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Introduction

Homogeneous Dirichlet Problem for
Fractional Nonlinear Degenerate Diffusion Equations

(HDP)

 ut + LF(u) = 0 , in (0,+∞)× Ω
u(0, x) = u0(x) , in Ω
u(t, x) = 0 , on the lateral boundary.

where:
Ω ⊂ RN is a bounded domain with smooth boundary and N ≥ 1.
The linear operator L will be:

sub-Markovian operator
densely defined in L1(Ω).

A wide class of linear operators fall in this class:
all fractional Laplacians on domains.
The most studied nonlinearity is F(u) = |u|m−1u , with m > 1.
We deal with Degenerate diffusion of Porous Medium type.
More general classes of “degenerate” nonlinearities F are allowed.
The homogeneous boundary condition is posed on the lateral boundary,
which may take different forms, depending on the particular choice of
the operator L.
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About the operator L

The linear operator L : dom(A) ⊆ L1(Ω)→ L1(Ω) is assumed to be densely
defined and sub-Markovian, more precisely satisfying (A1) and (A2) below:

(A1) L is m-accretive on L1(Ω),
(A2) If 0 ≤ f ≤ 1 then 0 ≤ e−tLf ≤ 1 , or equivalently,

(A2’) If β is a maximal monotone graph in R× R with 0 ∈ β(0),
u ∈ dom(L) , Lu ∈ Lp(Ω) , 1 ≤ p ≤ ∞ , v ∈ Lp/(p−1)(Ω) ,
v(x) ∈ β(u(x)) a.e , then ∫

Ω

v(x)Lu(x) dx ≥ 0

Remark. These assumptions are needed for existence (and uniqueness) of
semigroup (mild) solutions for the nonlinear equation ut = LF(u), through
a variant of the celebrated Crandall-Liggett theorem, as done by Benilan,
Crandall and Pierre:

M. G. Crandall, T.M. Liggett. Generation of semi-groups of nonlinear
transformations on general Banach spaces, Amer. J. Math. 93 (1971) 265–298.

M. Crandall, M. Pierre, Regularizing Effectd for ut = Aϕ(u) in L1, J. Funct.
Anal. 45, (1982), 194-212
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Assumption on the nonlinearity F

Let F : R→ R be a continuous and non-decreasing function, with F(0) = 0.
Moreover, it satisfies the condition:

(N1) F ∈ C1(R \ {0}) and F/F′ ∈ Lip(R) and there exists µ0, µ1 > 0 s.t.

1
m1

= 1− µ1 ≤
(

F
F′

)′
≤ 1− µ0 =

1
m0

where F/F′ is understood to vanish if F(r) = F′(r) = 0 or r = 0 .
The main example will be

F(u) = |u|m−1u, with m > 1 , and µ0 = µ1 =
m− 1

m
< 1 .

which corresponds to the nonlocal porous medium equation studied in [BV1].
A simple variant is the combination of two powers:

m0 gives the behaviour near u = 0
m1 gives the behaviour near u =∞.
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Existence of Mild Solutions and Monotonicity Estimates

Theorem (M. Crandall and M. Pierre, JFA 1982)

Let L satisfy (A1) and (A2) and let F as satisfy (N1). Then for all
nonnegative u0 ∈ L1(Ω) , there exists a unique mild solution u to equation
ut + LF(u) = 0 , and the function

(1) t 7→ t
1
µ0 F(u(t, x)) is nondecreasing in t > 0 for a.e. x ∈ Ω .

Moreover, the semigroup is contractive on L1(Ω) and
u ∈ C([0,∞) : L1(Ω)) .

We notice that (1) is a weak formulation of the monotonicity inequality:

∂tu ≥ −
1
µ0 t

F(u)

F′(u)
, which implies ∂tu ≥ −

1− µ0

µ0

u
t

or equivalently, that the function

(2) t 7→ t
1−µ0
µ0 u(t, x) is nondecreasing in t > 0 for a.e. x ∈ Ω .

P. Bénilan, M. Crandall. Regularizing effects of homogeneous evolution equations.
Contr. to Anal. and Geom. Johns Hopkins Univ. Press, Baltimore, Md., 1981. 23-39.
M. Crandall, M. Pierre, Regularizing Effect for ut = Aϕ(u) in L1. JFA 45, (1982).
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Assumption on the inverse operator L−1

Assumptions on the inverse of L
We will assume that the operator L has an inverse L−1 : L1(Ω) → L1(Ω)
with a kernel K such that

L−1f (x) =

∫
Ω

K(x, y) f (y) dy ,

and that satisfies (one of) the following estimates for some γ, s ∈ (0, 1]
and ci,Ω > 0

(K1) 0 ≤ K(x, y) ≤ c1,Ω

|x− y|N−2s

(K2) c0,Ωδγ(x) δγ(y) ≤ K(x, y) ≤ c1,Ω

|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)

where
δγ(x) := dist(x, ∂Ω)γ .

When the operator L has a first nonnegative eigenfunction Φ1 , we can rewrite (K2) as

(K3) c0,ΩΦ1(x)Φ1(y) ≤ K(x, y) ≤ c1,Ω

|x− x0|N−2s

(
Φ1(x)

|x− y|γ ∧ 1
)(

Φ1(y)

|x− y|γ ∧ 1
)

Indeed, (K2) implies that Φ1 � dist(·, ∂Ω)γ = δγ .
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Examples of operators L

Reminder about the fractional Laplacian operator on RN

We have several equivalent definitions for (−∆RN )s :

1 By means of Fourier Transform,

((−∆RN )sf )̂(ξ) = |ξ|2s f̂ (ξ) .

This formula can be used for positive and negative values of s.
2 By means of an Hypersingular Kernel:

if 0 < s < 1, we can use the representation

(−∆RN )sg(x) = cN,s P.V.
∫
RN

g(x)− g(z)
|x− z|N+2s dz,

where cN,s > 0 is a normalization constant.
3 Spectral definition, in terms of the heat semigroup associated to the

standard Laplacian operator:

(−∆RN )sg(x) =
1

Γ(−s)

∫ ∞
0

(
et∆RN g(x)− g(x)

) dt
t1+s .
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Examples of operators L

The Spectral Fractional Laplacian operator (SFL)

(−∆Ω)sg(x) =

∞∑
j=1

λs
j ĝj φj(x) =

1
Γ(−s)

∫ ∞
0

(
et∆Ωg(x)− g(x)

) dt
t1+s .

∆Ω is the classical Dirichlet Laplacian on the domain Ω

EIGENVALUES: 0 < λ1 ≤ λ2 ≤ . . . ≤ λj ≤ λj+1 ≤ . . . and λj � j2/N .
EIGENFUNCTIONS: φj are as smooth as the boundary of Ω allows,
namely when ∂Ω is Ck, then φj ∈ C∞(Ω) ∩ Ck(Ω) for all k ∈ N .

ĝj =

∫
Ω

g(x)φj(x) dx , with ‖φj‖L2(Ω) = 1 .

Lateral boundary conditions for the SFL

u(t, x) = 0 , in (0,∞)× ∂Ω .

The Green function of SFL satisfies a stronger assumption than (K2) or (K3), i.e.

(K4) K(x, y) � 1
|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)
, with γ = 1
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j ĝj φj(x) =

1
Γ(−s)

∫ ∞
0

(
et∆Ωg(x)− g(x)

) dt
t1+s .

∆Ω is the classical Dirichlet Laplacian on the domain Ω

EIGENVALUES: 0 < λ1 ≤ λ2 ≤ . . . ≤ λj ≤ λj+1 ≤ . . . and λj � j2/N .
EIGENFUNCTIONS: φj are as smooth as the boundary of Ω allows,
namely when ∂Ω is Ck, then φj ∈ C∞(Ω) ∩ Ck(Ω) for all k ∈ N .
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Examples of operators L
Definition via the hypersingular kernel in RN , “restricted” to functions that are zero outside Ω.

The Restricted Fractional Laplacian operator (RFL)

(−∆|Ω)sg(x) = cN,s P.V.
∫
RN

g(x)− g(z)
|x− z|N+2s dz , with supp(g) ⊆ Ω .

where s ∈ (0, 1) and cN,s > 0 is a normalization constant.

(−∆|Ω)s is a self-adjoint operator on L2(Ω) with a discrete spectrum:

EIGENVALUES: 0 < λ1 ≤ λ2 ≤ . . . ≤ λj ≤ λj+1 ≤ . . . and λj � j2s/N .
Eigenvalues of the RFL are smaller than the ones of SFL: λj ≤ λs

j for all j ∈ N .

EIGENFUNCTIONS: φj are the normalized eigenfunctions, are only Hölder
continuous up to the boundary, namely φj ∈ Cs(Ω) .

Lateral boundary conditions for the RFL

u(t, x) = 0 , in (0,∞)×
(
RN \ Ω

)
.

The Green function of SFL satisfies a stronger assumption than (K2) or (K3), i.e.

(K4) K(x, y) � 1
|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)
, with γ = s
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More general operators

We can also treat more general operators of SFL and RFL type:
Spectral powers of uniformly elliptic operators. Consider a linear operator
A in divergence form:

A =

N∑
i,j=1

∂i(aij∂j) ,

with bounded measurable coefficients, which are uniformly elliptic. The uni-
form ellipticity allows to build a self-adjoint operator on L2(Ω) with discrete
spectrum (λk, φk) . Using the spectral theorem, we can construct the spectral
power of such operator, defined as follows:

Lf (x) := As f (x) :=

∞∑
k=1

λs
k f̂kφk(x) where f̂k =

∫
Ω

f (x)φk(x) dx .

Such operators enjoy (K3) estimates with γ = 1

(K3) c0,Ωφ1(x)φ1(y) ≤ K(x, y) ≤ c1,Ω

|x− y|N−2s

(
φ1(x)

|x− y| ∧ 1
)(

φ1(y)

|x− y| ∧ 1
)

We can treat the class of intrinsically ultra-contractive operators introduced
by Davies and Simon.
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More general operators

Fractional operators with general kernels. Consider integral operators of
the following form

Lf (x) = P.V.
∫
RN

(f (x + y)− f (y))
K(x, y)

|x− y|N+2s dy .

where K is a measurable symmetric function bounded between two positive
constants, satisfying∣∣K(x, y)− K(x, x)

∣∣χ|x−y|<1 ≤ c|x− y|σ , with 0 < s < σ ≤ 1 ,

for some positive c > 0. We can allow even more general kernels.
The Green function satisfies a stronger assumption than (K2) or (K3), i.e.

(K4) K(x, y) � 1
|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)
, with γ = s
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More general operators

Censored fractional Laplacians and operators with general kernels.
Introduced by Bogdan et al. in 2003.

Lf (x) = P.V.
∫

Ω

(f (x)− f (y))
a(x, y)

|x− y|N+2s dy , with
1
2
< s < 1 ,

where a(x, y) is a measurable symmetric function bounded between two pos-
itive constants, satisfying some further assumptions; a sufficient assumption
is a ∈ C1(Ω× Ω).
The Green function K(x, y) of L satisfies the strongest assumption (K4):

K(x, y) � 1
|x− y|N−2s

(
δγ(x)

|x− y|γ
∧ 1
)(

δγ(y)

|x− y|γ
∧ 1
)
, with γ = s−1

2
.

This bounds has been proven by Chen, Kim and Song (2010).
Remarks.

This is a third model of Dirichlet fractional Laplacian
[

a(x, y) = CN,s
]
.

This is not equivalent to SFL nor to RFL.
Roughly speaking, when s ∈ (0, 1/2] this corresponds to “Neumann”
boundary conditions.
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More general operators

Sums of two fractional operators. Operators of the form

L = (∆|Ω)s + (∆|Ω)σ , with 0 < σ < s ≤ 1 ,

where (∆|Ω)s is the RFL. The Green function K(x, y) ofL satisfies the strongest
assumption (K4) with γ = s . The limit case s = 1 and σ ∈ (0, 1) satisfies
the strongest assumption (K4) with γ = s = 1.
The bounds (K4) for the Green function proven by Chen, Kim, Song (2012).
Sum of the Laplacian and operators with general kernels. In the case

L = a∆ + As , with 0 < s < 1 and a ≥ 0 ,

where

Asf (x) = P.V.
∫
RN

(
f (x + y)− f (y)−∇f (x) · yχ|y|≤1

)
χ|y|≤1dν(y) .

where the measure ν on RN \ {0} is invariant under rotations around origin and satisfies∫
RN

1 ∨ |x|2 dν(y) <∞ .

More precisely dν(y) = j(y) dy with j : (0,∞)→ (0,∞) is given by

j(r) :=

∫ ∞
0

er2/(4t)

(4π t)N/2
dµ(r) with

∫ ∞
0

(1 ∨ t)dµ(t) <∞ .

The Green function K(x, y) of L satisfies assumption (K4) in the form with s = 1 and γ = 1 .
The bounds for the Green function have been proven by Chen, Kim, Song, Vondracek (2013).
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More general operators

Schrödinger equations for non-symmetric diffusions. In the case

L = A + µ · ∇+ ν ,

where A is uniformly elliptic both in divergence and non-divergence form:

A1 =
1
2

N∑
i,j=1

∂i(aij∂j) or A2 =
1
2

N∑
i,j=1

aij∂ij ,

We assume C1 coefficient aij, uniformly elliptic.
Moreover, µ, ν are measures belonging to suitable Kato classes.
The Green function K(x, y) of L satisfies assumption (K4) with γ = s = 1 .
Gradient perturbation of restricted fractional Laplacians. In the case

L = (∆|Ω)s + b · ∇

where b is a vector valued function belonging to a suitable Kato class.
The Green function K(x, y) of L satisfies assumption (K4) with γ = s .
Relativistic stable processes. In the case

L = c−
(

c1/s −∆
)s
, with c > 0 , and 0 < s ≤ 1 .

The Green function K(x, y) of L satisfies assumption (K4) with γ = s.
The bounds for the Green function have been proven by Chen, Kim, Song (2007, 2011, 2012).
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The “dual” formulation of the problem

Recall the homogeneous Dirichlet problem:

(CDP)

 ∂tu = −LF(u) , in (0,+∞)× Ω
u(0, x) = u0(x) , in Ω
u(t, x) = 0 , on the lateral boundary.

We can formulate a “dual problem”, using the inverse L−1 as follows

∂tU = −F(u) ,

where
U(t, x) := L−1[u(t, ·)](x) =

∫
Ω

K(x, y)u(t, y) dy .

This formulation encodes the lateral boundary conditions in the inverse oper-
ator L−1.

Remark. This formulation has been used before by Pierre, Vázquez [...] to
prove (in the RN case) uniqueness of the “fundamental solution”, i.e. the
solution corresponding to u0 = δx0 , known as the Barenblatt solution.
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The “dual” formulation of the problem

Recall that

‖f‖L1
δγ

(Ω) =

∫
Ω

f (x)δγ(x) dx , and L1
δγ (Ω) :=

{
f : Ω→ R

∣∣ ‖f‖L1
δγ

(Ω) <∞
}
.

Weak Dual Solutions
A function u is a weak dual solution to the Dirichlet Problem for ∂t + L−1F(u) = 0
in QT = (0, T)× Ω if:

u ∈ C((0, T) : L1
δγ (Ω)) , F(u) ∈ L1

(
(0, T) : L1

δγ (Ω)
)

;

The following identity holds for every ψ/δγ ∈ C1
c ((0, T) : L∞(Ω)) :∫ T

0

∫
Ω

L−1(u)
∂ψ

∂t
dx dt −

∫ T

0

∫
Ω

F(u)ψ dx dt = 0.

Weak Dual Solutions for the Cauchy Dirichlet Problem (CDP)
A weak dual solution to the Cauchy-Dirichlet problem (CDP) is a weak dual solution
to Equation ∂t + L−1F(u) = 0 such that moreover

u ∈ C([0, T) : L1
δγ (Ω)) and u(0, x) = u0 ∈ L1

δγ (Ω) .
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The “dual” formulation of the problem

We will use a special class of weak dual solutions:

The class Sp of weak dual solutions

We consider a class Sp of nonnegative weak dual solutions u to the (HDP)
with initial data in 0 ≤ u0 ∈ L1

δγ
(Ω) , such that:

(i) the map u0 7→ u(t) is “almost” order preserving in L1
δγ

(Ω), namely
∃C > 0 s.t.

‖u(t)‖L1
δγ

(Ω) ≤ C ‖u(t0)‖L1
δγ

(Ω) for all 0 ≤ t0 ≤ t.

(ii) for all t > 0 we have u(t) ∈ Lp(Ω) for some p ≥ 1.

We prove that the mild solutions of Crandall and Pierre fall into this class:

Proposition. Semigroup solutions are weak dual solutions
Let u be the unique semigroup (mild) solution to the (CDP) corresponding to
the initial datum u0 ∈ Lp(Ω) with p ≥ 1 . Then u is a weak dual solution of
(CDP) and is contained in the class Sp .
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The “dual” formulation of the problem

Reminder about Mild solutions and their properties
Mild (or semigroup) solutions have been obtained by Benilan, Crandall and
Pierre via Crandall-Liggett type theorems; the underlying idea is the use of
an Implicit Time Discretization (ITD) method: consider the partition of [0,T]

tk =
k
n

T , for any 0 ≤ k ≤ n , with t0 = 0 , tn = T , and h = tk+1−tk =
T
n
.

For any t ∈ (0,T) , the (unique) semigroup solution u(t, ·) is obtained as the
limit in L1(Ω) of the solutions uk+1(·) = u(tk+1, ·) which solve the following
elliptic equation (uk is the datum, is given by the previous iterative step)

hLF(uk+1) + uk+1 = uk or equivalently
uk+1 − uk

h
= −LF(uk+1) .

Usually such solutions are difficult to treat since a priori they are merely very
weak solutions. We can prove the following result:
Proposition. Semigroup solutions are weak dual solutions
Let u be the unique semigroup (mild) solution to the (CDP) corresponding to
the initial datum u0 ∈ Lp(Ω) with p ≥ 1 . Then u is a weak dual solution of
(CDP) and is contained in the class Sp .
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Usually such solutions are difficult to treat since a priori they are merely very
weak solutions. We can prove the following result:
Proposition. Semigroup solutions are weak dual solutions
Let u be the unique semigroup (mild) solution to the (CDP) corresponding to
the initial datum u0 ∈ Lp(Ω) with p ≥ 1 . Then u is a weak dual solution of
(CDP) and is contained in the class Sp .
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Existence and uniqueness of weak dual solutions

Theorem. Existence of weak dual solutions (M.B. and J. L. Vázquez)

For every nonnegative u0 ∈ L1
δγ

(Ω) there exists a minimal weak dual
solution to the (CDP). Such a solution is obtained as the monotone limit of
the semigroup (mild) solutions that exist and are unique. The minimal weak
dual solution is continuous in the weighted space u ∈ C([0,∞) : L1

δγ
(Ω)).

Mild solutions are weak dual solutions and the set of such solutions has the
properties needed to form a class of type S.

Theorem. Uniqueness of weak dual solutions (M.B. and J. L. Vázquez)
The solution constructed in the above Theorem by approximation of the
initial data from below is unique. We call it the minimal solution. In this
class of solutions the standard comparison result holds, and also the
weighted L1 estimates .
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First Pointwise Estimates

Theorem. (M.B. and J. L. Vázquez)

Let u ≥ 0 be a solution in the class Sp of very weak solutions to Problem
(CDP) with p > N/2s. Then,∫

Ω

u(t1, x)K(x, x0) dx ≤
∫

Ω

u(t0, x)K(x, x0) dx , for all t1 ≥ t0 ≥ 0 .

Moreover, for almost every 0 ≤ t0 ≤ t1 and almost every x0 ∈ Ω , we have(
t0
t1

) 1
µ0

(t1 − t0) F(u(t0, x0)) ≤
∫

Ω

[
u(t0, x)− u(t1, x)

]
K(x, x0) dx

≤ (m0 − 1)
t1

1
µ0

t0
1−µ0
µ0

F(u(t1, x0)) .

Remark. As a consequence of the above inequality and Hölder inequality,
we have that Sp = S∞ , when p > N/2s .
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Proof of the First Pointwise Estimates

Sketch of the proof of the First Pointwise Estimates

We would like to take as test function

ψ(t, x) = ψ1(t)ψ2(x) = χ[t0,t1](t)K(x0, x) ,

This is not admissible in the Definition of Weak Dual solutions.
Plugging such test function in the definition of weak dual solution gives the
formula∫

Ω

u(t0, x)K(x0, x) dx−
∫

Ω

u(t1, x)K(x0, x) dx =

∫ t1

t0
F(u(τ, x0))dτ .

This formula can be proven rigorously though careful approximation.
Next, we use the monotonicity estimates,

t 7→ t
1
µ0 F(u(t, x)) is nondecreasing in t > 0 for a.e. x ∈ Ω .

to get for all 0 ≤ t0 ≤ t1, recalling that 1
µ0

= m0
m0−1(

t0
t1

) 1
µ0

(t1 − t0)F(u(t0, x0)) ≤
∫ t1

t0
F(u(τ, x0))dτ ≤ m0 − 1

t
1

m0−1

0

t
1
µ0
1 F(u(t1, x0)).
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Absolute upper bounds

Theorem. (Absolute upper estimate) (M.B. & J. L. Vázquez)

Let u be a nonnegative weak dual solution corresponding to u0 ∈ L1
δγ

(Ω).
Then, there exists universal constants K0,K1,K2 > 0 such that the following
estimates hold true for all t > 0 :

F
(
‖u(t)‖L∞(Ω)

)
≤ F∗

(
K1

t

)
.

Moreover, there exists a time τ1(u0) with 0 ≤ τ1(u0) ≤ K0 such that

‖u(t)‖L∞(Ω) ≤ 1 for all t ≥ τ1 ,

so that
‖u(t)‖L∞(Ω) ≤

K2

t
1

mi−1
with

{
i = 0 if t ≤ K0
i = 1 if t ≥ K0

The Legendre transform of F is defined as a function F∗ : R→ R with

F∗(z) = sup
r∈R

(
zr − F(r)

)
= z (F′)−1(z)− F

(
(F′)−1(z)

)
= F′(r) r + F(r) ,

with the choice r = (F′)−1(z) .
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The power case. Absolute bounds and boundary behaviour

Theorem. (Absolute upper estimate and boundary behaviour)
(M.B. & J. L. Vázquez)

Let u be a weak dual solution. Then, there exists universal constants
K1,K2 > 0 such that the following estimates hold true: (K1) assumption
implies:

‖u(t)‖L∞(Ω) ≤
K1

t
1

m−1
, for all t > 0 .

Moreover, (K2) assumption implies:

u(t, x) ≤ K2
δγ(x)

1
m

t
1

m−1
for all t > 0 and x ∈ Ω .

Remark.
This is a very strong regularization independent of the initial datum u0.
The boundary estimates are sharp, since we will obtain lower bounds
with matching powers.
This bounds give a sharp time decay for the solution, but only for large
times, say t ≥ 1. For small times we will obtain a better time decay
when 0 < t < 1, in the form of smoothing effects
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The power case. Absolute bounds and boundary behaviour

Sketch of the proof of Absolute Bounds
• STEP 1. First upper estimates. Recall the pointwise estimate:(

t0
t1

) m
m−1

(t1 − t0) um(t0, x0) ≤
∫

Ω
u(t0, x)GΩ(x, x0) dx−

∫
Ω

u(t1, x)GΩ(x, x0) dx .

for any u ∈ Sp, all 0 ≤ t0 ≤ t1 and all x0 ∈ Ω . Choose t1 = 2t0 to get

(∗) um(t0, x0) ≤
2

m
m−1

t0

∫
Ω

u(t0, x)GΩ(x, x0) dx .

Recall that u ∈ Sp with p > N/(2s), means u(t) ∈ Lp(Ω) for all t > 0 , so that:

um(t0, x0) ≤
c0

t0

∫
Ω

u(t0, x)GΩ(x, x0) dx ≤ c0

t0
‖u(t0)‖Lp(Ω) ‖GΩ(·, x0)‖Lq(Ω) < +∞

since GΩ(·, x0) ∈ Lq(Ω) for all 0 < q < N/(N − 2s), so that u(t0) ∈ L∞(Ω) for all t0 > 0.

• STEP 2. Let us estimate the r.h.s. of (∗) as follows:

um(t0, x0) ≤
c0

t0

∫
Ω

u(t0, x)GΩ(x, x0) dx ≤ ‖u(t0)‖L∞(Ω)
c0

t0

∫
Ω

GΩ(x, x0) dx .

Taking the supremum over x0 ∈ Ω of both sides, we get:

‖u(t0)‖m−1
L∞(Ω) ≤

c0

t0
sup

x0∈Ω

∫
Ω

GΩ(x, x0) dx ≤ Km−1
1

t0
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Smoothing Effects

Let γ, s ∈ [0, 1] be the exponents appearing in assumption (K2). Define

ϑi,γ =
1

2s + (N + γ)(mi − 1)
with mi =

1
1− µi

> 1

Theorem. (Weighted L1 − L∞ smoothing effect) (M.B. & J. L. Vázquez)

As a consequence of (K2) hypothesis, there exists a constant K6 > 0 s.t.

F
(
‖u(t)‖L∞(Ω)

)
≤ K6

‖u(t0)‖2smiϑi,γ

L1
δγ

(Ω)

tmi(N+γ)ϑi,γ
, for all 0 ≤ t0 ≤ t ,

with i = 1 if t ≥ ‖u(t0)‖
2s

N+γ

L1
δγ

(Ω)
and i = 0 if t ≤ ‖u(t0)‖

2s
N+γ

L1
δγ

(Ω)
.

A novelty is that we get instantaneous smoothing effects, new even when s = 1.
The weighted smoothing effect is new even for s = 1.
Corollary. Under the weaker assumption (K1) instead of (K2), the above result holds
true with γ = 0 and replacing ‖ · ‖L1

δγ
(Ω) with ‖ · ‖L1(Ω) .

The time decay is better for small times 0 < t < 1 than the one given by absolute bounds:

(N + γ)ϑi,γ =
N + γ

2s + (N + γ)(mi − 1)
<

1
mi − 1

.
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Smoothing Effects

Corollary.
As a consequence of (K2) hypothesis, there exists a constant K7 > 0 s.t.
WEIGHTED L1 − L∞ SMOOTHING EFFECT FOR SMALL TIMES:

‖u(t)‖L∞(Ω) ≤ K7

‖u(t0)‖2sϑ0,γ

L1
δγ

(Ω)

t(N+γ)ϑ0,γ
, for all 0 ≤ t0 ≤ t ≤ ‖u(t0)‖

2s
N+γ

L1
δγ

(Ω)
.

WEIGHTED L1 − L∞ SMOOTHING EFFECT FOR LARGE TIMES:

‖u(t)‖L∞(Ω) ≤ K7

‖u(t0)‖2sϑ1,γ

L1
δγ

(Ω)

t(d+γ)ϑ1,γ
, for all t ≥ ‖u(t0)‖

2s
d+γ

L1
δγ

(Ω)
.

Moreover, the condition t ≥ ‖u(t0)‖
2s

d+γ

L1
δγ

(Ω)
, is implied by t ≥

(
K1 ‖δγ‖L1(Ω)

)ϑ1,γ(m1−1)
.

Corollary. Under the weaker assumption (K1) instead of (K2), the above
result holds true with γ = 0 and replacing ‖ · ‖L1

δγ
(Ω) with ‖ · ‖L1(Ω) .
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Smoothing Effects
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Smoothing Effects

Corollary. (Backward weighted L1 − L∞ smoothing effects)
As a consequence of (K2) hypothesis, there exists a constant K7 > 0 s.t.
For small times: for all t, h > 0 and for all 0 ≤ t ≤ ‖u(t)‖2s/(N+γ)

L1
δγ

(Ω)
,

‖u(t)‖L∞(Ω) ≤ 2K7

(
1 ∨ h

t

) 2sϑ0,γ
m0−1 ‖u(t + h)‖2sϑ0,γ

L1
δγ

(Ω)

t(N+γ)ϑ0,γ
.

For large times: for all t, h > 0 and for all t ≥ ‖u(t)‖2s/(N+γ)

L1
δγ

(Ω)
,

‖u(t)‖L∞(Ω) ≤ 2K7

(
1 ∨ h

t

) 2sϑ1,γ
m1−1 ‖u(t + h)‖2sϑ1,γ

L1
δγ

(Ω)

t(N+γ)ϑ1,γ
.

Moreover, the condition t ≥ ‖u(t)‖2s/(N+γ)

L1
δγ

(Ω)
, is implied by t ≥

(
K1 ‖δγ‖L1(Ω)

)ϑ1,γ(m1−1)
.

Corollary. Under the weaker assumption (K1) instead of (K2), the above
result holds true with γ = 0 and replacing ‖ · ‖L1

δγ
(Ω) with ‖ · ‖L1(Ω) .
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Smoothing Effects

Corollary. (Backward weighted L1 − L∞ smoothing effects)
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Global Harnack Principle

Local Harnack inequalities
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Global Harnack Principle

In the rest of the talk we consider the nonlinearity F(u) = |u|m−1u with m > 1 .

Theorem. (Global Harnack Principle) (M.B. & J. L. Vázquez)

There exist universal constants H0,H1,L0 > 0 such that setting

t∗ =
L0(∫

Ω
u0δγ dx

)m−1 ,

we have that for all t ≥ t∗ and all x ∈ Ω, the following inequality holds:

H0
δγ(x)

1
m

t
1

m−1
≤ u(t, x) ≤ H1

δγ(x)
1
m

t
1

m−1

Remarks.
This inequality implies local Harnack inequalities of elliptic type
Useful to study the sharp asymptotic behaviour
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Local Harnack inequalities

Theorem. (Local Harnack Inequalities of Elliptic Type) (M.B. & J. L.
Vázquez)

There exist constants HR, L0 > 0 such that setting t∗ = L0‖u0‖−(m−1)

L1
Φ1

(Ω)
, we

have that for all t ≥ t∗ and all BR(x0) ∈ Ω, the following inequality holds:

sup
x∈BR(x0)

u(t, x) ≤ HR inf
x∈BR(x0)

u(t, x)

The constant HR depends on dist(BR(x0), ∂Ω).

Corollary. (Local Harnack Inequalities of Backward Type)
Under the runninig assumptions, for all t ≥ t∗ and all BR(x0) ∈ Ω, we have:

sup
x∈BR(x0)

u(t, x) ≤ 2HR inf
x∈BR(x0)

u(t + h, x) for all 0 ≤ h ≤ t∗ .
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Convergence to the stationary profile

In the rest of the talk we consider the nonlinearity F(u) = |u|m−1u with m > 1 .

Theorem. (Asymptotic behaviour) (M.B. , Y. Sire, J. L. Vázquez)

There exists a unique nonnegative selfsimilar solution of the above Dirichlet
Problem

U(τ, x) =
S(x)

τ
1

m−1
,

for some bounded function S : Ω→ R. Let u be any nonnegative weak dual
solution to the (CDP) , then we have (unless u ≡ 0)

lim
τ→∞

τ
1

m−1 ‖u(τ, ·)− U(τ, ·)‖L∞(Ω) = 0 .

The previous theorem admits the following corollary.

Theorem. (Elliptic problem) (M.B. , Y. Sire, J. L. Vázquez)

Let m > 1. There exists a unique weak dual solution to the elliptic problem L(Sm) =
S

m− 1
in Ω,

S(x) = 0 for x ∈ ∂Ω.

Notice that the previous theorem is obtained in the present paper through a parabolic technique.
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Convergence with optimal rate

Theorem. (Sharp asymptotic with rates) (M.B. , Y. Sire, J. L. Vázquez)

Let u be any nonnegative weak dual solution to the (CDP) , then we have
(unless u ≡ 0) that there exist t0 > 0 of the form

t0 = k
[ ∫

Ω
Φ1 dx∫

Ω
u0Φ1 dx

]m−1

such that for all t ≥ t0 we have∥∥∥∥ u(t, ·)
U(t, ·)

− 1
∥∥∥∥

L∞(Ω)

≤ 2
m− 1

t0
t0 + t

.

The constant k > 0 only depends on m,N, s, and |Ω|.

Remarks.
We provide two different proofs of the above result.
One proof is based on the construction of the so-called Friendly-Giant solution,
namely the solution with initial data u0 = +∞ , and is based on the Global
Harnack Principle of Part 3
The second proof is based on a new Entropy method, which is based on a
parabolic version of the Caffarelli-Silvestre extension.
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Convergence with optimal rate
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Convergence with optimal rate

The End

Muchas Gracias!!!

Thank You!!!

Grazie Mille!!!
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Weighted L1 estimates

L1 estimates with Φ1 weight

L1 estimates with δγ weight
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Weighted L1
Φ1

estimates

To simplify the presentation, we first treat the case in which L has a first
nonnegative eigenfunction Φ1; we recall that Φ1 � δγ on Ω, by hyp. (K2).

Proposition. (Weighted L1 estimates for ordered solutions)
Let u ≥ v be two ordered weak dual solutions to the Problem (CDP)
corresponding to the initial data 0 ≤ u0, v0 ∈ L1

Φ1
(Ω) . Then for all

t1 ≥ t0 ≥ 0∫
Ω

[
u(t1, x)− v(t1, x)

]
Φ1(x) dx ≤

∫
Ω

[
u(t0, x)− v(t0, x)

]
Φ1(x) dx .

Moreover, for all 0 ≤ τ0 ≤ τ, t < +∞
such that either t, τ ≤ K0 or τ0 ≥ K0 , we have∫

Ω

[
u(τ, x)− v(τ, x)

]
Φ1(x) dx ≤

∫
Ω

[
u(t, x)− v(t, x)

]
Φ1(x) dx

+ K8 ‖u(τ0)‖2s(mi−1)ϑi,γ

L1
Φ1

(Ω)
|t − τ |2sϑi,γ

∫
Ω

[
u(τ0, x)− v(τ0, x)

]
Φ1 dx

where i = 0 if t, τ ≤ ‖u(τ0)‖
2s

d+γ

L1
Φ1

(Ω)
and i = 1 if t, τ ≥ ‖u(τ0)‖

2s
d+γ

L1
Φ1

(Ω)
.
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Weighted L1
δγ

estimates

Taking any nonnegative function ψ ∈ L∞(Ω) , using assumption (K2) gives

L−1ψ(x) � δγ(x) for a.e. x ∈ Ω .

This will imply the monotonicity of some L1-weighted norm.

Proposition. (Weighted L1 estimates for ordered solutions)
Let u ≥ v be two ordered weak dual solutions to the Problem (CDP)
corresponding to 0 ≤ u0, v0 ∈ L1

δγ
(Ω) . Then for all 0 ≤ ψ ∈ L∞(Ω) and all

0 ≤ τ ≤ t∫
Ω

[
u(t, x)− v(t, x)

]
L−1ψ(x) dx ≤

∫
Ω

[
u(τ, x)− v(τ, x)

]
L−1ψ(x) dx .

As a consequence, there exists a constant CΩ,γ > 0 such that for all
0 ≤ τ ≤ t∫

Ω

[
u(t, x)− v(t, x)

]
δγ(x) dx ≤ CΩ,γ

∫
Ω

[
u(τ, x)− v(τ, x)

]
δγ(x) dx .

Moreover...
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Weighted L1
δγ

estimates

Let’s put Ψ1 = L−1δγ , in analogy with the formula Φ1 = λ−1
1 L−1Φ1.

Proposition. (Weighted L1 estimates for ordered solutions) Continued
Moreover, for all 0 ≤ τ0 ≤ τ, t < +∞ such that either t, τ ≤ K0 or
τ0 ≥ K0 , we have∫

Ω

[
u(τ, x)− v(τ, x)

]
Ψ1(x) dx ≤

∫
Ω

[
u(t, x)− v(t, x)

]
Ψ1(x) dx

+ K8 ‖u(τ0)‖2s(mi−1)ϑi,γ

L1
δγ

(Ω)
|t − τ |2sϑi,γ

∫
Ω

[
u(τ0, x)− v(τ0, x)

]
δγ(x) dx

where i = 0 if t, τ ≤ ‖u(τ0)‖2s/(N+γ)

L1
δγ

(Ω)
and i = 1 if t, τ ≥ ‖u(τ0)‖2s/(N+γ)

L1
δγ

(Ω)
.

Remark. The above inequality, together with monotonicity, allows to prove
that weak dual solutions constructed by approximation from below by mild
solutions belong to the space

u ∈ C([0,∞) : L1
δγ (Ω)) .
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