Fractional nonlinear degenerate diffusion equations on bounded domains

Matteo Bonforte
Departamento de Matemáticas, Universidad Autónoma de Madrid,
Campus de Cantoblanco 28049 Madrid, Spain
matteo.bonforte@uam.es
http://www.uam.es/matteo.bonforte

Seoul ICM 2014 Satellite Conference on
Nonlinear Elliptic and Parabolic Equations and Its Applications
KIAS, Seoul (Korea), August 8-12, 2014

References:

[BV1] M. B., J. L. VÁZQUEZ, A Priori Estimates for Fractional Nonlinear Degenerate Diffusion Equations on bounded domains.
Preprint (2013). http: / /arxiv.org/abs/1311. 6997
[BV2] M. B., J. L. VÁZQUEZ, Nonlinear Degenerate Diffusion Equations on bounded domains with Restricted Fractional Laplacian. In Preparation (2014).
[BSV] M. B., Y. Sire, J. L. VÁZQUEZ, Existence, Uniqueness and Asymptotic behaviour for fractional porous medium equations on bounded domains. To Appear in DCDS (2014). http: / /arxiv.org/abs/1404.6195

Outline of the talk

- The setup of the problem and first pointwise estimates
- Upper Estimates
- Lower bounds and Harnack inequalities
- Existence, uniqueness and asymptotic behaviour of solutions

The setup of the problem and first pointwise estimates

- Introduction
- About the operator \mathcal{L}
- About the inverse operator \mathcal{L}^{-1}
- The "dual" formulation of the problem
- Monotonicity for the nonlinear flow
- The fundamental pointwise estimates

Homogeneous Dirichlet Problem for Fractional Nonlinear Degenerate Diffusion Equations

$$
(\mathrm{HDP}) \quad \begin{cases}u_{t}+\mathcal{L} F(u)=0, & \text { in }(0,+\infty) \times \Omega \\ u(0, x)=u_{0}(x), & \text { in } \Omega \\ u(t, x)=0, & \text { on the lateral boundary. }\end{cases}
$$

where:

- $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with smooth boundary and $N \geq 1$.
- The linear operator \mathcal{L} will be a fractional Laplacian on domains,
$\mathcal{L}=\left(-\Delta_{\Omega}\right)^{s}$

Indeed, a wider class of linear (fractional) operators can be treated.

- The nonlinearity is typically $F(u)=|u|^{m-1} u$, with $m>1$.

We deal with Degenerate diffusion of Porous Medium type.
More general classes of "degenerate" nonlinearities F are allowed.

- The homogeneous boundary condition is posed on the lateral boundary, which may take different forms, depending on the particular choice of the operator \mathcal{L}.

Homogeneous Dirichlet Problem for Fractional Nonlinear Degenerate Diffusion Equations

$$
(\mathrm{HDP}) \quad \begin{cases}u_{t}+\mathcal{L} F(u)=0, & \text { in }(0,+\infty) \times \Omega \\ u(0, x)=u_{0}(x), & \text { in } \Omega \\ u(t, x)=0, & \text { on the lateral boundary. }\end{cases}
$$

where:

- $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with smooth boundary and $N \geq 1$.
- The linear operator \mathcal{L} will be a fractional Laplacian on domains,

$$
\mathcal{L}=\left(-\Delta_{\Omega}\right)^{s}, \quad \text { with } 0<s \leq 1
$$

Indeed, a wider class of linear (fractional) operators can be treated.

- The nonlinearity is typically $F(u)=|u|^{m-1} u$, with $m>1$.

We deal with Degenerate diffusion of Porous Medium type.
More general classes of "degenerate" nonlinearities F are allowed.

- The homogeneous boundary condition is posed on the lateral boundary, which may take different forms, depending on the particular choice of the operator \mathcal{L}.

Homogeneous Dirichlet Problem for Fractional Nonlinear Degenerate Diffusion Equations

$$
(\mathrm{HDP}) \quad \begin{cases}u_{t}+\mathcal{L} F(u)=0, & \text { in }(0,+\infty) \times \Omega \\ u(0, x)=u_{0}(x), & \text { in } \Omega \\ u(t, x)=0, & \text { on the lateral boundary. }\end{cases}
$$

where:

- $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with smooth boundary and $N \geq 1$.
- The linear operator \mathcal{L} will be a fractional Laplacian on domains,

$$
\mathcal{L}=\left(-\Delta_{\Omega}\right)^{s}, \quad \text { with } 0<s \leq 1
$$

Indeed, a wider class of linear (fractional) operators can be treated.

- The nonlinearity is typically $F(u)=|u|^{m-1} u$, with $m>1$.

We deal with Degenerate diffusion of Porous Medium type.
More general classes of "degenerate" nonlinearities F are allowed.

- The homogeneous boundary condition is posed on the lateral boundary, which may take different forms, depending on the particular choice of the operator \mathcal{L}.

Homogeneous Dirichlet Problem for Fractional Nonlinear Degenerate Diffusion Equations

$$
(\mathrm{HDP}) \quad \begin{cases}u_{t}+\mathcal{L} F(u)=0, & \text { in }(0,+\infty) \times \Omega \\ u(0, x)=u_{0}(x), & \text { in } \Omega \\ u(t, x)=0, & \text { on the lateral boundary. }\end{cases}
$$

where:

- $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with smooth boundary and $N \geq 1$.
- The linear operator \mathcal{L} will be a fractional Laplacian on domains,

$$
\mathcal{L}=\left(-\Delta_{\Omega}\right)^{s}, \quad \text { with } 0<s \leq 1 \text {. }
$$

Indeed, a wider class of linear (fractional) operators can be treated.

- The nonlinearity is typically $F(u)=|u|^{m-1} u$, with $m>1$.

We deal with Degenerate diffusion of Porous Medium type.
More general classes of "degenerate" nonlinearities F are allowed.

- The homogeneous boundary condition is posed on the lateral boundary, which may take different forms, depending on the particular choice of the operator \mathcal{L}.

About the operator \mathcal{L}
Reminder about the fractional Laplacian operator on \mathbb{R}^{N}
We have several equivalent definitions for $\left(-\Delta_{\mathbb{R}^{N}}\right)^{s}$:
(1) By means of Fourier Transform,

$$
\left(\left(-\Delta_{\mathbb{R}^{N}}\right)^{s} f \hat{)}(\xi)=|\xi|^{2 s} \hat{f}(\xi)\right.
$$

This formula can be used for positive and negative values of s.
(2) By means of an Hypersingular Kernel:
if $0<s<1$, we can use the representation

(3) Spectral definition, in terms of the heat semigroup associated to the standard Laplacian operator:

About the operator \mathcal{L}
Reminder about the fractional Laplacian operator on \mathbb{R}^{N}
We have several equivalent definitions for $\left(-\Delta_{\mathbb{R}^{N}}\right)^{s}$:
(1) By means of Fourier Transform,

$$
\left(\left(-\Delta_{\mathbb{R}^{N}}\right)^{s} f \hat{)}(\xi)=|\xi|^{2 s} \hat{f}(\xi)\right.
$$

This formula can be used for positive and negative values of s.
(2) By means of an Hypersingular Kernel:
if $0<s<1$, we can use the representation

$$
\left(-\Delta_{\mathbb{R}^{N}}\right)^{s} g(x)=c_{N, s} \text { P.V. } \int_{\mathbb{R}^{N}} \frac{g(x)-g(z)}{|x-z|^{N+2 s}} \mathrm{~d} z
$$

where $c_{N, s}>0$ is a normalization constant.
© Spectral definition, in terms of the heat semigroup associated to the standard Laplacian operator:

About the operator \mathcal{L}

Reminder about the fractional Laplacian operator on \mathbb{R}^{N}
We have several equivalent definitions for $\left(-\Delta_{\mathbb{R}^{N}}\right)^{s}$:
(1) By means of Fourier Transform,

$$
\left(\left(-\Delta_{\mathbb{R}^{N}}\right)^{s} f \hat{)}(\xi)=|\xi|^{2 s} \hat{f}(\xi)\right.
$$

This formula can be used for positive and negative values of s.
(2) By means of an Hypersingular Kernel:
if $0<s<1$, we can use the representation

$$
\left(-\Delta_{\mathbb{R}^{N}}\right)^{s} g(x)=c_{N, s} \text { P.V. } \int_{\mathbb{R}^{N}} \frac{g(x)-g(z)}{|x-z|^{N+2 s}} \mathrm{~d} z
$$

where $c_{N, s}>0$ is a normalization constant.
(3) Spectral definition, in terms of the heat semigroup associated to the standard Laplacian operator:

$$
\left(-\Delta_{\mathbb{R}^{N}}\right)^{s} g(x)=\frac{1}{\Gamma(-s)} \int_{0}^{\infty}\left(e^{t \Delta_{\mathbb{R}^{N}}} g(x)-g(x)\right) \frac{d t}{t^{1+s}}
$$

About the operator \mathcal{L}

Fractional Laplacian operators on bounded domains

There are different definitions for the fractional Laplacian on bounded domains, which turn out to be not equivalent.

The Spectral Fractional Laplacian operator (SFL)

$$
\left(-\Delta_{\Omega}\right)^{s} g(x)=\sum_{j=1}^{\infty} \lambda_{j}^{s} \hat{g}_{j} \phi_{j}(x)=\frac{1}{\Gamma(-s)} \int_{0}^{\infty}\left(e^{t \Delta_{\Omega}} g(x)-g(x)\right) \frac{d t}{t^{1+s}}
$$

- Δ_{Ω} is the classical Dirichlet Laplacian on the domain Ω
- Eigenvalues: $0<\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{j} \leq \lambda_{j+1} \leq \ldots$ and $\lambda_{j} \asymp j^{2 / N}$.
- Eigenfunctions: ϕ_{j} are as smooth as the boundary of Ω allows, namely when $\partial \Omega$ is C^{k}, then $\phi_{j} \in C^{\infty}(\Omega) \cap C^{k}(\bar{\Omega})$ for all $k \in \mathbb{N}$.

$$
\hat{g}_{j}=\int_{\Omega} g(x) \phi_{j}(x) \mathrm{d} x, \quad \text { with } \quad\left\|\phi_{j}\right\|_{\mathrm{L}^{2}(\Omega)}=1
$$

Lateral boundary conditions for the SFL

$$
u(t, x)=0, \quad \text { in }(0, \infty) \times \partial \Omega
$$

Fractional Laplacian operators on bounded domains

Definition via the hypersingular kernel in \mathbb{R}^{N}, "restricted" to functions that are zero outside Ω.

The Restricted Fractional Laplacian operator (RFL)

$$
\left(-\Delta_{\mid \Omega}\right)^{s} g(x)=c_{d, s} \text { P.V. } \int_{\mathbb{R}^{N}} \frac{g(x)-g(z)}{|x-z|^{d+2 s}} \mathrm{~d} z, \quad \text { with } \operatorname{supp}(g) \subseteq \bar{\Omega}
$$

where $s \in(0,1)$ and $c_{N, s}>0$ is a normalization constant.

- $\left(-\Delta_{\mid \Omega}\right)^{s}$ is a self-adjoint operator on $\mathrm{L}^{2}(\Omega)$ with a discrete spectrum:
- Eigenvalues: $0<\bar{\lambda}_{1} \leq \bar{\lambda}_{2} \leq \ldots \leq \bar{\lambda}_{j} \leq \bar{\lambda}_{j+1} \leq \ldots$ and $\bar{\lambda}_{j} \asymp j^{2 s / N}$. Eigenvalues of the RFL are bigger than the ones of SFL: $\lambda_{j}^{s} \leq \bar{\lambda}_{j}$ for all $j \in \mathbb{N}$.
- Eigenfunctions: $\bar{\phi}_{j}$ are the normalized eigenfunctions, are only Hölder continuous up to the boundary, namely $\bar{\phi}_{j} \in C^{s}(\bar{\Omega})$.

Lateral boundary conditions for the RFL

$$
u(t, x)=0, \quad \text { in }(0, \infty) \times\left(\mathbb{R}^{N} \backslash \Omega\right)
$$

Remark. Both for the SFL and the RFL there is another possible definition using the so-called Caffarelli-Silvestre extension.

About the inverse operator \mathcal{L}^{-1}

Reminder about Green functions

Notation. Let $\left(\lambda_{k}, \Phi_{k}\right)$ be the eigenvalues and eigenfunctions of \mathcal{L}. Recall that:

$$
\Phi_{1}(x) \asymp \operatorname{dist}(x, \partial \Omega)^{\gamma} \quad \text { with } \gamma=1 \text { for the SFL and } \gamma=s \text { for the RFL. }
$$

The inverse \mathcal{L}^{-1} has a symmetric kernel $G_{\Omega}(x, y)$, which is the Green function:

$$
\mathcal{L}^{-1} f\left(x_{0}\right):=\sum_{k=1}^{+\infty} \lambda_{k}^{-1} \hat{f}_{k} \Phi_{k}\left(x_{0}\right)=\int_{\Omega} G_{\Omega}\left(x, x_{0}\right) f(x) \mathrm{d} x .
$$

When dealing with the SFL or RFL, it is well-known that the Green function satisfy the following estimates for all $x, x_{0} \in \Omega$
(Type II)

with $\gamma=1$ for the SFL and $\gamma=s$ for the RFL.
It is hopeless to resume the huge literature about estimates on Green functions.

Reminder about Green functions

Notation. Let $\left(\lambda_{k}, \Phi_{k}\right)$ be the eigenvalues and eigenfunctions of \mathcal{L}. Recall that:

$$
\Phi_{1}(x) \asymp \operatorname{dist}(x, \partial \Omega)^{\gamma} \quad \text { with } \gamma=1 \text { for the SFL and } \gamma=s \text { for the RFL. }
$$

The inverse \mathcal{L}^{-1} has a symmetric kernel $G_{\Omega}(x, y)$, which is the Green function:

$$
\mathcal{L}^{-1} f\left(x_{0}\right):=\sum_{k=1}^{+\infty} \lambda_{k}^{-1} \hat{f}_{k} \Phi_{k}\left(x_{0}\right)=\int_{\Omega} G_{\Omega}\left(x, x_{0}\right) f(x) \mathrm{d} x .
$$

When dealing with the SFL or RFL, it is well-known that the Green function satisfy the following estimates for all $x, x_{0} \in \Omega$:
(Type I)

$$
0 \leq G_{\Omega}\left(x, x_{0}\right) \leq \frac{c_{1, \Omega}}{\left|x-x_{0}\right|^{N-2 s}} \sim G_{\mathbb{R}^{N}}\left(x, x_{0}\right)
$$

(Type II)

$$
c_{0, \Omega} \Phi_{1}(x) \Phi_{1}\left(x_{0}\right) \leq G_{\Omega}\left(x, x_{0}\right) \leq \frac{c_{1, \Omega}}{\left|x-x_{0}\right|^{N-2 s}}\left(\frac{\Phi_{1}(x)}{\left|x-x_{0}\right|^{\gamma}} \wedge 1\right)\left(\frac{\Phi_{1}\left(x_{0}\right)}{\left|x-x_{0}\right|^{\gamma}} \wedge 1\right) .
$$

with $\gamma=1$ for the SFL and $\gamma=s$ for the RFL.
It is hopeless to resume the huge literature about estimates on Green functions.

Recall the homogeneous Dirichlet problem:

$$
(\mathrm{HDP}) \quad \begin{cases}\partial_{t} u=-\mathcal{L} F(u), & \text { in }(0,+\infty) \times \Omega \\ u(0, x)=u_{0}(x), & \text { in } \Omega \\ u(t, x)=0, & \text { on the lateral boundary. }\end{cases}
$$

We can formulate a "dual problem", using the inverse \mathcal{L}^{-1} as follows

$$
\partial_{t} U=-F(u),
$$

where

$$
U(t, x):=\mathcal{L}^{-1}[u(t, \cdot)](x)=\int_{\Omega} \mathbb{K}(x, y) u(t, y) \mathrm{d} y
$$

This formulation encodes the lateral boundary conditions in the inverse operator \mathcal{L}^{-1}.
Remark. This formulation has been used before by Pierre, Vázquez [...] to prove (in the \mathbb{R}^{N} case) uniqueness of the "fundamental solution", i.e. the solution corresponding to $u_{0}=\delta_{x_{0}}$, known as the Barenblatt solution.

Definition of Weak Dual solutions

Recall that

$$
\|f\|_{\mathrm{L}_{\Phi_{1}}^{1}(\Omega)}=\int_{\Omega} f(x) \Phi_{1}(x) \mathrm{d} x, \quad \text { and } \quad \mathrm{L}_{\Phi_{1}}^{1}(\Omega):=\left\{f: \Omega \rightarrow \mathbb{R} \mid\|f\|_{\mathrm{L}_{\Phi_{1}}^{1}(\Omega)}<\infty\right\}
$$

Weak Dual Solutions

A function u is a weak dual solution to the (HDP) if: $u \in C\left([0, \infty): \mathrm{L}_{\Phi_{1}}^{1}(\Omega)\right), F(u) \in \mathrm{L}^{1}\left((0, T): \mathrm{L}_{\Phi_{1}}^{1}(\Omega)\right)$, and moreover $\left.u(0, x)=u_{0} \in \mathrm{~L}_{\Phi_{1}}^{1}(\Omega)\right)$.
The following identity holds for every ψ with $\psi / \Phi_{1} \in C_{c}^{1}\left((0, T): \mathrm{L}^{\infty}(\Omega)\right)$:

$$
\int_{0}^{T} \int_{\Omega} \mathcal{L}^{-1}(u) \frac{\partial \psi}{\partial t} \mathrm{~d} x \mathrm{~d} t-\int_{0}^{\infty} \int_{\Omega} F(u) \psi \mathrm{d} x \mathrm{~d} t=0
$$

We will need a special class of weak dual solutions:

The class \mathcal{S}_{p} of weak dual solutions

We consider a class \mathcal{S}_{p} of nonnegative weak dual solutions u to the (HDP) with initial data in $u_{0} \in \mathrm{~L}_{\Phi_{1}}^{1}(\Omega)$, such that (i) the map $u_{0} \mapsto u(t)$ is order preserving in $\mathrm{L}_{\Phi_{1}}^{1}(\Omega)$; (ii) for all $t>0$ we have $u(t) \in L^{p}(\Omega)$ for some $p \geq 1$.

Monotonicity estimates for powers

The nonlinear flow has a very important monotonicity property, which is related to the m-homogeneity of the equation. Benilan and Crandall proved the following estimates for the case $F(u)=u^{m}$, with $m>1$.

Monotonicity estimates

Every mild solution $u \geq 0$ corresponding to an initial datum $u_{0} \in \mathrm{~L}^{1}(\Omega)$, satisfies the following differential estimate

$$
u_{t} \geq-\frac{u}{(m-1) t} \quad \text { in the sense of distributions in }(0, \infty) \times \Omega
$$

Alternatively, we have the following monotonicity in time, namely the function

$$
t \mapsto t^{\frac{1}{m-1}} u(t, x) \quad \text { is nondecreasing in } t>0 \text { for a.e. } x \in \Omega .
$$

The fundamental pointwise estimates I: the pure power case

Theorem (M.B. and J. L. Vázquez, 2013)
Let $0 \leq u \in \mathcal{S}_{p}$, with $p>N / 2 s$. Then,

$$
\int_{\Omega} u(t, x) G_{\Omega}\left(x, x_{0}\right) \mathrm{d} x \leq \int_{\Omega} u_{0}(x) G_{\Omega}\left(x, x_{0}\right) \mathrm{d} x \quad \text { for all } t>0 .
$$

Moreover, for almost every $0 \leq t_{0} \leq t_{1}$ and almost every $x_{0} \in \Omega$, we have
$\frac{t_{0} \frac{m}{m-1}}{t_{1}^{\frac{m}{m-1}}}\left(t_{1}-t_{0}\right) u^{m}\left(t_{0}, x_{0}\right) \leq \int_{\Omega}\left[u\left(t_{0}, x\right)-u\left(t_{1}, x\right)\right] G_{\Omega}\left(x, x_{0}\right) \mathrm{d} x \leq c_{m} \frac{t_{1} \frac{m}{m-1}}{t_{0} \frac{1}{m-1}} u^{m}\left(t_{1}, x_{0}\right)$
with $c_{m}=m-1$
Remark. As a consequence of the above inequality and Hölder inequality, we have that $\mathcal{S}_{p}=\mathcal{S}_{\infty}$, when $p>N / 2 s$.

Upper Estimates

- Absolute upper bounds
- Absolute bounds
- Sharp upper boundary behaviour
- Smoothing Effects
- $\mathrm{L}^{1}-\mathrm{L}^{\infty}$ Smoothing Effects
- $\mathrm{L}_{\Phi_{1}}^{1}-\mathrm{L}^{\infty}$ Smoothing Effects
- Backward in time Smoothing effects

Theorem. (Absolute upper estimate and boundary behaviour)

 (M.B. \& J. L. Vázquez, 2013)Let u be a weak dual solution. Then, there exists universal constants $K_{1}, K_{2}>0$ such that the following estimates hold true: Type I estimates imply

$$
\|u(t)\|_{L^{\infty}(\Omega)} \leq \frac{K_{1}}{t^{\frac{1}{m-1}}}, \quad \text { for all } t>0
$$

Moreover, Type II estimates imply

$$
u(t, x) \leq K_{2} \frac{\Phi_{1}(x)^{\frac{1}{m}}}{t^{\frac{1}{m-1}}} \quad \text { for all } t>0 \text { and } x \in \Omega
$$

Remark.

- This is a very strong regularization independent of the initial datum u_{0}.
- The boundary estimates are sharp, since we will obtain lower bounds with matching powers.
- This bounds give a sharp time decay for the solution, but only for large times, say $t \geq 1$. For small times we will obtain a better time decay when $0<t<1$, in the form of smoothing effects

Theorem. (Absolute upper estimate and boundary behaviour)

(M.B. \& J. L. Vázquez, 2013)

Let u be a weak dual solution. Then, there exists universal constants $K_{1}, K_{2}>0$ such that the following estimates hold true: Type I estimates imply

$$
\|u(t)\|_{L^{\infty}(\Omega)} \leq \frac{K_{1}}{t^{\frac{1}{m-1}}}, \quad \text { for all } t>0
$$

Moreover, Type II estimates imply

$$
u(t, x) \leq K_{2} \frac{\Phi_{1}(x)^{\frac{1}{m}}}{t^{\frac{1}{m-1}}} \quad \text { for all } t>0 \text { and } x \in \Omega
$$

Remark.

- This is a very strong regularization independent of the initial datum u_{0}.
- The boundary estimates are sharp, since we will obtain lower bounds with matching powers.
- This bounds give a sharp time decay for the solution, but only for large times, say $t \geq 1$. For small times we will obtain a better time decay when $0<t<1$, in the form of smoothing effects

Sketch of the proof of Absolute Bounds

- STEP 1. First upper estimates. Recall the pointwise estimate:

$$
\left(\frac{t_{0}}{t_{1}}\right)^{\frac{m}{m-1}}\left(t_{1}-t_{0}\right) u^{m}\left(t_{0}, x_{0}\right) \leq \int_{\Omega} u\left(t_{0}, x\right) G_{\Omega}\left(x, x_{0}\right) \mathrm{d} x-\int_{\Omega} u\left(t_{1}, x\right) G_{\Omega}\left(x, x_{0}\right) \mathrm{d} x
$$

for any $u \in \mathcal{S}_{p}$, all $0 \leq t_{0} \leq t_{1}$ and all $x_{0} \in \Omega$. Choose $t_{1}=2 t_{0}$ to get
(*)

$$
u^{m}\left(t_{0}, x_{0}\right) \leq \frac{2^{\frac{m}{m-1}}}{t_{0}} \int_{\Omega} u\left(t_{0}, x\right) G_{\Omega}\left(x, x_{0}\right) \mathrm{d} x
$$

Recall that $u \in \mathcal{S}_{p}$ with $p>N /(2 s)$, means $u(t) \in \mathrm{L}^{p}(\Omega)$ for all $t>0$, so that:

$$
\begin{aligned}
& u^{m}\left(t_{0}, x_{0}\right) \leq \frac{c_{0}}{t_{0}} \int_{\Omega} u\left(t_{0}, x\right) G_{\Omega}\left(x, x_{0}\right) \mathrm{d} x \leq \frac{c_{0}}{t_{0}}\left\|u\left(t_{0}\right)\right\|_{L^{p}(\Omega)}\left\|G_{\Omega}\left(\cdot, x_{0}\right)\right\|_{\mathrm{L}^{q}(\Omega)}<+\infty \\
& \text { since } G_{\Omega}\left(\cdot, x_{0}\right) \in \mathrm{L}^{q}(\Omega) \text { for all } 0<q<N /(N-2 s), \text { so that } u\left(t_{0}\right) \in \mathrm{L}^{\infty}(\Omega) \text { for all } t_{0}>0 .
\end{aligned}
$$

- Step 2. Let us estimate the r.h.s. of ($*$) as follows:

Taking the supremum over $x_{0} \in \Omega$ of both sides, we get:

Sketch of the proof of Absolute Bounds

- STEP 1. First upper estimates. Recall the pointwise estimate:

$$
\left(\frac{t_{0}}{t_{1}}\right)^{\frac{m}{m-1}}\left(t_{1}-t_{0}\right) u^{m}\left(t_{0}, x_{0}\right) \leq \int_{\Omega} u\left(t_{0}, x\right) G_{\Omega}\left(x, x_{0}\right) \mathrm{d} x-\int_{\Omega} u\left(t_{1}, x\right) G_{\Omega}\left(x, x_{0}\right) \mathrm{d} x
$$

for any $u \in \mathcal{S}_{p}$, all $0 \leq t_{0} \leq t_{1}$ and all $x_{0} \in \Omega$. Choose $t_{1}=2 t_{0}$ to get
(*)

$$
u^{m}\left(t_{0}, x_{0}\right) \leq \frac{2^{\frac{m}{m-1}}}{t_{0}} \int_{\Omega} u\left(t_{0}, x\right) G_{\Omega}\left(x, x_{0}\right) \mathrm{d} x
$$

Recall that $u \in \mathcal{S}_{p}$ with $p>N /(2 s)$, means $u(t) \in \mathrm{L}^{p}(\Omega)$ for all $t>0$, so that:

$$
u^{m}\left(t_{0}, x_{0}\right) \leq \frac{c_{0}}{t_{0}} \int_{\Omega} u\left(t_{0}, x\right) G_{\Omega}\left(x, x_{0}\right) \mathrm{d} x \leq \frac{c_{0}}{t_{0}}\left\|u\left(t_{0}\right)\right\|_{\nu^{p}(\Omega)}\left\|G_{\Omega}\left(\cdot, x_{0}\right)\right\|_{\mathrm{L}^{q}(\Omega)}<+\infty
$$

$$
\text { since } G_{\Omega}\left(\cdot, x_{0}\right) \in \mathrm{L}^{q}(\Omega) \text { for all } 0<q<N /(N-2 s) \text {, so that } u\left(t_{0}\right) \in \mathrm{L}^{\infty}(\Omega) \text { for all } t_{0}>0
$$

- Step 2. Let us estimate the r.h.s. of $(*)$ as follows:

$$
u^{m}\left(t_{0}, x_{0}\right) \leq \frac{c_{0}}{t_{0}} \int_{\Omega} u\left(t_{0}, x\right) G_{\Omega}\left(x, x_{0}\right) \mathrm{d} x \leq\left\|u\left(t_{0}\right)\right\|_{\mathrm{L}^{\infty}(\Omega)} \frac{c_{0}}{t_{0}} \int_{\Omega} G_{\Omega}\left(x, x_{0}\right) \mathrm{d} x .
$$

Taking the supremum over $x_{0} \in \Omega$ of both sides, we get:

$$
\left\|u\left(t_{0}\right)\right\|_{\mathrm{L} \infty(\Omega)}^{m-1} \leq \frac{c_{0}}{t_{0}} \sup _{x_{0} \in \Omega} \int_{\Omega} G_{\Omega}\left(x, x_{0}\right) \mathrm{d} x \leq \frac{K_{1}^{m-1}}{t_{0}} \square \square
$$

Define the exponents:

$$
\vartheta_{1, \gamma}=\frac{1}{2 s+(N+\gamma)(m-1)} \quad \text { and } \quad \vartheta_{1}=\vartheta_{1,0}=\frac{1}{2 s+N(m-1)}
$$

Theorem. (Smoothing effects) (M.B. \& J. L. Vázquez, 2013)

There exist universal constants $K_{3}, K_{4}>0$ such that the following estimates hold.
$\mathrm{L}^{1}-\mathrm{L}^{\infty}$ SMOOTHING EFFECT: are consequence of Type I bounds

$$
\|u(t)\|_{\mathrm{L}^{\infty}(\Omega)} \leq \frac{K_{3}}{t^{N \vartheta_{1}}}\|u(t)\|_{\mathrm{L}^{1}(\Omega)}^{2 s \vartheta_{1}} \leq \frac{K_{3}}{t^{N \vartheta_{1}}}\left\|u_{0}\right\|_{\mathrm{L}^{1}(\Omega)}^{2 s \vartheta_{1}} \quad \text { for all } t>0
$$

$\mathrm{L}_{\Phi_{1}}^{1}-\mathrm{L}^{\infty}$ SMOOTHING EFFECT: are consequence of Type II bounds; for all $t>0$:

$$
\|u(t)\|_{\mathrm{L}^{\infty}(\Omega)} \leq \frac{K_{4}}{t^{(N+\gamma) \vartheta_{1, \gamma}}}\|u(t)\|_{\mathrm{L}_{\Phi_{1}}^{1}(\Omega)}^{2 s \vartheta_{1, \gamma}} \leq \frac{K_{4}}{t^{(N+\gamma) \vartheta_{1, \gamma}}}\left\|u_{0}\right\|_{\mathrm{L}_{\Phi_{1}}^{1}(\Omega)}^{2 s \vartheta_{1, \gamma}}
$$

[^0]Define the exponents:

$$
\vartheta_{1, \gamma}=\frac{1}{2 s+(N+\gamma)(m-1)} \quad \text { and } \quad \vartheta_{1}=\vartheta_{1,0}=\frac{1}{2 s+N(m-1)}
$$

Theorem. (Smoothing effects) (M.B. \& J. L. Vázquez, 2013)

There exist universal constants $K_{3}, K_{4}>0$ such that the following estimates hold.
$\mathrm{L}^{1}-\mathrm{L}^{\infty}$ SMOOTHING EFFECT: are consequence of Type I bounds

$$
\|u(t)\|_{\mathrm{L}^{\infty}(\Omega)} \leq \frac{K_{3}}{t^{N \vartheta_{1}}}\|u(t)\|_{\mathrm{L}^{1}(\Omega)}^{2 s \vartheta_{1}} \leq \frac{K_{3}}{t^{N \vartheta_{1}}}\left\|u_{0}\right\|_{\mathrm{L}^{1}(\Omega)}^{2 s \vartheta_{1}} \quad \text { for all } t>0
$$

$\mathrm{L}_{\Phi_{1}}^{1}-\mathrm{L}^{\infty}$ SMOOTHING EFFECT: are consequence of Type II bounds; for all $t>0$:

$$
\|u(t)\|_{\mathrm{L}^{\infty}(\Omega)} \leq \frac{K_{4}}{t^{(N+\gamma) \vartheta_{1, \gamma}}}\|u(t)\|_{\mathrm{L}_{\Phi_{1}}^{1}(\Omega)}^{2 s \vartheta_{1, \gamma}} \leq \frac{K_{4}}{t^{(N+\gamma) \vartheta_{1, \gamma}}}\left\|u_{0}\right\|_{\mathrm{L}_{\Phi_{1}}^{1}(\Omega)}^{2 s \vartheta_{1, \gamma}}
$$

- A novelty is that we get instantaneous smoothing effects.
- Also the weighted smoothing effect is new (as far as we know).
- The time decay is better for small times $0<t<1$ than the one given by absolute bounds, namely

$$
(N+\gamma) \vartheta_{1, \gamma}=\frac{N+\gamma}{2+(N+\gamma)(m-1)}<\frac{1}{m-1} .
$$

Theorem. (Backward Smoothing effects) (M.B. \& J. L. Vázquez, 2013)

There exists a universal constant $K_{4}>0$ such that for all $t, h>0$

$$
\|u(t)\|_{L^{\infty}(\Omega)} \leq \frac{K_{4}}{t^{(d+\gamma) \vartheta_{1, \gamma}}}\left(1 \vee \frac{h}{t}\right)^{\frac{2 \cdot \vartheta_{1, \gamma}}{m-1}}\|u(t+h)\|_{L_{\Phi_{1}}(\Omega)}^{2 s \vartheta_{1}, \gamma} .
$$

Proof. By the monotonicity estimates, the function $u(x, t) t^{1 /(m-1)}$ is non-decreasing in time for fixed x, therefore using the smoothing effect, we get for all $t_{1} \geq t$:

where K_{4} is as in the smoothing effects. Finally, let $t_{1}=t+h . \quad \square$

Theorem. (Backward Smoothing effects) (M.B. \& J. L. Vázquez, 2013)

There exists a universal constant $K_{4}>0$ such that for all $t, h>0$

$$
\|u(t)\|_{\mathrm{L} \infty(\Omega)} \leq \frac{K_{4}}{t^{(d+\gamma) \vartheta_{1, \gamma}}}\left(1 \vee \frac{h}{t}\right)^{\frac{2 s \vartheta_{1, \gamma}}{m-1}}\|u(t+h)\|_{\mathrm{L}_{\Phi_{1}}^{1}(\Omega)}^{2 s \vartheta_{1, \gamma}} .
$$

Proof. By the monotonicity estimates, the function $u(x, t) t^{1 /(m-1)}$ is non-decreasing in time for fixed x, therefore using the smoothing effect, we get for all $t_{1} \geq t$:

$$
\begin{aligned}
\|u(t)\|_{\mathrm{L} \infty}(\Omega) & \leq \frac{K_{4}}{t^{(N+1) \vartheta_{1, \gamma}}}\left(\int_{\Omega} u(t, x) \Phi_{1}(x) \mathrm{d} x\right)^{2 s \vartheta_{1, \gamma}} \\
& \leq \frac{K_{4}}{t^{(N+1) \vartheta_{1, \gamma}}}\left(\frac{t_{1}^{\frac{1}{m-1}}}{t^{\frac{1}{m-1}}} \int_{\Omega} u\left(t_{1}, x\right) \Phi_{1}(x) \mathrm{d} x\right)^{2 s \vartheta_{1, \gamma}}
\end{aligned}
$$

where K_{4} is as in the smoothing effects. Finally, let $t_{1}=t+h . \quad \square$

Lower bounds and Harnack inequalities

- Quantitative positivity estimates
- Weighted $\mathrm{L}_{\Phi_{1}}^{1}$ estimates
- Harnack inequalities
- Estimates for Elliptic equations

Theorem. (Lower absolute and boundary estimates)

 (M.B. \& J. L. Vázquez, 2013)Let let $m>1$ and let $u \geq 0$ be a weak dual solution to the Dirichlet problem (1), corresponding to the initial datum $0 \leq u_{0} \in \mathrm{~L}_{\Phi_{1}}^{1}(\Omega)$. Then, there exist constants $L_{0}(\Omega), L_{1}(\Omega)>0$, so that, setting

$$
t_{*}=\frac{L_{0}(\Omega)}{\left(\int_{\Omega} u_{0} \Phi_{1} \mathrm{~d} x\right)^{m-1}}
$$

we have that for all $t \geq t_{*}$ and all $x_{0} \in \Omega$, the following inequality holds:

$$
u\left(t, x_{0}\right) \geq L_{1}(\Omega) \frac{\Phi_{1}\left(x_{0}\right)^{\frac{1}{m}}}{t^{\frac{1}{m-1}}}
$$

The constants $L_{0}(\Omega), L_{1}(\Omega)>0$, depend on N, m, s and on Ω, but not on u (or any norm of u; they have an explicit form.

Remarks.

- Recall that Φ_{1} is the first eigenfunction of \mathcal{L} and satisfies:

$$
\Phi_{1}(x) \asymp \operatorname{dist}(x, \partial \Omega)^{\gamma} \wedge 1 \quad \text { for all } x \in \Omega
$$

Therefore, the lower boundary behaviour of $u(t, \cdot)$ is:

$$
u(t, x) \geq \frac{L_{1}}{\frac{1}{t_{0}^{m-1}}}\left(\operatorname{dist}\left(x_{0}, \partial \Omega\right)^{\frac{\gamma}{m}} \wedge 1\right), \quad \text { for all } t_{0} \geq t_{*} \geq 0 \text { and } x_{0} \in \Omega
$$

- This boundary behaviour is sharp because we have upper bounds with matching powers of Φ_{1}.
- t_{*} is an estimate the time that it takes to fill the hole: if u_{0} is concentrated close to the border (leaves an hole in the middle of Ω), then $\int_{\Omega} u_{0} \Phi_{1} \mathrm{~d} x$ is small, therefore t_{*} becomes very large, therefore it takes a lot of time to fill the hole.
- These estimates can also be rewritten as Aronson-Caffarelli type estimates: which gives, for all $t \geq 0$ and all $x_{0} \in \Omega$:

Remarks.

- Recall that Φ_{1} is the first eigenfunction of \mathcal{L} and satisfies:

$$
\Phi_{1}(x) \asymp \operatorname{dist}(x, \partial \Omega)^{\gamma} \wedge 1 \quad \text { for all } x \in \Omega
$$

Therefore, the lower boundary behaviour of $u(t, \cdot)$ is:

$$
u(t, x) \geq \frac{L_{1}}{t_{0}^{m-1}}\left(\operatorname{dist}\left(x_{0}, \partial \Omega\right)^{\frac{\gamma}{m}} \wedge 1\right), \quad \text { for all } t_{0} \geq t_{*} \geq 0 \text { and } x_{0} \in \Omega
$$

- This boundary behaviour is sharp because we have upper bounds with matching powers of Φ_{1}.
- t_{*} is an estimate the time that it takes to fill the hole: if u_{0} is concentrated close to the border (leaves an hole in the middle of Ω), then $\int_{\Omega} u_{0} \Phi_{1} \mathrm{~d} x$ is small, therefore t_{*} becomes very large, therefore it takes a lot of time to fill the hole.
- These estimates can also be rewritten as Aronson-Caffarelli type estimates:
which gives, for all $t \geq 0$ and all $x_{0} \in \Omega$:

Remarks.

- Recall that Φ_{1} is the first eigenfunction of \mathcal{L} and satisfies:

$$
\Phi_{1}(x) \asymp \operatorname{dist}(x, \partial \Omega)^{\gamma} \wedge 1 \quad \text { for all } x \in \Omega
$$

Therefore, the lower boundary behaviour of $u(t, \cdot)$ is:

$$
u(t, x) \geq \frac{L_{1}}{t_{0}^{\frac{1}{m-1}}}\left(\operatorname{dist}\left(x_{0}, \partial \Omega\right)^{\frac{\gamma}{m}} \wedge 1\right), \quad \text { for all } t_{0} \geq t_{*} \geq 0 \text { and } x_{0} \in \Omega
$$

- This boundary behaviour is sharp because we have upper bounds with matching powers of Φ_{1}.
- t_{*} is an estimate the time that it takes to fill the hole: if u_{0} is concentrated close to the border (leaves an hole in the middle of Ω), then $\int_{\Omega} u_{0} \Phi_{1} \mathrm{~d} x$ is small, therefore t_{*} becomes very large, therefore it takes a lot of time to fill the hole.
- These estimates can also be rewritten as Aronson-Caffarelli type estimates:

$$
\text { either } \quad t \leq t_{*}=\frac{L_{0}}{\left(\int_{\Omega} u_{0} \Phi_{1} \mathrm{~d} x\right)^{m-1}}, \quad \text { or } \quad u\left(t, x_{0}\right) \geq L_{1} \frac{\Phi_{1}\left(x_{0}\right)^{\frac{1}{m}}}{t^{\frac{1}{m-1}}} \quad \forall t \geq t_{*}
$$

which gives, for all $t \geq 0$ and all $x_{0} \in \Omega$:

$$
u\left(t, x_{0}\right) \geq \frac{L_{1} \Phi_{1}\left(x_{0}\right)^{\frac{1}{m}}}{t^{\frac{1}{m-1}}}\left[1-\left(\frac{t_{*}}{t}\right)^{\frac{1}{m-1}}\right] .
$$

Remarks.

- Recall that Φ_{1} is the first eigenfunction of \mathcal{L} and satisfies:

$$
\Phi_{1}(x) \asymp \operatorname{dist}(x, \partial \Omega)^{\gamma} \wedge 1 \quad \text { for all } x \in \Omega
$$

Therefore, the lower boundary behaviour of $u(t, \cdot)$ is:

$$
u(t, x) \geq \frac{L_{1}}{t_{0}^{\frac{1}{m-1}}}\left(\operatorname{dist}\left(x_{0}, \partial \Omega\right)^{\frac{\gamma}{m}} \wedge 1\right), \quad \text { for all } t_{0} \geq t_{*} \geq 0 \text { and } x_{0} \in \Omega
$$

- This boundary behaviour is sharp because we have upper bounds with matching powers of Φ_{1}.
- t_{*} is an estimate the time that it takes to fill the hole: if u_{0} is concentrated close to the border (leaves an hole in the middle of Ω), then $\int_{\Omega} u_{0} \Phi_{1} \mathrm{~d} x$ is small, therefore t_{*} becomes very large, therefore it takes a lot of time to fill the hole.
- These estimates can also be rewritten as Aronson-Caffarelli type estimates:

$$
\text { either } \quad t \leq t_{*}=\frac{L_{0}}{\left(\int_{\Omega} u_{0} \Phi_{1} \mathrm{~d} x\right)^{m-1}}, \quad \text { or } \quad u\left(t, x_{0}\right) \geq L_{1} \frac{\Phi_{1}\left(x_{0}\right)^{\frac{1}{m}}}{t^{\frac{1}{m-1}}} \quad \forall t \geq t_{*}
$$

which gives, for all $t \geq 0$ and all $x_{0} \in \Omega$:

$$
u\left(t, x_{0}\right) \geq \frac{L_{1} \Phi_{1}\left(x_{0}\right)^{\frac{1}{m}}}{t^{\frac{1}{m-1}}}\left[1-\left(\frac{t_{*}}{t}\right)^{\frac{1}{m-1}}\right] .
$$

- Open problem: find precise lower bounds for small times, $0<t<t_{*}$.

Proposition. (Weighted L ${ }^{1}$-estimates)

Under the current assumptions on m and u, the integral $\int_{\Omega} u(t, x) \Phi_{1}(x) \mathrm{d} x$ is monotonically non-increasing in time and for all $0 \leq \tau_{0} \leq \tau, t<+\infty$ we have

$$
\begin{aligned}
\int_{\Omega} u(\tau, x) \Phi_{1}(x) \mathrm{d} x & \leq \int_{\Omega} u(t, x) \Phi_{1}(x) \mathrm{d} x \\
& +K_{5}|t-\tau|^{2 s \vartheta_{1, \gamma}}\left(\int_{\Omega} u\left(\tau_{0}\right) \Phi_{1} \mathrm{~d} x\right)^{2 s(m-1) \vartheta_{1, \gamma}+1}
\end{aligned}
$$

where $K_{5}:=\lambda_{1} K_{4} /\left(2 s \vartheta_{1, \gamma}\right)$ and $K_{4}>0$ is the constant in the smoothing effects .
Remark. Notice that, contrary to the usual monotonicity, we can allow $\tau \leq t$.
Proposition. (Almost $\mathrm{L}_{\Phi_{1}}$-contractivity)
For ordered solutions $u \geq v$, we have that for all $0 \leq \tau_{0} \leq \tau, t<+\infty$

Proposition. (Weighted L ${ }^{1}$-estimates)

Under the current assumptions on m and u, the integral $\int_{\Omega} u(t, x) \Phi_{1}(x) \mathrm{d} x$ is monotonically non-increasing in time and for all $0 \leq \tau_{0} \leq \tau, t<+\infty$ we have

$$
\begin{aligned}
\int_{\Omega} u(\tau, x) \Phi_{1}(x) \mathrm{d} x & \leq \int_{\Omega} u(t, x) \Phi_{1}(x) \mathrm{d} x \\
& +K_{5}|t-\tau|^{2 s \vartheta_{1, \gamma}}\left(\int_{\Omega} u\left(\tau_{0}\right) \Phi_{1} \mathrm{~d} x\right)^{2 s(m-1) \vartheta_{1, \gamma}+1}
\end{aligned}
$$

where $K_{5}:=\lambda_{1} K_{4} /\left(2 s \vartheta_{1, \gamma}\right)$ and $K_{4}>0$ is the constant in the smoothing effects .
Remark. Notice that, contrary to the usual monotonicity, we can allow $\tau \leq t$.

Proposition. (Almost $\mathrm{L}_{\Phi_{1}}^{1}$-contractivity)

For ordered solutions $u \geq v$, we have that for all $0 \leq \tau_{0} \leq \tau, t<+\infty$

$$
\begin{aligned}
\int_{\Omega}[u(\tau, x)-v(\tau, x)] & \Phi_{1}(x) \mathrm{d} x \leq \int_{\Omega}[u(t, x)-v(t, x)] \Phi_{1}(x) \mathrm{d} x \\
& +K_{5}\left[u\left(\tau_{0}\right)\right]|t-\tau|^{2 s \vartheta_{1, \gamma}} \int_{\Omega}\left[u\left(\tau_{0}, x\right)-v\left(\tau_{0}, x\right)\right] \Phi_{1} \mathrm{~d} x
\end{aligned}
$$

Corollary. (Backward in time $\mathrm{L}_{\Phi_{1}}^{1}$ lower bounds)

For all

$$
0 \leq \tau_{0} \leq t \leq \tau_{0}+\frac{1}{K_{6}\left(\int_{\Omega} u\left(\tau_{0}\right) \Phi_{1} \mathrm{~d} x\right)^{m-1}}
$$

we have

$$
\frac{1}{2} \int_{\Omega} u\left(\tau_{0}, x\right) \Phi_{1}(x) \mathrm{d} x \leq \int_{\Omega} u(t, x) \Phi_{1}(x) \mathrm{d} x .
$$

where $K_{6}=\left(2 K_{5}\right)^{1 /\left(2 s \vartheta_{1,1}\right)}>0$ and K_{5} is as in the above Proposition.

Corollary. (Absolute lower bounds for the $\mathrm{L}_{\Phi_{1}}^{1}$ norm)
The choice $\tau_{0}=0$ and $t=K_{6}^{-1}\left(\int_{\Omega} u_{0} \Phi_{1} d x\right)^{-(m-1)}$ gives

Corollary. (Backward in time $\mathrm{L}_{\Phi_{1}}^{1}$ lower bounds)

For all

$$
0 \leq \tau_{0} \leq t \leq \tau_{0}+\frac{1}{K_{6}\left(\int_{\Omega} u\left(\tau_{0}\right) \Phi_{1} \mathrm{~d} x\right)^{m-1}}
$$

we have

$$
\frac{1}{2} \int_{\Omega} u\left(\tau_{0}, x\right) \Phi_{1}(x) \mathrm{d} x \leq \int_{\Omega} u(t, x) \Phi_{1}(x) \mathrm{d} x .
$$

where $K_{6}=\left(2 K_{5}\right)^{1 /\left(2 s \vartheta_{1,1}\right)}>0$ and K_{5} is as in the above Proposition .

Corollary. (Absolute lower bounds for the $L_{\Phi_{1}}^{1}$ norm)

The choice $\tau_{0}=0$ and $t=K_{6}^{-1}\left(\int_{\Omega} u_{0} \Phi_{1} \mathrm{~d} x\right)^{-(m-1)}$ gives

$$
t^{\frac{1}{m-1}} \int_{\Omega} u(t, x) \Phi_{1}(x) \mathrm{d} x \geq \frac{t^{\frac{1}{m-1}}}{2} \int_{\Omega} u_{0}(x) \Phi_{1}(x) \mathrm{d} x=\frac{1}{2 K_{6}^{m-1}}
$$

Theorem. (Global Harnack Principle) (M.B. \& J. L. Vázquez, 2013)

There exist universal constants $H_{0}, H_{1}, L_{0}>0$ such that setting

$$
t_{*}=\frac{L_{0}}{\left(\int_{\Omega} u_{0} \Phi_{1} \mathrm{~d} x\right)^{m-1}},
$$

we have that for all $t \geq t_{*}$ and all $x \in \Omega$, the following inequality holds:

$$
H_{0} \frac{\Phi_{1}(x)^{\frac{1}{m}}}{t^{\frac{1}{m-1}}} \leq u(t, x) \leq H_{1} \frac{\Phi_{1}(x)^{\frac{1}{m}}}{t^{\frac{1}{m-1}}}
$$

Recall that Φ_{1} is the first eigenfunction of \mathcal{L}.

Remarks.

- This inequality implies local Harnack inequalities of elliptic type
- As a corollary we get the sharp asymptotic behaviour (Part 4)

Solutions u to the parabolic problem inherit the Harnack inequality for Φ_{1} :

$$
\sup _{x \in B_{R}\left(x_{0}\right)} \Phi_{1}(x) \leq \mathcal{H} \inf _{x \in B_{R}\left(x_{0}\right)} \Phi_{1}(x) \quad \forall B_{R}\left(x_{0}\right) \in \Omega
$$

The constant $\mathcal{H}>0$ is universal (and explicit at least when $s=1$, cf. [BGV-2012]).

Theorem. (Local Harnack Inequalities of Elliptic Type) (M.B. \& J. L. Vázquez, 2013)

There exist universal constants $H_{0}, H_{1}, L_{0}>0$ such that setting $t_{*}=L_{0}\left\|u_{0}\right\|_{\mathrm{L}_{\Phi_{1}}^{(m-1)}(\Omega)}^{-(m-1)}$, we have that for all $t \geq t_{*}$ and all $B_{R}\left(x_{0}\right) \in \Omega$, the following inequality holds:

$$
\sup _{x \in B_{R}\left(x_{0}\right)} u(t, x) \leq \frac{H_{1} \mathcal{H}^{\frac{1}{m}}}{H_{0}} \inf _{x \in B_{R}\left(x_{0}\right)} u(t, x)
$$

Corollary. (Local Harnack Inequalities of Backward Type)

Under the runninig assumptions, for all $t \geq t_{*}$ and all $B_{R}\left(x_{0}\right) \in \Omega$, we have:

$$
\sup _{x \in B_{R}\left(x_{0}\right)} u(t, x) \leq 2 \frac{H_{1} \mathcal{H}^{\frac{1}{m}}}{H_{0}} \inf _{x \in B_{R}\left(x_{0}\right)} u(t+h, x) \quad \text { for all } 0 \leq h \leq t_{*}
$$

We consider the homogeneous Dirichlet problem

$$
\begin{cases}\mathcal{L}\left(V^{m}\right)=\lambda V, & \text { in } \Omega \tag{1}\\ V=0, & \text { on } \partial \Omega\end{cases}
$$

under the running assumptions on $\Omega, m, s, N, \mathcal{L}$.

Theorem. (Bounds and boundary behaviour for the elliptic problem)

Let $V \geq 0$ be a very weak solution to the Dirichlet Problem (1), then there exist universal positive constants h_{0} and h_{1} such that the following estimates hold true for all $x_{0} \in \Omega$:

$$
h_{0}\|V\|_{\mathrm{L}_{\Phi_{1}}^{1}} \Phi_{1}\left(x_{0}\right) \leq V^{m}\left(x_{0}\right) \leq h_{1} \Phi_{1}\left(x_{0}\right),
$$

where $h_{1}=c_{5, \Omega} \lambda^{1 /(m-1)}$ and $h_{0}=c_{0, \Omega} \lambda$, with $c_{5, \Omega}$ given in Lemma "Integral Green function estimates II" and $c_{0, \Omega}$ is the constant in the Type II lower estimates.

Existence, uniqueness and asymptotic behaviour of solutions

- Existence and uniqueness theory
- Existence and uniqueness theory in $\mathrm{L}_{\Phi_{1}}^{1}$
- Reminder about fractional Sobolev spaces on bounded domains
- Existence and uniqueness theory in $H^{*}(\Omega)$
- Existence for the elliptic problem via parabolic methods
- Asymptotic behaviour of nonnegative solutions
- The rescaled flow and stationary solutions
- Convergence to the stationary profile
- The Friendly Giant and convergence with optimal rate

Theorem. (Existence and Uniqueness in $\mathrm{L}_{\Phi_{1}}^{1}$) (M.B. \& J. L. Vázquez, 2013-14)
For every nonnegative $u_{0} \in \mathrm{~L}_{\Phi_{1}}^{1}(\Omega)$ there exists a unique minimal weak dual solution to the Dirichlet problem:

$$
(\mathrm{HDP}) \quad \begin{cases}u_{t}+\mathcal{L} F(u)=0, & \text { in }(0,+\infty) \times \Omega \\ u(0, x)=u_{0}(x), & \text { in } \Omega \\ u(t, x)=0, & \text { on the lateral boundary. }\end{cases}
$$

Such a solution is obtained as the monotone limit of the semigroup solutions that exist and are unique when the initial data are in $\mathrm{L}^{1}(\Omega)$. The minimal weak dual solution is continuous in the weighted space $u \in C\left([0, \infty): \mathrm{L}_{\Phi_{1}}^{1}(\Omega)\right)$.
Moreover, it belongs to the class \mathcal{S}.

This is a consequence of the upper estimates and of the almost-contractivity in $\mathrm{L}_{\Phi}^{1}(\Omega)$.
We now pass to a more general framework, and we prove existence and uniqueness.

Consider the Problem

$$
\begin{cases}u_{t}+\mathcal{L}(\varphi(u))=0 & \text { in }(0,+\infty) \times \Omega \\ u(0, x)=u_{0}(x) & \text { in } \Omega \\ u(t, x)=0 & \text { on }(0,+\infty) \times \Gamma\end{cases}
$$

$\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous, smooth and increasing function.
Assume moreover that $\varphi^{\prime}>0, \varphi(\pm \infty)= \pm \infty$ and $\varphi(0)=0$.
The leading example is $\varphi(u)=|u|^{m-1} u$ with $m>0$.
\mathcal{L} is a linear operator with eigenelements $\left(\lambda_{k, s}, \phi_{k, s}\right)$.
and let $H^{*}(\Omega)$ be the topological dual of $H(\Omega)$.
Under some assumption on \mathcal{L}, essentially that $\lambda_{k} \leq C^{k}$ for some $C>0$, we can identify $H(\Omega)$ in terms of more familiar spaces:

There is another possible characterization of the space $H(\Omega)$,

Consider the Problem

$$
\begin{cases}u_{t}+\mathcal{L}(\varphi(u))=0 & \text { in }(0,+\infty) \times \Omega \\ u(0, x)=u_{0}(x) & \text { in } \Omega \\ u(t, x)=0 & \text { on }(0,+\infty) \times \Gamma\end{cases}
$$

$\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous, smooth and increasing function.
Assume moreover that $\varphi^{\prime}>0, \varphi(\pm \infty)= \pm \infty$ and $\varphi(0)=0$.
The leading example is $\varphi(u)=|u|^{m-1} u$ with $m>0$.
\mathcal{L} is a linear operator with eigenelements $\left(\lambda_{k, s}, \phi_{k, s}\right)$.
We study the above problem in the framework of fractional Sobolev spaces:

$$
H(\Omega)=\left\{u=\sum_{k=1}^{\infty} u_{k} \phi_{s, k} \in L^{2}(\Omega):\|u\|_{H}^{2}=\sum_{k=1}^{\infty} \lambda_{s, k}\left|u_{k}\right|^{2}<+\infty\right\} \subset L^{2}(\Omega)
$$

and let $H^{*}(\Omega)$ be the topological dual of $H(\Omega)$.
Under some assumption on \mathcal{L}, essentially that $\lambda_{k} \leq C^{k}$ for some $C>0$, we can identify $H(\Omega)$ in terms of more familiar spaces:

$$
H(\Omega)= \begin{cases}H_{0}^{s}(\Omega), & \text { if } \frac{1}{2}<s \leq 1 \\ H_{00}^{1 / 2}(\Omega), & \text { if } s=\frac{1}{2} \\ H^{s}(\Omega), & \text { if } 0<s<\frac{1}{2}\end{cases}
$$

There is another possible characterization of the space $H(\Omega)$,

Consider the Problem

$$
\begin{cases}u_{t}+\mathcal{L}(\varphi(u))=0 & \text { in }(0,+\infty) \times \Omega \\ u(0, x)=u_{0}(x) & \text { in } \Omega \\ u(t, x)=0 & \text { on }(0,+\infty) \times \Gamma\end{cases}
$$

$\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous, smooth and increasing function.
Assume moreover that $\varphi^{\prime}>0, \varphi(\pm \infty)= \pm \infty$ and $\varphi(0)=0$.
The leading example is $\varphi(u)=|u|^{m-1} u$ with $m>0$.
\mathcal{L} is a linear operator with eigenelements $\left(\lambda_{k, s}, \phi_{k, s}\right)$.
We study the above problem in the framework of fractional Sobolev spaces:

$$
H(\Omega)=\left\{u=\sum_{k=1}^{\infty} u_{k} \phi_{s, k} \in L^{2}(\Omega):\|u\|_{H}^{2}=\sum_{k=1}^{\infty} \lambda_{s, k}\left|u_{k}\right|^{2}<+\infty\right\} \subset L^{2}(\Omega)
$$

and let $H^{*}(\Omega)$ be the topological dual of $H(\Omega)$.
Under some assumption on \mathcal{L}, essentially that $\lambda_{k} \leq C^{k}$ for some $C>0$, we can identify $H(\Omega)$ in terms of more familiar spaces:

$$
H(\Omega)= \begin{cases}H_{0}^{s}(\Omega), & \text { if } \frac{1}{2}<s \leq 1 \\ H_{00}^{1 / 2}(\Omega), & \text { if } s=\frac{1}{2} \\ H^{s}(\Omega), & \text { if } 0<s<\frac{1}{2}\end{cases}
$$

There is another possible characterization of the space $H(\Omega)$,

$$
H(\Omega)=\dot{\mathrm{H}}^{s}(\bar{\Omega})=\left\{u \in H^{s}\left(\mathbb{R}^{d}\right) \mid \operatorname{supp}(u) \subset \bar{\Omega}\right\}
$$

$$
\begin{cases}u_{t}+\mathcal{L}(\varphi(u))=0 & \text { in }(0,+\infty) \times \Omega \tag{2}\\ u(0, x)=u_{0}(x) & \text { in } \Omega \\ u(t, x)=0 & \text { on }(0,+\infty) \times \Gamma\end{cases}
$$

Theorem. (Existence and Uniqueness in H^{*}) (M.B., Y. Sire, J. L. Vázquez, 2014)
For every $u_{0} \in H^{*}(\Omega)$ there exists a unique solution $u \in C\left([0, T]: H^{*}(\Omega)\right)$ of Problem 2 for every $T>0$, i.e. the solution is global in time. We also have

$$
t \varphi(u) \in \mathrm{L}^{\infty}\left(0, T: H^{*}(\Omega)\right), \quad t \partial_{t} u \in \mathrm{~L}^{\infty}\left(0, T: H^{*}(\Omega)\right)
$$

We also have $u \varphi(u) \in L^{1}((0, T) \times \Omega)$. The solution map $S_{t}: u_{0} \mapsto u(t)$ defines a semigroup of (non-strict) contractions in $H^{*}(\Omega)$, i. e.,

$$
\|u(t)-v(t)\|_{H^{*}(\Omega)} \leq\|u(0)-v(0)\|_{H^{*}(\Omega)},
$$

which turns out to be also compact in $H^{*}(\Omega)$.

Remarks.

- The nonlinearity φ is more general than F, treated in the previous parts of the talk.
- We consider any $m>0$ and solutions with any sign.
- The proof is based on an abstract result of H . Brezis about generation of semigroups on Hilbert spaces.

$$
\begin{cases}u_{t}+\mathcal{L}(\varphi(u))=0 & \text { in }(0,+\infty) \times \Omega \tag{2}\\ u(0, x)=u_{0}(x) & \text { in } \Omega \\ u(t, x)=0 & \text { on }(0,+\infty) \times \Gamma\end{cases}
$$

Theorem. (Existence and Uniqueness in H^{*}) (M.B., Y. Sire, J. L. Vázquez, 2014)
For every $u_{0} \in H^{*}(\Omega)$ there exists a unique solution $u \in C\left([0, T]: H^{*}(\Omega)\right)$ of Problem 2 for every $T>0$, i.e. the solution is global in time. We also have

$$
t \varphi(u) \in \mathrm{L}^{\infty}\left(0, T: H^{*}(\Omega)\right), \quad t \partial_{t} u \in \mathrm{~L}^{\infty}\left(0, T: H^{*}(\Omega)\right)
$$

We also have $u \varphi(u) \in L^{1}((0, T) \times \Omega)$. The solution map $S_{t}: u_{0} \mapsto u(t)$ defines a semigroup of (non-strict) contractions in $H^{*}(\Omega)$, i. e.,

$$
\|u(t)-v(t)\|_{H^{*}(\Omega)} \leq\|u(0)-v(0)\|_{H^{*}(\Omega)},
$$

which turns out to be also compact in $H^{*}(\Omega)$.

Remarks.

- The nonlinearity φ is more general than F, treated in the previous parts of the talk.
- We consider any $m>0$ and solutions with any sign.
- The proof is based on an abstract result of H. Brezis about generation of semigroups on Hilbert spaces.

In the rest of the talk we consider the nonlinearity $\varphi(u)=|u|^{m-1} u$ with $m>1$.

Theorem. (Asymptotic behaviour) (M.B., Y. Sire, J. L. Vázquez, 2014)

There exists a unique nonnegative selfsimilar solution of the Dirichlet Problem (2)

$$
U(\tau, x)=\frac{S(x)}{\tau^{\frac{1}{m-1}}},
$$

for some bounded function $S: \Omega \rightarrow \mathbb{R}$. Let u be any nonnegative H^{*}-solution to the Dirichlet Problem (2), then we have (unless $u \equiv 0$)

$$
\lim _{\tau \rightarrow \infty} \tau^{\frac{1}{m-1}}\|u(\tau, \cdot)-U(\tau, \cdot)\|_{L^{\infty}(\Omega)}=0
$$

The previous theorem admits the following corollary.
Theorem. (Elliptic problem)
Let $m>1$. There exists a unique H^{*} solution to the elliptic problem

In the rest of the talk we consider the nonlinearity $\varphi(u)=|u|^{m-1} u$ with $m>1$.
Theorem. (Asymptotic behaviour) (M.B., Y. Sire, J. L. Vázquez, 2014)
There exists a unique nonnegative selfsimilar solution of the Dirichlet Problem (2)

$$
U(\tau, x)=\frac{S(x)}{\tau^{\frac{1}{m-1}}},
$$

for some bounded function $S: \Omega \rightarrow \mathbb{R}$. Let u be any nonnegative H^{*}-solution to the Dirichlet Problem (2), then we have (unless $u \equiv 0$)

$$
\lim _{\tau \rightarrow \infty} \tau^{\frac{1}{m-1}}\|u(\tau, \cdot)-U(\tau, \cdot)\|_{L^{\infty}(\Omega)}=0
$$

The previous theorem admits the following corollary.
Theorem. (Elliptic problem) (M.B., Y. Sire, J. L. Vázquez, 2014)
Let $m>1$. There exists a unique H^{*} solution to the elliptic problem

$$
\begin{cases}\mathcal{L}\left(S^{m}\right)=\frac{S}{m-1} & \text { in } \Omega \\ S(x)=0 & \text { for } x \in \partial \Omega\end{cases}
$$

Notice that the previous theorem is obtained in the present paper through a parabolic technique.

Theorem. (Sharp asymptotic with rates) (M.B., Y. Sire, J. L. Vázquez, 2014)

Let u be any nonnegative H^{*}-solution to the Dirichlet Problem, then we have (unless $u \equiv 0$) that there exist $t_{0}>0$ of the form

$$
t_{0}=\bar{k}\left[\frac{\int_{\Omega} \Phi_{1} \mathrm{~d} x}{\int_{\Omega} u_{0} \Phi_{1} \mathrm{~d} x}\right]^{m-1}
$$

such that for all $t \geq t_{0}$ we have

$$
\left\|\frac{u(t, \cdot)}{U(t, \cdot)}-1\right\|_{\mathrm{L}^{\infty}(\Omega)} \leq \frac{2}{m-1} \frac{t_{0}}{t_{0}+t} .
$$

We remark that the constant $\bar{k}>0$ only depends on m, d, s, and $|\Omega|$ and has explicit expressions given in the proof.

Remarks.

- We provide two different proofs of the above result.
- One proof is based on the construction of the so-called Friendly-Giant solution, namely the solution with initial data $u_{0}=+\infty$, and is based on the Global Harnack Principle of Part 3
- The second proof is based on a new Entropy method, which is based on a parabolic version of the Caffarelli-Silvestre extension.

Theorem. (Sharp asymptotic with rates) (M.B., Y. Sire, J. L. Vázquez, 2014)

Let u be any nonnegative H^{*}-solution to the Dirichlet Problem, then we have (unless $u \equiv 0$) that there exist $t_{0}>0$ of the form

$$
t_{0}=\bar{k}\left[\frac{\int_{\Omega} \Phi_{1} \mathrm{~d} x}{\int_{\Omega} u_{0} \Phi_{1} \mathrm{~d} x}\right]^{m-1}
$$

such that for all $t \geq t_{0}$ we have

$$
\left\|\frac{u(t, \cdot)}{U(t, \cdot)}-1\right\|_{L^{\infty}(\Omega)} \leq \frac{2}{m-1} \frac{t_{0}}{t_{0}+t} .
$$

We remark that the constant $\bar{k}>0$ only depends on m, d, s, and $|\Omega|$ and has explicit expressions given in the proof.

Remarks.

- We provide two different proofs of the above result.
- One proof is based on the construction of the so-called Friendly-Giant solution, namely the solution with initial data $u_{0}=+\infty$, and is based on the Global Harnack Principle of Part 3
- The second proof is based on a new Entropy method, which is based on a parabolic version of the Caffarelli-Silvestre extension.

The End

Daedanhi Gamsahabnida!!!

$$
\begin{gathered}
\text { Grazie Mille!!! } \\
\text { Muchas Gracias!!! } \\
\text { Thank You!!! } \\
\text { Merci Beaucoup!!! }
\end{gathered}
$$

A general class of linear operators

We may consider any linear operator $\mathcal{L}: \operatorname{dom}(\mathcal{L}) \subseteq \mathrm{L}^{1}(\Omega) \rightarrow \mathrm{L}^{1}(\Omega)$ which is densely defined and such that
(A1) \mathcal{L} is m-accretive on $\mathrm{L}^{1}(\Omega)$,
(A2) If $0 \leq f \leq 1$ then $0 \leq \mathrm{e}^{-t \mathcal{L}} f \leq 1$, or equivalently,
(A3) If β is a maximal monotone graph in $\mathbb{R} \times \mathbb{R}$ with $0 \in \beta(0), u \in \operatorname{dom}(\mathcal{L})$,
$\mathcal{L} u \in \mathrm{~L}^{p}(\Omega), 1 \leq p \leq \infty, v \in \mathrm{~L}^{p /(p-1)}(\Omega), v(x) \in \beta(u(x))$ a.e, then

Remarks.

- These assumptions are needed to obtain the existence (and uniqueness) of semigroup (mild) solutions for the nonlinear equation $u_{t}=\mathcal{L} F(u)$, through a variant of the celebrated Crandall-Liggett theorem, as done by Benilan, Crandall and Pierre.
- Actually, (A1) and (A2) imply that $\operatorname{dom}(\mathcal{L})$ is dense.

A general class of linear operators

We may consider any linear operator $\mathcal{L}: \operatorname{dom}(\mathcal{L}) \subseteq \mathrm{L}^{1}(\Omega) \rightarrow \mathrm{L}^{1}(\Omega)$ which is densely defined and such that
(A1) \mathcal{L} is m-accretive on $\mathrm{L}^{1}(\Omega)$,
(A2) If $0 \leq f \leq 1$ then $0 \leq \mathrm{e}^{-t \mathcal{L}} f \leq 1$, or equivalently,
(A3) If β is a maximal monotone graph in $\mathbb{R} \times \mathbb{R}$ with $0 \in \beta(0), u \in \operatorname{dom}(\mathcal{L})$, $\mathcal{L} u \in \mathrm{~L}^{p}(\Omega), 1 \leq p \leq \infty, v \in \mathrm{~L}^{p /(p-1)}(\Omega), v(x) \in \beta(u(x))$ a.e, then

$$
\int_{\Omega} v(x) \mathcal{L} u(x) \mathrm{d} x \geq 0
$$

Remarks.

- These assumptions are needed to obtain the existence (and uniqueness) of semigroup (mild) solutions for the nonlinear equation $u_{t}=\mathcal{L} F(u)$, through a variant of the celebrated Crandall-Liggett theorem, as done by Benilan, Crandall and Pierre.
- Actually, (A1) and (A2) imply that $\operatorname{dom}(\mathcal{L})$ is dense.

A general class of linear operators

We may consider any linear operator $\mathcal{L}: \operatorname{dom}(\mathcal{L}) \subseteq \mathrm{L}^{1}(\Omega) \rightarrow \mathrm{L}^{1}(\Omega)$ which is densely defined and such that
(A1) \mathcal{L} is m-accretive on $\mathrm{L}^{1}(\Omega)$,
(A2) If $0 \leq f \leq 1$ then $0 \leq \mathrm{e}^{-t \mathcal{L}} f \leq 1$, or equivalently,
(A3) If β is a maximal monotone graph in $\mathbb{R} \times \mathbb{R}$ with $0 \in \beta(0), u \in \operatorname{dom}(\mathcal{L})$, $\mathcal{L} u \in \mathrm{~L}^{p}(\Omega), 1 \leq p \leq \infty, v \in \mathrm{~L}^{p /(p-1)}(\Omega), v(x) \in \beta(u(x))$ a.e, then

$$
\int_{\Omega} v(x) \mathcal{L} u(x) \mathrm{d} x \geq 0
$$

Remarks.

- These assumptions are needed to obtain the existence (and uniqueness) of semigroup (mild) solutions for the nonlinear equation $u_{t}=\mathcal{L} F(u)$, through a variant of the celebrated Crandall-Liggett theorem, as done by Benilan, Crandall and Pierre.
- Actually, (A1) and (A2) imply that $\operatorname{dom}(\mathcal{L})$ is dense.

Assumptions on the inverse in the general case

We will assume that the operator \mathcal{L} has an inverse \mathcal{L}^{-1} with a kernel \mathbb{K} such that

$$
\mathcal{L}^{-1} f(x)=\int_{\Omega} \mathbb{K}(x, y) f(y) \mathrm{d} y
$$

and that satisfies (one of) the following estimates for some $\gamma, s \in(0,1]$ and $c_{i, \Omega}>0$

$$
\begin{equation*}
0 \leq \mathbb{K}(x, y) \leq \frac{c_{1, \Omega}}{|x-y|^{N-2 s}} \tag{K1}
\end{equation*}
$$

(K2) $\quad c_{0, \Omega} \mathrm{~d}(x) \mathrm{d}(y) \leq \mathbb{K}(x, y) \leq \frac{c_{1, \Omega}}{|x-y|^{N-2 s}}\left(\frac{\mathrm{~d}(x)^{\gamma}}{|x-y|^{\gamma}} \wedge 1\right)\left(\frac{\mathrm{d}(y)^{\gamma}}{|x-y|^{\gamma}} \wedge 1\right)$ where $\mathrm{d}(x):=\operatorname{dist}(x, \partial \Omega)$.

Remark.

- It is easy to see that (K2) implies (K3), more precisely, (K2) implies that Φ_{1} behaves like $\Phi_{1} \asymp \operatorname{dist}(\cdot, \partial \Omega)$
- Indeed Φ_{1} need not to be the first eigenfunction, it can be any smooth extension to Ω of (a power of) the distance to the boundary.

Assumptions on the inverse in the general case

We will assume that the operator \mathcal{L} has an inverse \mathcal{L}^{-1} with a kernel \mathbb{K} such that

$$
\mathcal{L}^{-1} f(x)=\int_{\Omega} \mathbb{K}(x, y) f(y) \mathrm{d} y
$$

and that satisfies (one of) the following estimates for some $\gamma, s \in(0,1]$ and $c_{i, \Omega}>0$

$$
\begin{equation*}
0 \leq \mathbb{K}(x, y) \leq \frac{c_{1, \Omega}}{|x-y|^{N-2 s}} \tag{K1}
\end{equation*}
$$

$$
\begin{equation*}
c_{0, \Omega} \mathrm{~d}(x) \mathrm{d}(y) \leq \mathbb{K}(x, y) \leq \frac{c_{1, \Omega}}{|x-y|^{N-2 s}}\left(\frac{\mathrm{~d}(x)^{\gamma}}{|x-y|^{\gamma}} \wedge 1\right)\left(\frac{\mathrm{d}(y)^{\gamma}}{|x-y|^{\gamma}} \wedge 1\right) \tag{K2}
\end{equation*}
$$

where $\mathrm{d}(x):=\operatorname{dist}(x, \partial \Omega)$.
(K3) $c_{0, \Omega} \Phi_{1}(x) \Phi_{1}(y) \leq \mathbb{K}(x, y) \leq \frac{c_{1, \Omega}}{\left|x-x_{0}\right|^{N-2 s}}\left(\frac{\Phi_{1}(x)}{|x-y|^{\gamma}} \wedge 1\right)\left(\frac{\Phi_{1}(y)}{|x-y|^{\gamma}} \wedge 1\right)$

Remark.

- It is easy to see that (K2) implies ($K 3$), more precisely, $(K 2)$ implies that Φ_{1} behaves like $\Phi_{1} \asymp \operatorname{dist}(\cdot, \partial \Omega)^{\gamma}$.
- Indeed Φ_{1} need not to be the first eigenfunction, it can be any smooth extension to Ω of (a power of) the distance to the boundary.

Reminder about Mild solutions and their properties

Mild solutions, or semigroup solutions have been obtained by Benilan, Crandall and Pierre via Crandall-Liggett type theorems; the underlying idea is the use of an Implicit Time Discretization (ITD) method: consider the following partition of $[0, T]$

$$
t_{k}=\frac{k}{n} T, \quad \text { for any } 0 \leq k \leq n, \quad \text { with } t_{0}=0, t_{n}=T, \text { and } \quad h=t_{k+1}-t_{k}=\frac{T}{n} .
$$

For any $t \in(0, T)$, the (unique) semigroup solution $u(t, \cdot)$ is obtained as the limit in $\mathrm{L}^{1}(\Omega)$ of the solutions $u_{k+1}(\cdot)=u\left(t_{k+1}, \cdot\right)$ which solve the following elliptic equation (u_{k} is the datum, is given by the previous iterative step)

$$
h \mathcal{L} F\left(u_{k+1}\right)+u_{k+1}=u_{k} \quad \text { or equivalently } \quad \frac{u_{k+1}-u_{k}}{h}=-\mathcal{L} F\left(u_{k+1}\right) .
$$

Usually such solutions are difficult to treat since a priori they are merely very weak solutions. We can prove the following result:

Semigroup solutions with $u_{0} \in \mathrm{~L}^{p}$ are weak dual solutions

Let u be the unique mild solution corresponding to the initial datum $u_{0} \in \mathrm{~L}^{p}(\Omega)$ with $p \geq 1$. Then u is a weak dual solution and is contained in the class \mathcal{S}_{p}.

Monotonicity estimates in the general case

When the nonlinearity F is not a pure power, the homogeneity fails, therefore one expects a lack of monotonicity. Crandall and Pierre have proven monotonicity estimate under some assumptions on F.
(N1) Assume $F \in C^{1}(\mathbb{R} \backslash\{0\})$ and $F^{\prime} \in \operatorname{Lip}_{\text {loc }}(\mathbb{R} \backslash\{0\})$ and there exists $\mu_{0}, \mu_{1} \in$ $(0,1]$ such that

$$
\mu_{0} \leq \frac{F(r) F^{\prime \prime}(r)}{\left[F^{\prime}(r)\right]^{2}} \leq \mu_{1} \quad \text { a.e. } r>0 .
$$

Theorem (M. Crandall and M. Pierre, JFA 1982)

Let \mathcal{L} satisfy (A1) and (A2) and let F as satisfy (N1). Then for all nonnegative $u_{0} \in \mathrm{~L}^{1}(\Omega)$, there exists a unique mild solution u to equation $u_{t}+\mathcal{L} F(u)=0$, and the function

$$
\begin{equation*}
t \mapsto t^{\frac{1}{\mu_{0}}} F(u(t, x)) \quad \text { is nondecreasing in } t>0 \text { for a.e. } x \in \Omega \text {. } \tag{3}
\end{equation*}
$$

Moreover, the semigroup is contractive on $\mathrm{L}^{1}(\Omega)$ and $u \in C\left([0, \infty): \mathrm{L}^{1}(\Omega)\right)$.
We notice that (3) is a weak formulation of the monotonicity inequality:

$$
\partial_{t} u \geq-\frac{1}{\mu_{0} t} \frac{F(u)}{F^{\prime}(u)}
$$

The fundamental pointwise estimates II: the general case

Theorem (M.B. and J. L. Vázquez, 2014)
Let $0 \leq u \in \mathcal{S}_{p}$, with $p>N / 2 s$. Then,

$$
\int_{\Omega} u(t, x) \mathbb{K}\left(x, x_{0}\right) \mathrm{d} x \leq \int_{\Omega} u_{0}(x) \mathbb{K}\left(x, x_{0}\right) \mathrm{d} x \quad \text { for all } t>0
$$

Moreover, for almost every $0<t_{0} \leq t_{1} \leq t$ and almost every $x_{0} \in \Omega$, we have

$$
\begin{aligned}
\left(\frac{t_{0}}{t_{1}}\right)^{\frac{1}{\mu_{0}}}\left(t_{1}-t_{0}\right) F\left(u\left(t_{0}, x_{0}\right)\right) & \leq \int_{\Omega} u\left(t_{0}, x\right) \mathbb{K}\left(x, x_{0}\right) \mathrm{d} x-\int_{\Omega} u\left(t_{1}, x\right) \mathbb{K}\left(x, x_{0}\right) \mathrm{d} x \\
& \leq\left(m_{0}-1\right) \frac{t^{\frac{1}{\mu_{0}}}}{t_{0}^{\frac{1-\mu_{0}}{\mu_{0}}}} F\left(u\left(t, x_{0}\right)\right)
\end{aligned}
$$

[^0]: - A novelty is that we get instantaneous smoothing effects.
 - Also the weighted smoothing effect is new (as far as we know).
 - The time decay is better for small times $0<t<1$ than the one given by absolute bounds, namely

