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Homogeneous Dirichlet Problem for
Fractional Nonlinear Degenerate Diffusion Equations

(HDP)

 ut + LF(u) = 0 , in (0,+∞)× Ω
u(0, x) = u0(x) , in Ω
u(t, x) = 0 , on the lateral boundary.

where:
Ω ⊂ RN is a bounded domain with smooth boundary and N ≥ 1.
The linear operator L will be:

sub-Markovian operator
densely defined in L1(Ω).

A wide class of linear operators fall in this class:
all fractional Laplacians on domains.
The most studied nonlinearity is F(u) = |u|m−1u , with m > 1.
We deal with Degenerate diffusion of Porous Medium type.
More general classes of “degenerate” nonlinearities F are allowed.
The homogeneous boundary condition is posed on the lateral boundary,
which may take different forms, depending on the particular choice of
the operator L.
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About the operator L

The linear operator L : dom(A) ⊆ L1(Ω)→ L1(Ω) is assumed to be densely
defined and sub-Markovian, more precisely satisfying (A1) and (A2) below:

(A1) L is m-accretive on L1(Ω),
(A2) If 0 ≤ f ≤ 1 then 0 ≤ e−tLf ≤ 1 , or equivalently,

(A2’) If β is a maximal monotone graph in R× R with 0 ∈ β(0),
u ∈ dom(L) , Lu ∈ Lp(Ω) , 1 ≤ p ≤ ∞ , v ∈ Lp/(p−1)(Ω) ,
v(x) ∈ β(u(x)) a.e , then ∫

Ω

v(x)Lu(x) dx ≥ 0

Remark. These assumptions are needed for existence (and uniqueness) of
semigroup (mild) solutions for the nonlinear equation ut = LF(u), through
a remarkable variant of the celebrated Crandall-Liggett theorem, as done by
Benilan, Crandall and Pierre:

M. G. Crandall, T.M. Liggett. Generation of semi-groups of nonlinear
transformations on general Banach spaces, Amer. J. Math. 93 (1971) 265–298.

M. Crandall, M. Pierre, Regularizing Effects for ut = Aϕ(u) in L1, J. Funct.
Anal. 45, (1982), 194–212
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Assumption on the nonlinearity F

Let F : R→ R be a continuous and non-decreasing function, with F(0) = 0.
Moreover, it satisfies the condition:

(N1) F ∈ C1(R \ {0}) and F/F′ ∈ Lip(R) and there exists µ0, µ1 > 0 s.t.

1
m1

= 1− µ1 ≤
(

F
F′

)′
≤ 1− µ0 =

1
m0

where F/F′ is understood to vanish if F(r) = F′(r) = 0 or r = 0 .

The main example (treated in the rest of the talk) will be

F(u) = |u|m−1u, with m > 1 , µ0 = µ1 =
m− 1

m
< 1 .

A simple variant is the combination of two powers:
m1 behaviour when u ∼ ∞ and m0 behaviour when u ∼ 0
Monotonicity estimates follow by (N1): the following maps

t 7→ t
1
µ0 F(u(t, x)) or t 7→ t

1
m−1 u(t, x)

are nondecreasing in t > 0 for a.e. x ∈ Ω.
P. Bénilan, M. G. Crandall. Regularizing effects of homogeneous evolution equations,
Contributions to Analysis and Geometry, suppl. to Amer. Jour. Math., (1981). Pp. 23-39.
M. Crandall, M. Pierre, Regularizing Effects for ut = Aϕ(u) in L1, J. Funct. Anal. 45,
(1982), 194–212



Outline of the talk Introduction Basic Theory Sharp Boundary Behaviour Harnack Inequalities Numerics Regularity Estimates Asymptotic behaviour

Assumption on the nonlinearity F

Let F : R→ R be a continuous and non-decreasing function, with F(0) = 0.
Moreover, it satisfies the condition:

(N1) F ∈ C1(R \ {0}) and F/F′ ∈ Lip(R) and there exists µ0, µ1 > 0 s.t.

1
m1

= 1− µ1 ≤
(

F
F′

)′
≤ 1− µ0 =

1
m0

where F/F′ is understood to vanish if F(r) = F′(r) = 0 or r = 0 .

The main example (treated in the rest of the talk) will be

F(u) = |u|m−1u, with m > 1 , µ0 = µ1 =
m− 1

m
< 1 .

A simple variant is the combination of two powers:
m1 behaviour when u ∼ ∞ and m0 behaviour when u ∼ 0
Monotonicity estimates follow by (N1): the following maps

t 7→ t
1
µ0 F(u(t, x)) or t 7→ t

1
m−1 u(t, x)

are nondecreasing in t > 0 for a.e. x ∈ Ω.
P. Bénilan, M. G. Crandall. Regularizing effects of homogeneous evolution equations,
Contributions to Analysis and Geometry, suppl. to Amer. Jour. Math., (1981). Pp. 23-39.
M. Crandall, M. Pierre, Regularizing Effects for ut = Aϕ(u) in L1, J. Funct. Anal. 45,
(1982), 194–212



Outline of the talk Introduction Basic Theory Sharp Boundary Behaviour Harnack Inequalities Numerics Regularity Estimates Asymptotic behaviour

Assumption on the nonlinearity F

Let F : R→ R be a continuous and non-decreasing function, with F(0) = 0.
Moreover, it satisfies the condition:

(N1) F ∈ C1(R \ {0}) and F/F′ ∈ Lip(R) and there exists µ0, µ1 > 0 s.t.

1
m1

= 1− µ1 ≤
(

F
F′

)′
≤ 1− µ0 =

1
m0

where F/F′ is understood to vanish if F(r) = F′(r) = 0 or r = 0 .

The main example (treated in the rest of the talk) will be

F(u) = |u|m−1u, with m > 1 , µ0 = µ1 =
m− 1

m
< 1 .

A simple variant is the combination of two powers:
m1 behaviour when u ∼ ∞ and m0 behaviour when u ∼ 0
Monotonicity estimates follow by (N1): the following maps

t 7→ t
1
µ0 F(u(t, x)) or t 7→ t

1
m−1 u(t, x)

are nondecreasing in t > 0 for a.e. x ∈ Ω.
P. Bénilan, M. G. Crandall. Regularizing effects of homogeneous evolution equations,
Contributions to Analysis and Geometry, suppl. to Amer. Jour. Math., (1981). Pp. 23-39.
M. Crandall, M. Pierre, Regularizing Effects for ut = Aϕ(u) in L1, J. Funct. Anal. 45,
(1982), 194–212



Outline of the talk Introduction Basic Theory Sharp Boundary Behaviour Harnack Inequalities Numerics Regularity Estimates Asymptotic behaviour

Assumption on the nonlinearity F

Let F : R→ R be a continuous and non-decreasing function, with F(0) = 0.
Moreover, it satisfies the condition:

(N1) F ∈ C1(R \ {0}) and F/F′ ∈ Lip(R) and there exists µ0, µ1 > 0 s.t.

1
m1

= 1− µ1 ≤
(

F
F′

)′
≤ 1− µ0 =

1
m0

where F/F′ is understood to vanish if F(r) = F′(r) = 0 or r = 0 .

The main example (treated in the rest of the talk) will be

F(u) = |u|m−1u, with m > 1 , µ0 = µ1 =
m− 1

m
< 1 .

A simple variant is the combination of two powers:
m1 behaviour when u ∼ ∞ and m0 behaviour when u ∼ 0
Monotonicity estimates follow by (N1): the following maps

t 7→ t
1
µ0 F(u(t, x)) or t 7→ t

1
m−1 u(t, x)

are nondecreasing in t > 0 for a.e. x ∈ Ω.
P. Bénilan, M. G. Crandall. Regularizing effects of homogeneous evolution equations,
Contributions to Analysis and Geometry, suppl. to Amer. Jour. Math., (1981). Pp. 23-39.
M. Crandall, M. Pierre, Regularizing Effects for ut = Aϕ(u) in L1, J. Funct. Anal. 45,
(1982), 194–212



Outline of the talk Introduction Basic Theory Sharp Boundary Behaviour Harnack Inequalities Numerics Regularity Estimates Asymptotic behaviour

Assumption on the nonlinearity F

Let F : R→ R be a continuous and non-decreasing function, with F(0) = 0.
Moreover, it satisfies the condition:

(N1) F ∈ C1(R \ {0}) and F/F′ ∈ Lip(R) and there exists µ0, µ1 > 0 s.t.

1
m1

= 1− µ1 ≤
(

F
F′

)′
≤ 1− µ0 =

1
m0

where F/F′ is understood to vanish if F(r) = F′(r) = 0 or r = 0 .

The main example (treated in the rest of the talk) will be

F(u) = |u|m−1u, with m > 1 , µ0 = µ1 =
m− 1

m
< 1 .

A simple variant is the combination of two powers:
m1 behaviour when u ∼ ∞ and m0 behaviour when u ∼ 0
Monotonicity estimates follow by (N1): the following maps

t 7→ t
1
µ0 F(u(t, x)) or t 7→ t

1
m−1 u(t, x)

are nondecreasing in t > 0 for a.e. x ∈ Ω.
P. Bénilan, M. G. Crandall. Regularizing effects of homogeneous evolution equations,
Contributions to Analysis and Geometry, suppl. to Amer. Jour. Math., (1981). Pp. 23-39.
M. Crandall, M. Pierre, Regularizing Effects for ut = Aϕ(u) in L1, J. Funct. Anal. 45,
(1982), 194–212



Outline of the talk Introduction Basic Theory Sharp Boundary Behaviour Harnack Inequalities Numerics Regularity Estimates Asymptotic behaviour

Assumption on the inverse operator L−1

Assumptions on the inverse of L
We will assume that the operator L has an inverse L−1 : L1(Ω) → L1(Ω) with a
kernel K such that

L−1f (x) =

∫
Ω

K(x, y) f (y) dy ,

and that satisfies (one of) the following estimates for some γ, s ∈ (0, 1] and ci,Ω > 0

(K1) 0 ≤ K(x, y) ≤ c1,Ω

|x− y|N−2s

(K2) c0,Ωδ
γ(x) δγ(y) ≤ K(x, y) ≤ c1,Ω

|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)

where
δγ(x) := dist(x, ∂Ω)γ .

When L has a first eigenfunction, (K1) implies 0 ≤ Φ1 ∈ L∞(Ω) .
Moreover, (K2) implies that Φ1 � dist(·, ∂Ω)γ = δγ and we can rewrite (K2) as

(K3) c0,ΩΦ1(x)Φ1(y) ≤ K(x, y) ≤ c1,Ω

|x− x0|N−2s

(
Φ1(x)

|x− y|γ ∧ 1
)(

Φ1(y)

|x− y|γ ∧ 1
)
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Examples of operators L

Reminder about the fractional Laplacian operator on RN

We have several equivalent definitions for (−∆RN )s :

1 By means of Fourier Transform,

((−∆RN )sf )̂(ξ) = |ξ|2s f̂ (ξ) .

This formula can be used for positive and negative values of s.

2 By means of an Hypersingular Kernel:
if 0 < s < 1, we can use the representation

(−∆RN )sg(x) = cN,s P.V.
∫
RN

g(x)− g(z)
|x− z|N+2s dz,

where cN,s > 0 is a normalization constant.
3 Spectral definition, in terms of the heat semigroup associated to the standard

Laplacian operator:

(−∆RN )sg(x) =
1

Γ(−s)

∫ ∞
0

(
et∆RN g(x)− g(x)

) dt
t1+s .
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Examples of operators L

The Spectral Fractional Laplacian operator (SFL)

(−∆Ω)sg(x) =

∞∑
j=1

λs
j ĝj φj(x) =

1
Γ(−s)

∫ ∞
0

(
et∆Ωg(x)− g(x)

) dt
t1+s .

∆Ω is the classical Dirichlet Laplacian on the domain Ω

EIGENVALUES: 0 < λ1 ≤ λ2 ≤ . . . ≤ λj ≤ λj+1 ≤ . . . and λj � j2/N .

EIGENFUNCTIONS: φj are as smooth as the boundary of Ω allows,
namely when ∂Ω is Ck, then φj ∈ C∞(Ω) ∩ Ck(Ω) for all k ∈ N .

ĝj =

∫
Ω

g(x)φj(x) dx , with ‖φj‖L2(Ω) = 1 .

Lateral boundary conditions for the SFL

u(t, x) = 0 , in (0,∞)× ∂Ω .

The Green function of SFL satisfies a stronger assumption than (K2) or (K3), i.e.

(K4) K(x, y) � 1
|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)
, with γ = 1



Outline of the talk Introduction Basic Theory Sharp Boundary Behaviour Harnack Inequalities Numerics Regularity Estimates Asymptotic behaviour

Examples of operators L

The Spectral Fractional Laplacian operator (SFL)

(−∆Ω)sg(x) =

∞∑
j=1

λs
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Examples of operators L
Definition via the hypersingular kernel in RN , “restricted” to functions that are zero outside Ω.
The (Restricted) Fractional Laplacian operator (RFL)

(−∆|Ω)sg(x) = cN,s P.V.
∫
RN

g(x)− g(z)
|x− z|N+2s dz , with supp(g) ⊆ Ω .

where s ∈ (0, 1) and cN,s > 0 is a normalization constant.

(−∆|Ω)s is a self-adjoint operator on L2(Ω) with a discrete spectrum:

EIGENVALUES: 0 < λ1 ≤ λ2 ≤ . . . ≤ λj ≤ λj+1 ≤ . . . and λj � j2s/N .
Eigenvalues of the RFL are smaller than the ones of SFL: λj ≤ λs

j for all j ∈ N .

EIGENFUNCTIONS: φj are the normalized eigenfunctions, are only Hölder
continuous up to the boundary, namely φj ∈ Cs(Ω) . (J. Serra - X. Ros-Oton)

Lateral boundary conditions for the RFL

u(t, x) = 0 , in (0,∞)×
(
RN \ Ω

)
.

The Green function of RFL satisfies a stronger assumption than (K2) or (K3), i.e.

(K4) K(x, y) � 1
|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)
, with γ = s

References. (K4) Bounds proven by Bogdan, Grzywny, Jakubowski, Kulczycki, Ry-
znar (1997-2010). Eigenvalues: Blumental-Getoor (1959), Chen-Song (2005)



Outline of the talk Introduction Basic Theory Sharp Boundary Behaviour Harnack Inequalities Numerics Regularity Estimates Asymptotic behaviour

Examples of operators L
Definition via the hypersingular kernel in RN , “restricted” to functions that are zero outside Ω.
The (Restricted) Fractional Laplacian operator (RFL)

(−∆|Ω)sg(x) = cN,s P.V.
∫
RN

g(x)− g(z)
|x− z|N+2s dz , with supp(g) ⊆ Ω .

where s ∈ (0, 1) and cN,s > 0 is a normalization constant.

(−∆|Ω)s is a self-adjoint operator on L2(Ω) with a discrete spectrum:

EIGENVALUES: 0 < λ1 ≤ λ2 ≤ . . . ≤ λj ≤ λj+1 ≤ . . . and λj � j2s/N .
Eigenvalues of the RFL are smaller than the ones of SFL: λj ≤ λs

j for all j ∈ N .

EIGENFUNCTIONS: φj are the normalized eigenfunctions, are only Hölder
continuous up to the boundary, namely φj ∈ Cs(Ω) . (J. Serra - X. Ros-Oton)

Lateral boundary conditions for the RFL

u(t, x) = 0 , in (0,∞)×
(
RN \ Ω

)
.

The Green function of RFL satisfies a stronger assumption than (K2) or (K3), i.e.

(K4) K(x, y) � 1
|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)
, with γ = s

References. (K4) Bounds proven by Bogdan, Grzywny, Jakubowski, Kulczycki, Ry-
znar (1997-2010). Eigenvalues: Blumental-Getoor (1959), Chen-Song (2005)



Outline of the talk Introduction Basic Theory Sharp Boundary Behaviour Harnack Inequalities Numerics Regularity Estimates Asymptotic behaviour

Examples of operators L
Introduced in 2003 by Bogdan, Burdzy and Chen.

Censored (Regional) Fractional Laplacians (CFL)

Lf (x) = P.V.
∫

Ω

(f (x)− f (y))
a(x, y)

|x− y|N+2s dy , with
1
2
< s < 1 ,

where a(x, y) is a measurable, symmetric function bounded between two positive
constants, satisfying some further assumptions; for instance a ∈ C1(Ω× Ω).

The Green function K(x, y) satisfies (K4) , proven by Chen, Kim and Song (2010)

K(x, y) � 1
|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)
, with γ = s− 1

2
.

Remarks.
This is a third model of Dirichlet fractional Laplacian when

[
a(x, y) = const

]
.

This is not equivalent to SFL nor to RFL.

Roughly speaking, s ∈ (0, 1/2] corresponds to Neumann boundary conditions.
References.

K. Bogdan, K. Burdzy, K., Z.-Q. Chen. Censored stable processes. Probab. Theory Relat.
Fields (2003)

Z.-Q. Chen, P. Kim, R. Song, Two-sided heat kernel estimates for censored stable-like
processes. Probab. Theory Relat. Fields (2010)
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About the kernels

About the kernels of spectral nonlocal operators. Most of the examples
of nonlocal operators, but the SFL, admit a representation with a kernel
A natural question is: does the SFL admit such a representation?
Let A be a uniformly elliptic linear operator. Define the sth power of A:

Lg(x) = Asg(x) =
1

Γ(−s)

∫ ∞
0

(
etAg(x)− g(x)

) dt
t1+s

Then it admits a representation with a Kernel plus zero order term:

Asg(x) = P.V.
∫
RN

(
g(x)− g(y)

)
K(x, y) dy + κ(x)g(x) .

where

K(x, y) � 1
|x− y|N+2s

(
Φ1(x)

|x− y|γ ∧ 1
)(

Φ1(y)

|x− y|γ ∧ 1
)

and κ(x) � 1
dist(x, ∂Ω)2s .

References.
R. Song and Z. Vondracek. Potential theory of subordinate killed Brownian motion in a
domain. Probab. Theory Relat. Fields (2003)

N. Abatangelo, Large solutions for fractional Laplacian operators, PhD Thesis, 2015.
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More Examples

Spectral powers of uniformly elliptic operators. Consider a linear operator A
in divergence form, with uniformly elliptic bounded measurable coefficients:

A =

N∑
i,j=1

∂i(aij∂j) , s-power of A is: Lf (x) := As f (x) :=

∞∑
k=1

λs
k f̂kφk(x)

L = As satisfies (K3) estimates with γ = 1

(K3) c0,Ωφ1(x)φ1(y) ≤ K(x, y) ≤ c1,Ω

|x− y|N−2s

(
φ1(x)

|x− y| ∧ 1
)(

φ1(y)

|x− y| ∧ 1
)

[General class of intrinsically ultra-contractive operators, Davies and Simon JFA 1984].

Fractional operators with “rough” kernels. Integral operators of Levy-type

Lf (x) = P.V.
∫
RN

(f (x + y)− f (y))
K(x, y)

|x− y|N+2s dy .

where K is measurable, symmetric, bounded between two positive constants, and∣∣K(x, y)− K(x, x)
∣∣χ|x−y|<1 ≤ c|x− y|σ , with 0 < s < σ ≤ 1 ,

for some positive c > 0. We can allow even more general kernels.
The Green function satisfies a stronger assumption than (K2) or (K3), i.e.

(K4) K(x, y) � 1
|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)
, with γ = s
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More Examples

Sums of two Restricted Fractional Laplacians. Operators of the form

L = (∆|Ω)s + (∆|Ω)σ , with 0 < σ < s ≤ 1 ,

where (∆|Ω)s is the RFL. Satisfy (K4) with γ = s.
Sum of the Laplacian and operators with general kernels. In the case

L = a∆ + As , with 0 < s < 1 and a ≥ 0 ,

where

Asf (x) = P.V.
∫
RN

(
f (x + y)− f (y)−∇f (x) · yχ|y|≤1

)
χ|y|≤1dν(y) ,

the measure ν on RN \ {0} is invariant under rotations around origin and satisfies∫
RN 1 ∨ |x|2 dν(y) <∞ , together with other assumptions.

Relativistic stable processes. In the case

L = c−
(

c1/s −∆
)s
, with c > 0 , and 0 < s ≤ 1 .

The Green function K(x, y) of L satisfies assumption (K4) with γ = s.

Many other interesting examples. Schrödinger equations for non-symmetric diffu-
sions, Gradient perturbation of RFL...

References. The above mentioned bounds for the Green functions have been proven
by Chen, Kim, Song and Vondracek (2007, 2010, 2012, 2013).
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Basic Theory

The Dual problem

Existence and uniqueness

First set of estimates

For the rest of the talk we deal with the special case:

F(u) = um := |u|m−1u
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The “dual” formulation of the problem

The “dual” formulation of the problem.
Recall the homogeneous Cauchy-Dirichlet problem:

(CDP)

 ∂tu = −L um , in (0,+∞)× Ω
u(0, x) = u0(x) , in Ω
u(t, x) = 0 , on the lateral boundary.

We can formulate a “dual problem”, using the inverse L−1 as follows

∂tU = −um ,

where
U(t, x) := L−1[u(t, ·)](x) =

∫
Ω

u(t, y)K(x, y) dy .

This formulation encodes all the possible lateral boundary conditions in the
inverse operator L−1.

Remark. This formulation has been used before by Pierre, Vázquez [...] to
prove (in the RN case) uniqueness of the “fundamental solution”, i.e. the
solution corresponding to u0 = δx0 , known as the Barenblatt solution.
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Existence and uniqueness of weak dual solutions

Recall that Φ1 � dist(·, ∂Ω)γ and ‖w‖L1
Φ1

(Ω) =
∫

Ω
w(x)Φ1(x) dx.

Weak Dual Solutions for the Cauchy Dirichlet Problem (CDP)
A function u is a weak dual solution to the Cauchy-Dirichlet problem (CDP) for the
equation ∂tu + Lum = 0 in QT = (0, T)× Ω if:

u ∈ C((0, T) : L1
Φ1

(Ω)) , um ∈ L1 ((0, T) : L1
Φ1

(Ω)
)
;

The following identity holds for every ψ/Φ1 ∈ C1
c ((0, T) : L∞(Ω)) :∫ T

0

∫
Ω

L−1(u)
∂ψ

∂t
dx dt −

∫ T

0

∫
Ω

um ψ dx dt = 0.

u ∈ C([0, T) : L1
Φ1

(Ω)) and u(0, x) = u0 ∈ L1
Φ1

(Ω).

Theorem. Existence and Uniqueness (M.B. and J. L. Vázquez)

For every nonnegative u0 ∈ L1
Φ1

(Ω) there exists a unique minimal weak dual solution
to the (CDP). Such a solution is obtained as the monotone limit of the semigroup
(mild) solutions that exist and are unique. The minimal weak dual solution is continu-
ous in the weighted space u ∈ C([0,∞) : L1

Φ1
(Ω)).

In this class of solutions the standard comparison result holds.

Remarks. Mild solutions (by Crandall and Pierre) are weak dual solutions.
Weak dual solutions are very weak solutions.
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(Ω) =
∫

Ω
w(x)Φ1(x) dx.

Weak Dual Solutions for the Cauchy Dirichlet Problem (CDP)
A function u is a weak dual solution to the Cauchy-Dirichlet problem (CDP) for the
equation ∂tu + Lum = 0 in QT = (0, T)× Ω if:

u ∈ C((0, T) : L1
Φ1

(Ω)) , um ∈ L1 ((0, T) : L1
Φ1

(Ω)
)
;

The following identity holds for every ψ/Φ1 ∈ C1
c ((0, T) : L∞(Ω)) :∫ T

0

∫
Ω

L−1(u)
∂ψ

∂t
dx dt −

∫ T

0

∫
Ω

um ψ dx dt = 0.

u ∈ C([0, T) : L1
Φ1

(Ω)) and u(0, x) = u0 ∈ L1
Φ1

(Ω).

Theorem. Existence and Uniqueness (M.B. and J. L. Vázquez)

For every nonnegative u0 ∈ L1
Φ1

(Ω) there exists a unique minimal weak dual solution
to the (CDP). Such a solution is obtained as the monotone limit of the semigroup
(mild) solutions that exist and are unique. The minimal weak dual solution is continu-
ous in the weighted space u ∈ C([0,∞) : L1

Φ1
(Ω)).

In this class of solutions the standard comparison result holds.

Remarks. Mild solutions (by Crandall and Pierre) are weak dual solutions.
Weak dual solutions are very weak solutions.
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Basic Estimates

Theorem. First Pointwise Estimates. (M.B. and J. L. Vázquez)

Let u ≥ 0 be a nonnegative weak dual solution to Problem (CDP).
Then, for almost every 0 ≤ t0 ≤ t1 and almost every x0 ∈ Ω , we have(

t0

t1

) m
m−1

um(t0, x0) ≤
∫

Ω

u(t0, x)− u(t1, x)

t1 − t0
K(x, x0) dx ≤

(
t1

t0

) m
m−1

um(t1, x0) .

Theorem. (Absolute upper bounds) (M.B. & J. L. Vázquez)

Let u be a weak dual solution, then there exists a constant κ0 > 0 depending only on
N, s,m,Ω (but not on u0 !!) , such that under the minimal assumption (K1):

‖u(t)‖L∞(Ω) ≤
κ0

t
1

m−1
, for all t > 0 .

Theorem. (Smoothing effects) (M.B. & J. L. Vázquez)

Let ϑγ = 1/[2s + (N + γ)(m− 1)] and assume (K2). There exists κ1 > 0 such that:

‖u(t)‖L∞(Ω) ≤
κ1

tNϑγ
‖u(t)‖2sϑγ

L1
Φ1

(Ω)
≤ κ1

tNϑγ
‖u0‖2sϑγ

L1
Φ1

(Ω)
for all t > 0.

Assuming only (K1), the above bound holds with L1 and ϑ0, instead of L1
Φ1

and ϑγ .

More details about this first part online: http://www.fields.utoronto.ca/video-archive//event/2021/2016
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Sharp Boundary Behaviour

Upper Boundary Estimates

Infinite Speed of Propagation

Lower Boundary Estimates
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Upper boundary estimates

Theorem. (Upper boundary behaviour) (M.B., A. Figalli and J. L. Vázquez)

Let (A1), (A2), and (K2) hold. Let u ≥ 0 be a weak dual solution to the
(CDP). Let σ ∈ (0, 1] be

σ =
2sm

γ(m− 1)
∧ 1

Then, there exists a computable constant κ > 0, depending only on N, s,m,
and Ω, (but not on u0 !!) such that for all t ≥ 0 and all x ∈ Ω :

u(t, x) ≤ κ Φ1(x)
σ
m

t
1

m−1
.

dist(x, ∂Ω)
σγ
m

t
1

m−1

When σ = 1 we have sharp boundary estimates: we will show lower bounds
with matching powers.

When σ < 1 the estimates are not sharp in all cases:

The solution by separation of variables U(t, x) = S(x)t−1/(m−1)

(asymptotic behaviour) behaves like Φ
σ/m
1 t−1/(m−1).

We will show that for small data, the boundary behaviour is different.
In examples, σ < 1 only happens for SFL-type, where γ = 1, and s can
be small, 0 < s < 1/2− 1/(2m).
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Infinite Speed of Propagation

Infinite Speed of Propagation

and

Universal Lower Bounds
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Infinite Speed of Propagation

Theorem. (Universal lower bounds) (M.B., A. Figalli and J. L. Vázquez)

Let L satisfy (A1) and (A2), and assume that

Lw(x) ≥ P.V.
∫
RN

(
w(x)− w(y)

)
K(x, y) dy , with K(x, y) ≥ c0Φ1(x)Φ1(y) ∀ x, y ∈ Ω .

Let u ≥ 0 be a weak dual solution to the (CDP) corresponding to u0 ∈ L1
Φ1

(Ω).
Then there exists a constant κ0 > 0, so that the following inequality holds:

u(t, x) ≥ κ0

(
1 ∧ t

t∗

) m
m−1 Φ1(x)

t
1

m−1
for all t > 0 and all x ∈ Ω .

Here t∗ = κ∗‖u0‖−(m−1)
L1
Φ1

(Ω)
and κ0, κ∗ depend only on N, s, γ,m, c0, and Ω .

• Note that, for t ≥ t∗, the dependence on the initial data disappears

u(t) ≥ κ0Φ1t−
1

m−1 ∀ t ≥ t∗.

• The assumption on the kernel K of L holds for all examples and represent somehow
the “worst case scenario” for lower estimates.
• In many cases (RFL, CFL), K satisfies a stronger property: K ≥ κΩ > 0 in Ω×Ω .
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Infinite Speed of Propagation

Infinite speed of propagation.

u(t, x) ≥ κ0

(
1 ∧ t

t∗

) m
m−1 Φ1(x)

t
1

m−1
for all t > 0 and all x ∈ Ω .

As a consequence, of the above universal bounds for all times, we have proven
that all nonnegative solutions have infinite speed of propagation.

No free boundaries when s < 1, contrary to the “local” case s = 1,
cf. Barenblatt, Aronson, Caffarelli, Vázquez, Wolansky [...]

Qualitative version of infinite speed of propagation for the Cauchy problem on
RN , by De Pablo, Quíros, Rodriguez, Vázquez [Adv. Math. 2011, CPAM 2012]

Different from the so-called Caffarelli-Vázquez model (on RN) that has finite
speed of propagation [ARMA 2011, DCDS 2011] and also Stan, del Teso
Vázquez [CRAS 2014, NLTMA 2015, JDE 2015]
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Sharp Lower boundary estimates

Sharp lower boundary estimates I: the non-spectral case.
Let σ = 2sm

γ(m−1) ∧ 1. Let L satisfy (A1) and (A2), and assume moreover that

Lf (x) =

∫
RN

(
f (x)− f (y)

)
K(x, y) dy , with inf

x,y∈Ω
K(x, y) ≥ κΩ > 0 .

Assume moreover that L has a first eigenfunction Φ1 � dist(x, ∂Ω)γ and that
- either σ = 1;
- or σ < 1, K(x, y) ≤ c1|x− y|−(N+2s) for a.e. x, y ∈ RN , and Φ1 ∈ Cγ(Ω).

Theorem. (Sharp lower bounds for all times) (M.B., A. Figalli and J. L. Vázquez)

Under the above assumptions, let u ≥ 0 be a weak dual solution to the (CDP) with
u0 ∈ L1

Φ1
(Ω). Then there exists a constant κ1 > 0 such that

u(t, x0) ≥ κ1

(
1 ∧ t

t∗

) m
m−1 Φ1(x)σ/m

t
1

m−1
for all t > 0 and a.e. x ∈ Ω .

where t∗ = κ∗‖u0‖−(m−1)
L1
Φ1

(Ω)
. The constants κ∗, κ1 depend only on N, s, γ,m, κΩ, c1,Ω.

• The boundary behavior is sharp for all times in view of the upper bounds.
•Within examples, this applies to RFL and CFL type, but not to SFL-type.
• For RFL, this result was obtained first by MB, A. Figalli and X. Ros-Oton.
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Theorem. (Sharp lower bounds for all times) (M.B., A. Figalli and J. L. Vázquez)

Under the above assumptions, let u ≥ 0 be a weak dual solution to the (CDP) with
u0 ∈ L1

Φ1
(Ω). Then there exists a constant κ1 > 0 such that

u(t, x0) ≥ κ1

(
1 ∧ t

t∗

) m
m−1 Φ1(x)σ/m

t
1

m−1
for all t > 0 and a.e. x ∈ Ω .

where t∗ = κ∗‖u0‖−(m−1)
L1
Φ1

(Ω)
. The constants κ∗, κ1 depend only on N, s, γ,m, κΩ, c1,Ω.

• The boundary behavior is sharp for all times in view of the upper bounds.
•Within examples, this applies to RFL and CFL type, but not to SFL-type.
• For RFL, this result was obtained first by MB, A. Figalli and X. Ros-Oton.
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Sharp Lower boundary estimates

Sharp absolute lower estimates for large times: the case σ = 1.
When σ = 1 we can establish a quantitative lower bound near the boundary that
matches the separate-variables behavior for large times.

Theorem. (Sharp lower bounds for large times) (M.B., A. Figalli and J. L. Vázquez)

Let (A1), (A2), and (K2) hold, and let σ = 1. Let u ≥ 0 be a weak dual solution to
the (CDP) corresponding to u0 ∈ L1

Φ1
(Ω). There exists a constant κ2 > 0 such that

u(t, x0) ≥ κ2
Φ1(x0)

1/m

t
1

m−1
for all t ≥ t∗ and a.e. x ∈ Ω .

Here, t∗ = κ∗‖u0‖−(m−1)
L1
Φ1

(Ω)
, and the constants κ∗, κ2 depend only on N, s, γ,m, and Ω .

• It holds for s = 1, the local case, where there is finite speed of propagation.
•When s = 1. t∗ is the time that the solution needs to be positive everywhere.
•When L = −∆, proven by Aronson-Peletier (’81) and Vázquez (’04)
• Our method applies when L is an elliptic operator with C1 coefficients (new result).



Outline of the talk Introduction Basic Theory Sharp Boundary Behaviour Harnack Inequalities Numerics Regularity Estimates Asymptotic behaviour

Sharp Lower boundary estimates

Sharp absolute lower estimates for large times: the case σ = 1.
When σ = 1 we can establish a quantitative lower bound near the boundary that
matches the separate-variables behavior for large times.

Theorem. (Sharp lower bounds for large times) (M.B., A. Figalli and J. L. Vázquez)

Let (A1), (A2), and (K2) hold, and let σ = 1. Let u ≥ 0 be a weak dual solution to
the (CDP) corresponding to u0 ∈ L1

Φ1
(Ω). There exists a constant κ2 > 0 such that

u(t, x0) ≥ κ2
Φ1(x0)

1/m

t
1

m−1
for all t ≥ t∗ and a.e. x ∈ Ω .

Here, t∗ = κ∗‖u0‖−(m−1)
L1
Φ1

(Ω)
, and the constants κ∗, κ2 depend only on N, s, γ,m, and Ω .

• It holds for s = 1, the local case, where there is finite speed of propagation.
•When s = 1. t∗ is the time that the solution needs to be positive everywhere.
•When L = −∆, proven by Aronson-Peletier (’81) and Vázquez (’04)
• Our method applies when L is an elliptic operator with C1 coefficients (new result).



Outline of the talk Introduction Basic Theory Sharp Boundary Behaviour Harnack Inequalities Numerics Regularity Estimates Asymptotic behaviour

Sharp Lower boundary estimates

Sharp absolute lower estimates for large times: the case σ = 1.
When σ = 1 we can establish a quantitative lower bound near the boundary that
matches the separate-variables behavior for large times.

Theorem. (Sharp lower bounds for large times) (M.B., A. Figalli and J. L. Vázquez)

Let (A1), (A2), and (K2) hold, and let σ = 1. Let u ≥ 0 be a weak dual solution to
the (CDP) corresponding to u0 ∈ L1

Φ1
(Ω). There exists a constant κ2 > 0 such that

u(t, x0) ≥ κ2
Φ1(x0)

1/m

t
1

m−1
for all t ≥ t∗ and a.e. x ∈ Ω .

Here, t∗ = κ∗‖u0‖−(m−1)
L1
Φ1

(Ω)
, and the constants κ∗, κ2 depend only on N, s, γ,m, and Ω .

• It holds for s = 1, the local case, where there is finite speed of propagation.
•When s = 1. t∗ is the time that the solution needs to be positive everywhere.
•When L = −∆, proven by Aronson-Peletier (’81) and Vázquez (’04)
• Our method applies when L is an elliptic operator with C1 coefficients (new result).



Outline of the talk Introduction Basic Theory Sharp Boundary Behaviour Harnack Inequalities Numerics Regularity Estimates Asymptotic behaviour

Sharp Lower boundary estimates

Positivity for large times II: the case σ < 1.
The intriguing case σ < 1 is where new and unexpected phenomena appear. Recall that

σ =
2sm

γ(m− 1)
< 1 i.e. 0 < s <

γ

2
− γ

2m
.

Solutions by separation of variables: the standard boundary behaviour?

Let S be a solution to the Elliptic Dirichlet problem for LSm = cmS. We can define

U(t, x) = S(x)t−
1

m−1 where S � Φ
σ/m
1 .

which is a solution to the (CDP), which behaves like Φ
σ/m
1 at the boundary.

By comparison, we see that the same lower behaviour is shared ‘big’ solutions:

u0 ≥ ε0S implies u(t) ≥ S(
ε1−m

0 + t
)1/(m−1)

This behaviour seems to be sharp: we have shown matching upper bounds,
and also S represents the large time asymptotic behaviour:

lim
t→∞

∥∥∥t
1

m−1 u(t)− S
∥∥∥

L∞
= 0 for all 0 ≤ u0 ∈ L1

Φ1 (Ω) .

But this is not happening for all solutions...
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Sharp Lower boundary estimates

Different boundary behaviour when σ < 1. The next result shows that, in general,
we cannot hope to prove that u(t) is larger than Φ

1/m
1 , but always smaller than Φ

σ/m
1 .

Proposition. (Counterexample I) (M.B., A. Figalli and J. L. Vázquez)

Let (A1), (A2), and (K2) hold, and u ≥ 0 be a weak dual solution to the (CDP).
Then, there exists a constant κ̂, depending only N, s, γ,m, and Ω, such that

0 ≤ u0 ≤ c0Φ1 implies u(t, x) ≤ c0κ̂
Φ

1/m
1 (x)

t1/m ∀t > 0 and a.e. x ∈ Ω .

In particular, if σ < 1, then

lim
x→∂Ω

u(t, x)

Φ1(x)σ/m = 0 for any t > 0.

Idea: The proposition above could make one wonder whether or not the sharp general
lower bound could be actually given by Φ

1/m
1 , as in the case σ = 1.

But again, this is not happening for all solutions...
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Sharp Lower boundary estimates

Different boundary behaviour when σ < 1.
We next show that assuming (K4), the bound u(t) & Φ

1/m
1 t−1/(m−1) is false for σ < 1.

Proposition. (Counterexample II) (M.B., A. Figalli and J. L. Vázquez)

Let (A1), (A2), and (K4) hold, and let u ≥ 0 be a weak dual solution to the (CDP)
corresponding to a nonnegative initial datum u0 ≤ c0Φ1 for some c0 > 0.
If there exist constants κ, T, α > 0 such that

u(T, x) ≥ κΦα1 (x) for a.e. x ∈ Ω , then α ≥ 1− 2s
γ
.

In particular, when σ < 1, we have α > 1
m > σ

m .

Recall that we have a universal lower bound (under minimal assumptions on K)

u(t, x) ≥ κ0

(
1 ∧ t

t∗

) m
m−1 Φ1(x)

t
1

m−1
for all t > 0 and all x ∈ Ω .
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Harnack Inequalities

Global Harnack Principle I. The non-spectral case.

Other Harnack inequalities in the non-spectral case.

Global Harnack Principle II. The remaining cases.
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Global Harnack Principle I. The non-spectral case.

Global Harnack Principle I. The non-spectral case.
Recall that

Φ1 � dist(·, ∂Ω)γ , σ = 1 ∧ 2sm
γ(m− 1)

, t∗ = κ∗‖u0‖−(m−1)
L1
Φ1

(Ω)
.

Theorem. (Global Harnack Principle I. The non-spectral case.)(MB & AF & JLV)

Let (A1), (A2), (K2), and infx,y∈Ω K(x, y) ≥ κΩ > 0 hold. Also, when σ < 1,
assume that K(x, y) ≤ c1|x− y|−(N+2s) for a.e. x, y ∈ RN and that Φ1 ∈ Cγ(Ω).
Let u ≥ 0 be a weak dual solution to the (CDP).
Then, there exist constants κ, κ > 0, so that the following inequality holds:

κ

(
1 ∧ t

t∗

) m
m−1 Φ1(x)σ/m

t
1

m−1
≤ u(t, x) ≤ κ Φ1(x)σ/m

t
1

m−1
for all t > 0 and all x ∈ Ω .

The constants κ, κ depend only on N, s, γ,m, c1, κΩ,Ω, and ‖Φ1‖Cγ(Ω) .

For large times t ≥ t∗ the estimates are independent on the initial datum.
This inequality implies local Harnack inequalities
As a corollary we get the sharp asymptotic behaviour
For s = 1, L = −∆, similar results by Aronson and Peletier [JDE, 1981] ,
Vázquez [Monatsh. Math. 2004]
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Other Harnack inequalities in the non-spectral case.

Other Harnack inequalities in the non-spectral case.
From the Global Harnack Principle I (GHP-I) we derive local Harnack inequalities.

Theorem. (Local Harnack Inequalities of Elliptic Type) (MB & AF & JLV)

Assume that the (GHP-I) holds for a weak dual solution u to the (CDP). Then there
exists a constant Ĥ depending only on N, s, γ,m, c1,Ω, such that

sup
x∈BR(x0)

u(t, x) ≤ Ĥ(
1 ∧ t

t∗

) m
m−1

inf
x∈BR(x0)

u(t, x) for all t > 0.

Corollary. (Local Harnack Inequalities of Backward Type) (M.B. & A. F. & J.L.V)

Assume that the (GHP-I) holds for a weak dual solution u to the (CDP). Then there
exists a constant Ĥ depending only on N, s, γ,m, c1,Ω, s. t. for all t > 0 and h ≥ 0

sup
x∈BR(x0)

u(t, x) ≤ Ĥ

[(
1 +

h
t

)(
1 ∧ t

t∗

)−m
] 1

m−1

inf
x∈BR(x0)

u(t + h, x) .

When s = 1, backward Harnack inequalities are typical of Fast Diffusion equations (when m < 1
there is possible extinction in finite time), and they do not happen when m > 1 (finite speed of
propagation), cf. DiBenedetto, Gianazza, Vespri and/or M.B.& J. L. Vázquez.
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Other Harnack inequalities in the non-spectral case.
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t∗

) m
m−1

inf
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h
t

)(
1 ∧ t
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)−m
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inf
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Global Harnack Principles II. The remaining cases.

Global Harnack Principles II. The remaining cases.
Theorem. (Global Harnack Principle II) (M.B., A. Figalli and J. L. Vázquez)

Let (A1), (A2), and (K2) hold, and let u ≥ 0 be a weak dual solution to the (CDP)
corresponding to u0 ∈ L1

Φ1
(Ω). Assume that:

- either σ = 1;
- or σ < 1, u0 ≥ κ0Φ

σ/m
1 for some κ0 > 0, and (K4) holds.

Then there exist constants κ, κ > 0 such that the following inequality holds:

κ
Φ1(x)σ/m

t
1

m−1
≤ u(t, x) ≤ κ Φ1(x0)

σ/m

t
1

m−1
for all t ≥ t∗ and all x ∈ Ω .

The constants κ, κ depend only on N, s, γ,m, κ0, κΩ, and Ω.

Corollary. Elliptic/backward local Harnack inequalities follow for large times, for all t ≥ t∗

sup
x∈BR(x0)

u(t, x) ≤ Ĥ

[(
1 +

h
t

)(
1 ∧

t
t∗

)−m
] 1

m−1

inf
x∈BR(x0)

u(t + h, x) .

• For small times we can not find matching powers for a global Harnack inequality (except for
special data) and such result is actually false for s = 1 (finite speed of propagation).
• Backward Harnack inequalities for the linear heat equation s = 1 and m = 1, by Fabes,
Garofalo, Salsa [Ill. J. Math, 1986] and also Safonov, Yuan [Ann. of Math, 1999]
• For s = 1, Intrinsic (Forward) Harnack inequalities by DiBenedetto [ARMA, 1988], Daskalo-
poulos and Kenig [EMS Book, 2007], cf. also DiBenedetto, Gianazza, Vespri [LNM, 2011].
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[(
1 +

h
t

)(
1 ∧

t
t∗

)−m
] 1

m−1

inf
x∈BR(x0)

u(t + h, x) .

• For small times we can not find matching powers for a global Harnack inequality (except for
special data) and such result is actually false for s = 1 (finite speed of propagation).
• Backward Harnack inequalities for the linear heat equation s = 1 and m = 1, by Fabes,
Garofalo, Salsa [Ill. J. Math, 1986] and also Safonov, Yuan [Ann. of Math, 1999]
• For s = 1, Intrinsic (Forward) Harnack inequalities by DiBenedetto [ARMA, 1988], Daskalo-
poulos and Kenig [EMS Book, 2007], cf. also DiBenedetto, Gianazza, Vespri [LNM, 2011].



Outline of the talk Introduction Basic Theory Sharp Boundary Behaviour Harnack Inequalities Numerics Regularity Estimates Asymptotic behaviour

Global Harnack Principles II. The remaining cases.

Global Harnack Principles II. The remaining cases.
Theorem. (Global Harnack Principle II) (M.B., A. Figalli and J. L. Vázquez)

Let (A1), (A2), and (K2) hold, and let u ≥ 0 be a weak dual solution to the (CDP)
corresponding to u0 ∈ L1

Φ1
(Ω). Assume that:

- either σ = 1;
- or σ < 1, u0 ≥ κ0Φ

σ/m
1 for some κ0 > 0, and (K4) holds.

Then there exist constants κ, κ > 0 such that the following inequality holds:

κ
Φ1(x)σ/m

t
1

m−1
≤ u(t, x) ≤ κ Φ1(x0)

σ/m

t
1

m−1
for all t ≥ t∗ and all x ∈ Ω .

The constants κ, κ depend only on N, s, γ,m, κ0, κΩ, and Ω.

Corollary. Elliptic/backward local Harnack inequalities follow for large times, for all t ≥ t∗

sup
x∈BR(x0)

u(t, x) ≤ Ĥ
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Global Harnack Principles II. The remaining cases.

Hence, in the remaining cases, we have only the following general result.

Theorem. (Global Harnack Principle III) (M.B., A. Figalli and J. L. Vázquez)

Let L satisfy (A1) and (A2), and (K2). Assume moreover that

Lw(x) = P.V.
∫
RN

(
w(x)− w(y)

)
K(x, y) dy ,

with K(x, y) ≥ c0Φ1(x)Φ1(y) ∀ x, y ∈ Ω.
Let u ≥ 0 be a weak dual solution to the (CDP) corresponding to u0 ∈ L1

Φ1
(Ω).

Then, there exist constants κ, κ > 0, so that the following inequality holds:

κ

(
1 ∧ t

t∗

) m
m−1 Φ1(x)

t
1

m−1
≤ u(t, x) ≤ κ Φ1(x0)

σ/m

t
1

m−1
for all t > 0 and all x ∈ Ω .

• This is sufficient to ensure interior regularity, under ‘minimal’ assumptions.

• This bound holds for all times and for a large class of operators.

• This is not sufficient to ensure Cαx boundary regularity.
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Numerical Simulations∗

∗ Graphics obtained by numerical methods contained in: N. Cusimano, F. Del Teso, L. Gerardo-
Giorda, G. Pagnini, Discretizations of the spectral fractional Laplacian on general domains with
Dirichlet, Neumann, and Robin boundary conditions, Preprint (2017).
Graphics and videos: courtesy of F. Del Teso (NTNU, Trondheim, Norway)
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Numerics I. Matching

Numerical simulation for the SFL with parameters m = 2 and s = 1/2, hence σ = 1.

Left: the initial condition u0 ≤ C0Φ1

Right: solid line represents Φ
1/m
1

the dotted lines represent t
1

m−1 u(t) at time at t = 1 and t = 5

While u(t) appears to behave as Φ1 � dist(·, ∂Ω) for very short times

already at t = 5 it exhibits the matching boundary behavior t
1

m−1 u(t) � Φ
1/m
1
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Numerics II. Matching VS Non-Matching

Compare σ = 1 VS σ < 1: same u0 ≤ C0Φ1, solutions with different parameters

Left: t
1

m−1 u(t) at time t = 30 and t = 150; m = 4, s = 3/4, σ = 1.

Matching: u(t) behaves like Φ1 � dist(·, ∂Ω) for quite some time,
and only around t = 150 it exhibits the matching boundary behavior u(t) � Φ

1/m
1

Right: t
1

m−1 u(t) at time t = 150 and t = 600; m = 4, s = 1/5, σ = 8/15 < 1.

Non-matching: u(t) � Φ1 even after long time.

Idea: maybe when σ < 1 and u0 . Φ1, we have u(t) � Φ1 for all times...

Not True: there are cases when u(t)� Φ1−2s
1 for large times...
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Numerics III. Non-Matching

Non-matching when σ < 1: same data u0, with m = 2 and s = 1/10, σ = 2/5 < 1

In both pictures, the solid line represents Φ1−2s
1 (anomalous behaviour)

Left: t
1

m−1 u(t) at time t = 4 and t = 25.

u(t) � Φ1 for short times t = 4, then u(t) ∼ Φ1−2s
1 for intermediate times t = 25

Right: t
1

m−1 u(t) at time t = 40 and t = 150. u(t)� Φ1−2s
1 for large times.

Both non-matching always different behaviour from the asymptotic profile Φ
1/m
1 .

In this case we show that if u0(x) ≤ C0Φ1(x) then for all t > 0

u(t, x) ≤ C1

[
Φ1(x)

t

] 1
m

and lim
x→∂Ω

u(t, x)

Φ1(x)
1
m

= 0 for any t > 0.
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Regularity Estimates

Interior Regularity

Hölder continuity up to the boundary

Higher interior regularity for RFL
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Interior Regularity

The regularity results, require the validity of a Global Harnack Principle.
(R) The operator L satisfies (A1) and (A2), and L−1 satisfies (K2). Moreover, we
consider

Lf (x) = P.V.
∫
RN

(
f (x)− f (y)

)
K(x, y) dy , with

K(x, y) � |x−y|−(N+2s) in B2r(x0) ⊂ Ω, K(x, y) . |x−y|−(N+2s) in RN \ B2r(x0).

As a consequence, for any ball B2r(x0) ⊂⊂ Ω and 0 < t0 < T1, there exist δ,M > 0 such that

0 < δ ≤ u(t, x) for a.e. (t, x) ∈ (T0, T1)× B2r(x0),

0 ≤ u(t, x) ≤ M for a.e. (t, x) ∈ (T0, T1)× Ω.
The constants in the regularity estimates will depend on the solution only through δ,M.

Theorem. (Interior Regularity) (M.B., A. Figalli and J. L. Vázquez)

Assume (R) and let u be a nonnegative bounded weak dual solution to problem (CDP).
1. Then u is Hölder continuous in the interior. More precisely, there exists α > 0
such that, for all 0 < T0 < T2 < T1,

‖u‖
Cα/2s,α

t,x ((T2,T1)×Br(x0))
≤ C.

2. Assume in addition |K(x, y) − K(x′, y)| ≤ c|x − x′|β |y|−(N+2s) for some β ∈
(0, 1 ∧ 2s) such that β + 2s 6∈ N. Then u is a classical solution in the interior.
More precisely, for all 0 < T0 < T2 < T1,

‖u‖
C1+β/2s,2s+β

t,x ((T2,T1)×Br(x0))
≤ C.
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Hölder continuity up to the boundary

Theorem. (Hölder continuity up to the boundary) (M.B., A. Figalli and J. L. Vázquez)

Assume (R), hypothesis 2 of the interior regularity and in addition that 2s > γ.
Then u is Hölder continuous up to the boundary.
More precisely, for all 0 < T0 < T2 < T1 there exists a constant C > 0 such that

‖u‖
C
γ

mϑ ,
γ
m

t,x ((T2,T1)×Ω)
≤ C with ϑ := 2s− γ

(
1− 1

m

)
.

• Since u(t, x) � Φ1(x)1/m � dist(x, ∂Ω)γ/m, the spatial Hölder exponent is sharp,
while the Hölder exponent in time is the natural one by scaling. ( 2s > γ implies σ = 1)
• Previous regularity results: (I apologize if I forgot someone)

Cα regularity:
Athanasopoulos and Caffarelli [Adv. Math, 2010], (RFL domains)
De Pablo, Quirós, Rodriguez, Vázquez [CPAM 2012] (RFL on RN , SFL-Dirichlet)
De Pablo, Quirós, Rodriguez [NLTMA 2016]. (RFL-rough kernels RN )

Classical Solutions:
Vázquez, De Pablo, Quirós, Rodriguez [JEMS 2016] (RFL on RN )
M.B., Figalli, Ros-Oton [CPAM2016] (RFL Dirichlet, even unbounded domains)

Higher regularity: C∞x and Cα up to the boundary:
M.B., Figalli, Ros-Oton [CPAM2016] (RFL Dirichlet, even unbounded domains)
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Higher regularity: C∞x and Cα up to the boundary:
M.B., Figalli, Ros-Oton [CPAM2016] (RFL Dirichlet, even unbounded domains)
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Hölder continuity up to the boundary

Theorem. (Hölder continuity up to the boundary) (M.B., A. Figalli and J. L. Vázquez)

Assume (R), hypothesis 2 of the interior regularity and in addition that 2s > γ.
Then u is Hölder continuous up to the boundary.
More precisely, for all 0 < T0 < T2 < T1 there exists a constant C > 0 such that

‖u‖
C
γ

mϑ ,
γ
m

t,x ((T2,T1)×Ω)
≤ C with ϑ := 2s− γ

(
1− 1

m

)
.

• Since u(t, x) � Φ1(x)1/m � dist(x, ∂Ω)γ/m, the spatial Hölder exponent is sharp,
while the Hölder exponent in time is the natural one by scaling. ( 2s > γ implies σ = 1)
• Previous regularity results: (I apologize if I forgot someone)

Cα regularity:
Athanasopoulos and Caffarelli [Adv. Math, 2010], (RFL domains)
De Pablo, Quirós, Rodriguez, Vázquez [CPAM 2012] (RFL on RN , SFL-Dirichlet)
De Pablo, Quirós, Rodriguez [NLTMA 2016]. (RFL-rough kernels RN )
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Higher interior regularity for RFL

Higher Interior Regularity for RFL.
Theorem. (Higher interior regularity in space) (M.B., A. Figalli, X. Ros-Oton)

Under the running assumptions (R) , then u ∈ C∞x ((0,∞)× Ω).
More precisely, let k ≥ 1 be any positive integer, and d(x) = dist(x, ∂Ω),
then, for any t ≥ t0 > 0 we have∣∣Dk

xu(t, x)
∣∣ ≤ C [d(x)]

s
m−k,

where C depends only on N, s,m, k,Ω, t0, and ‖u0‖L1
Φ1

(Ω).

Higher regularity in time is a difficult open problem. It is connected to higher order
boundary regularity in t. To our knowledge also open for the local case s = 1.
When m = 1 (FHE) ut + (−∆|Ω)su = 0 on (0, 1)× B1 we have u ∈ C∞x

‖u‖
Ck,α

x (( 1
2 ,1)×B1/2)

≤ C‖u‖L∞((0,1)×RN), for all k ≥ 0.

Analogous estimates in time do not hold for k ≥ 1 and α ∈ (0, 1).
Indeed, one can construct a solution to the (FHE) which is bounded in all of RN , but
which is not C1 in t in ( 1

2 , 1)× B1/2. [Chang-Lara, Davila, JDE (2014)]
Our techniques allow to prove regularity also in unbounded domains , and also for
operator with more general kernels.
Also the “classical/local” case s = 1 works after the waiting time t∗:

u ∈ C
1
m ,

1
2m

x,t
(
Ω× [t∗, T]

)
, C∞x ((0,∞)× Ω) and C1,α

t ([t0, T]× K) .
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Higher interior regularity for RFL

The End

Thank You!!!

Grazie Mille!!!

Muchas Gracias!!!
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Summary

Asymptotic behaviour of nonnegative solutions

Convergence to the stationary profile
Convergence with optimal rate
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Convergence to the stationary profile

In the rest of the talk we consider the nonlinearity F(u) = |u|m−1u with m > 1 .

Theorem. (Asymptotic behaviour) (M.B. , Y. Sire, J. L. Vázquez)

There exists a unique nonnegative selfsimilar solution of the above Dirichlet
Problem

U(τ, x) =
S(x)

τ
1

m−1
,

for some bounded function S : Ω→ R. Let u be any nonnegative weak dual
solution to the (CDP) , then we have (unless u ≡ 0)

lim
τ→∞

τ
1

m−1 ‖u(τ, ·)− U(τ, ·)‖L∞(Ω) = 0 .

The previous theorem admits the following corollary.

Theorem. (Elliptic problem) (M.B. , Y. Sire, J. L. Vázquez)

Let m > 1. There exists a unique weak dual solution to the elliptic problem L(Sm) =
S

m− 1
in Ω,

S(x) = 0 for x ∈ ∂Ω.

Notice that the previous theorem is obtained in the present paper through a parabolic technique.
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Convergence with optimal rate

Theorem. (Sharp asymptotic with rates) (M.B. , Y. Sire, J. L. Vázquez)

Let u be any nonnegative weak dual solution to the (CDP) , then we have
(unless u ≡ 0) that there exist t0 > 0 of the form

t0 = k
[ ∫

Ω
Φ1 dx∫

Ω
u0Φ1 dx

]m−1

such that for all t ≥ t0 we have∥∥∥∥ u(t, ·)
U(t, ·)

− 1
∥∥∥∥

L∞(Ω)

≤ 2
m− 1

t0
t0 + t

.

The constant k > 0 only depends on m,N, s, and |Ω|.

Remarks.
We provide two different proofs of the above result.
One proof is based on the construction of the so-called Friendly-Giant solution,
namely the solution with initial data u0 = +∞ , and is based on the Global
Harnack Principle of Part 4
The second proof is based on a new Entropy method, which is based on a
parabolic version of the Caffarelli-Silvestre extension.
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