < 1 ,

It is a self-adjoint operator on L2(Ω) with a discrete spectrum (λj, φj)

EIGENFUNCTIONS: φj ∈ Cs−1/2(Ω) ∩ C2s+α(Ω) (MB, A.Figalli, J. L. Vázquez)

φ1 � dist(·, ∂Ω)s− 1
2 and |φj| . dist(·, ∂Ω)s− 1

2 ,

The Green function G(x, y) satisfies (K4) (Chen, Kim and Song (2010))

G(x, y) � 1
|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)
, with γ = s− 1

2

Remarks.
This is a third model of Dirichlet fractional Laplacian not equivalent to SFL
nor to RFL.
Roughly speaking, s ∈ (0, 1/2] corresponds to Neumann boundary conditions.
We can allow “coefficients”, i.e. replace K(x, y) � a(x, y)|x− y|N−2s where
a(x, y) is a measurable, symmetric function bounded between two positive
constants, and

∣∣a(x, y)− a(x, x)
∣∣χ|x−y|<1 . |x− y|σ , with 0 < s < σ ≤ 1 .
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EIGENFUNCTIONS: φj ∈ Cs−1/2(Ω) ∩ C2s+α(Ω) (MB, A.Figalli, J. L. Vázquez)

φ1 � dist(·, ∂Ω)s− 1
2 and |φj| . dist(·, ∂Ω)s− 1

2 ,

The Green function G(x, y) satisfies (K4) (Chen, Kim and Song (2010))

G(x, y) � 1
|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)
, with γ = s− 1

2

Remarks.
This is a third model of Dirichlet fractional Laplacian not equivalent to SFL
nor to RFL.
Roughly speaking, s ∈ (0, 1/2] corresponds to Neumann boundary conditions.
We can allow “coefficients”, i.e. replace K(x, y) � a(x, y)|x− y|N−2s where
a(x, y) is a measurable, symmetric function bounded between two positive
constants, and

∣∣a(x, y)− a(x, x)
∣∣χ|x−y|<1 . |x− y|σ , with 0 < s < σ ≤ 1 .
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More Examples

Spectral powers of uniformly elliptic operators. Consider a linear operator A
in divergence form, with uniformly elliptic bounded measurable coefficients:

A =

N∑
i,j=1

∂i(aij∂j) , s-power of A is: Lf (x) := As f (x) :=

∞∑
k=1

λs
k f̂kφk(x)

L = As satisfies (K3) estimates with γ = 1

(K3) c0,Ωφ1(x)φ1(y) ≤ G(x, y) ≤ c1,Ω

|x− y|N−2s

(
φ1(x)

|x− y| ∧ 1
)(

φ1(y)

|x− y| ∧ 1
)

[General class of intrinsically ultra-contractive operators, Davies and Simon JFA 1984].

Fractional operators with “rough” kernels. Integral operators of Levy-type

Lf (x) = P.V.
∫
RN

(f (x + y)− f (y))
a(x, y)

|x− y|N+2s dy .

where K is measurable, symmetric, bounded between two positive constants, and∣∣a(x, y)− a(x, x)
∣∣χ|x−y|<1 ≤ c|x− y|σ , with 0 < s < σ ≤ 1 ,

for some positive c > 0. We can allow even more general kernels.
The Green function satisfies a stronger assumption than (K2) or (K3), i.e.

(K4) G(x, y) � 1
|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)
, with γ = s
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More Examples

Sums of two Restricted Fractional Laplacians. Operators of the form

L = (∆|Ω)s + (∆|Ω)σ , with 0 < σ < s ≤ 1 ,

where (∆|Ω)s is the RFL. Satisfy (K4) with γ = s.
Sum of the Laplacian and operators with general kernels. In the case

L = a∆ + As , with 0 < s < 1 and a ≥ 0 ,

where

Asf (x) = P.V.
∫
RN

(
f (x + y)− f (y)−∇f (x) · yχ|y|≤1

)
χ|y|≤1dν(y) ,

the measure ν on RN \ {0} is invariant under rotations around origin and satisfies∫
RN 1 ∨ |x|2 dν(y) <∞ , together with other assumptions.

Relativistic stable processes. In the case

L = c−
(

c1/s −∆
)s
, with c > 0 , and 0 < s ≤ 1 .

The Green function G(x, y) of L satisfies assumption (K4) with γ = s.

Many other interesting examples. Schrödinger equations for non-symmetric diffu-
sions, Gradient perturbation of RFL...

References. The above mentioned bounds for the Green functions have been proven
by Chen, Kim, Song and Vondracek (2007, 2010, 2012, 2013).
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Semilinear Elliptic Equations

Sharp boundary behaviour for Semilinear Elliptic
equations

Parabolic solutions by separation of variables
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Sharp boundary behaviour for Elliptic Equations

Sharp boundary behaviour for Elliptic Equations
We always assume that L satisfies (A1), (A2) and zero Dirichlet boundary conditions.

The Semilinear Dirichlet Problem Lv = f (v) ∼ vp with 0 < p < 1

Assume moreover that L−1 satisfies (K2). Let u ≥ 0 be a (weak dual) solution to the
Dirichlet Problem, where f is a nonnegative increasing function with f (0) = 0 such
that F = f−1 is convex and F(a) � a1/p when 0 ≤ a ≤ 1, for some 0 < p < 1.
Then, the following sharp absolute bounds hold true for all x ∈ Ω

v(x) �

{
Φσ1 (x) when 2s 6= γ(1− p)

Φ1(x) (1 + | log Φ1(x)|)
1

1−p when 2s = γ(1− p), assuming (K4)

where
σ := 1 ∧ 2s

γ(1− p)
and Φ1 � dist(·, ∂Ω)γ = δγ

When 2s = γ(1− p), if (K4) does not hold, then the upper bound still holds, but the lower
bound holds in a non-sharp form without the extra logarithmic term.

Remarks.

When 2s < γ(1− p), the new power σ becomes less than 1.

Somehow σ interpolates between the two extremal cases:
p = 0 i.e. Lv = 1 and p = 1, i.e. Lv = λv.
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Sharp boundary behaviour for Elliptic Equations

Examples.
For the RFL (γ = s) and CFL (γ = s− 1/2) we always have σ = 1 and
2s 6= γ(1− p), hence

v(x) � Φ1(x) � dist(·, ∂Ω)γ = δγ

For the SFL we have γ = 1 hence we have three possibilities:

v(x) �


dist(x, ∂Ω) when s > 1−p

2

dist(x, ∂Ω) (1 + | log dist(x, ∂Ω)|)
1

1−p when s = 1−p
2

dist(x, ∂Ω)
2s

1−p when s < 1−p
2

Regularity. Under some mild assumptions on L and f ∈ Cβ(R) for some β > 0,
with 0 ≤ f (a) ≤ cpap when 0 ≤ a ≤ 1 for some 0 < p ≤ 1.

Solutions are Hölder continuous in the interior, and (when the operator allows
it) are classical in the interior, namely C2s+β(Ω).

Assuming moreover that L−1 satisfies (K2), solutions are Hölder continuous up
to the boundary:

‖u‖Cη(Ω) ≤ C ∀ η ∈ (0, γ] ∩ (0, 2s).

(When 2s ≥ γ the exponent is sharp. When 2s < γ actually we can reach any η < γ)
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Parabolic solutions by separation of variables

Change of notations from Elliptic to Parabolic In order to make the ellip-
tic results “compatible” with the parabolic, we will perform the change of
notations

m =
1
p
> 1 and v = Sm or vp = S .

The elliptic equation transforms: (we deal only with pure powers for simplicity)

Lv = f (v) = vp becomes LSm = LF(S) = S

Parabolic solutions by separation of variables. We have the following so-
lution for the Dirichlet problem for the equation ut + L um = 0

UT(t, x) =
S(x)

(T + t)
1

m−1

where LSm = S, and the initial datum is UT(0, x) = T−1/(m−1)S(x).
When T = 0 we have the so-called Friendly Giant, corresponding to the
biggest possible initial datum (useful in the asymptotic study as t→∞.)

U(t, x) =
S(x)

t
1

m−1
with U(0, x) = +∞ .
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Back to the Parabolic problem

(More) Assumptions on the operator

Basic theory: existence, uniqueness and boundedness

Elliptic VS Parabolic: Asymptotic Behaviour as t→∞

For the rest of the talk we deal with the special case:

F(u) = um := |u|m−1u, m > 1
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(More) Assumptions on the operator

Recall that the linear operator L : dom(A) ⊆ L1(Ω) → L1(Ω) is assumed
to be densely defined and sub-Markovian, and we have already explained the
assumptions (K1) and (K2) on the inverse.
Assumptions on the kernel.
- Whenever L is defined in terms of a kernel K(x, y) via the formula

Lf (x) = P.V.
∫
RN

(
f (x)− f (y)

)
K(x, y) dy ,

assumption (L1) states that there exists κΩ > 0 such that

(L1) inf
x,y∈Ω

K(x, y) ≥ κΩ > 0 .

- Whenever L is defined in terms of a kernel K(x, y) and a zero order term:

Lf (x) = P.V.
∫
RN

(
f (x)− f (y)

)
K(x, y) dy + B(x)f (x),

assumptions (L2) states that there exists κΩ > 0 and γ ∈ (0, 1]

(L2) K(x, y) ≥ κΩ dist(x, ∂Ω)γ dist(y, ∂Ω)γ , and B(x) ≥ 0,
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About the kernels

About the kernels of spectral nonlocal operators. Most of the examples
of nonlocal operators, but the SFL, admit a representation with a kernel
A natural question is: does the SFL admit such a representation?
Let A be a uniformly elliptic linear operator. Define the sth power of A:

Lg(x) = Asg(x) =
1

Γ(−s)

∫ ∞
0

(
etAg(x)− g(x)

) dt
t1+s

Then it admits a representation with a Kernel plus zero order term:

Asg(x) = P.V.
∫
RN

(
g(x)− g(y)

)
K(x, y) dy + κ(x)g(x) .

where K ≥ 0 is compactly supported in Ω× Ω with

K(x, y) � 1
|x− y|N+2s

(
Φ1(x)

|x− y|γ ∧ 1
)(

Φ1(y)

|x− y|γ ∧ 1
)

and κ(x) � 1
dist(x, ∂Ω)2s .

References.
R. Song and Z. Vondracek. Potential theory of subordinate killed Brownian motion in a
domain. Probab. Theory Relat. Fields (2003)

N. Abatangelo, Large solutions for fractional Laplacian operators, PhD Thesis, 2015.
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R. Song and Z. Vondracek. Potential theory of subordinate killed Brownian motion in a
domain. Probab. Theory Relat. Fields (2003)

N. Abatangelo, Large solutions for fractional Laplacian operators, PhD Thesis, 2015.
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(CDP)


∂tu = −L um , in (0,+∞)× Ω
u(0, x) = u0(x) , in Ω
u(t, x) = 0 , on the lateral boundary.

We can formulate a “dual problem”, using the inverse L−1 as follows

∂tU = −um , where U(t, x) := L−1[u(t, ·)](x) =

∫
Ω

u(t, y)G(x, y) dy .

This formulation encodes the lateral boundary conditions through L−1.
Define the Weak Dual Solutions (WDS), a new concept compatible with more
standard solutions: very weak, weak (energy), mild, strong [...]
Prove existence and uniqueness of nonnegative WDS with 0 ≤ u0 ∈ L1

Φ1
(Ω).

Prove a number of new pointwise estimates that provide L∞ bounds:
Absolute bounds: (k below does NOT depend on u0)

‖u(t, ·)‖L∞(Ω) ≤ κt−
1

m−1 ,

Instantaneous Smoothing Effects:

‖u(t)‖L∞(Ω) ≤
κ

tNϑγ
‖u(t)‖2sϑγ

L1
Φ1

(Ω)
≤ κ

tNϑγ
‖u0‖2sϑγ

L1
Φ1

(Ω)

For more details on this part “old slides”: http://verso.mat.uam.es/~matteo.bonforte

or video of my talk at Fields inst. http://www.fields.utoronto.ca/video-archive//event/2021/2016
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Elliptic VS Parabolic: Asymptotic Behaviour as t→∞

Theorem. (Asymptotic behaviour) (M.B., A. Figalli, Y. Sire, J. L. Vázquez)

Assume that L satisfies (A1), (A2), and (K2), and let S be the solution to
LSm = S. Let u be any weak dual solution to the Cauchy-Dirichlet problem.
Then, unless u ≡ 0, ∥∥∥t

1
m−1 u(t, ·)− S

∥∥∥
L∞(Ω)

t→∞−−−→ 0 .

This result, gives a clear suggestion of what the boundary behaviour of para-
bolic solutions should be,

u(t, x) � U(t, x) =
S(x)

t
1

m−1

at least for large times, as it happens in the local case s = 1. Hence the
boundary behaviour shall be dictated by the behaviour of the solution to the
elliptic equation. We shall see that this is not always the case.
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Harnack-type Inequalities

Infinite Speed of Propagation

Asymptotic Behaviour

Anomalous Boundary Behaviour and Counterexamples

Some Numerics
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Global Harnack Principle I. The non-spectral case. Matching powers.

Recall: Φ1 � dist(·, ∂Ω)γ , σ = 1 ∧ 2sm
γ(m− 1)

, t∗ = κ∗‖u0‖−(m−1)
L1
Φ1

(Ω)
.

Theorem. (Global Harnack Principle I. The non-spectral case.)(MB & AF & JLV)

Let (A1), (A2), (L1) and (K2). Let u ≥ 0 be a weak dual solution to the (CDP). Also,
when σ < 1, assume that K(x, y) ≤ c1|x − y|−(N+2s) for a.e. x, y ∈ RN and that
Φ1 ∈ Cγ(Ω). Then, there exist constants κ, κ > 0, so that the following inequality
holds for all t > 0 and all x ∈ Ω : (when 2sm 6= γ(m− 1))

κ

(
1 ∧ t

t∗

) m
m−1 Φ1(x)σ/m

t
1

m−1
≤ u(t, x) ≤ κ Φ1(x)σ/m

t
1

m−1
.

The constants κ, κ depend only on N, s, γ,m, c1, κΩ,Ω, and ‖Φ1‖Cγ(Ω) .

For large times t ≥ t∗ the estimates are independent on the initial datum.

When 2sm = γ(m− 1), assuming (K4) and that u0 ≥ κ0Φ1 (1 + | log Φ1|)1/(m−1) for
some κ0 > 0, then for all t ≥ t∗ and all x ∈ Ω

κ
Φ1(x)1/m

t
1

m−1

(1 + | log Φ1(x)|)1/(m−1) ≤ u(t, x) ≤ κ
Φ1(x)1/m

t
1

m−1

(1 + | log Φ1(x)|)1/(m−1) .

Notice that this result does not apply for s = 1, is purely nonlocal.
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Consequences of GHP with matching powers

Corollary. (Local Harnack Inequalities of Elliptic/Backward Type)
Assume that the (GHP-I) holds for a weak dual solution u to the (CDP). Then there
exists a constant Ĥ depending only on N, s, γ,m, c1,Ω, s. t. for all t > 0 and h ≥ 0

sup
x∈BR(x0)

u(t, x) ≤ Ĥ

[(
1 +

h
t

)(
1 ∧ t

t∗

)−m
] 1

m−1

inf
x∈BR(x0)

u(t + h, x) .

When s = 1, backward Harnack inequalities are typical of Fast Diffusion eq. (m < 1, possible
extinction in finite time), and they do not happen when m > 1 (finite speed of propagation)

Theorem. (Sharp Asymptotic behaviour) (M.B., A. Figalli, Y. Sire, J. L. Vázquez)

Assume that a GHP with matching powers hold. Set U(t, x) := t−
1

m−1 S(x). Then
there exists c0 > 0 such that, for all t ≥ t0 := c0‖u0‖−(m−1)

L1
Φ1

(Ω)
, we have

∥∥∥∥ u(t, ·)
U(t, ·) − 1

∥∥∥∥
L∞(Ω)

≤ 2
m− 1

t0

t0 + t
.

This asymptotic result is sharp: check by considering u(t, x) = U(t + 1, x). For the classical
case L = ∆, we recover the results of Aronson-Peletier and Vazquez with a different proof.
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Infinite speed of propagation.

u(t, x) ≥ κ0

(
1 ∧ t

t∗

) m
m−1 Φ1(x)

t
1

m−1
for all t > 0 and all x ∈ Ω .

As a consequence, of the above universal bounds for all times, we have proven
that all nonnegative solutions have infinite speed of propagation.

No free boundaries when s < 1, contrary to the “local” case s = 1,
cf. Barenblatt, Aronson, Caffarelli, Vázquez, Wolansky [...]

Qualitative version of infinite speed of propagation for the Cauchy problem on
RN , by De Pablo, Quíros, Rodriguez, Vázquez [Adv. Math. 2011, CPAM 2012]

Different from the so-called Caffarelli-Vázquez model (on RN) that has finite
speed of propagation [ARMA 2011, DCDS 2011] and also Stan, del Teso
Vázquez [CRAS 2014, NLTMA 2015, JDE 2015]
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Consequences of GHP with matching powers

Infinite speed of propagation.

u(t, x) ≥ κ0

(
1 ∧ t

t∗

) m
m−1 Φ1(x)

t
1

m−1
for all t > 0 and all x ∈ Ω .
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RN , by De Pablo, Quíros, Rodriguez, Vázquez [Adv. Math. 2011, CPAM 2012]

Different from the so-called Caffarelli-Vázquez model (on RN) that has finite
speed of propagation [ARMA 2011, DCDS 2011] and also Stan, del Teso
Vázquez [CRAS 2014, NLTMA 2015, JDE 2015]
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Global Harnack Principles in the remaining cases.

Global Harnack Principles II. Matching powers for large times.
Theorem. (Global Harnack Principle II) (M.B., A. Figalli and J. L. Vázquez)

Let (A1), (A2), and (K2) hold, and let u ≥ 0 be a weak dual solution to the (CDP)
corresponding to u0 ∈ L1

Φ1
(Ω). Assume that:

- either σ = 1 and 2sm 6= γ(m− 1);
- or σ < 1, u0 ≥ κ0Φ

σ/m
1 for some κ0 > 0, and (K4) holds.

Then there exist constants κ, κ > 0 such that the following inequality holds:

κ
Φ1(x)σ/m

t
1

m−1
≤ u(t, x) ≤ κ Φ1(x0)

σ/m

t
1

m−1
for all t ≥ t∗ and all x ∈ Ω .

The constants κ, κ depend only on N, s, γ,m, κ0, κΩ, and Ω.

• For large times, we can prove as before Local Harnack inequalities of Elliptic/Backward type.
• Also in this case the Sharp Asymptotic behaviour follows from GHP with matching powers.
• For small times we can not find matching powers for a global Harnack inequality (except for
special data) and such result is actually false for s = 1 (finite speed of propagation).
• For s = 1, L = −∆, similar results by Aronson and Peletier [JDE, 1981] , Vázquez [Monatsh.
Math. 2004]. This result holds also in the local case s = 1, when speed of propagation is finite.
• Backward Harnack inequalities for the linear heat equation s = 1 and m = 1, by Fabes,
Garofalo, Salsa [Ill. J. Math, 1986] and also Safonov, Yuan [Ann. of Math, 1999]
• For s = 1, Intrinsic (Forward) Harnack inequalities by DiBenedetto [ARMA, 1988], Daskalo-
poulos and Kenig [EMS Book, 2007], cf. also DiBenedetto, Gianazza, Vespri [LNM, 2011].
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Global Harnack Principles in the remaining cases.

Global Harnack Principles III. Non-Matching powers.
Hence, in the remaining cases, we have only the following general result.

Theorem. (Global Harnack Principle III) (M.B., A. Figalli and J. L. Vázquez)

LetL satisfy (A1),(A2), (L2) and (K2).Let u ≥ 0 be a weak dual solution to the (CDP)
corresponding to u0 ∈ L1

Φ1
(Ω).

Then, there exist constants κ, κ > 0, so that the following inequality holds:

κ

(
1 ∧ t

t∗

) m
m−1 Φ1(x)

t
1

m−1
≤ u(t, x) ≤ κ Φ1(x0)

σ/m

t
1

m−1
for all t > 0 and all x ∈ Ω .

• This is a universal bound: it holds for all nonlocal operators that we consider s < 1
and shows infinite speed of propagation in a quantitative way.

• This is sufficient to ensure interior regularity, under ‘minimal’ assumptions.

• This bound holds for all times and for a large class of operators.

• This is not sufficient to ensure Cαx boundary regularity.

• Question: Can the estimate be improved to get matching powers also in this case?
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Anomalous Boundary Behaviour and Counterexamples

Anomalous boundary behaviour when σ < 1.
The intriguing case σ < 1 is where new and unexpected phenomena appear. Recall that

σ =
2sm

γ(m− 1)
< 1 i.e. 0 < s <

γ

2
− γ

2m
.

Solutions by separation of variables: the standard boundary behaviour?

Let S be a solution to the Elliptic Dirichlet problem for LSm = cmS. We can define

U(t, x) = S(x)t−
1

m−1 where S � Φ
σ/m
1 .

which is a solution to the (CDP), which behaves like Φ
σ/m
1 at the boundary.

By comparison, we see that the same lower behaviour is shared ‘big’ solutions:

u0 ≥ ε0S implies u(t) ≥ S(
ε1−m

0 + t
)1/(m−1)

This behaviour seems to be sharp: we have shown matching upper bounds,
and also S represents the large time asymptotic behaviour:

lim
t→∞

∥∥∥t
1

m−1 u(t)− S
∥∥∥

L∞
= 0 for all 0 ≤ u0 ∈ L1

Φ1 (Ω) .

But this is not happening for all solutions...
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Anomalous Boundary Behaviour and Counterexamples

Different boundary behaviour when σ < 1. The next result shows that, in general,
we cannot hope to prove that u(t) is larger than Φ

1/m
1 , but always smaller than Φ

σ/m
1 .

Proposition. (Counterexample I) (M.B., A. Figalli and J. L. Vázquez)

Let (A1), (A2), and (K2) hold, and u ≥ 0 be a weak dual solution to the (CDP).
Then, there exists a constant κ̂, depending only N, s, γ,m, and Ω, such that

0 ≤ u0 ≤ c0Φ1 implies u(t, x) ≤ c0κ̂
Φ

1/m
1 (x)

t1/m ∀t > 0 and a.e. x ∈ Ω .

In particular, if σ < 1, then

lim
x→∂Ω

u(t, x)

Φ1(x)σ/m = 0 for any t > 0.

When σ = 1 and 2sm = γ(m− 1), then

lim
x→∂Ω

u(t, x)

Φ1(x)1/m (1 + | log Φ1(x)|)1/(m−1) = 0 for any t > 0.

Idea: The proposition above could make one wonder whether or not the sharp general
lower bound could be actually given by Φ

1/m
1 , as in the case σ = 1.

But again, this is not happening for all solutions...
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Anomalous Boundary Behaviour and Counterexamples

Different boundary behaviour when σ < 1.
We next show that assuming (K4), the bound u(t) & Φ

1/m
1 t−1/(m−1) is false for σ < 1.

Proposition. (Counterexample II) (M.B., A. Figalli and J. L. Vázquez)

Let (A1), (A2), and (K4) hold, and let u ≥ 0 be a weak dual solution to the (CDP)
corresponding to a nonnegative initial datum u0 ≤ c0Φ1 for some c0 > 0.
If there exist constants κ, T, α > 0 such that

u(T, x) ≥ κΦα1 (x) for a.e. x ∈ Ω , then α ≥ 1− 2s
γ
.

In particular, when σ < 1, we have α > 1
m > σ

m .

Under mild assumptions on the operator (for example SFL-type), we can prove:

0 ≤ u0 ≤ A Φ
1− 2s

γ

1 ⇒ u(t) ≤ [A1−m − C̃t]−(m−1)Φ
1− 2s

γ

1

for small times t ∈ [0, TA], where TA := 1/(C̃Am−1), for some C̃ > 0.
Recall that we have a universal lower bound (under minimal assumptions on K)

u(t, x) ≥ κ0

(
1 ∧ t

t∗

) m
m−1 Φ1(x)

t
1

m−1
for all t > 0 and all x ∈ Ω .
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Different boundary behaviour when σ < 1.
We next show that assuming (K4), the bound u(t) & Φ

1/m
1 t−1/(m−1) is false for σ < 1.

Proposition. (Counterexample II) (M.B., A. Figalli and J. L. Vázquez)

Let (A1), (A2), and (K4) hold, and let u ≥ 0 be a weak dual solution to the (CDP)
corresponding to a nonnegative initial datum u0 ≤ c0Φ1 for some c0 > 0.
If there exist constants κ, T, α > 0 such that

u(T, x) ≥ κΦα1 (x) for a.e. x ∈ Ω , then α ≥ 1− 2s
γ
.

In particular, when σ < 1, we have α > 1
m > σ

m .

Under mild assumptions on the operator (for example SFL-type), we can prove:

0 ≤ u0 ≤ A Φ
1− 2s

γ

1 ⇒ u(t) ≤ [A1−m − C̃t]−(m−1)Φ
1− 2s

γ

1

for small times t ∈ [0, TA], where TA := 1/(C̃Am−1), for some C̃ > 0.
Recall that we have a universal lower bound (under minimal assumptions on K)

u(t, x) ≥ κ0

(
1 ∧ t

t∗

) m
m−1 Φ1(x)

t
1

m−1
for all t > 0 and all x ∈ Ω .
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Numerics

Numerical Simulations∗

∗ Graphics obtained by numerical methods contained in: N. Cusimano, F. Del Teso, L. Gerardo-
Giorda, G. Pagnini, Discretizations of the spectral fractional Laplacian on general domains with
Dirichlet, Neumann, and Robin boundary conditions, SIAM Num. Anal. (2018)
Graphics and videos: courtesy of F. Del Teso (NTNU, Trondheim, Norway)
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Numerics I. Matching

Numerical simulation for the SFL with parameters m = 2 and s = 1/2, hence σ = 1.

Left: the initial condition u0 ≤ C0Φ1

Right: solid line represents Φ
1/m
1

the dotted lines represent t
1

m−1 u(t) at time at t = 1 and t = 5

While u(t) appears to behave as Φ1 � dist(·, ∂Ω) for very short times

already at t = 5 it exhibits the matching boundary behavior t
1

m−1 u(t) � Φ
1/m
1
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Numerics II. Matching VS Non-Matching

Compare σ = 1 VS σ < 1: same u0 ≤ C0Φ1, solutions with different parameters

Left: t
1

m−1 u(t) at time t = 30 and t = 150; m = 4, s = 3/4, σ = 1.

Matching: u(t) behaves like Φ1 � dist(·, ∂Ω) for quite some time,
and only around t = 150 it exhibits the matching boundary behavior u(t) � Φ

1/m
1

Right: t
1

m−1 u(t) at time t = 150 and t = 600; m = 4, s = 1/5, σ = 8/15 < 1.

Non-matching: u(t) � Φ1 even after long time.

Idea: maybe when σ < 1 and u0 . Φ1, we have u(t) � Φ1 for all times...

Not True: there are cases when u(t)� Φ1−2s
1 for large times...
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Numerics III. Non-Matching

Non-matching when σ < 1: same data u0, with m = 2 and s = 1/10, σ = 2/5 < 1

In both pictures, the solid line represents Φ1−2s
1 (anomalous behaviour)

Left: t
1

m−1 u(t) at time t = 4 and t = 25.

u(t) � Φ1 for short times t = 4, then u(t) ∼ Φ1−2s
1 for intermediate times t = 25

Right: t
1

m−1 u(t) at time t = 40 and t = 150. u(t)� Φ1−2s
1 for large times.

Both non-matching always different behaviour from the asymptotic profile Φ
σ/m
1 .

In this case we show that if u0(x) ≤ C0Φ1(x) then for all t > 0

u(t, x) ≤ C1

[
Φ1(x)

t

] 1
m

and lim
x→∂Ω

u(t, x)

Φ1(x)
σ
m

= 0 for any t > 0.
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Numerics III. Non-Matching

The End

Thank You!!!

Grazie Mille!!!

Muchas Gracias!!!
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Regularity Estimates

Interior Regularity

Hölder continuity up to the boundary

Higher interior regularity for RFL
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Interior Regularity

The regularity results, require the validity of a Global Harnack Principle.
(R) The operator L satisfies (A1) and (A2), and L−1 satisfies (K2). Moreover, we
consider

Lf (x) = P.V.
∫
RN

(
f (x)− f (y)

)
K(x, y) dy + B(x)f (x) , with

K(x, y) � |x−y|−(N+2s) in B2r(x0) ⊂ Ω, K(x, y) . |x−y|−(N+2s) in RN \ B2r(x0).

As a consequence, for any ball B2r(x0) ⊂⊂ Ω and 0 < t0 < T1, there exist δ,M > 0 such that

0 < δ ≤ u(t, x) for a.e. (t, x) ∈ (T0, T1)× B2r(x0),

0 ≤ u(t, x) ≤ M for a.e. (t, x) ∈ (T0, T1)× Ω.
The constants in the regularity estimates will depend on the solution only through δ,M.

Theorem. (Interior Regularity) (M.B., A. Figalli and J. L. Vázquez)

Assume (R) and let u be a nonnegative bounded weak dual solution to problem (CDP).
1. Then u is Hölder continuous in the interior. More precisely, there exists α > 0
such that, for all 0 < T0 < T2 < T1,

‖u‖
Cα/2s,α

t,x ((T2,T1)×Br(x0))
≤ C.

2. Assume in addition |K(x, y) − K(x′, y)| ≤ c|x − x′|β |y|−(N+2s) for some β ∈
(0, 1 ∧ 2s) such that β + 2s 6∈ N. Then u is a classical solution in the interior.
More precisely, for all 0 < T0 < T2 < T1,

‖u‖
C1+β/2s,2s+β

t,x ((T2,T1)×Br(x0))
≤ C.
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Hölder continuity up to the boundary

Theorem. (Hölder continuity up to the boundary) (M.B., A. Figalli and J. L. Vázquez)

Assume (R), hypothesis 2 of the interior regularity and in addition that 2s > γ.
Then u is Hölder continuous up to the boundary.
More precisely, for all 0 < T0 < T2 < T1 there exists a constant C > 0 such that

‖u‖
C
γ

mϑ ,
γ
m

t,x ((T2,T1)×Ω)
≤ C with ϑ := 2s− γ

(
1− 1

m

)
.

• Since u(t, x) � Φ1(x)1/m � dist(x, ∂Ω)γ/m, the spacial Hölder exponent is sharp,
while the Hölder exponent in time is the natural one by scaling. ( 2s > γ implies σ = 1)
• Previous regularity results: (I apologize if I forgot someone)

Cα regularity:
Athanasopoulos and Caffarelli [Adv. Math, 2010], (RFL domains)
De Pablo, Quirós, Rodriguez, Vázquez [CPAM 2012] (RFL on RN , SFL-Dirichlet)
De Pablo, Quirós, Rodriguez [NLTMA 2016]. (RFL-rough kernels RN )

Classical Solutions:
Vázquez, De Pablo, Quirós, Rodriguez [JEMS 2016] (RFL on RN )
M.B., Figalli, Ros-Oton [CPAM2016] (RFL Dirichlet, even unbounded domains)

Higher regularity: C∞x and Cα up to the boundary:
M.B., Figalli, Ros-Oton [CPAM2016] (RFL Dirichlet, even unbounded domains)
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Higher interior regularity for RFL

Higher Interior Regularity for RFL.
Theorem. (Higher interior regularity in space) (M.B., A. Figalli, X. Ros-Oton)

Under the running assumptions (R) , then u ∈ C∞x ((0,∞)× Ω).
More precisely, let k ≥ 1 be any positive integer, and d(x) = dist(x, ∂Ω),
then, for any t ≥ t0 > 0 we have∣∣Dk

xu(t, x)
∣∣ ≤ C [d(x)]

s
m−k,

where C depends only on N, s,m, k,Ω, t0, and ‖u0‖L1
Φ1

(Ω).

Higher regularity in time is a difficult open problem. It is connected to higher order
boundary regularity in t. To our knowledge also open for the local case s = 1.
When m = 1 (FHE) ut + (−∆|Ω)su = 0 on (0, 1)× B1 we have u ∈ C∞x

‖u‖
Ck,α

x (( 1
2 ,1)×B1/2)

≤ C‖u‖L∞((0,1)×RN), for all k ≥ 0.

Analogous estimates in time do not hold for k ≥ 1 and α ∈ (0, 1).
Indeed, one can construct a solution to the (FHE) which is bounded in all of RN , but
which is not C1 in t in ( 1

2 , 1)× B1/2. [Chang-Lara, Davila, JDE (2014)]
Our techniques allow to prove regularity also in unbounded domains , and also for
operator with more general kernels.
Also the “classical/local” case s = 1 works after the waiting time t∗:

u ∈ C
1
m ,

1
2m

x,t
(
Ω× [t∗, T]

)
, C∞x ((0,∞)× Ω) and C1,α

t ([t0, T]× K) .
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Higher regularity in time is a difficult open problem. It is connected to higher order
boundary regularity in t. To our knowledge also open for the local case s = 1.
When m = 1 (FHE) ut + (−∆|Ω)su = 0 on (0, 1)× B1 we have u ∈ C∞x

‖u‖
Ck,α

x (( 1
2 ,1)×B1/2)

≤ C‖u‖L∞((0,1)×RN), for all k ≥ 0.

Analogous estimates in time do not hold for k ≥ 1 and α ∈ (0, 1).
Indeed, one can construct a solution to the (FHE) which is bounded in all of RN , but
which is not C1 in t in ( 1

2 , 1)× B1/2. [Chang-Lara, Davila, JDE (2014)]
Our techniques allow to prove regularity also in unbounded domains , and also for
operator with more general kernels.
Also the “classical/local” case s = 1 works after the waiting time t∗:

u ∈ C
1
m ,

1
2m

x,t
(
Ω× [t∗, T]

)
, C∞x ((0,∞)× Ω) and C1,α

t ([t0, T]× K) .
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