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Introduction

Homogeneous Dirichlet Problem for
Fractional Nonlinear Degenerate Diffusion Equations

(HDP)

 ut + LF(u) = 0 , in (0,+∞)× Ω
u(0, x) = u0(x) , in Ω
u(t, x) = 0 , on the lateral boundary.

where:
Ω ⊂ RN is a bounded domain with smooth boundary and N ≥ 1.
The linear operator L will be:

sub-Markovian operator
densely defined in L1(Ω).

A wide class of linear operators fall in this class:
all fractional Laplacians on domains.
The most studied nonlinearity is F(u) = |u|m−1u , with m > 1.
We deal with Degenerate diffusion of Porous Medium type.
More general classes of “degenerate” nonlinearities F are allowed.
The homogeneous boundary condition is posed on the lateral boundary,
which may take different forms, depending on the particular choice of
the operator L.
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About the operator L

The linear operator L : dom(A) ⊆ L1(Ω)→ L1(Ω) is assumed to be densely
defined and sub-Markovian, more precisely satisfying (A1) and (A2) below:

(A1) L is m-accretive on L1(Ω),
(A2) If 0 ≤ f ≤ 1 then 0 ≤ e−tLf ≤ 1 , or equivalently,

(A2’) If β is a maximal monotone graph in R× R with 0 ∈ β(0),
u ∈ dom(L) , Lu ∈ Lp(Ω) , 1 ≤ p ≤ ∞ , v ∈ Lp/(p−1)(Ω) ,
v(x) ∈ β(u(x)) a.e , then ∫

Ω

v(x)Lu(x) dx ≥ 0

Remark. These assumptions are needed for existence (and uniqueness) of
semigroup (mild) solutions for the nonlinear equation ut = LF(u), through
a variant of the celebrated Crandall-Liggett theorem, as done by Benilan,
Crandall and Pierre:

M. G. Crandall, T.M. Liggett. Generation of semi-groups of nonlinear
transformations on general Banach spaces, Amer. J. Math. 93 (1971) 265–298.

M. Crandall, M. Pierre, Regularizing Effects for ut = Aϕ(u) in L1, J. Funct.
Anal. 45, (1982), 194–212
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Assumption on the nonlinearity F

Let F : R→ R be a continuous and non-decreasing function, with F(0) = 0.
Moreover, it satisfies the condition:

(N1) F ∈ C1(R \ {0}) and F/F′ ∈ Lip(R) and there exists µ0, µ1 > 0 s.t.

1
m1

= 1− µ1 ≤
(

F
F′

)′
≤ 1− µ0 =

1
m0

where F/F′ is understood to vanish if F(r) = F′(r) = 0 or r = 0 .
The main example will be

F(u) = |u|m−1u, with m > 1 , and µ0 = µ1 =
m− 1

m
< 1 .

which corresponds to the nonlocal porous medium equation studied in [BV1].
A simple variant is the combination of two powers:

m0 gives the behaviour at zero, when u ∼ 0
m1 gives the behaviour at infinity, when u ∼ ∞.
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Existence of Mild Solutions and Monotonicity Estimates

Theorem (M. Crandall and M. Pierre, JFA 1982)

Let L satisfy (A1) and (A2) and let F as satisfy (N1). Then for all
0 ≤ u0 ∈ L1(Ω) , there exists a unique mild solution u to equation
ut + LF(u) = 0 , and the function

(1) t 7→ t
1
µ0 F(u(t, x)) is nondecreasing in t > 0 for a.e. x ∈ Ω .

Moreover, the semigroup is contractive on L1(Ω) and u ∈ C([0,∞) : L1(Ω)) .

We notice that (1) is a weak formulation of the monotonicity inequality:

∂tu ≥ −
1
µ0 t

F(u)

F′(u)
, which implies ∂tu ≥ −

1− µ0

µ0

u
t

or equivalently, that the function

(2) t 7→ t
1−µ0
µ0 u(t, x) is nondecreasing in t > 0 for a.e. x ∈ Ω .

P. Bénilan, M. Crandall. Regularizing effects of homogeneous evolution equations.
Contr. to Anal. and Geom. Johns Hopkins Univ. Press, Baltimore, Md., 1981. 23-39.

M. Crandall, M. Pierre, Regularizing Effect for ut = Aϕ(u) in L1. JFA 45, (1982).
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Assumption on the inverse operator L−1

Assumptions on the inverse of L
We will assume that the operator L has an inverse L−1 : L1(Ω) → L1(Ω)
with a kernel K such that

L−1f (x) =

∫
Ω

K(x, y) f (y) dy ,

and that satisfies (one of) the following estimates for some γ, s ∈ (0, 1]
and ci,Ω > 0

(K1) 0 ≤ K(x, y) ≤ c1,Ω

|x− y|N−2s

(K2) c0,Ωδγ(x) δγ(y) ≤ K(x, y) ≤ c1,Ω

|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)

where
δγ(x) := dist(x, ∂Ω)γ .

Indeed, (K1) implies that L has a first eigenfunction 0 ≤ Φ1 ∈ L∞(Ω) .
Moreover, (K2) implies that Φ1 � dist(·, ∂Ω)γ = δγ and we can rewrite (K2) as

(K3) c0,ΩΦ1(x)Φ1(y) ≤ K(x, y) ≤ c1,Ω

|x− x0|N−2s

(
Φ1(x)

|x− y|γ ∧ 1
)(

Φ1(y)

|x− y|γ ∧ 1
)
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Examples of operators L

Reminder about the fractional Laplacian operator on RN

We have several equivalent definitions for (−∆RN )s :

1 By means of Fourier Transform,

((−∆RN )sf )̂(ξ) = |ξ|2s f̂ (ξ) .

This formula can be used for positive and negative values of s.
2 By means of an Hypersingular Kernel:

if 0 < s < 1, we can use the representation

(−∆RN )sg(x) = cN,s P.V.
∫
RN

g(x)− g(z)
|x− z|N+2s dz,

where cN,s > 0 is a normalization constant.
3 Spectral definition, in terms of the heat semigroup associated to the

standard Laplacian operator:

(−∆RN )sg(x) =
1

Γ(−s)

∫ ∞
0

(
et∆RN g(x)− g(x)

) dt
t1+s .
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Examples of operators L

The Spectral Fractional Laplacian operator (SFL)

(−∆Ω)sg(x) =

∞∑
j=1

λs
j ĝj φj(x) =

1
Γ(−s)

∫ ∞
0

(
et∆Ωg(x)− g(x)

) dt
t1+s .

∆Ω is the classical Dirichlet Laplacian on the domain Ω

EIGENVALUES: 0 < λ1 ≤ λ2 ≤ . . . ≤ λj ≤ λj+1 ≤ . . . and λj � j2/N .

EIGENFUNCTIONS: φj are as smooth as the boundary of Ω allows,
namely when ∂Ω is Ck, then φj ∈ C∞(Ω) ∩ Ck(Ω) for all k ∈ N .

ĝj =

∫
Ω

g(x)φj(x) dx , with ‖φj‖L2(Ω) = 1 .

Lateral boundary conditions for the SFL

u(t, x) = 0 , in (0,∞)× ∂Ω .

The Green function of SFL satisfies a stronger assumption than (K2) or (K3), i.e.

(K4) K(x, y) � 1
|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)
, with γ = 1
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Examples of operators L
Definition via the hypersingular kernel in RN , “restricted” to functions that are zero outside Ω.
The Restricted Fractional Laplacian operator (RFL)

(−∆|Ω)sg(x) = cN,s P.V.
∫
RN

g(x)− g(z)
|x− z|N+2s dz , with supp(g) ⊆ Ω .

where s ∈ (0, 1) and cN,s > 0 is a normalization constant.

(−∆|Ω)s is a self-adjoint operator on L2(Ω) with a discrete spectrum:

EIGENVALUES: 0 < λ1 ≤ λ2 ≤ . . . ≤ λj ≤ λj+1 ≤ . . . and λj � j2s/N .
Eigenvalues of the RFL are smaller than the ones of SFL: λj ≤ λs

j for all j ∈ N .

EIGENFUNCTIONS: φj are the normalized eigenfunctions, are only Hölder
continuous up to the boundary, namely φj ∈ Cs(Ω) .

Lateral boundary conditions for the RFL

u(t, x) = 0 , in (0,∞)×
(
RN \ Ω

)
.

The Green function of RFL satisfies a stronger assumption than (K2) or (K3), i.e.

(K4) K(x, y) � 1
|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)
, with γ = s

References. (K4) Bounds proven by Bogdan, Grzywny, Jakubowski, Kulczycki, Ryz-
nar (1997-2010). Eigenvalues: Blumental-Getoor (1959), Chen-Song (2005)
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Examples of operators L
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Examples of operators L
Introduced in 2003 by Bogdan, Burdzy and Chen.

Censored Fractional Laplacians (CFL)

Lf (x) = P.V.
∫

Ω

(f (x)− f (y))
a(x, y)

|x− y|N+2s dy , with
1
2
< s < 1 ,

where a(x, y) is a measurable, symmetric function bounded between two positive
constants, satisfying some further assumptions; for instance a ∈ C1(Ω× Ω).

The Green function K(x, y) satisfies (K4) , proven by Chen, Kim and Song (2010)

K(x, y) � 1
|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)
, with γ = s− 1

2
.

Remarks.
This is a third model of Dirichlet fractional Laplacian when

[
a(x, y) = const

]
.

This is not equivalent to SFL nor to RFL.

Roughly speaking, s ∈ (0, 1/2] corresponds to Neumann boundary conditions.
References.

K. Bogdan, K. Burdzy, K., Z.-Q. Chen. Censored stable processes. Probab. Theory Relat.
Fields (2003)

Z.-Q. Chen, P. Kim, R. Song, Two-sided heat kernel estimates for censored stable-like
processes. Probab. Theory Relat. Fields (2010)
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More Examples

Spectral powers of uniformly elliptic operators. Consider a linear operator A
in divergence form, with uniformly elliptic bounded measurable coefficients:

A =
N∑

i,j=1

∂i(aij∂j) , s-power of A is: Lf (x) := As f (x) :=

∞∑
k=1

λs
k f̂kφk(x)

L = As satisfies (K3) estimates with γ = 1

(K3) c0,Ωφ1(x)φ1(y) ≤ K(x, y) ≤ c1,Ω

|x− y|N−2s

(
φ1(x)

|x− y| ∧ 1
)(

φ1(y)

|x− y| ∧ 1
)

[General class of intrinsically ultra-contractive operators, Davies and Simon JFA 1984].
Fractional operators with “rough” kernels. Integral operators of Levy-type

Lf (x) = P.V.
∫
RN

(f (x + y)− f (y))
K(x, y)

|x− y|N+2s dy .

where K is measurable, symmetric, bounded between two positive constants, and∣∣K(x, y)− K(x, x)
∣∣χ|x−y|<1 ≤ c|x− y|σ , with 0 < s < σ ≤ 1 ,

for some positive c > 0. We can allow even more general kernels.
The Green function satisfies a stronger assumption than (K2) or (K3), i.e.

(K4) K(x, y) � 1
|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)
, with γ = s
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More Examples

Sums of two Restricted Fractional Laplacians. Operators of the form

L = (∆|Ω)s + (∆|Ω)σ , with 0 < σ < s ≤ 1 ,

where (∆|Ω)s is the RFL. Satisfy (K4) with γ = s.
Sum of the Laplacian and operators with general kernels. In the case

L = a∆ + As , with 0 < s < 1 and a ≥ 0 ,

where

Asf (x) = P.V.
∫
RN

(
f (x + y)− f (y)−∇f (x) · yχ|y|≤1

)
χ|y|≤1dν(y) ,

the measure ν on RN \ {0} is invariant under rotations around origin and satisfies∫
RN 1 ∨ |x|2 dν(y) <∞ , together with other assumptions.

Relativistic stable processes. In the case

L = c−
(

c1/s −∆
)s
, with c > 0 , and 0 < s ≤ 1 .

The Green function K(x, y) of L satisfies assumption (K4) with γ = s.
Many other interesting examples. Schrödinger equations for non-symmetric diffu-
sions, Gradient perturbation of RFL...
References. The above mentioned bounds for the Green functions have been proven
by Chen, Kim, Song and Vondracek (2007, 2010, 2012, 2013).



Outline of the talk Part 1 First Pointwise Estimates Part 2. Upper Bounds Part 3. Lower bounds Part 4. Harnack Inequalities Part 5. Regularity for RFL Asymptotic behaviour

More Examples

Sums of two Restricted Fractional Laplacians. Operators of the form

L = (∆|Ω)s + (∆|Ω)σ , with 0 < σ < s ≤ 1 ,

where (∆|Ω)s is the RFL. Satisfy (K4) with γ = s.
Sum of the Laplacian and operators with general kernels. In the case

L = a∆ + As , with 0 < s < 1 and a ≥ 0 ,

where

Asf (x) = P.V.
∫
RN

(
f (x + y)− f (y)−∇f (x) · yχ|y|≤1

)
χ|y|≤1dν(y) ,

the measure ν on RN \ {0} is invariant under rotations around origin and satisfies∫
RN 1 ∨ |x|2 dν(y) <∞ , together with other assumptions.

Relativistic stable processes. In the case

L = c−
(

c1/s −∆
)s
, with c > 0 , and 0 < s ≤ 1 .

The Green function K(x, y) of L satisfies assumption (K4) with γ = s.
Many other interesting examples. Schrödinger equations for non-symmetric diffu-
sions, Gradient perturbation of RFL...
References. The above mentioned bounds for the Green functions have been proven
by Chen, Kim, Song and Vondracek (2007, 2010, 2012, 2013).



Outline of the talk Part 1 First Pointwise Estimates Part 2. Upper Bounds Part 3. Lower bounds Part 4. Harnack Inequalities Part 5. Regularity for RFL Asymptotic behaviour

More Examples

Sums of two Restricted Fractional Laplacians. Operators of the form

L = (∆|Ω)s + (∆|Ω)σ , with 0 < σ < s ≤ 1 ,

where (∆|Ω)s is the RFL. Satisfy (K4) with γ = s.
Sum of the Laplacian and operators with general kernels. In the case

L = a∆ + As , with 0 < s < 1 and a ≥ 0 ,

where

Asf (x) = P.V.
∫
RN

(
f (x + y)− f (y)−∇f (x) · yχ|y|≤1

)
χ|y|≤1dν(y) ,

the measure ν on RN \ {0} is invariant under rotations around origin and satisfies∫
RN 1 ∨ |x|2 dν(y) <∞ , together with other assumptions.

Relativistic stable processes. In the case

L = c−
(

c1/s −∆
)s
, with c > 0 , and 0 < s ≤ 1 .

The Green function K(x, y) of L satisfies assumption (K4) with γ = s.
Many other interesting examples. Schrödinger equations for non-symmetric diffu-
sions, Gradient perturbation of RFL...
References. The above mentioned bounds for the Green functions have been proven
by Chen, Kim, Song and Vondracek (2007, 2010, 2012, 2013).



Outline of the talk Part 1 First Pointwise Estimates Part 2. Upper Bounds Part 3. Lower bounds Part 4. Harnack Inequalities Part 5. Regularity for RFL Asymptotic behaviour

More Examples

Sums of two Restricted Fractional Laplacians. Operators of the form

L = (∆|Ω)s + (∆|Ω)σ , with 0 < σ < s ≤ 1 ,

where (∆|Ω)s is the RFL. Satisfy (K4) with γ = s.
Sum of the Laplacian and operators with general kernels. In the case

L = a∆ + As , with 0 < s < 1 and a ≥ 0 ,

where

Asf (x) = P.V.
∫
RN

(
f (x + y)− f (y)−∇f (x) · yχ|y|≤1

)
χ|y|≤1dν(y) ,

the measure ν on RN \ {0} is invariant under rotations around origin and satisfies∫
RN 1 ∨ |x|2 dν(y) <∞ , together with other assumptions.

Relativistic stable processes. In the case

L = c−
(

c1/s −∆
)s
, with c > 0 , and 0 < s ≤ 1 .

The Green function K(x, y) of L satisfies assumption (K4) with γ = s.
Many other interesting examples. Schrödinger equations for non-symmetric diffu-
sions, Gradient perturbation of RFL...
References. The above mentioned bounds for the Green functions have been proven
by Chen, Kim, Song and Vondracek (2007, 2010, 2012, 2013).



Outline of the talk Part 1 First Pointwise Estimates Part 2. Upper Bounds Part 3. Lower bounds Part 4. Harnack Inequalities Part 5. Regularity for RFL Asymptotic behaviour

The “dual” formulation of the problem

Recall the homogeneous Dirichlet problem:

(CDP)

 ∂tu = −LF(u) , in (0,+∞)× Ω
u(0, x) = u0(x) , in Ω
u(t, x) = 0 , on the lateral boundary.

We can formulate a “dual problem”, using the inverse L−1 as follows

∂tU = −F(u) ,

where
U(t, x) := L−1[u(t, ·)](x) =

∫
Ω

K(x, y)u(t, y) dy .

This formulation encodes the lateral boundary conditions in the inverse oper-
ator L−1.

Remark. This formulation has been used before by Pierre, Vázquez [...] to
prove (in the RN case) uniqueness of the “fundamental solution”, i.e. the
solution corresponding to u0 = δx0 , known as the Barenblatt solution.
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The “dual” formulation of the problem

Recall that Φ1 � δγ and

‖f‖L1
Φ1

(Ω) =

∫
Ω

f (x)Φ1(x) dx , and L1
Φ1 (Ω) :=

{
f : Ω→ R

∣∣ ‖f‖L1
Φ1

(Ω) <∞
}
.

Weak Dual Solutions
A function u is a weak dual solution to the Dirichlet Problem for ∂tu + LF(u) = 0 in
QT = (0, T)× Ω if:

u ∈ C((0, T) : L1
Φ1

(Ω)) , F(u) ∈ L1 ((0, T) : L1
Φ1

(Ω)
)
;

The following identity holds for every ψ/Φ1 ∈ C1
c ((0, T) : L∞(Ω)) :∫ T

0

∫
Ω

L−1(u)
∂ψ

∂t
dx dt −

∫ T

0

∫
Ω

F(u)ψ dx dt = 0.

Weak Dual Solutions for the Cauchy Dirichlet Problem (CDP)
A weak dual solution to the Cauchy-Dirichlet problem (CDP) is a weak dual solution
to Equation ∂tu + LF(u) = 0 such that moreover

u ∈ C([0, T) : L1
Φ1 (Ω)) and u(0, x) = u0 ∈ L1

Φ1 (Ω) .
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Existence and uniqueness of weak dual solutions

Theorem. Existence of weak dual solutions (M.B. and J. L. Vázquez)

For every nonnegative u0 ∈ L1
Φ1

(Ω) there exists a minimal weak dual solu-
tion to the (CDP). Such a solution is obtained as the monotone limit of the
semigroup (mild) solutions that exist and are unique. The minimal weak dual
solution is continuous in the weighted space u ∈ C([0,∞) : L1

Φ1
(Ω)).

Mild solutions (constructed by Crandall and Pierre) are weak dual solutions
and if u0 ∈ Lp(Ω) then u(t) ∈ Lp(Ω) for all t > 0.

Theorem. Uniqueness of weak dual solutions (M.B. and J. L. Vázquez)

The solution constructed in the above Theorem by approximation of the initial
data from below is unique. We call it the minimal solution. In this class
of solutions the standard comparison result holds, and also the weighted L1

estimates .
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First Pointwise Estimates

Theorem. (M.B. and J. L. Vázquez)

Let u ≥ 0 be a weak dual solution to Problem (CDP) with u0 ∈ Lp(Ω) ,
p > N/2s. Then,∫

Ω

u(t1, x)K(x, x0) dx ≤
∫

Ω

u(t0, x)K(x, x0) dx , for all t1 ≥ t0 ≥ 0 .

Moreover, for almost every 0 ≤ t0 ≤ t1 and almost every x0 ∈ Ω , we have(
t0
t1

) 1
µ0

(t1 − t0) F(u(t0, x0)) ≤
∫

Ω

[
u(t0, x)− u(t1, x)

]
K(x, x0) dx

≤ (m0 − 1)
t1

1
µ0

t0
1−µ0
µ0

F(u(t1, x0)) .

Remark. As a consequence of the above inequality and Hölder inequality,
we have that u(t) ∈ L∞(Ω) when u0 ∈ Lp(Ω) , with p > N/(2s) .



Outline of the talk Part 1 First Pointwise Estimates Part 2. Upper Bounds Part 3. Lower bounds Part 4. Harnack Inequalities Part 5. Regularity for RFL Asymptotic behaviour

First Pointwise Estimates

Theorem. (M.B. and J. L. Vázquez)

Let u ≥ 0 be a weak dual solution to Problem (CDP) with u0 ∈ Lp(Ω) ,
p > N/2s. Then,∫

Ω

u(t1, x)K(x, x0) dx ≤
∫

Ω

u(t0, x)K(x, x0) dx , for all t1 ≥ t0 ≥ 0 .

Moreover, for almost every 0 ≤ t0 ≤ t1 and almost every x0 ∈ Ω , we have(
t0
t1

) 1
µ0

(t1 − t0) F(u(t0, x0)) ≤
∫

Ω

[
u(t0, x)− u(t1, x)

]
K(x, x0) dx

≤ (m0 − 1)
t1

1
µ0

t0
1−µ0
µ0

F(u(t1, x0)) .

Remark. As a consequence of the above inequality and Hölder inequality,
we have that u(t) ∈ L∞(Ω) when u0 ∈ Lp(Ω) , with p > N/(2s) .



Outline of the talk Part 1 First Pointwise Estimates Part 2. Upper Bounds Part 3. Lower bounds Part 4. Harnack Inequalities Part 5. Regularity for RFL Asymptotic behaviour

Proof of the First Pointwise Estimates

Sketch of the proof of the First Pointwise Estimates

We would like to take as test function

ψ(t, x) = ψ1(t)ψ2(x) = χ[t0,t1](t)K(x0, x) ,

(This is not an admissible test in the Definition of Weak Dual solutions)
Plugging such test function in the definition of weak dual solution gives the formula∫

Ω

u(t0, x)K(x0, x) dx−
∫

Ω

u(t1, x)K(x0, x) dx =

∫ t1

t0
F(u(τ, x0))dτ .

This formula can be proven rigorously though careful approximation.
Next, we use the monotonicity estimates,

t 7→ t
1
µ0 F(u(t, x)) is nondecreasing in t > 0 for a.e. x ∈ Ω .

to get for all 0 ≤ t0 ≤ t1, recalling that 1
µ0

= m0
m0−1(

t0
t1

) 1
µ0

(t1 − t0)F(u(t0, x0)) ≤
∫ t1

t0
F(u(τ, x0))dτ ≤ m0 − 1

t
1

m0−1

0

t
1
µ0
1 F(u(t1, x0)).
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This formula can be proven rigorously though careful approximation.
Next, we use the monotonicity estimates,

t 7→ t
1
µ0 F(u(t, x)) is nondecreasing in t > 0 for a.e. x ∈ Ω .

to get for all 0 ≤ t0 ≤ t1, recalling that 1
µ0

= m0
m0−1(

t0
t1

) 1
µ0

(t1 − t0)F(u(t0, x0)) ≤
∫ t1

t0
F(u(τ, x0))dτ ≤ m0 − 1

t
1

m0−1

0

t
1
µ0
1 F(u(t1, x0)).
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Upper Bounds

For the rest of the talk we deal with the special case:

F(u) = um := |u|m−1u
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The power case. Absolute bounds and boundary behaviour

Theorem. (Absolute upper bounds and boundary behaviour)(M.B. & J. L. Vázquez)

Let u be a weak dual solution, then there exists constants K1,K2 > 0 depend-
ing only on N, s,m,Ω (but not on u0 !!) , such that
(K1) assumption implies:

‖u(t)‖L∞(Ω) ≤
K1

t
1

m−1
, for all t > 0 .

Moreover, (K2) assumption implies, for 0 < γ ≤ 2sm/(m− 1)

u(t, x) ≤ K2
Φ1(x)

1
m

t
1

m−1
, for all t > 0 and x ∈ Ω .

When γ > 2sm/(m− 1) the power of Φ1 becomes
σ

m
:=

2s
(m− 1)γ

<
1
m

Remarks.
This is a very strong regularization independent of the initial datum u0.
Sharp boundary estimates: we will show lower bounds with matching powers.
The power decay of um is σ = 1 ∧ 2sm/[(m− 1)γ]
In examples, only for SFL-type, γ = 1, and s small, 0 < s < 1/2− 1/(2m)

Time decay is sharp, but only for large times, say t ≥ 1. For small times when
0 < t < 1 a better time decay is obtained in the form of smoothing effects
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The power case. Absolute bounds and boundary behaviour

Sketch of the proof of Absolute Bounds
• STEP 1. First upper estimates. Recall the pointwise estimate:(

t0
t1

) m
m−1

(t1 − t0) um(t0, x0) ≤
∫

Ω
u(t0, x)GΩ(x, x0) dx−

∫
Ω

u(t1, x)GΩ(x, x0) dx .

for any u ∈ Sp, all 0 ≤ t0 ≤ t1 and all x0 ∈ Ω . Choose t1 = 2t0 to get

(∗) um(t0, x0) ≤
2

m
m−1

t0

∫
Ω

u(t0, x)GΩ(x, x0) dx .

Recall that u ∈ Sp with p > N/(2s), means u(t) ∈ Lp(Ω) for all t > 0 , so that:

um(t0, x0) ≤
c0

t0

∫
Ω

u(t0, x)GΩ(x, x0) dx ≤ c0

t0
‖u(t0)‖Lp(Ω) ‖GΩ(·, x0)‖Lq(Ω) < +∞

since GΩ(·, x0) ∈ Lq(Ω) for all 0 < q < N/(N − 2s), so that u(t0) ∈ L∞(Ω) for all t0 > 0.

• STEP 2. Let us estimate the r.h.s. of (∗) as follows:

um(t0, x0) ≤
c0

t0

∫
Ω

u(t0, x)GΩ(x, x0) dx ≤ ‖u(t0)‖L∞(Ω)
c0

t0

∫
Ω

GΩ(x, x0) dx .

Taking the supremum over x0 ∈ Ω of both sides, we get:

‖u(t0)‖m−1
L∞(Ω) ≤

c0

t0
sup

x0∈Ω

∫
Ω

GΩ(x, x0) dx ≤ Km−1
1

t0
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Smoothing Effects

Define the exponents:

ϑ1,γ =
1

2s + (N + γ)(m− 1)
and ϑ1 = ϑ1,0 =

1
2s + N(m− 1)

Theorem. (Smoothing effects) (M.B. & J. L. Vázquez)

There exist universal constants K3,K4 > 0 such that:
L1-L∞ SMOOTHING EFFECT: (K1) assumption implies for all t > 0 :

‖u(t)‖L∞(Ω) ≤
K3

tNϑ1
‖u(t)‖2sϑ1

L1(Ω)
≤ K3

tNϑ1
‖u0‖2sϑ1

L1(Ω)

L1
Φ1

-L∞ SMOOTHING EFFECT: (K2) assumption implies for all t > 0 :

‖u(t)‖L∞(Ω) ≤
K4

t(N+γ)ϑ1,γ
‖u(t)‖2sϑ1,γ

L1
Φ1

(Ω)
≤ K4

t(N+γ)ϑ1,γ
‖u0‖

2sϑ1,γ

L1
Φ1

(Ω)
.

A novelty is that we get instantaneous smoothing effects.

Also the weighted smoothing effect is new (as far as we know).

The time decay is better for small times 0 < t < 1 than the one given by absolute bounds:

(N + γ)ϑ1,γ =
N + γ

2 + (N + γ)(m− 1)
<

1
m− 1

.
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.
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Smoothing Effects

Theorem. (Backward Smoothing effects) (M.B. & J. L. Vázquez)

There exists a universal constant K4 > 0 such that for all t, h > 0

‖u(t)‖L∞(Ω) ≤
K4

t(d+γ)ϑ1,γ

(
1 ∨ h

t

) 2sϑ1,γ
m−1

‖u(t + h)‖2sϑ1,γ

L1
Φ1

(Ω)
.

Proof. By the monotonicity estimates , the function u(x, t)t1/(m−1) is non-decreasing
in time for fixed x, therefore using the smoothing effect, we get for all t1 ≥ t:

‖u(t)‖L∞(Ω) ≤
K4

t(N+1)ϑ1,γ

(∫
Ω

u(t, x)Φ1(x) dx
)2sϑ1,γ

≤ K4

t(N+1)ϑ1,γ

 t
1

m−1
1

t
1

m−1

∫
Ω

u(t1, x)Φ1(x) dx

2sϑ1,γ

where K4 is as in the smoothing effects. Finally, let t1 = t + h .
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Absolute upper bounds. F case

Upper Bounds for general F



Outline of the talk Part 1 First Pointwise Estimates Part 2. Upper Bounds Part 3. Lower bounds Part 4. Harnack Inequalities Part 5. Regularity for RFL Asymptotic behaviour

Absolute upper bounds. F case

Theorem. (Absolute upper estimate) (M.B. & J. L. Vázquez)

Let u be a nonnegative weak dual solution corresponding to u0 ∈ L1
δγ

(Ω).
Then, there exists universal constants K0,K1,K2 > 0 such that the following
estimates hold true for all t > 0 :

F
(
‖u(t)‖L∞(Ω)

)
≤ F∗

(
K1

t

)
.

Moreover, there exists a time τ1(u0) with 0 ≤ τ1(u0) ≤ K0 such that

‖u(t)‖L∞(Ω) ≤ 1 for all t ≥ τ1 ,

so that
‖u(t)‖L∞(Ω) ≤

K2

t
1

mi−1
with

{
i = 0 if t ≤ K0
i = 1 if t ≥ K0

The Legendre transform of F is defined as a function F∗ : R→ R with

F∗(z) = sup
r∈R

(
zr − F(r)

)
= z (F′)−1(z)− F

(
(F′)−1(z)

)
= F′(r) r + F(r) ,

with the choice r = (F′)−1(z) .
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Smoothing Effects

Let γ, s ∈ [0, 1] be the exponents appearing in assumption (K2). Define

ϑi,γ =
1

2s + (N + γ)(mi − 1)
with mi =

1
1− µi

> 1

Theorem. (Weighted L1 − L∞ smoothing effect) (M.B. & J. L. Vázquez)

As a consequence of (K2) hypothesis, there exists a constant K6 > 0 s.t.

F
(
‖u(t)‖L∞(Ω)

)
≤ K6

‖u(t0)‖2smiϑi,γ

L1
δγ

(Ω)

tmi(N+γ)ϑi,γ
, for all 0 ≤ t0 ≤ t ,

with i = 1 if t ≥ ‖u(t0)‖
2s

N+γ

L1
δγ

(Ω)
and i = 0 if t ≤ ‖u(t0)‖

2s
N+γ

L1
δγ

(Ω)
.

A novelty is that we get instantaneous smoothing effects, new even when s = 1.
The weighted smoothing effect is new even for s = 1.
Corollary. Under the weaker assumption (K1) instead of (K2), the above result holds
true with γ = 0 and replacing ‖ · ‖L1

δγ
(Ω) with ‖ · ‖L1(Ω) .

The time decay is better for small times 0 < t < 1 than the one given by absolute bounds:

(N + γ)ϑi,γ =
N + γ

2s + (N + γ)(mi − 1)
<

1
mi − 1

.
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Lower bounds and speed of propagation
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Quantitative positivity estimates

Theorem. (Lower absolute and boundary estimates) (M.B. & J. L. Vázquez)

Let let m > 1 and let u ≥ 0 be a weak dual solution to the (CDP),
corresponding to the initial datum 0 ≤ u0 ∈ L1

Φ1
(Ω) . Then, there exist

constants l0(Ω), l1(Ω) > 0 , so that, setting

t∗ =
l0(Ω)(∫

Ω
u0Φ1 dx

)m−1 ,

we have that for all t ≥ t∗ and all x0 ∈ Ω, the following inequality holds
when 0 < γ ≤ 2sm/(m− 1)

u(t, x0) ≥ l1(Ω)
Φ1(x0)

1
m

t
1

m−1
.

When γ > 2sm/(m− 1) the power of Φ1 changes to 2s/[(m− 1)γ] < 1/m

The constants l0(Ω), l1(Ω) > 0 , depend on N,m, s and on Ω , but not on u (or
any norm of u); they have an explicit form. Recall that Φ1 � δγ
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Quantitative positivity estimates

Remarks.
This boundary behaviour is sharp because we have upper bounds with
matching powers of Φ1.
t∗ is an estimate the time that it takes “to fill the hole”: if u0 is con-
centrated close to the border (leaves an hole in the middle of Ω), then∫

Ω
u0Φ1 dx is small, therefore t∗ becomes very large, therefore it takes a

lot of time to fill the hole.
When s = 1 it is known that the PME has finite speed of propagation.
Question: Is the speed of propagation finite when s < 1 ?
These estimates can also be rewritten “á la” Aronson-Caffarelli:

either t ≤ t∗ =
l0(∫

Ω u0Φ1 dx
)m−1 , or u(t, x0) ≥ l1

Φ1(x0)
1
m

t
1

m−1

∀t ≥ t∗ ,

which gives, for all t ≥ 0 and all x0 ∈ Ω:

u(t, x0) ≥
l1Φ1(x0)

1
m

t
1

m−1

[
1−

(
t∗
t

) 1
m−1
]
.

Open problem: find precise lower bounds for small times, 0 < t < t∗.
Solved for RFL, with s < 1: precise lower bounds for small times proven
for Restricted-type Fractional Laplacians (on any domain), by MB, A.
Figalli and X. Ros-Oton.
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Harnack Inequalities
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Harnack inequalities

Joining our upper and lower bounds we obtain

Theorem. (Global Harnack Principle) (M.B. & J. L. Vázquez)

There exist universal constants H0,H1, l0 > 0 such that setting

t∗ = l0

(∫
Ω

u0Φ1 dx
)−(m−1)

,

we have that for all t ≥ t∗ and all x ∈ Ω, when 0 < γ ≤ 2sm/(m− 1)

H0
Φ1(x)

1
m

t
1

m−1
≤ u(t, x) ≤ H1

Φ1(x)
1
m

t
1

m−1

When γ > 2sm/(m− 1) the power of Φ1 changes to 2s/[(m− 1)γ] < 1/m

Recall that Φ1 � dist(· , ∂Ω)γ , is the first eigenfunction of L.
Remarks.

This inequality implies local Harnack inequalities of elliptic type
As a corollary we get the sharp asymptotic behaviour
For s = 1 similar results by Aronson and Peletier [JDE, 1981] ,
Vázquez [Monatsh. Math. 2004]
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Harnack inequalities

Solutions u to the parabolic problem inherit the Harnack inequality for Φ1:

sup
x∈BR(x0)

Φ1(x) ≤ H inf
x∈BR(x0)

Φ1(x) ∀BR(x0) ∈ Ω.

Theorem. (Local Harnack Inequalities of Elliptic Type) (M.B. & J. L. Vázquez)

There exist universal constants H0, H1, l0 > 0 such that setting
t∗ = l0‖u0‖−(m−1)

L1
Φ1

(Ω)
, we have that for all t ≥ t∗ and all BR(x0) ∈ Ω :

sup
x∈BR(x0)

u(t, x) ≤ H1H
1
m

H0
inf

x∈BR(x0)
u(t, x)

Corollary. (Local Harnack Inequalities of Backward Type)

Under the runninig assumptions, for all t ≥ t∗ and all BR(x0) ∈ Ω, we have:

sup
x∈BR(x0)

u(t, x) ≤ 2
H1H

1
m

H0
inf

x∈BR(x0)
u(t + h, x) for all 0 ≤ h ≤ t∗ .

Backward Harnack inequalities for the linear heat equation s = 1 and m = 1, by Fabes,
Garofalo, Salsa [Ill. J. Math, 1986]

For s = 1, Intrinsic (Forward) Harnack inequalities by DiBenedetto [ARMA, 1988],
Daskalopoulos and Kenig [EMS Book, 2007], cf. also DiBenedetto, Gianazza, Vespri
[Monograph, Springer, 2011].



Outline of the talk Part 1 First Pointwise Estimates Part 2. Upper Bounds Part 3. Lower bounds Part 4. Harnack Inequalities Part 5. Regularity for RFL Asymptotic behaviour

Harnack inequalities

Solutions u to the parabolic problem inherit the Harnack inequality for Φ1:

sup
x∈BR(x0)

Φ1(x) ≤ H inf
x∈BR(x0)

Φ1(x) ∀BR(x0) ∈ Ω.

Theorem. (Local Harnack Inequalities of Elliptic Type) (M.B. & J. L. Vázquez)

There exist universal constants H0, H1, l0 > 0 such that setting
t∗ = l0‖u0‖−(m−1)

L1
Φ1

(Ω)
, we have that for all t ≥ t∗ and all BR(x0) ∈ Ω :

sup
x∈BR(x0)

u(t, x) ≤ H1H
1
m

H0
inf

x∈BR(x0)
u(t, x)

Corollary. (Local Harnack Inequalities of Backward Type)

Under the runninig assumptions, for all t ≥ t∗ and all BR(x0) ∈ Ω, we have:

sup
x∈BR(x0)

u(t, x) ≤ 2
H1H

1
m

H0
inf

x∈BR(x0)
u(t + h, x) for all 0 ≤ h ≤ t∗ .

Backward Harnack inequalities for the linear heat equation s = 1 and m = 1, by Fabes,
Garofalo, Salsa [Ill. J. Math, 1986]

For s = 1, Intrinsic (Forward) Harnack inequalities by DiBenedetto [ARMA, 1988],
Daskalopoulos and Kenig [EMS Book, 2007], cf. also DiBenedetto, Gianazza, Vespri
[Monograph, Springer, 2011].



Outline of the talk Part 1 First Pointwise Estimates Part 2. Upper Bounds Part 3. Lower bounds Part 4. Harnack Inequalities Part 5. Regularity for RFL Asymptotic behaviour

Harnack inequalities

Solutions u to the parabolic problem inherit the Harnack inequality for Φ1:

sup
x∈BR(x0)

Φ1(x) ≤ H inf
x∈BR(x0)

Φ1(x) ∀BR(x0) ∈ Ω.

Theorem. (Local Harnack Inequalities of Elliptic Type) (M.B. & J. L. Vázquez)

There exist universal constants H0, H1, l0 > 0 such that setting
t∗ = l0‖u0‖−(m−1)

L1
Φ1

(Ω)
, we have that for all t ≥ t∗ and all BR(x0) ∈ Ω :

sup
x∈BR(x0)

u(t, x) ≤ H1H
1
m

H0
inf

x∈BR(x0)
u(t, x)

Corollary. (Local Harnack Inequalities of Backward Type)

Under the runninig assumptions, for all t ≥ t∗ and all BR(x0) ∈ Ω, we have:

sup
x∈BR(x0)

u(t, x) ≤ 2
H1H

1
m

H0
inf

x∈BR(x0)
u(t + h, x) for all 0 ≤ h ≤ t∗ .

Backward Harnack inequalities for the linear heat equation s = 1 and m = 1, by Fabes,
Garofalo, Salsa [Ill. J. Math, 1986]

For s = 1, Intrinsic (Forward) Harnack inequalities by DiBenedetto [ARMA, 1988],
Daskalopoulos and Kenig [EMS Book, 2007], cf. also DiBenedetto, Gianazza, Vespri
[Monograph, Springer, 2011].



Outline of the talk Part 1 First Pointwise Estimates Part 2. Upper Bounds Part 3. Lower bounds Part 4. Harnack Inequalities Part 5. Regularity for RFL Asymptotic behaviour

Harnack Inequalities
and

Higher Regularity for RFL

For the rest of the talk we deal with the special case:

L(u)(x) = (−∆|Ω)su(x) = CN,sP.V.

∫
RN

u(x)− u(y)

|x− y|n+2s dy
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Harnack inequalities for all times

For the RFL we solve the problem of sharp lower bounds for small times.
Recall that here γ = s and Φ1 � δγ = dist(·, ∂Ω)s .

Theorem. (Global quantitative positivity) (M.B., A. Figalli, X. Ros-Oton)

Let m > 1, 0 < s < 1, and N > 2s. Let Ω be a bounded domain of
class C1,1, and let u be a weak dual solution to the (CDP) corresponding to
0 ≤ u0 ∈ L1

Φ1
(Ω) . Then the following bound holds true:

u(t, x) ≥ κ‖u0‖m
L1

Φ1
(Ω) t Φ1(x)

1
m , for all 0 ≤ t ≤ t∗ and all x ∈ Ω ,

where t∗ = l0‖u0‖−(m−1)

L1
Φ1

(Ω)
and l0, κ > 0 depend only on N, s,m,Ω.

As a consequence, solutions to the (CDP) corresponding to nonnegative and
nontrivial initial data, have infinite speed of propagation.

No free boundaries when s < 1, contrary to the “local” case s = 1, cf. Barenblatt,
Aronson, Caffarelli, Vázquez, Wolansky [...]

Qualitative version of infinite speed of propagation for the Cauchy problem on RN , by
De Pablo, Quíros, Rodriguez, Vázquez [Adv. Math. 2011, CPAM 2012]

Different from the so-called Caffarelli-Vázquez model (on RN ) that has finite speed of
propagation [ARMA 2011, DCDS 2011] and also Stan, del Teso Vázquez [CRAS 2014,
NLTMA 2015, JDE 2015], cf. also Coxeter lecture by Caffarelli yesterday :)
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Harnack inequalities for all times

Theorem. (Global Harnack Principle for all times)(M.B., A. Figalli, X. Ros-Oton)

Let m > 1, 0 < s < 1, and N > 2s. Let Ω be a bounded domain of class
C1,1, and let u be a weak dual solution to the (CDP) corresponding to
0 ≤ u0 ∈ L1

Φ1
(Ω). Let t∗ be as above. Then for all t > 0 and all x ∈ Ω

κ

(
1 ∧ t

t∗

) m
m−1 Φ1(x)

1
m

t
1

m−1
≤ u(t, x) ≤ κ Φ1(x)

1
m

t
1

m−1
,

where Φ1 � dist(·, ∂Ω)s, and κ, κ > 0 depend only on N, s,m,Ω.

Theorem. (Local Harnack inequalities for all times)(M.B., A. Figalli, X. Ros-Oton)

Under the above assumptions, for all balls BR(x0) ⊂⊂ Ω, we have

sup
x∈BR(x0)

u(t, x) ≤ H(
1 ∧ t

t∗

) m
m−1

inf
x∈BR(x0)

u(t, x) , for all t > 0 ,

whereH > 0 depend only on N, s,m,Ω, dist(BR(x0), ∂Ω).
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Hölder Regularity up to the boundary

Hölder Regularity up to the boundary.
The following regularity results hold true under the running assumptions:

(R) Let m > 1, 0 < s < 1, and N > 2s. Let Ω be a bounded domain of class
C1,1, and let u be a solution to the (CDP) corresponding to a nonnegative
initial datum u0 ∈ L1

Φ1
(Ω).

Theorem. (Hölder regularity up to the boundary)(M.B., A. Figalli, X. Ros-Oton)

Under the running assumptions (R) , then, for each 0 < t0 < T we have

‖u‖
C

s
m ,

1
2m

x,t (Ω×[t0,T])
≤ C,

where C depends only on N, s,m,Ω, t0, and ‖u0‖L1
Φ1

(Ω).

Remarks.
Notice that the Cs/m

x regularity up to the boundary is optimal, since we
have that u(t, x) ≥ c(u0, t)dist(x, ∂Ω)s/m, with c(u0, t) > 0 for all t > 0,
and therefore u(t, ·) /∈ C

s
m +ε
x (Ω) for any ε > 0.

Previous result on Cα regularity by Athanasopoulos and Caffarelli
[Adv. Math, 2010].
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Higher interior regularity

Higher Regularity. Under the running assumptions (R), we prove interior C∞

regularity in the x-variable and interior C1,α regularity in the t-variable

Theorem. (Higher interior regularity in space) (M.B., A. Figalli, X. Ros-Oton)

Under the running assumptions (R) , then u ∈ C∞x ((0,∞)× Ω).
More precisely, let k ≥ 1 be any positive integer, and d(x) = dist(x, ∂Ω),
then, for any t ≥ t0 > 0 we have∣∣Dk

xu(t, x)
∣∣ ≤ C [d(x)]

s
m−k,

where C depends only on N, s,m, k,Ω, t0, and ‖u0‖L1
Φ1

(Ω).

Theorem. (C1,α interior regularity in time) (M.B., A. Figalli, X. Ros-Oton)

Under the running assumptions (R) , then u ∈ C1,α
t ((0,∞)× Ω) for some

α > 0 that depends only on s and m. Moreover, for any compact set
K ⊂⊂ Ω, and any 0 < t0 < T , we have

‖u‖C1,α
t ([t0,T]×K) ≤ C,

where C depends only on N, s,m,Ω, t0, ‖u0‖L1
Φ1

(Ω), and K.
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Higher interior regularity

Remarks.
A possible value for the exponent α in the previous theorem on time
regularity is α = min

{ 1
2m , 1− s

}
.

Notice that the above regularity results imply that solutions to (CDP)
are classical for any nonnegative initial datum u0 ∈ L1

Φ1
(Ω).

Higher regularity in time is a difficult open problem. It is connected to
higher order boundary regularity in t. To our knowledge also open for
the local case s = 1.
Even for the Fractional Heat Equation (FHE) ut + (−∆|Ω)su = 0 on
(0, 1)× B1 we have that u ∈ C∞ in x, namely

‖u‖Ck,α
x (( 1

2 ,1)×B1/2)
≤ C‖u‖L∞((0,1)×RN), for all k ≥ 0.

Analogous estimates in time do not hold for k ≥ 1 and α ∈ (0, 1).
Indeed, one can construct a solution to the (FHE) which is bounded in
all of RN , but which is not C1 in t in ( 1

2 , 1)× B1/2.
[H. Chang-Lara, G. Davila, JDE (2014)]
Our techniques allow to prove regularity also in unbounded domains ,
and also to treat operator with more general kernels.
Also the “classical/local” case s = 1 works after the waiting time t∗:

u ∈ C
1
m ,

1
2m
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Ω× [t∗,T]

)
, C∞x ((0,∞)× Ω) and C1,α

t ([t0,T]× K) .
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The End

Thank You!!!

Merci Beaucoup!!!

Muchas Gracias!!!
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Summary

Asymptotic behaviour of nonnegative solutions

Convergence to the stationary profile
Convergence with optimal rate
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Convergence to the stationary profile

In the rest of the talk we consider the nonlinearity F(u) = |u|m−1u with m > 1 .

Theorem. (Asymptotic behaviour) (M.B. , Y. Sire, J. L. Vázquez)

There exists a unique nonnegative selfsimilar solution of the above Dirichlet
Problem

U(τ, x) =
S(x)

τ
1

m−1
,

for some bounded function S : Ω→ R. Let u be any nonnegative weak dual
solution to the (CDP) , then we have (unless u ≡ 0)

lim
τ→∞

τ
1

m−1 ‖u(τ, ·)− U(τ, ·)‖L∞(Ω) = 0 .

The previous theorem admits the following corollary.

Theorem. (Elliptic problem) (M.B. , Y. Sire, J. L. Vázquez)

Let m > 1. There exists a unique weak dual solution to the elliptic problem L(Sm) =
S

m− 1
in Ω,

S(x) = 0 for x ∈ ∂Ω.

Notice that the previous theorem is obtained in the present paper through a parabolic technique.
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Convergence with optimal rate

Theorem. (Sharp asymptotic with rates) (M.B. , Y. Sire, J. L. Vázquez)

Let u be any nonnegative weak dual solution to the (CDP) , then we have
(unless u ≡ 0) that there exist t0 > 0 of the form

t0 = k
[ ∫

Ω
Φ1 dx∫

Ω
u0Φ1 dx

]m−1

such that for all t ≥ t0 we have∥∥∥∥ u(t, ·)
U(t, ·)

− 1
∥∥∥∥

L∞(Ω)

≤ 2
m− 1

t0
t0 + t

.

The constant k > 0 only depends on m,N, s, and |Ω|.

Remarks.
We provide two different proofs of the above result.
One proof is based on the construction of the so-called Friendly-Giant solution,
namely the solution with initial data u0 = +∞ , and is based on the Global
Harnack Principle of Part 4
The second proof is based on a new Entropy method, which is based on a
parabolic version of the Caffarelli-Silvestre extension.
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