Fractional nonlinear degenerate diffusion equations on bounded domains

Matteo Bonforte

Departamento de Matemáticas, Universidad Autónoma de Madrid, Campus de Cantoblanco 28049 Madrid, Spain

matteo.bonforte@uam.es

http://www.uam.es/matteo.bonforte

Seoul ICM 2014 Satellite Conference on Nonlinear Elliptic and Parabolic Equations and Its Applications KIAS, Seoul (Korea), August 8 - 12, 2014

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
•° References	000000000	00000	0000000	0000000	

References:

- [BV1] M. B., J. L. VÁZQUEZ, A Priori Estimates for Fractional Nonlinear Degenerate Diffusion Equations on bounded domains. *Preprint (2013)*. http://arxiv.org/abs/1311.6997
- [BV2] M. B., J. L. VÁZQUEZ, Nonlinear Degenerate Diffusion Equations on bounded domains with Restricted Fractional Laplacian. *In Preparation (2014).*
- [BSV] M. B., Y. SIRE, J. L. VÁZQUEZ, Existence, Uniqueness and Asymptotic behaviour for fractional porous medium equations on bounded domains. *To Appear in DCDS (2014)*. http://arxiv.org/abs/1404.6195

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
Summary	000000000	00000	0000000	0000000	

Outline of the talk

- The setup of the problem and first pointwise estimates
- Upper Estimates
- Lower bounds and Harnack inequalities
- Existence, uniqueness and asymptotic behaviour of solutions

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	●000000000	00000	0000000	0000000	
Summary					

The setup of the problem and first pointwise estimates

- Introduction
- About the operator $\mathcal L$
- About the inverse operator \mathcal{L}^{-1}
- The "dual" formulation of the problem
- Monotonicity for the nonlinear flow
- The fundamental pointwise estimates

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	0000000	
Introduction					

	ſ	$u_t + \mathcal{L} F(u) = 0,$	in $(0, +\infty) imes \Omega$
(HDP)	- {	$u(0,x)=u_0(x),$	in Ω
	l	u(t,x)=0,	on the lateral boundary.

where:

• $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary and $N \ge 1$.

• The linear operator \mathcal{L} will be a fractional Laplacian on domains,

 $\mathcal{L} = (-\Delta_{\Omega})^s \ , \qquad \text{with } 0 < s \leq 1.$

- The nonlinearity is typically F(u) = |u|^{m-1}u, with m > 1.
 We deal with Degenerate diffusion of Porous Medium type.
 More general classes of "degenerate" nonlinearities F are allowed
- The homogeneous boundary condition is posed on the lateral boundary, which may take different forms, depending on the particular choice of the operator \mathcal{L} .

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	0000000	
Introduction					

	ſ	$u_t + \mathcal{L} F(u) = 0,$	in $(0, +\infty) imes \Omega$
(HDP)	- {	$u(0,x)=u_0(x),$	in Ω
	l	u(t,x)=0,	on the lateral boundary.

where:

- $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary and $N \ge 1$.
- The linear operator \mathcal{L} will be a fractional Laplacian on domains,

 $\mathcal{L} = (-\Delta_{\Omega})^s$, with $0 < s \le 1$.

- The nonlinearity is typically F(u) = |u|^{m-1}u, with m > 1.
 We deal with Degenerate diffusion of Porous Medium type.
 More general classes of "degenerate" nonlinearities F are allowed
- The homogeneous boundary condition is posed on the lateral boundary, which may take different forms, depending on the particular choice of the operator \mathcal{L} .

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	0000000	
Introduction					

	ſ	$u_t + \mathcal{L} F(u) = 0,$	in $(0, +\infty) imes \Omega$
(HDP)	- {	$u(0,x)=u_0(x),$	in Ω
	l	u(t,x)=0,	on the lateral boundary.

where:

- $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary and $N \ge 1$.
- The linear operator \mathcal{L} will be a fractional Laplacian on domains,

 $\mathcal{L} = (-\Delta_{\Omega})^s$, with $0 < s \le 1$.

- The nonlinearity is typically F(u) = |u|^{m-1}u, with m > 1.
 We deal with Degenerate diffusion of Porous Medium type.
 More general classes of "degenerate" nonlinearities F are allowed.
- The homogeneous boundary condition is posed on the lateral boundary, which may take different forms, depending on the particular choice of the operator \mathcal{L} .

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	0000000	
Introduction					

	ſ	$u_t + \mathcal{L} F(u) = 0,$	in $(0, +\infty) imes \Omega$
(HDP)	- {	$u(0,x)=u_0(x),$	in Ω
	l	u(t,x)=0,	on the lateral boundary.

where:

- $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary and $N \ge 1$.
- The linear operator \mathcal{L} will be a fractional Laplacian on domains,

 $\mathcal{L} = (-\Delta_{\Omega})^s, \quad \text{with } 0 < s \le 1.$

- The nonlinearity is typically F(u) = |u|^{m-1}u, with m > 1.
 We deal with Degenerate diffusion of Porous Medium type.
 More general classes of "degenerate" nonlinearities F are allowed.
- The homogeneous boundary condition is posed on the lateral boundary, which may take different forms, depending on the particular choice of the operator \mathcal{L} .

Reminder about the fractional Laplacian operator on \mathbb{R}^N

We have several equivalent definitions for $(-\Delta_{\mathbb{R}^N})^s$:

• By means of Fourier Transform,

$$((-\Delta_{\mathbb{R}^N})^{s} f)(\xi) = |\xi|^{2s} \widehat{f}(\xi) \,.$$

This formula can be used for positive and negative values of s.

(a) By means of an **Hypersingular Kernel**: if 0 < s < 1, we can use the representation

$$(-\Delta_{\mathbb{R}^N})^s g(x) = c_{N,s} \operatorname{P.V.} \int_{\mathbb{R}^N} \frac{g(x) - g(z)}{|x - z|^{N+2s}} \, \mathrm{d}z,$$

where $c_{N,s} > 0$ is a normalization constant.

Spectral definition, in terms of the heat semigroup associated to the standard Laplacian operator:

$$(-\Delta_{\mathbb{R}^N})^s g(x) = \frac{1}{\Gamma(-s)} \int_0^\infty \left(e^{t\Delta_{\mathbb{R}^N}} g(x) - g(x) \right) \frac{dt}{t^{1+s}}$$

Reminder about the fractional Laplacian operator on \mathbb{R}^N

We have several equivalent definitions for $(-\Delta_{\mathbb{R}^N})^s$:

• By means of Fourier Transform,

$$((-\Delta_{\mathbb{R}^N})^{s} \widehat{f})(\xi) = |\xi|^{2s} \widehat{f}(\xi) \,.$$

This formula can be used for positive and negative values of s.

Sy means of an Hypersingular Kernel: if 0 < s < 1, we can use the representation

$$(-\Delta_{\mathbb{R}^N})^s g(x) = c_{N,s} \operatorname{P.V.} \int_{\mathbb{R}^N} \frac{g(x) - g(z)}{|x - z|^{N+2s}} \, \mathrm{d}z,$$

where $c_{N,s} > 0$ is a normalization constant.

Spectral definition, in terms of the heat semigroup associated to the standard Laplacian operator:

$$(-\Delta_{\mathbb{R}^N})^s g(x) = \frac{1}{\Gamma(-s)} \int_0^\infty \left(e^{t\Delta_{\mathbb{R}^N}} g(x) - g(x) \right) \frac{dt}{t^{1+s}}$$

Reminder about the fractional Laplacian operator on \mathbb{R}^N

We have several equivalent definitions for $(-\Delta_{\mathbb{R}^N})^s$:

By means of Fourier Transform,

$$((-\Delta_{\mathbb{R}^N})^{s} \widehat{f})(\xi) = |\xi|^{2s} \widehat{f}(\xi) \,.$$

This formula can be used for positive and negative values of s.

Sy means of an Hypersingular Kernel: if 0 < s < 1, we can use the representation

$$(-\Delta_{\mathbb{R}^N})^s g(x) = c_{N,s} \text{ P.V.} \int_{\mathbb{R}^N} \frac{g(x) - g(z)}{|x - z|^{N+2s}} \, \mathrm{d}z,$$

where $c_{N,s} > 0$ is a normalization constant.

Spectral definition, in terms of the heat semigroup associated to the standard Laplacian operator:

$$(-\Delta_{\mathbb{R}^N})^s g(x) = \frac{1}{\Gamma(-s)} \int_0^\infty \left(e^{t\Delta_{\mathbb{R}^N}} g(x) - g(x) \right) \frac{dt}{t^{1+s}}.$$

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	00000000000	00000	0000000	0000000	
About the operator \mathcal{L}					

Fractional Laplacian operators on bounded domains

There are different definitions for the fractional Laplacian on bounded domains, which turn out to be not equivalent.

The Spectral Fractional Laplacian operator (SFL)

$$(-\Delta_{\Omega})^{s}g(x) = \sum_{j=1}^{\infty} \lambda_{j}^{s} \hat{g}_{j} \phi_{j}(x) = \frac{1}{\Gamma(-s)} \int_{0}^{\infty} \left(e^{t\Delta_{\Omega}} g(x) - g(x) \right) \frac{dt}{t^{1+s}}.$$

- Δ_{Ω} is the classical Dirichlet Laplacian on the domain Ω
- EIGENVALUES: $0 < \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_j \leq \lambda_{j+1} \leq \ldots$ and $\lambda_j \asymp j^{2/N}$.
- EIGENFUNCTIONS: φ_j are as smooth as the boundary of Ω allows, namely when ∂Ω is C^k, then φ_j ∈ C[∞](Ω) ∩ C^k(Ω) for all k ∈ N.

$$\hat{g}_j = \int_{\Omega} g(x)\phi_j(x) \,\mathrm{d}x\,, \qquad ext{with} \qquad \|\phi_j\|_{\mathrm{L}^2(\Omega)} = 1\,.$$

Lateral boundary conditions for the SFL

u(t,x) = 0, in $(0,\infty) \times \partial \Omega$.

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	0000000000	00000	00000000	0000000	
About the operator \mathcal{L}					

Fractional Laplacian operators on bounded domains

Definition via the hypersingular kernel in \mathbb{R}^N , "restricted" to functions that are zero outside Ω .

The Restricted Fractional Laplacian operator (RFL)

$$(-\Delta_{|\Omega})^s g(x) = c_{d,s}$$
 P.V. $\int_{\mathbb{R}^N} \frac{g(x) - g(z)}{|x - z|^{d+2s}} dz$, with $\operatorname{supp}(g) \subseteq \overline{\Omega}$.

where $s \in (0, 1)$ and $c_{N,s} > 0$ is a normalization constant.

- $(-\Delta_{|\Omega})^s$ is a self-adjoint operator on $L^2(\Omega)$ with a discrete spectrum:
- EIGENVALUES: $0 < \overline{\lambda}_1 \le \overline{\lambda}_2 \le \ldots \le \overline{\lambda}_j \le \overline{\lambda}_{j+1} \le \ldots$ and $\overline{\lambda}_j \asymp j^{2s/N}$. Eigenvalues of the RFL are bigger than the ones of SFL: $\lambda_j^s \le \overline{\lambda}_j$ for all $j \in \mathbb{N}$.
- EIGENFUNCTIONS: φ_j are the normalized eigenfunctions, are only Hölder continuous up to the boundary, namely φ_j ∈ C^s(Ω).

Lateral boundary conditions for the RFL

$$u(t,x) = 0$$
, in $(0,\infty) \times (\mathbb{R}^N \setminus \Omega)$.

Remark. Both for the SFL and the RFL there is another possible definition using the so-called Caffarelli-Silvestre extension.

Reminder about Green functions

Notation. Let (λ_k, Φ_k) be the eigenvalues and eigenfunctions of \mathcal{L} . Recall that:

 $\Phi_1(x) \asymp \operatorname{dist}(x, \partial \Omega)^{\gamma}$ with $\gamma = 1$ for the SFL and $\gamma = s$ for the RFL.

The inverse \mathcal{L}^{-1} has a symmetric kernel $G_{\Omega}(x, y)$, which is the Green function:

$$\mathcal{L}^{-1}f(x_0) := \sum_{k=1}^{+\infty} \lambda_k^{-1} \hat{f}_k \Phi_k(x_0) = \int_{\Omega} G_{\Omega}(x, x_0) f(x) \, \mathrm{d}x \, .$$

When dealing with the SFL or RFL, it is well-known that the Green function satisfy the following estimates for all $x, x_0 \in \Omega$:

(Type I)
$$0 \le G_{\Omega}(x, x_0) \le \frac{c_{1,\Omega}}{|x - x_0|^{N-2s}} \sim G_{\mathbb{R}^N}(x, x_0),$$

(Type II)

$$c_{0,\Omega}\Phi_1(x)\Phi_1(x_0) \le G_{\Omega}(x,x_0) \le \frac{c_{1,\Omega}}{|x-x_0|^{N-2s}} \left(\frac{\Phi_1(x)}{|x-x_0|^{\gamma}} \wedge 1\right) \left(\frac{\Phi_1(x_0)}{|x-x_0|^{\gamma}} \wedge 1\right) \,.$$

with $\gamma = 1$ for the SFL and $\gamma = s$ for the RFL. It is hopeless to resume the huge literature about estimates on Green functions.

Reminder about Green functions

Notation. Let (λ_k, Φ_k) be the eigenvalues and eigenfunctions of \mathcal{L} . Recall that:

 $\Phi_1(x) \asymp \operatorname{dist}(x, \partial \Omega)^{\gamma}$ with $\gamma = 1$ for the SFL and $\gamma = s$ for the RFL.

The inverse \mathcal{L}^{-1} has a symmetric kernel $G_{\Omega}(x, y)$, which is the Green function:

$$\mathcal{L}^{-1}f(x_0) := \sum_{k=1}^{+\infty} \lambda_k^{-1} \hat{f}_k \Phi_k(x_0) = \int_{\Omega} G_{\Omega}(x, x_0) f(x) \, \mathrm{d}x \, .$$

When dealing with the SFL or RFL, it is well-known that the Green function satisfy the following estimates for all $x, x_0 \in \Omega$:

(Type I)
$$0 \le G_{\Omega}(x, x_0) \le \frac{c_{1,\Omega}}{|x - x_0|^{N-2s}} \sim G_{\mathbb{R}^N}(x, x_0),$$

(Type II)

$$c_{0,\Omega}\Phi_1(x)\Phi_1(x_0) \leq G_{\Omega}(x,x_0) \leq \frac{c_{1,\Omega}}{|x-x_0|^{N-2s}} \left(\frac{\Phi_1(x)}{|x-x_0|^{\gamma}} \wedge 1\right) \left(\frac{\Phi_1(x_0)}{|x-x_0|^{\gamma}} \wedge 1\right) \,.$$

with $\gamma = 1$ for the SFL and $\gamma = s$ for the RFL. It is hopeless to resume the huge literature about estimates on Green functions.

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00 The (() - 12 ferror - 1-4; -	0000000000	00000	0000000	0000000	
The "dual" formulatio	n of the problem	l			

Recall the homogeneous Dirichlet problem:

(HDP)
$$\begin{cases} \partial_t u = -\mathcal{L} F(u), & \text{in } (0, +\infty) \times \Omega \\ u(0, x) = u_0(x), & \text{in } \Omega \\ u(t, x) = 0, & \text{on the lateral boundary.} \end{cases}$$

We can formulate a "dual problem", using the inverse \mathcal{L}^{-1} as follows

 $\partial_t U = -F(u)\,,$

where

$$U(t,x) := \mathcal{L}^{-1}[u(t,\cdot)](x) = \int_{\Omega} \mathbb{K}(x,y)u(t,y)\,\mathrm{d}y\,.$$

This formulation encodes the lateral boundary conditions in the inverse operator \mathcal{L}^{-1} .

Remark. This formulation has been used before by Pierre, Vázquez [...] to prove (in the \mathbb{R}^N case) uniqueness of the "fundamental solution", i.e. the solution corresponding to $u_0 = \delta_{x_0}$, known as the Barenblatt solution.

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup					
00 The (() - 12 fermion le () -	00000000000	00000	0000000	0000000						
The "dual" formulatio	The "dual" formulation of the problem									

Definition of Weak Dual solutions

Recall that

$$\|f\|_{\mathrm{L}^{1}_{\Phi_{1}}(\Omega)} = \int_{\Omega} f(x)\Phi_{1}(x)\,\mathrm{d}x\,,\quad\text{and}\quad\mathrm{L}^{1}_{\Phi_{1}}(\Omega) := \{f:\Omega\to\mathbb{R}\,\big|\,\|f\|_{\mathrm{L}^{1}_{\Phi_{1}}(\Omega)}<\infty\}\,.$$

Weak Dual Solutions

A function *u* is a weak dual solution to the (HDP) if: $u \in C([0,\infty) : L^{1}_{\Phi_{1}}(\Omega)), F(u) \in L^{1}((0,T) : L^{1}_{\Phi_{1}}(\Omega)),$ and moreover $u(0,x) = u_{0} \in L^{1}_{\Phi_{1}}(\Omega)).$ The following identity holds for every ψ with $\psi/\Phi_{1} \in C^{1}_{c}((0,T) : L^{\infty}(\Omega))$:

$$\int_0^T \int_\Omega \mathcal{L}^{-1}(u) \, \frac{\partial \psi}{\partial t} \, \mathrm{d}x \, \mathrm{d}t - \int_0^\infty \int_\Omega F(u) \, \psi \, \mathrm{d}x \, \mathrm{d}t = 0.$$

We will need a special class of weak dual solutions:

The class S_p of weak dual solutions

We consider a class S_p of nonnegative weak dual solutions u to the (HDP) with initial data in $u_0 \in L^1_{\Phi_1}(\Omega)$, such that (i) the map $u_0 \mapsto u(t)$ is order preserving in $L^1_{\Phi_1}(\Omega)$; (ii) for all t > 0 we have $u(t) \in L^p(\Omega)$ for some $p \ge 1$.

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	0000000000	00000	0000000	0000000	
Monotonicity estimates					

Monotonicity estimates for powers

The nonlinear flow has a very important monotonicity property, which is related to the *m*-homogeneity of the equation. Benilan and Crandall proved the following estimates for the case $F(u) = u^m$, with m > 1.

Monotonicity estimates

Every mild solution $u \ge 0$ corresponding to an initial datum $u_0 \in L^1(\Omega)$, satisfies the following differential estimate

$$u_t \ge -\frac{u}{(m-1)t}$$
 in the sense of distributions in $(0,\infty) \times \Omega$.

Alternatively, we have the following monotonicity in time, namely the function

 $t \mapsto t^{\frac{1}{m-1}}u(t,x)$ is nondecreasing in t > 0 for a.e. $x \in \Omega$.

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	0000000	
The fundamental pointwise estimates					

The fundamental pointwise estimates I: the pure power case

Theorem (M.B. and J. L. Vázquez, 2013) Let $0 \le u \in S_p$, with p > N/2s. Then, $\int_{\Omega} u(t,x)G_{\Omega}(x,x_0) dx \le \int_{\Omega} u_0(x)G_{\Omega}(x,x_0) dx$ for all t > 0. Moreover, for almost every $0 \le t_0 \le t_1$ and almost every $x_0 \in \Omega$, we have $\frac{t_0 \frac{m}{m-1}}{t_1 \frac{m}{m-1}} (t_1 - t_0) u^m(t_0, x_0) \le \int_{\Omega} \left[u(t_0, x) - u(t_1, x) \right] G_{\Omega}(x, x_0) dx \le c_m \frac{t_1 \frac{m}{m-1}}{t_0 \frac{1}{m-1}} u^m(t_1, x_0)$ with $c_m = m - 1$

Remark. As a consequence of the above inequality and Hölder inequality, we have that $S_p = S_{\infty}$, when p > N/2s.

A more general setup

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	0000000000	●0000	00000000	0000000	
Summary					

Upper Estimates

• Absolute upper bounds

- Absolute bounds
- Sharp upper boundary behaviour

Smoothing Effects

- L^1 - L^∞ Smoothing Effects
- $L^1_{\Phi_1}$ - L^∞ Smoothing Effects
- Backward in time Smoothing effects

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	0000000	
Absolute upper bounds					

Theorem. (Absolute upper estimate and boundary behaviour) (M.B. & J. L. Vázquez, 2013)

Let *u* be a weak dual solution. Then, there exists universal constants $K_1, K_2 > 0$ such that the following estimates hold true: Type I estimates imply

$$||u(t)||_{L^{\infty}(\Omega)} \le \frac{K_1}{t^{\frac{1}{m-1}}}, \quad \text{for all } t > 0.$$

Moreover, Type II estimates imply

$$u(t,x) \le K_2 \frac{\Phi_1(x)^{\frac{1}{m}}}{t^{\frac{1}{m-1}}}$$

for all t > 0 and $x \in \Omega$.

- This is a very strong regularization *independent* of the initial datum u_0 .
- The boundary estimates are sharp, since we will obtain lower bounds with matching powers.
- This bounds give a sharp time decay for the solution, but only for large times, say t ≥ 1. For small times we will obtain a better time decay when 0 < t < 1, in the form of smoothing effects

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	0000000	
Absolute upper bounds					

Theorem. (Absolute upper estimate and boundary behaviour) (M.B. & J. L. Vázquez, 2013)

Let *u* be a weak dual solution. Then, there exists universal constants $K_1, K_2 > 0$ such that the following estimates hold true: Type I estimates imply

$$||u(t)||_{L^{\infty}(\Omega)} \le \frac{K_1}{t^{\frac{1}{m-1}}}, \quad \text{for all } t > 0.$$

Moreover, Type II estimates imply

$$u(t,x) \le K_2 \frac{\Phi_1(x)^{\frac{1}{m}}}{t^{\frac{1}{m-1}}}$$

for all t > 0 and $x \in \Omega$.

- This is a very strong regularization *independent* of the initial datum u_0 .
- The boundary estimates are sharp, since we will obtain lower bounds with matching powers.
- This bounds give a sharp time decay for the solution, but only for large times, say t ≥ 1. For small times we will obtain a better time decay when 0 < t < 1, in the form of smoothing effects

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	0000000	
Absolute upper bounds					

Sketch of the proof of Absolute Bounds

• STEP 1. First upper estimates. Recall the pointwise estimate:

$$\left(\frac{t_0}{t_1}\right)^{\frac{m}{m-1}} (t_1 - t_0) u^m(t_0, x_0) \le \int_{\Omega} u(t_0, x) G_{\Omega}(x, x_0) \, \mathrm{d}x - \int_{\Omega} u(t_1, x) G_{\Omega}(x, x_0) \, \mathrm{d}x.$$

for any $u \in \mathcal{S}_p$, all $0 \le t_0 \le t_1$ and all $x_0 \in \Omega$. Choose $t_1 = 2t_0$ to get

(*)
$$u^{m}(t_{0}, x_{0}) \leq \frac{2^{\frac{m}{m-1}}}{t_{0}} \int_{\Omega} u(t_{0}, x) G_{\Omega}(x, x_{0}) \, \mathrm{d}x \, .$$

Recall that $u \in S_p$ with p > N/(2s), means $u(t) \in L^p(\Omega)$ for all t > 0, so that:

$$u^{m}(t_{0}, x_{0}) \leq \frac{c_{0}}{t_{0}} \int_{\Omega} u(t_{0}, x) G_{\Omega}(x, x_{0}) \, \mathrm{d}x \leq \frac{c_{0}}{t_{0}} \|u(t_{0})\|_{\mathrm{L}^{p}(\Omega)} \|G_{\Omega}(\cdot, x_{0})\|_{\mathrm{L}^{q}(\Omega)} < +\infty$$

since $G_{\Omega}(\cdot, x_0) \in L^q(\Omega)$ for all 0 < q < N/(N-2s), so that $u(t_0) \in L^{\infty}(\Omega)$ for all $t_0 > 0$.

• STEP 2. Let us estimate the r.h.s. of (*) as follows:

$$u^{m}(t_{0}, \mathbf{x}_{0}) \leq \frac{c_{0}}{t_{0}} \int_{\Omega} u(t_{0}, x) G_{\Omega}(x, \mathbf{x}_{0}) \, \mathrm{d}x \leq \|u(t_{0})\|_{\mathrm{L}^{\infty}(\Omega)} \frac{c_{0}}{t_{0}} \int_{\Omega} G_{\Omega}(x, \mathbf{x}_{0}) \, \mathrm{d}x$$

Taking the supremum over $x_0 \in \Omega$ of both sides, we get:

$$\|u(t_0)\|_{L^{\infty}(\Omega)}^{m-1} \le \frac{c_0}{t_0} \sup_{x_0 \in \Omega} \int_{\Omega} G_{\Omega}(x, x_0) \, \mathrm{d}x \le \frac{K_1^{m-1}}{t_0} \quad \Box$$

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	0000000	
Absolute upper bounds					

Sketch of the proof of Absolute Bounds

• STEP 1. First upper estimates. Recall the pointwise estimate:

$$\left(\frac{t_0}{t_1}\right)^{\frac{m}{m-1}} (t_1 - t_0) u^m(t_0, x_0) \le \int_{\Omega} u(t_0, x) G_{\Omega}(x, x_0) \, \mathrm{d}x - \int_{\Omega} u(t_1, x) G_{\Omega}(x, x_0) \, \mathrm{d}x.$$

for any $u \in \mathcal{S}_p$, all $0 \le t_0 \le t_1$ and all $x_0 \in \Omega$. Choose $t_1 = 2t_0$ to get

(*)
$$u^{m}(t_{0}, x_{0}) \leq \frac{2^{\frac{m}{m-1}}}{t_{0}} \int_{\Omega} u(t_{0}, x) G_{\Omega}(x, x_{0}) \, \mathrm{d}x \, .$$

Recall that $u \in S_p$ with p > N/(2s), means $u(t) \in L^p(\Omega)$ for all t > 0, so that:

$$u^{m}(t_{0}, x_{0}) \leq \frac{c_{0}}{t_{0}} \int_{\Omega} u(t_{0}, x) G_{\Omega}(x, x_{0}) \, \mathrm{d}x \leq \frac{c_{0}}{t_{0}} \|u(t_{0})\|_{\mathrm{L}^{p}(\Omega)} \|G_{\Omega}(\cdot, x_{0})\|_{\mathrm{L}^{q}(\Omega)} < +\infty$$

since $G_{\Omega}(\cdot, x_0) \in L^q(\Omega)$ for all 0 < q < N/(N-2s), so that $u(t_0) \in L^{\infty}(\Omega)$ for all $t_0 > 0$.

• STEP 2. Let us estimate the r.h.s. of (*) as follows:

$$u^{m}(t_{0}, \mathbf{x}_{0}) \leq \frac{c_{0}}{t_{0}} \int_{\Omega} u(t_{0}, x) G_{\Omega}(x, \mathbf{x}_{0}) \, \mathrm{d}x \leq \|u(t_{0})\|_{\mathrm{L}^{\infty}(\Omega)} \frac{c_{0}}{t_{0}} \int_{\Omega} G_{\Omega}(x, \mathbf{x}_{0}) \, \mathrm{d}x.$$

Taking the supremum over $x_0 \in \Omega$ of both sides, we get:

$$\left\| u(t_0) \right\|_{\mathbf{L}^{\infty}(\Omega)}^{m-1} \leq \frac{c_0}{t_0} \sup_{x_0 \in \Omega} \int_{\Omega} G_{\Omega}(x, x_0) \, \mathrm{d}x \leq \frac{K_1^{m-1}}{t_0} \quad \Box$$

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	00000000	0000000	
Smoothing Effects					

Define the exponents:

$$\vartheta_{1,\gamma} = \frac{1}{2s + (N + \gamma)(m - 1)}$$
 and $\vartheta_1 = \vartheta_{1,0} = \frac{1}{2s + N(m - 1)}$

Theorem. (Smoothing effects) (M.B. & J. L. Vázquez, 2013)

There exist universal constants K_3 , $K_4 > 0$ such that the following estimates hold. L¹-L^{∞} SMOOTHING EFFECT: are consequence of Type I bounds

$$\|u(t)\|_{L^{\infty}(\Omega)} \leq \frac{K_{3}}{t^{N\vartheta_{1}}} \|u(t)\|_{L^{1}(\Omega)}^{2s\vartheta_{1}} \leq \frac{K_{3}}{t^{N\vartheta_{1}}} \|u_{0}\|_{L^{1}(\Omega)}^{2s\vartheta_{1}} \qquad \text{for all } t > 0.$$

 $L^{1}_{\Phi_{1}}$ - L^{∞} SMOOTHING EFFECT: are consequence of Type II bounds; for all t > 0:

$$\|u(t)\|_{\mathrm{L}^{\infty}(\Omega)} \leq \frac{K_4}{t^{(N+\gamma)\vartheta_{1,\gamma}}} \|u(t)\|_{\mathrm{L}^{1}_{\Phi_{1}}(\Omega)}^{2s\vartheta_{1,\gamma}} \leq \frac{K_4}{t^{(N+\gamma)\vartheta_{1,\gamma}}} \|u_0\|_{\mathrm{L}^{1}_{\Phi_{1}}(\Omega)}^{2s\vartheta_{1,\gamma}}$$

- A novelty is that we get instantaneous smoothing effects.
- Also the weighted smoothing effect is new (as far as we know).
- The time decay is better for small times 0 < t < 1 than the one given by absolute bounds, namely

$$(N+\gamma)\vartheta_{1,\gamma} = \frac{N+\gamma}{2+(N+\gamma)(m-1)} < \frac{1}{m-1}.$$

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	00000000	0000000	
Smoothing Effects					

Define the exponents:

$$\vartheta_{1,\gamma} = \frac{1}{2s + (N + \gamma)(m - 1)}$$
 and $\vartheta_1 = \vartheta_{1,0} = \frac{1}{2s + N(m - 1)}$

Theorem. (Smoothing effects) (M.B. & J. L. Vázquez, 2013)

There exist universal constants K_3 , $K_4 > 0$ such that the following estimates hold. L¹-L^{∞} SMOOTHING EFFECT: are consequence of Type I bounds

$$\|u(t)\|_{L^{\infty}(\Omega)} \leq \frac{K_{3}}{t^{N\vartheta_{1}}} \|u(t)\|_{L^{1}(\Omega)}^{2s\vartheta_{1}} \leq \frac{K_{3}}{t^{N\vartheta_{1}}} \|u_{0}\|_{L^{1}(\Omega)}^{2s\vartheta_{1}} \qquad \text{for all } t > 0.$$

 $L^{1}_{\Phi_{1}}$ - L^{∞} SMOOTHING EFFECT: are consequence of Type II bounds; for all t > 0:

$$|u(t)\|_{\mathcal{L}^{\infty}(\Omega)} \leq \frac{K_4}{t^{(N+\gamma)\vartheta_{1,\gamma}}} \|u(t)\|_{\mathcal{L}^1_{\Phi_1}(\Omega)}^{2s\vartheta_{1,\gamma}} \leq \frac{K_4}{t^{(N+\gamma)\vartheta_{1,\gamma}}} \|u_0\|_{\mathcal{L}^1_{\Phi_1}(\Omega)}^{2s\vartheta_{1,\gamma}}$$

- A novelty is that we get instantaneous smoothing effects.
- Also the weighted smoothing effect is new (as far as we know).
- The time decay is better for small times 0 < t < 1 than the one given by absolute bounds, namely

$$(N+\gamma)\vartheta_{1,\gamma} = \frac{N+\gamma}{2+(N+\gamma)(m-1)} < \frac{1}{m-1}.$$

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	0000000	
Smoothing Effects					

Theorem. (Backward Smoothing effects) (M.B. & J. L. Vázquez, 2013) There exists a universal constant $K_4 > 0$ such that for all t, h > 0

$$\|u(t)\|_{L^{\infty}(\Omega)} \leq \frac{K_4}{t^{(d+\gamma)\vartheta_{1,\gamma}}} \left(1 \vee \frac{h}{t}\right)^{\frac{2\iota\vartheta_{1,\gamma}}{m-1}} \|u(t+h)\|_{L^1_{\Phi_1}(\Omega)}^{2\iota\vartheta_{1,\gamma}}.$$

Proof. By the monotonicity estimates, the function $u(x, t)t^{1/(m-1)}$ is non-decreasing in time for fixed *x*, therefore using the smoothing effect, we get for all $t_1 \ge t$:

$$\begin{aligned} \|u(t)\|_{L^{\infty}(\Omega)} &\leq \frac{K_4}{t^{(N+1)\vartheta_{1,\gamma}}} \left(\int_{\Omega} u(t,x)\Phi_1(x) \,\mathrm{d}x \right)^{2s\vartheta_{1,\gamma}} \\ &\leq \frac{K_4}{t^{(N+1)\vartheta_{1,\gamma}}} \left(\frac{t_1^{\frac{1}{m-1}}}{t^{\frac{1}{m-1}}} \int_{\Omega} u(t_1,x)\Phi_1(x) \,\mathrm{d}x \right)^{2s\vartheta_{1,\gamma}} \end{aligned}$$

where K_4 is as in the smoothing effects. Finally, let $t_1 = t + h$.

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	0000000	
Smoothing Effects					

Theorem. (Backward Smoothing effects) (M.B. & J. L. Vázquez, 2013)

There exists a universal constant $K_4 > 0$ such that for all t, h > 0

$$\|u(t)\|_{\mathcal{L}^{\infty}(\Omega)} \leq \frac{K_4}{t^{(d+\gamma)\vartheta_{1,\gamma}}} \left(1 \vee \frac{h}{t}\right)^{\frac{2s\vartheta_{1,\gamma}}{m-1}} \|u(t+h)\|_{\mathcal{L}^{1}_{\Phi_1}(\Omega)}^{2s\vartheta_{1,\gamma}}.$$

Proof. By the monotonicity estimates, the function $u(x, t)t^{1/(m-1)}$ is non-decreasing in time for fixed *x*, therefore using the smoothing effect, we get for all $t_1 \ge t$:

$$\begin{split} \|u(t)\|_{L^{\infty}(\Omega)} &\leq \frac{K_4}{t^{(N+1)\vartheta_{1,\gamma}}} \left(\int_{\Omega} u(t,x) \Phi_1(x) \,\mathrm{d}x \right)^{2s\vartheta_{1,\gamma}} \\ &\leq \frac{K_4}{t^{(N+1)\vartheta_{1,\gamma}}} \left(\frac{t_1^{\frac{1}{m-1}}}{t^{\frac{1}{m-1}}} \int_{\Omega} u(t_1,x) \Phi_1(x) \,\mathrm{d}x \right)^{2s\vartheta_{1,\gamma}} \end{split}$$

where K_4 is as in the smoothing effects. Finally, let $t_1 = t + h$.

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	0000000	
Summary					

Lower bounds and Harnack inequalities

- Quantitative positivity estimates
- Weighted $L^1_{\Phi_1}$ estimates
- Harnack inequalities
- Estimates for Elliptic equations

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	0000000	
Quantitative positivity estimates					

Theorem. (Lower absolute and boundary estimates)

(M.B. & J. L. Vázquez, 2013)

Let let m > 1 and let $u \ge 0$ be a weak dual solution to the Dirichlet problem (1), corresponding to the initial datum $0 \le u_0 \in L^1_{\Phi_1}(\Omega)$. Then, there exist constants $L_0(\Omega), L_1(\Omega) > 0$, so that, setting

$$t_* = \frac{L_0(\Omega)}{\left(\int_{\Omega} u_0 \Phi_1 \,\mathrm{d}x\right)^{m-1}},$$

we have that for all $t \ge t_*$ and all $x_0 \in \Omega$, the following inequality holds:

$$u(t,x_0) \ge L_1(\Omega) \frac{\Phi_1(x_0)^{\frac{1}{m}}}{t^{\frac{1}{m-1}}}.$$

The constants $L_0(\Omega), L_1(\Omega) > 0$, depend on N, m, s and on Ω , but not on u (or any norm of u); they have an explicit form.

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	0000000	
Quantitative positivity estimates					

• Recall that Φ_1 is the first eigenfunction of \mathcal{L} and satisfies:

$$\Phi_1(x) \simeq \operatorname{dist}(x, \partial \Omega)^{\gamma} \wedge 1$$
 for all $x \in \Omega$.

Therefore, the lower boundary behaviour of $u(t, \cdot)$ is:

$$u(t,x) \geq \frac{L_1}{t_0^{\frac{1}{m-1}}} \left(\operatorname{dist}(x_0, \partial \Omega)^{\frac{\gamma}{m}} \wedge 1 \right), \quad \text{for all } t_0 \geq t_* \geq 0 \text{ and } x_0 \in \Omega.$$

- This boundary behaviour is sharp because we have upper bounds with matching powers of Φ_1 .
- t_* is an estimate the time that it takes to fill the hole: if u_0 is concentrated close to the border (leaves an hole in the middle of Ω), then $\int_{\Omega} u_0 \Phi_1 dx$ is small, therefore t_* becomes very large, therefore it takes a lot of time to fill the hole.
- These estimates can also be rewritten as Aronson-Caffarelli type estimates:

either
$$t \leq t_* = \frac{L_0}{\left(\int_{\Omega} u_0 \Phi_1 \, dx\right)^{m-1}}$$
, or $u(t, x_0) \geq L_1 \frac{\Phi_1(x_0)^{\frac{1}{m}}}{t^{\frac{1}{m-1}}} \quad \forall t \geq t_*$,
hich gives, for all $t \geq 0$ and all $x_0 \in \Omega$:
 $u(t, x_0) \geq \frac{L_1 \Phi_1(x_0)^{\frac{1}{m}}}{t^{\frac{1}{m-1}}} \left[1 - \left(\frac{t_*}{t}\right)^{\frac{1}{m-1}}\right]$.

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	0000000	
Quantitative positivity estimates					

• Recall that Φ_1 is the first eigenfunction of \mathcal{L} and satisfies:

$$\Phi_1(x) \asymp \operatorname{dist}(x, \partial \Omega)^{\gamma} \wedge 1$$
 for all $x \in \Omega$.

Therefore, the lower boundary behaviour of $u(t, \cdot)$ is:

$$u(t,x) \geq \frac{L_1}{t_0^{\frac{1}{m-1}}} \left(\operatorname{dist}(x_0, \partial \Omega)^{\frac{\gamma}{m}} \wedge 1 \right), \quad \text{for all } t_0 \geq t_* \geq 0 \text{ and } x_0 \in \Omega.$$

- This boundary behaviour is sharp because we have upper bounds with matching powers of Φ_1 .
- t_* is an estimate the time that it takes to fill the hole: if u_0 is concentrated close to the border (leaves an hole in the middle of Ω), then $\int_{\Omega} u_0 \Phi_1 dx$ is small, therefore t_* becomes very large, therefore it takes a lot of time to fill the hole.

• These estimates can also be rewritten as Aronson-Caffarelli type estimates:

either
$$t \leq t_* = \frac{L_0}{\left(\int_{\Omega} u_0 \Phi_1 \, dx\right)^{m-1}}$$
, or $u(t, x_0) \geq L_1 \frac{\Phi_1(x_0)^{\frac{1}{m}}}{t^{\frac{1}{m-1}}} \quad \forall t \geq t_*$,
which gives, for all $t \geq 0$ and all $x_0 \in \Omega$:
 $u(t, x_0) \geq \frac{L_1 \Phi_1(x_0)^{\frac{1}{m}}}{t^{\frac{1}{m-1}}} \left[1 - \left(\frac{t_*}{t}\right)^{\frac{1}{m-1}}\right]$.

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	0000000	
Quantitative positivity estimates					

• Recall that Φ_1 is the first eigenfunction of \mathcal{L} and satisfies:

$$\Phi_1(x) \asymp \operatorname{dist}(x, \partial \Omega)^{\gamma} \wedge 1$$
 for all $x \in \Omega$.

Therefore, the lower boundary behaviour of $u(t, \cdot)$ is:

$$u(t,x) \geq \frac{L_1}{t_0^{\frac{1}{m-1}}} \left(\operatorname{dist}(x_0, \partial \Omega)^{\frac{\gamma}{m}} \wedge 1 \right), \quad \text{for all } t_0 \geq t_* \geq 0 \text{ and } x_0 \in \Omega.$$

- This boundary behaviour is sharp because we have upper bounds with matching powers of Φ_1 .
- t_* is an estimate the time that it takes to fill the hole: if u_0 is concentrated close to the border (leaves an hole in the middle of Ω), then $\int_{\Omega} u_0 \Phi_1 dx$ is small, therefore t_* becomes very large, therefore it takes a lot of time to fill the hole.
- These estimates can also be rewritten as Aronson-Caffarelli type estimates:

either
$$t \leq t_* = \frac{L_0}{\left(\int_{\Omega} u_0 \Phi_1 \, dx\right)^{m-1}}$$
, or $u(t, x_0) \geq L_1 \frac{\Phi_1(x_0)^{\frac{1}{m}}}{t^{\frac{1}{m-1}}} \quad \forall t \geq t_*$,
which gives, for all $t \geq 0$ and all $x_0 \in \Omega$:
 $u(t, x_0) \geq \frac{L_1 \Phi_1(x_0)^{\frac{1}{m}}}{t^{\frac{1}{m-1}}} \left[1 - \left(\frac{t_*}{t}\right)^{\frac{1}{m-1}}\right]$.

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	0000000	
Quantitative positivity estimates					

wł

• Recall that Φ_1 is the first eigenfunction of \mathcal{L} and satisfies:

$$\Phi_1(x) \asymp \operatorname{dist}(x, \partial \Omega)^{\gamma} \wedge 1$$
 for all $x \in \Omega$.

Therefore, the lower boundary behaviour of $u(t, \cdot)$ is:

$$u(t,x) \geq \frac{L_1}{t_0^{\frac{1}{m-1}}} \left(\operatorname{dist}(x_0, \partial \Omega)^{\frac{\gamma}{m}} \wedge 1 \right), \quad \text{for all } t_0 \geq t_* \geq 0 \text{ and } x_0 \in \Omega.$$

- This boundary behaviour is sharp because we have upper bounds with matching powers of Φ_1 .
- t_* is an estimate the time that it takes to fill the hole: if u_0 is concentrated close to the border (leaves an hole in the middle of Ω), then $\int_{\Omega} u_0 \Phi_1 dx$ is small, therefore t_* becomes very large, therefore it takes a lot of time to fill the hole.
- These estimates can also be rewritten as Aronson-Caffarelli type estimates:

either
$$t \le t_* = \frac{L_0}{\left(\int_{\Omega} u_0 \Phi_1 \, dx\right)^{m-1}}$$
, or $u(t, x_0) \ge L_1 \frac{\Phi_1(x_0)^{\frac{1}{m}}}{t^{\frac{1}{m-1}}} \quad \forall t \ge t_*$,
nich gives, for all $t \ge 0$ and all $x_0 \in \Omega$:
 $u(t, x_0) \ge \frac{L_1 \Phi_1(x_0)^{\frac{1}{m}}}{t^{\frac{1}{m-1}}} \left[1 - \left(\frac{t_*}{t}\right)^{\frac{1}{m-1}}\right]$.

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	0000000000	00000	00000000	0000000	
Weighted L ¹ -estimates					

Proposition. (Weighted L¹-estimates)

Under the current assumptions on *m* and *u*, the integral $\int_{\Omega} u(t, x)\Phi_1(x) dx$ is monotonically non-increasing in time and for all $0 \le \tau_0 \le \tau$, $t < +\infty$ we have

$$\begin{split} \int_{\Omega} u(\tau, x) \Phi_1(x) \, \mathrm{d}x &\leq \int_{\Omega} u(t, x) \Phi_1(x) \, \mathrm{d}x \\ &+ K_5 \, \left| t - \tau \right|^{2s\vartheta_{1,\gamma}} \left(\int_{\Omega} u(\tau_0) \Phi_1 \, \mathrm{d}x \right)^{2s(m-1)\vartheta_{1,\gamma} + 1} \end{split}$$

where $K_5 := \lambda_1 K_4 / (2s\vartheta_{1,\gamma})$ and $K_4 > 0$ is the constant in the smoothing effects.

Remark. Notice that, contrary to the usual monotonicity, we can allow $\tau \leq t$.

Proposition. (Almost $L_{\Phi_1}^1$ -contractivity)

For ordered solutions $u \ge v$, we have that for all $0 \le \tau_0 \le \tau, t < +\infty$

$$\begin{split} \int_{\Omega} \left[u(\tau, x) - v(\tau, x) \right] \Phi_1(x) \, \mathrm{d}x &\leq \int_{\Omega} \left[u(t, x) - v(t, x) \right] \Phi_1(x) \, \mathrm{d}x \\ &+ K_5[u(\tau_0)] \left| t - \tau \right|^{2s\vartheta_1, \gamma} \int_{\Omega} \left[u(\tau_0, x) - v(\tau_0, x) \right] \Phi_1 \, \mathrm{d}x \end{split}$$

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	0000000000	00000	00000000	0000000	
Weighted L ¹ -estimates					

Proposition. (Weighted L¹-estimates)

Under the current assumptions on *m* and *u*, the integral $\int_{\Omega} u(t, x)\Phi_1(x) dx$ is monotonically non-increasing in time and for all $0 \le \tau_0 \le \tau$, $t < +\infty$ we have

$$\begin{split} \int_{\Omega} u(\tau, x) \Phi_1(x) \, \mathrm{d}x &\leq \int_{\Omega} u(t, x) \Phi_1(x) \, \mathrm{d}x \\ &+ K_5 \, \left| t - \tau \right|^{2s\vartheta_{1,\gamma}} \left(\int_{\Omega} u(\tau_0) \Phi_1 \, \mathrm{d}x \right)^{2s(m-1)\vartheta_{1,\gamma} + 1} \end{split}$$

where $K_5 := \lambda_1 K_4 / (2s\vartheta_{1,\gamma})$ and $K_4 > 0$ is the constant in the smoothing effects.

Remark. Notice that, contrary to the usual monotonicity, we can allow $\tau \leq t$.

Proposition. (Almost $L^1_{\Phi_1}$ -contractivity)

For ordered solutions $u \ge v$, we have that for all $0 \le \tau_0 \le \tau, t < +\infty$

$$\begin{split} \int_{\Omega} \left[u(\tau, x) - v(\tau, x) \right] \Phi_1(x) \, \mathrm{d}x &\leq \int_{\Omega} \left[u(t, x) - v(t, x) \right] \Phi_1(x) \, \mathrm{d}x \\ &+ K_5[u(\tau_0)] \, \left| t - \tau \right|^{2s\vartheta_1, \gamma} \, \int_{\Omega} \left[u(\tau_0, x) - v(\tau_0, x) \right] \Phi_1 \, \mathrm{d}x \end{split}$$

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	00000000	0000000	
Lower bounds for the weighted L ¹ -nor	m				

Corollary. (Backward in time $L^1_{\Phi_1}$ lower bounds)

For all

$$0 \le \tau_0 \le t \le \tau_0 + \frac{1}{K_6 \left(\int_{\Omega} u(\tau_0) \Phi_1 \, \mathrm{d} x \right)^{m-1}}$$

we have

$$\frac{1}{2}\int_{\Omega}u(\tau_0,x)\Phi_1(x)\,\mathrm{d} x\leq \int_{\Omega}u(t,x)\Phi_1(x)\,\mathrm{d} x\,.$$

where $K_6 = (2K_5)^{1/(2s\vartheta_{1,1})} > 0$ and K_5 is as in the above Proposition.

Corollary. (Absolute lower bounds for the $L_{\Phi_1}^1$ norm)

The choice $\tau_0 = 0$ and $t = K_6^{-1} \left(\int_{\Omega} u_0 \Phi_1 \, dx \right)^{-(m-1)}$ gives

$$t^{\frac{1}{m-1}} \int_{\Omega} u(t,x) \Phi_1(x) \, \mathrm{d}x \ge \frac{t^{\frac{1}{m-1}}}{2} \int_{\Omega} u_0(x) \Phi_1(x) \, \mathrm{d}x = \frac{1}{2K_6^{m-1}}$$

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	00000000	0000000	
Lower bounds for the weighted L ¹ -nor	m				

Corollary. (Backward in time $L^1_{\Phi_1}$ lower bounds)

For all

$$0 \le \tau_0 \le t \le \tau_0 + \frac{1}{K_6 \left(\int_{\Omega} u(\tau_0) \Phi_1 \, \mathrm{d}x\right)^{m-1}}$$

we have

$$\frac{1}{2}\int_{\Omega}u(\tau_0,x)\Phi_1(x)\,\mathrm{d} x\leq \int_{\Omega}u(t,x)\Phi_1(x)\,\mathrm{d} x\,.$$

where $K_6 = (2K_5)^{1/(2s\vartheta_{1,1})} > 0$ and K_5 is as in the above Proposition.

Corollary. (Absolute lower bounds for the $L_{\Phi_1}^1$ norm)

The choice $\tau_0 = 0$ and $t = K_6^{-1} \left(\int_{\Omega} u_0 \Phi_1 \, dx \right)^{-(m-1)}$ gives

$$t^{\frac{1}{m-1}} \int_{\Omega} u(t,x) \Phi_1(x) \, \mathrm{d}x \ge \frac{t^{\frac{1}{m-1}}}{2} \int_{\Omega} u_0(x) \Phi_1(x) \, \mathrm{d}x = \frac{1}{2K_6^{m-1}}$$

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	00000000	0000000	
Harnack inequalities					

Theorem. (Global Harnack Principle) (M.B. & J. L. Vázquez, 2013)

There exist universal constants $H_0, H_1, L_0 > 0$ such that setting

$$t_* = \frac{L_0}{\left(\int_\Omega u_0 \Phi_1 \,\mathrm{d}x\right)^{m-1}},$$

we have that for all $t \ge t_*$ and all $x \in \Omega$, the following inequality holds:

$$H_0 \frac{\Phi_1(x)^{\frac{1}{m}}}{t^{\frac{1}{m-1}}} \le u(t,x) \le H_1 \frac{\Phi_1(x)^{\frac{1}{m}}}{t^{\frac{1}{m-1}}}$$

Recall that Φ_1 is the first eigenfunction of \mathcal{L} .

- This inequality implies local Harnack inequalities of elliptic type
- As a corollary we get the sharp asymptotic behaviour (Part 4)

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	000000000	0000000	
Harnack inequalities					

Solutions *u* to the parabolic problem inherit the Harnack inequality for Φ_1 :

$$\sup_{x\in B_R(x_0)}\Phi_1(x)\leq \mathcal{H}\inf_{x\in B_R(x_0)}\Phi_1(x)\qquad \forall B_R(x_0)\in\Omega.$$

The constant H > 0 is universal (and explicit at least when s = 1, cf. [BGV-2012]).

Theorem. (Local Harnack Inequalities of Elliptic Type) (M.B. & J. L. Vázquez, 2013)

There exist universal constants H_0 , H_1 , $L_0 > 0$ such that setting $t_* = L_0 ||u_0||_{L^1_{\Phi_1}(\Omega)}^{-(m-1)}$, we have that for all $t \ge t_*$ and all $B_R(x_0) \in \Omega$, the following inequality holds:

$$\sup_{x \in B_R(x_0)} u(t, x) \le \frac{H_1 \mathcal{H}^{\frac{1}{m}}}{H_0} \inf_{x \in B_R(x_0)} u(t, x)$$

Corollary. (Local Harnack Inequalities of Backward Type)

Under the runninig assumptions, for all $t \ge t_*$ and all $B_R(x_0) \in \Omega$, we have:

$$\sup_{x \in B_R(x_0)} u(t,x) \le 2 \frac{H_1 \mathcal{H}^{\frac{1}{m}}}{H_0} \inf_{x \in B_R(x_0)} u(t+h,x) \quad \text{for all } 0 \le h \le t_* \,.$$

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	0000000	
Estimates for Elliptic equations					

We consider the homogeneous Dirichlet problem

(1)
$$\begin{cases} \mathcal{L}(V^m) = \lambda V, & \text{in } \Omega, \\ V = 0, & \text{on } \partial \Omega, \end{cases}$$

under the running assumptions on $\Omega, m, s, N, \mathcal{L}$.

Theorem. (Bounds and boundary behaviour for the elliptic problem)

Let $V \ge 0$ be a very weak solution to the Dirichlet Problem (1), then there exist universal positive constants h_0 and h_1 such that the following estimates hold true for all $x_0 \in \Omega$:

$$h_0 \|V\|_{\mathrm{L}^1_{\Phi_1}} \Phi_1(x_0) \le V^m(x_0) \le h_1 \Phi_1(x_0),$$

where $h_1 = c_{5,\Omega} \lambda^{1/(m-1)}$ and $h_0 = c_{0,\Omega} \lambda$, with $c_{5,\Omega}$ given in Lemma "Integral Green function estimates II" and $c_{0,\Omega}$ is the constant in the Type II lower estimates.

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	00000000	000000	
Summary					

Existence, uniqueness and asymptotic behaviour of solutions

• Existence and uniqueness theory

- Existence and uniqueness theory in $L^1_{\Phi_1}$
- Reminder about fractional Sobolev spaces on bounded domains
- Existence and uniqueness theory in $H^*(\Omega)$
- Existence for the elliptic problem via parabolic methods

Asymptotic behaviour of nonnegative solutions

- The rescaled flow and stationary solutions
- Convergence to the stationary profile
- The Friendly Giant and convergence with optimal rate

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	000000	
Existence and uniqueness of weak dual	solutions				

Theorem. (Existence and Uniqueness in $L^1_{\Phi_1}$) (M.B. & J. L. Vázquez, 2013-14)

For every nonnegative $u_0 \in L^1_{\Phi_1}(\Omega)$ there exists a unique minimal weak dual solution to the Dirichlet problem:

(HDP)
$$\begin{cases} u_t + \mathcal{L} F(u) = 0, & \text{in } (0, +\infty) \times \Omega \\ u(0, x) = u_0(x), & \text{in } \Omega \\ u(t, x) = 0, & \text{on the lateral boundary.} \end{cases}$$

Such a solution is obtained as the monotone limit of the semigroup solutions that exist and are unique when the initial data are in $L^1(\Omega)$. The minimal weak dual solution is continuous in the weighted space $u \in C([0, \infty) : L^1_{\Phi_1}(\Omega))$. Moreover, it belongs to the class S.

This is a consequence of the upper estimates and of the almost-contractivity in $L^1_{\Phi}(\Omega)$.

We now pass to a more general framework, and we prove existence and uniqueness.

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	000000	
Existence and uniqueness in H^*					

Consider the Problem

$$\begin{cases} u_t + \mathcal{L}(\varphi(u)) = 0 & \text{in } (0, +\infty) \times \Omega \\ u(0, x) = u_0(x) & \text{in } \Omega \\ u(t, x) = 0 & \text{on } (0, +\infty) \times \Gamma \end{cases}$$

 $\varphi : \mathbb{R} \to \mathbb{R}$ is a continuous, smooth and increasing function. Assume moreover that $\varphi' > 0$, $\varphi(\pm \infty) = \pm \infty$ and $\varphi(0) = 0$. The leading example is $\varphi(u) = |u|^{m-1}u$ with m > 0. \mathcal{L} is a linear operator with eigenelements $(\lambda_{k,s}, \phi_{k,s})$.

We study the above problem in the framework of fractional Sobolev spaces:

$$H(\Omega) = \{ u = \sum_{k=1}^{\infty} u_k \phi_{s,k} \in L^2(\Omega) : ||u||_H^2 = \sum_{k=1}^{\infty} \lambda_{s,k} |u_k|^2 < +\infty \} \subset L^2(\Omega)$$

and let $H^*(\Omega)$ be the topological dual of $H(\Omega)$. Under some assumption on \mathcal{L} , essentially that $\lambda_k \leq C^k$ for some C > 0, we can identify $H(\Omega)$ in terms of more familiar spaces:

$$H(\Omega) = \begin{cases} H_0^s(\Omega) , & \text{if } \frac{1}{2} < s \le 1 , \\ H_{00}^{1/2}(\Omega) , & \text{if } s = \frac{1}{2} , \\ H^s(\Omega) , & \text{if } 0 < s < \frac{1}{2} . \end{cases}$$

There is another possible characterization of the space $H(\Omega)$

 $H(\Omega) = \dot{\mathrm{H}}^{s}(\overline{\Omega}) = \{ u \in H^{s}(\mathbb{R}^{d}) \mid \mathrm{supp}(u) \subset \overline{\Omega} \}$

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	000000	
Existence and uniqueness in H^*					

Consider the Problem

$$\begin{cases} u_t + \mathcal{L}(\varphi(u)) = 0 & \text{in } (0, +\infty) \times \Omega \\ u(0, x) = u_0(x) & \text{in } \Omega \\ u(t, x) = 0 & \text{on } (0, +\infty) \times \Gamma \end{cases}$$

 $\varphi : \mathbb{R} \to \mathbb{R}$ is a continuous, smooth and increasing function. Assume moreover that $\varphi' > 0$, $\varphi(\pm \infty) = \pm \infty$ and $\varphi(0) = 0$. The leading example is $\varphi(u) = |u|^{m-1}u$ with m > 0. \mathcal{L} is a linear operator with eigenelements $(\lambda_{k,s}, \phi_{k,s})$.

We study the above problem in the framework of fractional Sobolev spaces:

$$H(\Omega) = \{ u = \sum_{k=1}^{\infty} u_k \phi_{s,k} \in L^2(\Omega) : \|u\|_H^2 = \sum_{k=1}^{\infty} \lambda_{s,k} |u_k|^2 < +\infty \} \subset L^2(\Omega)$$

and let $H^*(\Omega)$ be the topological dual of $H(\Omega)$. Under some assumption on \mathcal{L} , essentially that $\lambda_k \leq C^k$ for some C > 0, we can identify $H(\Omega)$ in terms of more familiar spaces:

$$H(\Omega) = \left\{ \begin{array}{ll} H_0^s(\Omega) \,, & \quad \text{if } \frac{1}{2} < s \leq 1 \,, \\ H_{00}^{1/2}(\Omega) \,, & \quad \text{if } s = \frac{1}{2} \,, \\ H^s(\Omega) \,, & \quad \text{if } 0 < s < \frac{1}{2} \,. \end{array} \right.$$

There is another possible characterization of the space $H(\Omega)$.

 $H(\Omega) = \dot{\mathrm{H}}^{s}(\overline{\Omega}) = \{ u \in H^{s}(\mathbb{R}^{d}) \mid \mathrm{supp}(u) \subset \overline{\Omega} \}$

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	000000	
Existence and uniqueness in H^*					

Consider the Problem

$$\begin{cases} u_t + \mathcal{L}(\varphi(u)) = 0 & \text{in } (0, +\infty) \times \Omega \\ u(0, x) = u_0(x) & \text{in } \Omega \\ u(t, x) = 0 & \text{on } (0, +\infty) \times \Gamma \end{cases}$$

 $\varphi : \mathbb{R} \to \mathbb{R}$ is a continuous, smooth and increasing function. Assume moreover that $\varphi' > 0$, $\varphi(\pm \infty) = \pm \infty$ and $\varphi(0) = 0$. The leading example is $\varphi(u) = |u|^{m-1}u$ with m > 0. \mathcal{L} is a linear operator with eigenelements $(\lambda_{k,s}, \phi_{k,s})$.

We study the above problem in the framework of fractional Sobolev spaces:

$$H(\Omega) = \{ u = \sum_{k=1}^{\infty} u_k \phi_{s,k} \in L^2(\Omega) : \|u\|_H^2 = \sum_{k=1}^{\infty} \lambda_{s,k} |u_k|^2 < +\infty \} \subset L^2(\Omega)$$

and let $H^*(\Omega)$ be the topological dual of $H(\Omega)$. Under some assumption on \mathcal{L} , essentially that $\lambda_k \leq C^k$ for some C > 0, we can identify $H(\Omega)$ in terms of more familiar spaces:

$$H(\Omega) = \begin{cases} H_0^s(\Omega) , & \text{if } \frac{1}{2} < s \le 1 , \\ H_{00}^{1/2}(\Omega) , & \text{if } s = \frac{1}{2} , \\ H^s(\Omega) , & \text{if } 0 < s < \frac{1}{2} . \end{cases}$$

There is another possible characterization of the space $H(\Omega)$,

$$H(\Omega) = \dot{\mathrm{H}}^{s}(\overline{\Omega}) = \{ u \in H^{s}(\mathbb{R}^{d}) \mid \mathrm{supp}(u) \subset \overline{\Omega} \}$$

	00000000000000000000000000000000000000	00000	00000000	0000000	A more general setup
Existence and uniqueness in H^*					
(2)	$\begin{cases} u_t + L \\ u(0, x) \\ u(t, x) \end{cases}$	$C(\varphi(u)) = 0$ $= u_0(x)$ = 0	in $(0, +\infty) \times$ in Ω on $(0, +\infty)$	Ω < Γ	
Theorem. (Ex	istence and Un	<mark>iqueness in</mark> H	I*) (M.B., Y. S	ire, J. L. Vázqu	ez, 2014)

For every $u_0 \in H^*(\Omega)$ there exists a unique solution $u \in C([0, T] : H^*(\Omega))$ of Problem 2 for every T > 0, i.e. the solution is global in time. We also have

 $t \varphi(u) \in L^{\infty}(0, T : H^*(\Omega)), \quad t \partial_t u \in L^{\infty}(0, T : H^*(\Omega)).$

We also have $u\varphi(u) \in L^1((0,T) \times \Omega)$. The solution map $S_t : u_0 \mapsto u(t)$ defines a semigroup of (non-strict) contractions in $H^*(\Omega)$, i. e.,

 $\|u(t) - v(t)\|_{H^*(\Omega)} \le \|u(0) - v(0)\|_{H^*(\Omega)},$

which turns out to be also compact in $H^*(\Omega)$.

- The nonlinearity φ is more general than F, treated in the previous parts of the talk.
- We consider any m > 0 and solutions with any sign.
- The proof is based on an abstract result of H. Brezis about generation of semigroups on Hilbert spaces.

	00000000000000000000000000000000000000	00000	00000000	0000000	A more general setup
Existence and uniqueness in H^*					
(2)	$ \left\{\begin{array}{l} u_t + u\\ u(0, x)\\ u(t, x) \end{array}\right. $	$\mathcal{L}(\varphi(u)) = 0$ $u_0(x) = 0$	in $(0, +\infty) \times$ in Ω on $(0, +\infty) >$	Ω < Γ	
Theorem. (Ex	istence and Ur	niqueness in H	I*) (M.B., Y. S	ire, J. L. Vázqu	ez, 2014)

For every $u_0 \in H^*(\Omega)$ there exists a unique solution $u \in C([0, T] : H^*(\Omega))$ of Problem 2 for every T > 0, i.e. the solution is global in time. We also have

 $t \varphi(u) \in \mathcal{L}^{\infty}(0, T : H^*(\Omega)), \quad t \partial_t u \in \mathcal{L}^{\infty}(0, T : H^*(\Omega)).$

We also have $u\varphi(u) \in L^1((0,T) \times \Omega)$. The solution map $S_t : u_0 \mapsto u(t)$ defines a semigroup of (non-strict) contractions in $H^*(\Omega)$, i. e.,

 $\|u(t) - v(t)\|_{H^*(\Omega)} \le \|u(0) - v(0)\|_{H^*(\Omega)},$

which turns out to be also compact in $H^*(\Omega)$.

- The nonlinearity φ is more general than F, treated in the previous parts of the talk.
- We consider any m > 0 and solutions with any sign.
- The proof is based on an abstract result of H. Brezis about generation of semigroups on Hilbert spaces.

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	0000000	
Existence and uniqueness in H^*					

In the rest of the talk we consider the nonlinearity $\varphi(u) = |u|^{m-1}u$ with m > 1.

Theorem. (Asymptotic behaviour) (M.B., Y. Sire, J. L. Vázquez, 2014)

There exists a unique nonnegative selfsimilar solution of the Dirichlet Problem (2)

$$U(\tau, x) = \frac{S(x)}{\tau^{\frac{1}{m-1}}}$$

for some bounded function $S : \Omega \to \mathbb{R}$. Let *u* be any nonnegative H^* -solution to the Dirichlet Problem (2), then we have (unless $u \equiv 0$)

$$\lim_{\tau\to\infty}\tau^{\frac{1}{m-1}}\|u(\tau,\cdot)-U(\tau,\cdot)\|_{\mathrm{L}^{\infty}(\Omega)}=0.$$

The previous theorem admits the following corollary.

Theorem. (Elliptic problem) (M.B., Y. Sire, J. L. Vázquez, 2014)

Let m > 1. There exists a unique H^* solution to the elliptic problem

$$\begin{cases} \mathcal{L}(S^m) = \frac{S}{m-1} & \text{in } \Omega, \\ S(x) = 0 & \text{for } x \in \partial \Omega \end{cases}$$

Notice that the previous theorem is obtained in the present paper through a parabolic technique.

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	0000000	
Existence and uniqueness in H^*					

In the rest of the talk we consider the nonlinearity $\varphi(u) = |u|^{m-1}u$ with m > 1.

Theorem. (Asymptotic behaviour) (M.B., Y. Sire, J. L. Vázquez, 2014)

There exists a unique nonnegative selfsimilar solution of the Dirichlet Problem (2)

$$U(\tau, x) = \frac{S(x)}{\tau^{\frac{1}{m-1}}}$$

for some bounded function $S : \Omega \to \mathbb{R}$. Let *u* be any nonnegative H^* -solution to the Dirichlet Problem (2), then we have (unless $u \equiv 0$)

$$\lim_{\tau\to\infty}\tau^{\frac{1}{m-1}}\|u(\tau,\cdot)-U(\tau,\cdot)\|_{\mathrm{L}^{\infty}(\Omega)}=0.$$

The previous theorem admits the following corollary.

Theorem. (Elliptic problem) (M.B., Y. Sire, J. L. Vázquez, 2014)

Let m > 1. There exists a unique H^* solution to the elliptic problem

$$\begin{cases} \mathcal{L}(S^m) = \frac{S}{m-1} & \text{in } \Omega, \\ S(x) = 0 & \text{for } x \in \partial \Omega \end{cases}$$

Notice that the previous theorem is obtained in the present paper through a parabolic technique.

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	0000000000	00000	0000000	0000000	
Existence and uniqueness in H^*					

Theorem. (Sharp asymptotic with rates) (M.B., Y. Sire, J. L. Vázquez, 2014)

Let *u* be any nonnegative H^* -solution to the Dirichlet Problem , then we have (unless $u \equiv 0$) that there exist $t_0 > 0$ of the form

$$t_0 = \overline{k} \left[\frac{\int_{\Omega} \Phi_1 \, \mathrm{d}x}{\int_{\Omega} u_0 \Phi_1 \, \mathrm{d}x} \right]^{m-1}$$

such that for all $t \ge t_0$ we have

$$\left\|\frac{u(t,\cdot)}{U(t,\cdot)}-1\right\|_{L^{\infty}(\Omega)} \leq \frac{2}{m-1} \frac{t_0}{t_0+t}.$$

We remark that the constant $\overline{k} > 0$ only depends on m, d, s, and $|\Omega|$ and has explicit expressions given in the proof.

- We provide two different proofs of the above result.
- One proof is based on the construction of the so-called Friendly-Giant solution, namely the solution with initial data $u_0 = +\infty$, and is based on the Global Harnack Principle of Part 3
- The second proof is based on a new Entropy method, which is based on a parabolic version of the Caffarelli-Silvestre extension.

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	0000000000	00000	0000000	0000000	
Existence and uniqueness in H^*					

Theorem. (Sharp asymptotic with rates) (M.B., Y. Sire, J. L. Vázquez, 2014)

Let *u* be any nonnegative H^* -solution to the Dirichlet Problem , then we have (unless $u \equiv 0$) that there exist $t_0 > 0$ of the form

$$t_0 = \overline{k} \left[\frac{\int_{\Omega} \Phi_1 \, \mathrm{d}x}{\int_{\Omega} u_0 \Phi_1 \, \mathrm{d}x} \right]^{m-1}$$

such that for all $t \ge t_0$ we have

$$\left\|\frac{u(t,\cdot)}{U(t,\cdot)}-1\right\|_{L^{\infty}(\Omega)} \leq \frac{2}{m-1} \frac{t_0}{t_0+t}.$$

We remark that the constant $\overline{k} > 0$ only depends on m, d, s, and $|\Omega|$ and has explicit expressions given in the proof.

- We provide two different proofs of the above result.
- One proof is based on the construction of the so-called Friendly-Giant solution, namely the solution with initial data $u_0 = +\infty$, and is based on the Global Harnack Principle of Part 3
- The second proof is based on a new Entropy method, which is based on a parabolic version of the Caffarelli-Silvestre extension.

 Outline of the talk
 Part 1
 Part 2
 Part 3
 Part 4
 A more general setup

 00
 00000000
 000000
 0000000
 0000000
 0000000

 Existence and uniqueness in H*

The End

Daedanhi Gamsahabnida!!! Grazie Mille!!! Muchas Gracias!!! Thank You!!! Merci Beaucoup!!!

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	0000000	

A general class of linear operators

We may consider any linear operator \mathcal{L} : dom $(\mathcal{L}) \subseteq L^1(\Omega) \to L^1(\Omega)$ which is densely defined and such that

- (A1) \mathcal{L} is *m*-accretive on L¹(Ω),
- (A2) If $0 \le f \le 1$ then $0 \le e^{-t\mathcal{L}} f \le 1$, or equivalently,
- (A3) If β is a maximal monotone graph in $\mathbb{R} \times \mathbb{R}$ with $0 \in \beta(0), u \in \text{dom}(\mathcal{L})$, $\mathcal{L}u \in L^p(\Omega), 1 \le p \le \infty, v \in L^{p/(p-1)}(\Omega), v(x) \in \beta(u(x))$ a.e., then

$$\int_{\Omega} v(x) \mathcal{L} u(x) \, \mathrm{d} x \ge 0$$

- These assumptions are needed to obtain the existence (and uniqueness) of semigroup (mild) solutions for the nonlinear equation $u_t = \mathcal{L}F(u)$, through a variant of the celebrated Crandall-Liggett theorem, as done by Benilan, Crandall and Pierre.
- Actually, (A1) and (A2) imply that dom(\mathcal{L}) is dense.

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	00000000	0000000	

A general class of linear operators

We may consider any linear operator \mathcal{L} : dom $(\mathcal{L}) \subseteq L^1(\Omega) \to L^1(\Omega)$ which is densely defined and such that

(A1) \mathcal{L} is *m*-accretive on L¹(Ω),

(A2) If $0 \le f \le 1$ then $0 \le e^{-t\mathcal{L}} f \le 1$, or equivalently,

(A3) If β is a maximal monotone graph in $\mathbb{R} \times \mathbb{R}$ with $0 \in \beta(0), u \in \text{dom}(\mathcal{L})$, $\mathcal{L}u \in L^p(\Omega), 1 \le p \le \infty, v \in L^{p/(p-1)}(\Omega), v(x) \in \beta(u(x))$ a.e., then

$$\int_{\Omega} v(x) \mathcal{L} u(x) \, \mathrm{d} x \ge 0$$

- These assumptions are needed to obtain the existence (and uniqueness) of semigroup (mild) solutions for the nonlinear equation $u_t = \mathcal{L}F(u)$, through a variant of the celebrated Crandall-Liggett theorem, as done by Benilan, Crandall and Pierre.
- Actually, (A1) and (A2) imply that dom(\mathcal{L}) is dense.

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	00000000	0000000	

A general class of linear operators

We may consider any linear operator \mathcal{L} : dom $(\mathcal{L}) \subseteq L^1(\Omega) \to L^1(\Omega)$ which is densely defined and such that

- (A1) \mathcal{L} is *m*-accretive on L¹(Ω),
- (A2) If $0 \le f \le 1$ then $0 \le e^{-t\mathcal{L}} f \le 1$, or equivalently,
- (A3) If β is a maximal monotone graph in $\mathbb{R} \times \mathbb{R}$ with $0 \in \beta(0), u \in \text{dom}(\mathcal{L})$, $\mathcal{L}u \in L^p(\Omega), 1 \le p \le \infty, v \in L^{p/(p-1)}(\Omega), v(x) \in \beta(u(x))$ a.e., then

$$\int_{\Omega} v(x) \mathcal{L} u(x) \, \mathrm{d} x \ge 0$$

- These assumptions are needed to obtain the existence (and uniqueness) of semigroup (mild) solutions for the nonlinear equation $u_t = \mathcal{L}F(u)$, through a variant of the celebrated Crandall-Liggett theorem, as done by Benilan, Crandall and Pierre.
- Actually, (A1) and (A2) imply that $dom(\mathcal{L})$ is dense.

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	0000000000	00000	0000000	0000000	

Assumptions on the inverse in the general case

We will assume that the operator \mathcal{L} has an inverse \mathcal{L}^{-1} with a kernel \mathbb{K} such that

$$\mathcal{L}^{-1}f(x) = \int_{\Omega} \mathbb{K}(x, y) f(y) \, \mathrm{d}y,$$

and that satisfies (one of) the following estimates for some $\gamma, s \in (0, 1]$ and $c_{i,\Omega} > 0$

(K1)
$$0 \leq \mathbb{K}(x, y) \leq \frac{c_{1,\Omega}}{|x-y|^{N-2s}}$$

(K2)
$$c_{0,\Omega} \mathbf{d}(x) \mathbf{d}(y) \le \mathbb{K}(x,y) \le \frac{c_{1,\Omega}}{|x-y|^{N-2s}} \left(\frac{\mathbf{d}(x)^{\gamma}}{|x-y|^{\gamma}} \wedge 1\right) \left(\frac{\mathbf{d}(y)^{\gamma}}{|x-y|^{\gamma}} \wedge 1\right)$$

where $\mathbf{d}(x) := \operatorname{dist}(x,\partial\Omega)$.

(K3)
$$c_{0,\Omega}\Phi_1(x)\Phi_1(y) \le \mathbb{K}(x,y) \le \frac{c_{1,\Omega}}{|x-x_0|^{N-2s}} \left(\frac{\Phi_1(x)}{|x-y|^{\gamma}} \wedge 1\right) \left(\frac{\Phi_1(y)}{|x-y|^{\gamma}} \wedge 1\right)$$

- It is easy to see that (K2) implies (K3), more precisely, (K2) implies that Φ₁ behaves like Φ₁ ≍ dist(·, ∂Ω)^γ.
- Indeed Φ₁ need not to be the first eigenfunction, it can be any smooth extension to Ω of (a power of) the distance to the boundary.

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	0000000000	00000	0000000	0000000	

Assumptions on the inverse in the general case

We will assume that the operator \mathcal{L} has an inverse \mathcal{L}^{-1} with a kernel \mathbb{K} such that

$$\mathcal{L}^{-1}f(x) = \int_{\Omega} \mathbb{K}(x, y) f(y) \, \mathrm{d}y,$$

and that satisfies (one of) the following estimates for some $\gamma, s \in (0, 1]$ and $c_{i,\Omega} > 0$

(K1)
$$0 \leq \mathbb{K}(x, y) \leq \frac{c_{1,\Omega}}{|x-y|^{N-2s}}$$

(K2)
$$c_{0,\Omega} \mathbf{d}(x) \mathbf{d}(y) \le \mathbb{K}(x,y) \le \frac{c_{1,\Omega}}{|x-y|^{N-2s}} \left(\frac{\mathbf{d}(x)^{\gamma}}{|x-y|^{\gamma}} \wedge 1\right) \left(\frac{\mathbf{d}(y)^{\gamma}}{|x-y|^{\gamma}} \wedge 1\right)$$

where $\mathbf{d}(x) := \operatorname{dist}(x,\partial\Omega)$.

(K3)
$$c_{0,\Omega}\Phi_1(x)\Phi_1(y) \le \mathbb{K}(x,y) \le \frac{c_{1,\Omega}}{|x-x_0|^{N-2s}} \left(\frac{\Phi_1(x)}{|x-y|^{\gamma}} \wedge 1\right) \left(\frac{\Phi_1(y)}{|x-y|^{\gamma}} \wedge 1\right)$$

- It is easy to see that (K2) implies (K3), more precisely, (K2) implies that Φ₁ behaves like Φ₁ ≍ dist(·, ∂Ω)^γ.
- Indeed Φ₁ need not to be the first eigenfunction, it can be any smooth extension to Ω of (a power of) the distance to the boundary.

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	0000000	

Reminder about Mild solutions and their properties

Mild solutions, or semigroup solutions have been obtained by Benilan, Crandall and Pierre via Crandall-Liggett type theorems; the underlying idea is the use of an Implicit Time Discretization (ITD) method: consider the following partition of [0, T]

$$t_k = \frac{k}{n}T$$
, for any $0 \le k \le n$, with $t_0 = 0$, $t_n = T$, and $h = t_{k+1} - t_k = \frac{T}{n}$.

For any $t \in (0, T)$, the (unique) semigroup solution $u(t, \cdot)$ is obtained as the limit in $L^{1}(\Omega)$ of the solutions $u_{k+1}(\cdot) = u(t_{k+1}, \cdot)$ which solve the following elliptic equation (u_{k} is the datum, is given by the previous iterative step)

$$h\mathcal{L}F(u_{k+1}) + u_{k+1} = u_k$$
 or equivalently $\frac{u_{k+1} - u_k}{h} = -\mathcal{L}F(u_{k+1})$.

Usually such solutions are difficult to treat since a priori they are merely very weak solutions. We can prove the following result:

Semigroup solutions with $u_0 \in L^p$ are weak dual solutions

Let *u* be the unique mild solution corresponding to the initial datum $u_0 \in L^p(\Omega)$ with $p \ge 1$. Then *u* is a weak dual solution and is contained in the class S_p .

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	0000000	

Monotonicity estimates in the general case

When the nonlinearity F is not a pure power, the homogeneity fails, therefore one expects a lack of monotonicity. Crandall and Pierre have proven monotonicity estimate under some assumptions on F.

(N1) Assume $F \in C^1(\mathbb{R} \setminus \{0\})$ and $F' \in \text{Lip}_{\text{loc}}(\mathbb{R} \setminus \{0\})$ and there exists $\mu_0, \mu_1 \in (0, 1]$ such that

$$\mu_0 \leq \frac{F(r)F''(r)}{[F'(r)]^2} \leq \mu_1$$
 a.e. $r > 0$.

Theorem (M. Crandall and M. Pierre, JFA 1982)

Let \mathcal{L} satisfy (A1) and (A2) and let F as satisfy (N1). Then for all nonnegative $u_0 \in L^1(\Omega)$, there exists a unique mild solution u to equation $u_t + \mathcal{L}F(u) = 0$, and the function

(3)
$$t \mapsto t^{\frac{1}{\mu_0}} F(u(t,x))$$
 is nondecreasing in $t > 0$ for a.e. $x \in \Omega$.

Moreover, the semigroup is contractive on $L^1(\Omega)$ and $u \in C([0,\infty) : L^1(\Omega))$.

We notice that (3) is a weak formulation of the monotonicity inequality:

$$\partial_t u \ge -\frac{1}{\mu_0 t} \frac{F(u)}{F'(u)}$$

Outline of the talk	Part 1	Part 2	Part 3	Part 4	A more general setup
00	000000000	00000	0000000	0000000	

The fundamental pointwise estimates II: the general case

Theorem (M.B. and J. L. Vázquez, 2014)

Let $0 \le u \in S_p$, with p > N/2s. Then,

$$\int_{\Omega} u(t,x) \mathbb{K}(x,x_0) \, \mathrm{d}x \le \int_{\Omega} u_0(x) \mathbb{K}(x,x_0) \, \mathrm{d}x \qquad \text{for all } t > 0 \, .$$

Moreover, for almost every $0 < t_0 \le t_1 \le t$ and almost every $x_0 \in \Omega$, we have

$$\left(\frac{t_0}{t_1}\right)^{\frac{1}{\mu_0}} (t_1 - t_0) F(u(t_0, x_0)) \le \int_{\Omega} u(t_0, x) \mathbb{K}(x, x_0) \, \mathrm{d}x - \int_{\Omega} u(t_1, x) \mathbb{K}(x, x_0) \, \mathrm{d}x \le (m_0 - 1) \frac{t^{\frac{1}{\mu_0}}}{t_0^{\frac{1-\mu_0}{\mu_0}}} F(u(t, x_0)) \, .$$

