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Abstract
We investigate fine global properties of nonnegative, integrable solutions to the Cauchy problem for

the Fast Diffusion Equation with weights (WFDE) ut = |x|γdiv
(
|x|−β∇um

)
posed on (0,+∞)×Rd, with

d ≥ 3, in the so-called good fast diffusion range mc < m < 1, within the range of parameters γ, β which
is optimal for the validity of the so-called Caffarelli-Kohn-Nirenberg inequalities.

It is a natural question to ask in which sense such solutions behave like the Barenblatt B (fundamental

solution): for instance, asymptotic convergence, i.e. ‖u(t) − B(t)‖Lp(Rd)
t→∞−−−→ 0, is well known for all

1 ≤ p ≤ ∞, while only few partial results tackle a finer analysis of the tail behaviour. We characterize
the maximal set of data X ⊂ L1

+(Rd) that produces solutions which are pointwise trapped between two
Barenblatt (Global Harnack Principle), and uniformly converge in relative error (UREC), i.e. d∞(u(t)) =

‖u(t)/B(t)− 1‖L∞(Rd)
t→∞−−−→ 0. Such characterization is in terms of an integral condition on u(t = 0).

To the best of our knowledge, analogous issues for the linear heat equation m = 1, do not possess
such clear answers, only partial results. Our characterization is also new for the classical, non-weighted,
FDE. We are able to provide minimal rates of convergence to B in different norms. Such rates are almost
optimal in the non weighted case, and become optimal for radial solutions. To complete the panorama,
we show that solutions with data in L1

+(Rd) \ X , preserve the same “fat” spatial tail for all times, hence

UREC fails and d∞(u(t))=∞, even if ‖u(t)− B(t)‖L1(Rd)
t→∞−−−→ 0.

.
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Lattre de Tassigny, 75775 Paris 16, France
E-mail: nikita.simonov@uam.es Web-page: https://sites.google.com/view/simonovnikita/

0

ar
X

iv
:2

00
2.

09
96

7v
2 

 [
m

at
h.

A
P]

  2
3 

A
pr

 2
02

0

http://verso.mat.uam.es/~


Contents

1 Introduction and Main Results 2

1.1 The Setup of the problem and precise statement of the Main Results . . . . . . . . . . . . . . . . . . . 3

1.2 A dynamical system interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Others ranges of m and generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Initial Data in L1
γ,+(Rd) 11

2.1 A universal global lower bound: measuring the speed of propagation . . . . . . . . . . . . . . . . . . . 12

2.2 Harnack Inequality in Parabolic Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Uniform Convergence in relative error in Parabolic Cones . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Initial data in X . Global Harnack Principle and uniform convergence in relative error 17

3.1 Upper Bound and proof of Theorem 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Proof of Theorem 1.3. Uniform Relative Error Convergence. . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Proof of Theorem 1.3. The necessary part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Harnack inequalities for quotients and sharp behaviour at infinity . . . . . . . . . . . . . . . . . . . . . 22

3.5 Rates of convergence in X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Counterexamples and Generalized Global Harnack Principle 27

4.1 Construction of a family of Subsolutions and anomalous tail behaviour . . . . . . . . . . . . . . . . . . 27

4.2 Construction of a family of Supersolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Slower convergence rates in X c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 On the Fast Diffusion Flow in X 31

5.1 An equivalent tail condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 A non-equivalent tail condition: an example of a “bad” functions in X . . . . . . . . . . . . . . . . . . 32

5.3 The Fast Diffusion flow as a curve in X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 Convergence to the Barenblatt in X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Appendix 36

6.1 How to recover the Mass of the Barenblatt profile BM . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Interpolation Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.3 Holder Continuity of solution to weighted equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

References 39

1



1 Introduction and Main Results

The purpose of this paper is to investigate fine decay properties of solutions to the Cauchy problem for the
Fast Diffusion Equation posed on (0,+∞)× Rd

∂tu = ∆um with m ∈ (0, 1) ,

which is a classical prototype of singular nonlinear diffusion in homogeneous media, see [87, 88]. Indeed, our
results also cover a more general case, in which Caffarelli-Kohn-Nirenberg type weights are allowed, including
also the case of inhomogeneous media, for more details, see [81, 62] and Subsection 1.1. Our goal is to
understand the quantitative tail behaviour of nonnegative solutions, depending on the behaviour at infinity
of the initial datum. In order to focus on the main questions and answers, we explain here a simplified version
of our results. Some of them, in the non-weighted case, were already known (mostly in a non-sharp form) and
in this case we provide a new proof, see for instance [17, 18, 31, 20, 86, 87, 16, 14, 67, 63] and also [44, 53].

It is well known that nonnegative and integrable solutions tend to behave like the Barenblatt profile B
with the same mass [86, 87, 88]. However, the issue of making a precise and quantitative statement about
such “similar behaviour” presents serious difficulties. Nonnegative integrable solutions (namely, solutions in

L1
+(Rd)) convergence to B in different norms, ‖u−B‖ t→∞−−−→ 0. However, none of these convergences provide

enough information about the tails. Here we explore finer properties of such solutions to give an answer to
the following question:

Q1: Do solutions in L1
+(Rd) have the same tail as the Barenblatt (fundamental solution)?

When the answer to this question is positive we can ask for a finer convergence, namely whether or not the

quotient u/B
t→∞−−−→ 1 uniformly in Rd. We call this Uniform Convergence in Relative Error (UREC), and

we can state the main question in this direction as follows:

Q2: Do solution in L1
+(Rd) behave asymptotically as the Barenblatt, uniformly in relative error?

In this paper, we completely answer to both Q1 and Q2 in the so-called good fast diffusion range, when
m ∈ (d−2

d , 1). This is the natural range of parameters to deal with these questions, since the Barenblatt profile
B essentially represents the asymptotic behaviour of all integrable solutions and the mass is preserved along
the flow. In order to provide an answer to the above questions, we split the cone of nonnegative integrable
initial data L1

+(Rd) in two disjoint subspaces X
⊔
X c = L1

+(Rd), where X is a set of functions satisfying a
suitable tail condition specified below.

The main results of this paper can be roughly explained as a quantitative version of the following fact. On
one hand, the answer to both Q1 and Q2 is affirmative if and only if u0 ∈ X , (Thm. 1.1, 1.3 and Section 3).
On the other hand, the answer to both Q1 and Q2 is No if and only if u0 ∈ X c (Thm. 1.5 and Section 4).

It is remarkable that such a complete answer can be given for a nonlinear equation, while, in the - a priori
simpler - linear heat equation m = 1, things are not so clear. Partial - non sharp - answers to Q1 can be
deduced from the representation formula, an extremely useful tool that we do not have at our disposal in the
nonlinear case. As for Q2, the question seems to be completely open: to the best of our knowledge, there is
no characterization of the class of initial data for which the corresponding solution converge to the Gaussian
(with the same mass) uniformly in relative error. Some examples, in the negative direction, are shown in [90].

Our results are sharp and turn into an explicit characterization of the “Tail Condition” that the initial
datum has to satisfy to be in X (hence answering yes to Q1 and Q2), which amounts to requiring that

sup
R>0

R
2

1−m−d
∫
BcR(0)

|f(x)|dx <∞ , or equivalently

∫
B|x|/2(x)

|f(y)|dy = O
(
|x|d−

2
1−m

)
.

The proof of the equivalence of the above two conditions is not trivial, indeed it requires one of our main
results, Theorem 1.1; see Section 5.1. The latter condition was introduced by Vázquez in 2003 [86] to give a
positive answer to Q2, we show here that a posteriori it was the sharp one. Notice that this condition allows

for a wider class of data than the (non sharp) pointwise condition used in [14, 87], namely u0(x) . |x|−
2

1−m ,
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see Section 5.2. We also show that the above condition, when fulfilled by the data, is enough to prove
polynomial rates of convergence in several norms. In the radial case, we deduce sharp rates of convergence
in uniform relative error and we provide an answer to a question left open by Carrillo and Vázquez in [20],
see Remark 1.4.

Concerning initial data in X c: we show the existence of a class of solutions which exhibits, for all times, a
fat tail (bigger then the Barenblatt’s). This is done by constructing explicit sub and super solutions. Such
class provides the negative answer to both Q1 and Q2. Furthermore, we show that in X c no (power-like) rate
of convergence to the Barenblatt profile is possible, see Theorem 4.6, Subsection 4.3.

In the rest of this section, we set the problem in its whole generality, also including equations with Caffarelli-
Kohn-Nirenberg type weights, and give precise statements of our results.

1.1 The Setup of the problem and precise statement of the Main Results

In this paper we study the following Cauchy-Problem for the Weighted Fast Diffusion Equation (WFDE){
∂tu = |x|γ∇ ·

(
|x|−β∇um

)
in (0,∞)× Rd,

u (0, x) = u0(x) in Rd.
(CP)

where the parameters d, γ, β are as follows

d ≥ 3 , γ < d , and γ − 2 < β ≤ γ(d− 2)/d .

This is a natural restriction since it represents the optimal domain of validity of the so-called Caffarelli-Kohn-
Nirenberg inequalities, see [15, 13]. The exponent m is in the so-called good fast diffusive range, namely

m ∈ (mc, 1) where mc :=
d− 2− β
d− γ

.

From now on we will fix the parameters d,m, γ, β as above (unless explicitly stated).

Modelling and related results. The problem (CP) was introduced in the 80s by Kamin and Roseau to model
singular/degenerate diffusion in inhomogeneous media, see [61, 81, 62]. Since then, there has been a sys-
tematic study of similar equations, mostly in the case m ≥ 1 and/or with only one weight, see [1, 7, 24, 41,
42, 49, 50, 54, 59, 60, 69, 78, 77, 76, 75]. Recently, (CP) has proven to be an essential tool in the study of
symmetry/symmetry breaking phenomena in Caffarelli-Kohn-Nirenberg inequalities, see [9, 10, 21, 35, 36,
37, 38, 39, 43]. Several intriguing connections between nonlinear diffusions on Riemannian manifolds and
weighted parabolic equations were explored in [11, 12, 48, 55, 57, 56, 89].

Existence, uniqueness, comparison and mass conservation. The basic theory is well established:
existence, uniqueness and comparison for nonnegative and bounded integrable data is well known, see Section
2.2 of [9], where it can also be found a suitable definition of weak solutions (cf. also Definition 1.1 of [13]).
In view of the smoothing effects of [13], it is straightforward to extend those results to weak solutions
corresponding to merely integrable (and possibly unbounded) data

u0 ∈ L1
γ,+(Rd) =

{
u0 : Rd → R : u0 ≥ 0 ,

∫
Rd
u0 |x|−γ dx <∞

}
. (1.1)

We refrain from giving further details that would involve weighted Sobolev spaces which we never use in this
paper and we choose not to define here. What we want to emphasize, is that data in L1

γ,+ produce solutions
that turn out to be bounded, positive and regular, (at least Hölder continuous, see also Appendix 6.3 and
[13]) and that solutions considered in this paper possess enough regularity to guarantee the validity of all
the calculations performed here. We also recall that in the good fast diffusive range, nonnegative integrable
solutions conserve mass along the flow,

M(t) :=

∫
Rd
u(t, x)|x|−γ dx =

∫
Rd
u0(x)|x|−γ dx =: M for any t > 0.

3



For a proof, see Section 2.2 of [10] and Proposition 2.4 of [13] and the Remark thereafter.

The fundamental solution, is of self-similar type and it is often called Barenblatt solution:

B(t+ T, x;M) =
ζd−γ

R?(t+ T )d−γ
BM

(
ζ x

R?(t+ T )

)
=

(t+ T )
1

1−m[
b0

(t+T )σϑ

Mσϑ(1−m) + b1|x|σ
] 1

1−m
, (B)

where

σ := 2 + β − γ , 1

ϑ
= (d− γ)(m−mc) , ζ

1
ϑ =

1−m
σm

, and R?(t) =

(
t

ϑ

)ϑ
, (1.2)

the parameter M is the mass of the solution, T is a free parameter and b0, b1 are constants which depends
on m, d, γ, β. The profile BM is given by

BM = (C(M) + |x|σ)
1

m−1 (1.3)

where C(M) depends on M,d,m, γ, β, and has an explicit expression, see Appendix 6.1. In what follows
we shall frequently use the solution (B) with the parameter T = 0. Recall that by the very definition of
fundamental solutions we have B(0, x;M) = Mδ0, in the sense of measures: the computation goes as for the
standard FDE, and the extra weight |x|−γ does not cause any problem. Also, we will sometimes drop the
dependence on the x variable and write B(t;M) or B(t, ·;M) when no confusion arises.

The Tail Condition. We say that f ∈ L1
γ(Rd) satisfies the tail-condition -or equivalently that f ∈ X - if

|f |X := sup
R>0

R
2+β−γ
1−m −(d−γ)

∫
BcR(0)

|f(x)||x|−γ dx <∞ . (TC)

Recall that since m ∈ (mc, 1) we have 2+β−γ
1−m − (d− γ) > 0. It is easily seen that | · |X is a norm. Intuitively

the quantity |f |X measures how fast the function f decays at ∞ relatively to the decay of the Barenblatt
profile BM . We now introduce a subspace of L1

γ(Rd) of functions that satisfy the tail condition (TC), that
will play a key role in the rest of the paper:

X := {u ∈ L1
γ(Rd) : |u|X < +∞}. (1.4)

We adapt to our setting an alternative tail condition proposed by Vazquez [86]: we say that f ∈ L1
γ(Rd)

satisfies (TC’) if ∫
B |x|

2

(x)

|f(y)||y|−γ dy = O
(
|x|d−γ−

2+β−γ
1−m

)
. (TC’)

We will show in section 5.1 that (TC) and (TC’) are indeed equivalent.

We will provide now a precise and sharp answer to questions Q1 and Q2, in the form of our main results.

The space X : affirmative answer to Q1 and Q2, and a characterization.

As we already explained in the Introduction, the answer to both Q1 and Q2 are affirmative if and only if
the initial data is in X . The main tool in providing such answers is the so called Global Harnack Principle
(GHP): a lower and upper bound in terms of Barenblatt profiles, see Theorem 1.1 below. The GHP provides
a complete answer both to Q1 and, surprisingly, also to Q2, as we shall see later. In the non-weighted
case, the GHP in the form of Theorem 1.1 was introduced in [14] (under the stronger pointwise assumption

u0(x) . |x|−
2

1−m ) and was inspired by the pioneering results of [86], in which condition TC’ was introduced.
Our main contribution in this case consists in the characterization of the maximal set X of initial data that
generate solutions satisfying the GHP.

We shall see in Section 5.3 that the space X is invariant under the WFDE-flow: indeed u(t) ∈ X if and
only if u(0) ∈ X , and the same holds for X c, see Proposition 5.3 and Theorems 1.1 and 1.5.
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Theorem 1.1 (Characterization of the GHP) Let m ∈ (mc, 1) and let u be a solution to (CP) with
u0 ∈ L1

γ,+(Rd). Then, for any t0 > 0 there exists τ , τ > 0 and M,M > 0 such that

B(t− τ , x;M) ≤ u(t, x) ≤ B(t+ τ , x;M) , for any x ∈ Rd and t ≥ t0 , (1.5)

if and only if
u0 ∈ X \ {0} .

Remark 1.2 The proof of the above result is quantitative and provides explicit expressions for τ , τ ,M,M .
It follows by combining the upper bound of Theorem 3.1 with the lower bound of Theorem 2.1. For the upper
bound the hypothesis 0 ≤ u0 ∈ X is strictly necessary. Indeed, for data u0 /∈ X we are able to construct
explicit (sub)solutions that provide precise lower bounds that clearly contradict the upper bound of formula
(1.5). More precisely, for any t > 0 and for any x ∈ Rd we have that

u(t, x) ≥ 1

(D(t) + |x|σ)
1

1−m−ε
� B(t, x;M) ,

where ε > 0 is small, and D(t) ∼ t
2

ε(1−m) .
On the other hand, such hypothesis is not necessary for the lower bound of formula (1.5): indeed, lower
bounds hold for any data 0 ≤ u0 ∈ L1

γ,loc(Rd), and produce a minimal lower tail, see Theorem 2.1 and
Corollary 2.2. This provides a partial answer to Q1.

Let us turn our attention to question Q2. The convergence of solution to the Barenblatt profile has been
studied by many researchers and under different sets of assumptions, especially in the non-weighted case
γ = β = 0, see for instance [44, 86, 20, 16, 63, 67, 6, 12] and references therein. We will discuss now some
of the existing results which are strictly related to ours, but all in the non-weighted case. To the best of our
knowledge, no results about the weighted case are present in the literature, except some partial results of
[9, 10, 13]. In [44] the authors proved uniform convergence on expanding sets of the form |x| ≤ Ctϑ, namely

lim
t→0

sup
x∈{|x|≤C tϑ}

∣∣∣∣u(t, x)−B(t, x;M)

B(t, x;M)

∣∣∣∣ = 0 , (1.6)

under the condition u0 ∈ L1(Rd) ∩ L2(Rd). We will prove an analogous result in the weighted case, see
Theorem 2.4. Lately Vázquez in [86] has completed the proof of the previous result for the whole class of
positive initial data which belongs to L1(Rd), he also shows uniform convergence in L∞(Rd) and in L1(Rd).
In [86] Vázquez proved that UREC takes place for all data which satisfies the pointwise condition u0(x) .
|x|−

2
1−m , and he also introduces (TC’). In 2003, Carrillo and Vázquez in [20] obtain the estimates

sup
x∈Rd

∥∥∥ u(t, x)

B(t, x;M)
− 1
∥∥∥

L∞(Rd)
≤ C(u0)

t
, (1.7)

for radial initial data which satisfies the pointwise condition u0(x) . |x|−
2

1−m . An intriguing open question
was left in [20, pag. 1027]: to extend the validity of (1.7) to a larger class of initial data. The question was
partially answered in [63, 6, 10] in some non-optimal classes of data, possibly non radial.

Our main contribution in this paper is to characterize the maximal set X of initial data whose solution
converge to the Barenblatt profile uniformly in relative error.

Theorem 1.3 (Characterization of the UREC) Let m ∈ (mc, 1) and let u be a solution to (CP) with
initial data u0 ∈ L1

γ,+(Rd) and M = ‖u0‖L1
γ(Rd). Then,

lim
t→∞

∥∥∥ u(t, x)

B(t, x;M)
− 1
∥∥∥

L∞(Rd)
= 0 (1.8)

if and only if
u0 ∈ X \ {0}

5



Remark 1.4 Sharp convergence rates for radial solutions. We notice here that if f ∈ Xrad, the class of

radial functions in X , then it does not necessarily satisfy the pointwise condition f . |x|−
2

1−m , see Section
5.2. Hence, our Theorem 3.8 which shows the validity of (1.7) for any u0 ∈ Xrad, provides a sharp answer to
the question raised by Carrillo and Vazquez. The maximality of X is guaranteed by Theorem 1.3, indeed, if
u0 6∈ X then the limit (1.8) is infinite, see Proposition 5.3.

In Theorem 3.6, we provide almost optimal rates of convergence for all data in X in the non weighted
case, valid also for non-radial solutions. Analogously, Theorem 3.7 shows minimal rates in the weighted case.
Sharp rates of convergence can be obtained under more restrictive assumptions (but for the whole range
m < 1): this happens if the initial datum is trapped between two Barenblatt solutions with exactly the same
tail (which is stronger than the GHP of Theorem 1.1). We refer to [6, 12, 8, 9] and references therein for an
overview of previous results; see also [8] for a brief historical overview.

The space X c: negative answer to Q1 and Q2. Counterexamples. In order to complete the panorama,
we still have to answer the next natural question: what happens to the solutions with data in X c? On one
hand, the space X c is also invariant under the WFDE-flow: indeed, u(t) ∈ X c if and only if u0 ∈ X c;
moreover the uniform relative error (1.9) is always infinite, see Proposition 5.3. As a consequence, answer to
Q1 and Q2 is definitively negative in X c. On the other hand, we will show that -somehow stable- anomalous
tail behaviour can happen in this case. Let us begin with an illuminating example in the simplest possible
case, when γ = β = 0. Let m > d

d+2 , consider the solution w(t, x) with initial data

w0 =
1

(1 + |x|2)
m

1−m
.

It is clear that for w0 does not satisfy the assumption of Theorem 3.1 and, for |x| large enough, we have that
w0(x) > B(t0, x;M) for any t0,M > 0. However, w0 ∈ L1(Rd) whenever m > d

d+2 . The tail-behaviour of
w(t, x) is strongly different from the Barenblatt profiles, this can be better appreciated in logarithmic scale
see for instance Figure 2, indeed for all t > 0

1(
(t+ 1)

1
1−m + |x|2

) m
1−m

. w(t, x) .
(1 + t)

m
1−m

(1 + t+ |x|2)
m

1−m
, for all x ∈ Rd .

The above inequality gives us remarkable insights about the long time behaviour of the solution w(t, x). First,
for any time t > 0, w(t, x) has a power-like behaviour at infinity different from the Barenblatt one, namely

as |x| → ∞ we have that w(t, x) ∼ |x|
−2m
1−m versus B(t, x;M) ∼ |x|

−2
1−m . The upper part of GHP fails outside

a space-time region that we explicitly identify, as a consequence of this anomalous tail behaviour, indeed

sup
x∈Rd

∣∣∣∣ w(t, x)

B(t, x;M)
− 1

∣∣∣∣ =∞ , (1.9)

where B(t, x;M) has the same mass of w(t, x). The same considerations apply by replacing B(t, x;M) with
any other Barenblatt solution. Obviously, uniform converge in relative-error (UREC) fails.

The anomalous behaviour found in this particular example is indeed shared by an entire class of solutions.
We prove here a generalized version of the GHP, valid for initial data decaying slower than the Barenblatt
profile. The proof is based on the construction of two families of sub and super solutions. We will cover all
admissible γ, β and m ∈ (mc, 1), extending the above considerations to the weighted case, as in the following

Theorem 1.5 (Generalized Global Harnack Principle) Let m ∈ (mc, 1), ε ∈ (0, 2
1−m −

2
σ (d− γ)) and

α = 1
1−m −

ε
2 > 0. Assume that the initial data u0 satisfies

A(
t

1
1−α(1−m) +B |x|σ

)α ≤ u0(x) ≤ E t
σ(

t+ F |x|σ
)α ,

6



for some A,B,E, F, t, t > 0. Then for any t > 0 we have that

V (t, x) :=
A

(D(t) +B|x|σ)α
≤ u(t, x) ≤ EG(t)α

(G(t) + F |x|σ)α
=: V (t, x)

where

D(t) :=
(
σ Am−1mB (d− γ) (1− α(1−m)) t+ t

) 1
1−α(1−m) and G(t) := t+H t,

where H ≥ mσF 2Em−1 (2 + β − d+ σ αm).

The proof of the above Theorem is just the combination of the results of Propositions 4.1 and 4.5.

Remark. The above Theorem shows that an initial “fat-tail” is preserved for all times. This marks a clear
difference between the “good” range (mc, 1) and the very fast diffusive range (0,mc): in the latter case there
can be solutions with a power-like tails which change with time, see for instance [30].

The space L1
γ,+. General Picture. We provide here a general picture for solutions in L1

γ , depending on
the spatial decay of its initial data. This is better understood in the following log (u(x))− log (x) plot, where
different kind of possible tail behaviours are represented. For instance, the Barenblatt profile B, marked
in dashed-grey below, corresponds to the curve log (B(x)) = − 2+β−γ

1−m log |x| + o(log(|x|)). The different
lines represent other possible power-like tail behaviours; the thick line is the natural barrier for solutions to
L1
γ,+(Rd) since it corresponds to the case |x|−(d−γ).

Log(|x|)

Log(u(0,x))

Figure 1: The picture represents different possible
power-like tail behaviour of an initial data in dimen-
sion d = 3, γ = β = 0 and m = 2/3. Every line
represents a power-like behaviour. The dashed “sinu-
soidal” curve represents a function whose behaviour is
trapped between two different tail powers. The thick
line represents the power |x|−3, the dashed line |x|−3.8,
the dotted line |x|−4.4 and the grey region represents
any decay below the Barenblatt’s decay (|x|−6). In
both plots |x| ∈

[
103, 108

]
.

Log(|x|)

Log(u(1,x))

Figure 2: General Panorama for L1
γ,+ solutions. The

picture represents different possible power-like tail be-
haviours in dimension d = 3, γ = β = 0 and m = 2/3
for a solution u(t, x) at time t = 1. We can appreci-
ate that: (i) there are no solutions below the lowest
line |x|−6, the one corresponding to the Barenblatt be-
haviour; (ii) if the tail of the initial data is a line above
the Barenblatt then the solution preserves the same tail
behaviour for all times; (iii) the dashed curve remains
trapped between the same initial power-like behaviors.

Let us begin our analysis. As we have already explained, every nonnegative solution to (CP) develops a
minimal power-like tail, at least |x|−

σ
1−m , therefore in Figure 2, there are no solutions below the dashed-

grey line. Initial data in X develop exactly the Barenblatt’s tail, see Theorem 1.1, hence, roughly speaking
“they live on the dashed-grey line”, the X -curve. Things are different for initial data in X c. We only
analyze power like behaviours at infinity. Roughly speaking, the Generalized GHP, Theorem 1.5, says that
all solutions must live between the dotted and dashed line (recall that the red like correspond to the case
|x|−(d−γ)). More precisely, the Generalized GHP tells us that solutions with data decaying like |x|−α, with
(d − γ) < α < σ

1−m , will have the same decay |x|−α. Indeed, Theorem 1.5 tells us more: any initial datum
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in X c with a tail behaviour trapped between two different lines (maybe oscillating between two power-tails
at infinity) produces a solution trapped between the same lines. For instance, if the datum is between the
dotted and dashed lines, then the solution is trapped among those barriers for all times.

1.2 A dynamical system interpretation

The aim of this Section is to describe a global picture of the fine behaviour of the solutions to WFDE, in
terms of convergence to equilibrium states of a (infinite dimensional) dynamical systems. It is convenient to
pass to selfsimilar variables in order to make stationary the “asymptotic” Barenblatt solution.

Self similar variables. Nonlinear Fokker-Plank equation. Let u(t, x) be a solution to (CP) with
initial data u0, and consider R(t) = R?(t+ 1). The self-similar change of variables

v(τ, y) =
R(t)d−γ

ζd−γ
u(t, x) where τ =

1

σ
log

R(t)

R(0)
, y =

ζ x

R(t)
, (1.10)

transforms u(t, x) into a solution to the following nonlinear Fokker-Planck type equation

∂v

∂τ
+ |x|γdiv

(
|x|−β v∇vm−1

)
= |x|γdiv

(
|x|−β v∇|x|σ

)
, (NLWFP)

with initial data v0(y) = ζd−γ

R(0)d−γ
u0( ζ x

R(0) ), with the same mass. Also notice that among all the Barenblatt

profiles B(t+ τ, x;M), only the one with τ = 1 becomes stationary, and we call it Barenblatt profile BM (y):
this is the unique attractor or the unique equilibrium (asymptotically stable).

In what follows we shall assume that solutions to (CP) with initial data u0 ∈ L1
γ,+(Rd) will converge to the

Barenblatt solution in the following sense (recall that the mass is preserved along the flow)

‖u(t)−B(t;M)‖L1
γ(Rd) → 0 as t→∞ .

In self-similar variables the previous result can be restated as

‖v(τ)− BM‖L1
γ(Rd) → 0 as τ →∞ .

Dynamical system approach: “infinite dimensional phase plane analysis” and the space X . It
is well-known that the (NLWFP) can be seen as the gradient flow of an Entropy functional, cf [66, 71]. It
can be shown that solutions corresponding to nonnegative initial data will converge to a stationary solution
with the same mass. To be more precise, let us define the ω-limit of the (NLWFP) as the one dimensional
manifold of the so-called Barenblatt solutions:

MB := {BM : M > 0} , (1.11)

and the distance
d1(f) := inf

BM∈MB
‖f − BM‖L1

γ(Rd).

It has been proven in [44, 86] (for the case γ = β = 0) and in [9, 10] (for the weighted case), that for any
u0 ∈ L1

γ,+(Rd) there exists a unique BM0 (M0 being the mass of u0) such that

d1(v(t)) ≤ ‖v(τ)− BM0‖L1
γ(Rd) −−−→

t→∞
0 .

Hence solutions of (NLWFP) can be seen as a continuous path with respect to the L1
γ,+ topology, that will

eventually converge to a point of the manifold MB. This fact can be rephrased as follows: the basin of
attraction of MB in the L1

γ,+-topology is the whole space L1
γ,+.
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Figure 3: We represent two possible paths in L1
γ,+. Since X and X c are invariant sets for the flow there are

no crossing lines between them. We notice that the manifold MB is contained in the topological boundary
(with respect of the L1

γ,+ topology) of X , MB ⊂ ∂L1
γ,+
X .

We can ask a similar question for a stronger convergence that allows to have a better asymptotic knowledge
of the tails, the uniform converge in relative error (UREC), properly measured by the following distance from
MB:

d∞(f) := inf
BM∈MB

∥∥∥∥ f

BM
− 1

∥∥∥∥
L∞(Rd)

.

The above distance is induced by the norm ‖f‖m,γ,β := sup
x∈Rd

∣∣∣f(1 + |x|2+β−γ)
1

1−m

∣∣∣, hence the topology is

Figure 4: Illustration of the stability of the sets Xr: if the solution starts from one of those sets, it will forever
stay in one of those sets. Indeed, if u0 ∈ Xr there exist is a maximal Xr which is invariant under the flow,
i.e. s.t u(t) ∈ Xr for all t ≥ 0.

equivalent and we will refer to it as relative error topology. As a consequence of L1
γ convergence, v(τ, x) →
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BM (x) as τ → ∞ a.e., hence also pointwise, i.e. v(τ, x)B−1
M (x) → 1 as τ → ∞. However the uniform

convergence in relative error (UREC) may fail. The main results of this paper solve this issue: X is the basin
of attraction of the manifoldMB in the relative error topology. Notice that X is defined in terms of a practical
-easy to check- condition on the initial datum, which a priori does not have any relation with the asymptotic
behaviour. In what follow we explain our main results in terms of assumptions on the initial datum. Our
main contribution in this direction is that we show that only three things can happen: (i) v0 ∈ X c, (ii) v0 ∈ X
and d∞(v0) <∞, (iii) v0 ∈ X and d∞(v0) =∞. We analyze each case separately.

(i) If v0 ∈ X c. Roughly speaking, in this case we show that if initial datum v0 has a tail strictly above the
Barenblatt one, then that “fat tail” is preserved in time. More precisely, Proposition 5.3 implies that

v0 ∈ X c =⇒
∥∥∥∥v(τ)

BM
− 1

∥∥∥∥
L∞(Rd)

= +∞ =⇒ v(τ) ∈ X c and d∞(v(τ)) =∞,

for all τ > 0. In particular, since d∞(v0) = ∞, it reveals that it is impossible to have bounds of the form
d∞(v(τ)) ≤ d1(v(τ)), if we do not have it already (at least) for the initial datum. We can appreciate here
a strong difference along the flow between the L1

γ,+(Rd) and the ‖ · ‖m,γ,β topologies. On one hand, any
v0 ∈ L1

γ,+ is sent by the flow to a unique element ofMB in the d1 distance. On the other hand, this is not
true in the d∞ distance, in which case, the flow stays always at infinite d∞-distance from MB.

(ii) If v0 ∈ X and d∞(v0) <∞. This is the stable case: if the initial datum is close to the manifold MB, then
the flow will stay close to it and eventually d∞-converge to a unique element ofMB. More precisely, recall
that MB ⊂ X is the ω-limit set, made of stationary solutions or equilibria of our dynamical system. The
GHP of Theorem 1.1 together with the UREC of Theorem 1.3, imply

v0 ∈ X =⇒
∥∥∥∥v(τ)

BM
− 1

∥∥∥∥
L∞(Rd)

<∞ for all τ > 0 =⇒ v(τ) ∈ X =⇒ d∞(v(τ)) −−−−→
τ→∞

0 .

Indeed the GHP tells us a global stability result for the flow, since it can be rewritten as d∞(v(t)) ≤
F (‖v0‖X ), for some locally bounded function F . A finer analysis is performed below.

(iii) If v0 ∈ X and d∞(v0) =∞. We show that even if the initial datum is at infinite distance from the manifold
MB, but still in X , the solution will eventually d∞-converge toMB. Indeed, the GHP of Theorem 1.1 only
needs the assumption v0 ∈ X , regardless of d∞(v0) =∞. Hence the same argument as case (ii) applies.

Finer analysis in X . It is possible to show that

X = {d∞ =∞} ∪
⋃
r>0

X∞r = {d∞ =∞} ∪
⋃
r>0

{f ∈ X : d∞(f) < r}

The GHP of Theorem 1.1, reveals an important stability property of the fast diffusion flows: for any v0 ∈ X
there exists r0, τ0 > 0 s.t. d∞(v(τ)) < r0 for all τ ≥ τ0, hence the flow never exit from a certain X∞r0 . Indeed,
we show more: d∞(v(τ))→ 0 as τ →∞, which means that the flow always leaves the manifolds d∞(v(τ)) = r
(level sets of distance from MB) to enter one at a lower level, say d∞(v(τ)) = r − ε.

This can be summarized as follows: we show that the solution map sends immediately X in a more regular
subspace X∞r0

Tτ : X →
⋃
r>0

X∞r indeed there exists r0 > 0 : Tτ : X → X∞r0 .

On one hand, in the relative error topology we have a dichotomy: lim
τ→∞

Tτ (X \{0}) =MB and d∞(Tτ (X c)) =

∞ for all τ > 0. On the other hand, in the d1-topology we always have lim
τ→∞

Tτ (L1
γ,+(Rd) \ {0}) =MB

1.3 Others ranges of m and generalizations

In the study of (CP) a dramatic change occurs when we consider the exponent m ≤ mc or m ≥ 1. When
m = 1, it is known that solutions to the Cauchy problem for the classical heat equation develop eventually
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Gaussian tails whenever the initial data is compactly supported. Surprisingly enough, no sharp results are
known it this contest, to the best of our knowledge. Uniform convergence in relative error is (in general)
false, see [90], and several tail behaviours are indeed possible, see [52]. The slow diffusion case m > 1 has
been widely investigated, see the monograph [88], but due the finite speed of propagation, fine results about
convergence in relative error are still missing. Let us now comment on the very fast diffusion case m ≤ mc,
where several new difficulties arise such as, for instance, loss of mass and extinction in finite time. In the
case m = mc conservation of mass still holds, nevertheless the asymptotic behaviour becomes quite involved,
see [58, 47]. Below the critical exponent mc fewer results are known and some considerations are in order.
The fundamental solution does not exist anymore, [87]. A large class of solutions vanish in finite time with
different possible behaviour near the extinction time. The vanishing profile of a suitable class of initial data
is represented by the so called Pseudo-Barenblatt solutions, see [6]. The extinction behaviour of bounded
and integrable solutions for 0 < m < mc is only known in the radial case, [46, 87]. In the Yamabe flow
case, m = d−2

d+2 , finer results are known, see [32, 30, 26, 29]. The situation is completely different the so-

called ultra fast diffusion case, m ≤ 0. Indeed, for the Cauchy problem nonnegative L1 data do not produce
solutions [79, 85]. As a consequence, the are no solutions for the homogeneous Dirichlet problem, while a
special class of solutions can be found for the Neumann problem, [82, 83]. Sharp existence and non existence
conditions, for the Cauchy problem, has been given in [27, 28, 25] and [80].

Possible generalizations. The Global Harnack Principle (Theorem 1.1) can be generalized to solutions to
equations of the form

ut = div (A(t, x, u,∇um)) , (1.12)

where A(t, x, u, η) satisfies suitable structural conditions, as those in [72, 74]. Even if the fundamental solution
exists, see [72, 74], it is not clear whether or not (and in which sense) it represents the large time behaviour
of nonnegative, integrable solutions to (1.12).

Organization of the paper. In Section 2 we collect some results that hold for all nonnegative integrable
solutions: we find universal lower bounds in terms of Barenblatt profiles, which allow to identify the minimal
tail of all nonnegative solutions, Corollary 2.2. We prove that the answer to Q2 can be yes for all u0 ∈ L1

+(Rd),
but only on suitable parabolic cones, which represent the optimal domain of validity for such results. In
Section 3 we analyze the behaviour of solutions whose initial data are in X and provide a positive answer
to both Q1 and Q2. We prove the upper part of inequality (1.5) (Theorem 1.1) and Theorem 1.3. As a
consequence, we obtain rates of convergence to the Barenblatt profile in several norms. In Section 4 we
construct sub/super solutions with the anomalous tail behaviour analyzed above. We also show, by means
of counterexamples, that the power-like rates obtained in Section 3 are not possible for data outside X . In
Section 5 we show the equivalence between (TC) and (TC’) and we give example of function in X which do
not satisfies the pointwise condition u0(x) . |x|−

σ
1−m . We also give more details about the natural topology

of X and analyze stability properties of the WFDE-flow as curve in X .

Notations. We will systematically use ∞ to indicate +∞. We will use the following notations throughout
the paper: a ∧ b =: min{a, b}, a ∨ b := max{a, b} and a � b means that there exist constants c1, c2 > 0 such
that c1a ≤ b ≤ c2a; similarly we write a . b whenever there exists c > 0 such that a ≤ c b. Also, give B ⊂ Rd
we define χB as the characteristic function of B, namely χB(x) = 1 if x ∈ B, while χB(x) = 0 if x 6∈ B.

2 Initial Data in L1
γ,+(Rd)

In this Section we show the results that hold for all data in L1
γ,+(Rd), namely, we show that the lower-part

of the GHP estimates hold true (Theorem 2.1) for (just) locally integrable data: this allows to measure the
(infinite) speed of propagation as “fatness of the tails”. On the other hand, on the whole space it is not
possible to match the lower bounds with similar upper bounds for all initial data in L1

γ,+(Rd): we will provide
explicit counterexamples and improved lower bounds in Section 4. This latter phenomenon, an anomalous
tail behaviour, can only happen if we miss a control the tail of the initial datum: we will show that the sharp
tail-condition is encoded in the space X thoroughly analyzed in Section 3. As a consequence of the estimates
of this section, we show also uniform convergence in relative error towards equilibrium on compact sets and
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even on parabolic cones, see Theorem 2.4. All of these results are sharp, as shown in Section 4 by means of
suitable counterexamples.

2.1 A universal global lower bound: measuring the speed of propagation

We now state the main result of this section, which holds for nonnegative initial data which are merely locally
integrable. We recall here a useful quantity, t∗ that will appear frequently throughout this section:

t∗ = t∗(u0, R) = κ∗ ‖u0‖1−mL1
γ(BR(0))R

1
ϑ . (2.1)

where κ∗ > 0 depends on d,m, γ, β. We are now ready to state the main result of this section.

Theorem 2.1 Let u be a solution to (CP) with initial data 0 ≤ u0 ∈ L1
γ,loc(Rd) and let t0, R0 > 0 be such

that ‖u0‖L1
γ(BR0

(0)) > 0. Then there exists τ > 0 and M > 0 such that

u(t, x) ≥ B(t− τ , x;M), for all x ∈ Rd and t ≥ t0. (2.2)

where

τ =
1

2
(t∗ ∧ t0) and M = b ‖u0‖L1

γ(BR0
(0))

(
1 ∧ t0

t∗

) 1
1−m

. (2.3)

The constant b > 0 depends only on d,m, γ, β and has an explicit expression given in the proofs, while t∗ is
as in (2.1).

Measuring the speed of propagation. The above Theorem partially answers Q1 and reveals a remarkable
property of solutions to WFDE: the positivity spreads immediately for every nonnegative initial datum,
showing infinite speed of propagation. A delicate issue is how to discriminate in a quantitative way among
two infinite speed of propagation. Our Theorem shows that we can put a (delayed) fundamental solution as
a lower barrier for any data: this is how the WFDE immediately creates a fat tail (inverse power), which is
clearly bigger than the “standard Gaussian tail” (exponentially decaying) created by the linear heat equation.
This can be expressed as follows:

Corollary 2.2 (Minimal tails) Under the assumption of Theorem 2.1 we have that for any t > 0

lim inf
|x|→∞

u(t, x) |x|
σ

1−m ≥ b1 t
1

1−m (2.4)

The constant b1 depends only on m, d, γ, β and is achieved by the Barenblatt solutions.

We will often call |x|−σ/(1−m) a minimal tail or a Barenblatt tail . Finding matching upper bounds is simply
not possible in such generality, we will need to ask the tail condition (TC) on u0.

Proof of Theorem 2.1: Let us first state an inequality proven in [13, Theorem 1.4], a sharp local lower
bound (half-Harnack inequality), essential to this proof. We do not use here Aleksandrov Principle, as in
[14], nor other moving planes argument. Under the running assumption we have that

inf
x∈B2R(0)

u(t?, x) ≥ κ1

‖u0‖L1
γ(BR(0))

Rd−γ
, (2.5)

where κ1 depends only on d,m, γ, β, and has an explicit expression given in [13]. Let us now explain the
strategy of the proof. The quantities τ and M take different forms depending wether or not t∗ ≤ t0. We will
assume first that t0 ≥ t∗, then we will discuss the case 0 < t0 < t∗ at the end of the proof.

Let MR0
= ‖u0‖L1

γ(BR0
(0)), τ = at∗ and M = bMR0

where a ∈ (0, 1) and b > 0 will be explicitly chosen

later. Without loss of generality, we prove inequality (2.2) only at t = t∗, namely

u(t∗, x) ≥ B((1− a)t∗, x;M) . (2.6)
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Once proven at t = t∗, the case t ≥ t∗ will follow by comparison. To prove (2.6) we need to determine the values
of a, b. We need to separate two cases, namely inside a ball and outside a ball, obtaining different conditions
on a, b, respectively conditions (2.8) and (2.12). Finally we check the compatibility of such conditions and
choose a, b explicitly as in (2.13).

Condition on a, b inside a ball. We want to find condition on a, b such that the following inequality holds:

κ1

MR0

R0
d−γ ≥

bσϑMR0

b
1

1−m
0 (1− a)(d−γ)ϑκ

(d−γ)ϑ
∗ R0

d−γ
= sup
x∈B2R0

(0)

B(t∗ − τ , x;M) , (2.7)

where κ1 is as in (2.5). It is easily seen that the former is implied by the following condition on a and b:

bσϑ ≤ κ(d−γ)ϑ
∗ κ1b

1
1−m
0 (1− a)(d−γ)ϑ . (2.8)

Note that by inequality (2.5) the first term in (2.7) is bounded above by infx∈B2R0
u(t∗, x), therefore we

obtain that
inf

x∈B2R0

u(t∗, x) ≥ sup
x∈B2R0

(0)

B(t∗ − τ , x;M) ,

inequality (2.6) is then proved for any |x| ≤ 2R0.

Condition on a, b outside a ball. We want to find suitable conditions on a, b such that (2.6) holds in the outer
region |x| > R0. Such an inequality will be deduced by applying the comparison on the parabolic boundary
of Q = (τ , t∗)×BcR0

(0), namely ∂pQ = {{τ}×BcR0
(0)}

⋃
{(τ , t∗)×

{
x ∈ Rd : |x| = R0

}
}, see for instance [53,

Lemma 3.4].

It is clear that u(τ , x) ≥ B(0, x;M) = δ0(x), for any |x| ≥ R0, hence we just need to prove that

u(t, x) ≥ B(t− τ , x;M) for any |x| = R0, t ∈ (τ , t∗) . (2.9)

A straightforward computation shows that, under the running assumption, for |x| = R0 we have that

sup
t≥τ

B(t− τ , x;M) =

(
b1
b0 ϑ

) 1
σϑ(1−m) [(d− γ)(1−m)]

d−γ
σ

[κ? σ]
1

1−m

(
t∗

b0Rσ0

) 1
1−m

b . (2.10)

The following inequality

κ

(
at∗
R0

σ

) 1
1−m

≥
(
b1
b0 ϑ

) 1
σϑ(1−m) [(d− γ)(1−m)]

d−γ
σ

[κ? σ]
1

1−m

(
t∗

b0Rσ0

) 1
1−m

b , (2.11)

implies that inequality (2.9) holds, indeed for any |x| = R0 and t ∈ (τ , t∗) we have that

u(t, x) ≥ inf
t∈(at∗,t∗),
x∈B2R0

(0)

u(t, x) ≥ κ
(
at∗
R0

σ

) 1
1−m

≥ sup
t≥τ

B(t− τ , x;M) ≥ B(t− τ , x;M) .

It is easy to show that inequality (2.11) is equivalent to the following one

bσϑ ≤ b
1

1−m
0 a

σϑ
1−m κσϑ

(
ϑ bσϑ0

b1

) 1
1−m [κ? σ]

σϑ
1−m

[(d− γ)(1−m)]
(d−γ)ϑ

(2.12)

which is the condition we were looking for. Compatibility of condition (2.8) and (2.12). Both the conditions
are satisfied by the following choice

a =
1

2
and bσϑ = b

1
1−m
0

[(
ϑ bσϑ0

2σϑ b1

) 1
1−m κσϑ [κ? σ]

σϑ
1−m

[(d− γ)(1−m)]
(d−γ)ϑ

∧ κ
(d−γ)ϑ
∗ κ1

2(d−γ)ϑ

]
. (2.13)
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This concludes the proof of (2.6) in the case when t0 ≥ t∗. It only remains to analyze the case when t0 < t∗.

Case 0 < t0 < t∗. Without loss of generality, we only need to prove inequality (2.2) at time t = t0, the full
result will then follow by comparison. Recall the Benilan-Crandall-type estimate, [4],

u(t0, x) ≥ u(t∗, x)

(
t0
t∗

) 1
1−m

, for all 0 < t0 < t∗. (2.14)

Now we recall that inequality (2.6) holds under the choices of a, b as in (2.13). Using inequality (2.6) and
inequality (2.14) we get

u(t0, x) ≥ u(t∗, x)

(
t0
t∗

) 1
1−m

≥ 2−
1

1−m t
1

1−m
∗[

b0
2−σϑtσϑ∗
Mσϑ(1−m) + b1|x|σ

] 1
1−m

(
t0
t∗

) 1
1−m

=
2−

1
1−m t

1
1−m
0b0 2−σϑtσϑ0

Mσϑ(1−m)

[
( t0t∗ )

1
1−m

]σϑ + b1|x|σ

 1
1−m

= B

(
t0 −

t0
2
, x;

(
t0
t∗

) 1
1−m

M

)
.

Recalling that in this case τ = t0/2, the proof is concluded.

We can now give the proof of Corollary 2.2.

Proof of Corollary 2.2. Let R0 be such that ‖u0‖L1
γ(BR0

(0)) > 0, t > 0, and 0 < ε < t. By applying
Theorem 2.1 at time t0 = t− ε and radius R0 we get the following inequality

u(t, x) ≥ B(t− τ , x;M) .

As a consequence we obtain

lim inf
|x|→∞

u(t, x) |x|
σ

1−m ≥ b1
[
t− 1

2
(t∗ ∧ t0)

] 1
1−m

,

from which (2.4) follows just by taking the limit for ε→ t. Notice that in such a limit t0 → 0.

2.2 Harnack Inequality in Parabolic Cones

We have shown in [13] that nonnegative local solutions to WFDE satisfy Harnack inequalities of various kind:
an elliptic form (in which the supremum and the infimum are taken at the same time), a forward in time
(the supremum is taken at a smaller time than the infimum) and a backward in time (the supremum is taken
at a bigger time than the infimum). We remark that for solutions to the heat equations in general only the
forward Harnack inequality holds. Here we shall prove an elliptic form of a Harnack inequality on conical
space-time domains of the form

K(t) = KM (t) = {|x| ≤ tϑM (m−1)ϑ} . (2.15)

for some fixed M > 0. We will call these sets “Parabolic Cones”, with a slight abuse of language, indeed for
ϑ = 1, K(t) are really cones in space time domains of the form R+ × RN . A similar inequality on balls has
been proven in [14, Theorem 1.4].

Theorem 2.3 (Harnack inequality in Parabolic Cones) Let u be a solution to (CP) with initial data
0 ≤ u0 ∈ L1

γ(Rd). Let M = ‖u0‖L1
γ(Rd) and R0 > 0 be such that ‖u0‖L1

γ(BR0
(0)) = M/2, and let t∗ =

κ∗R
1
ϑ
0 (M/2)

1
1−m . Then, there exists a positive constant H such that

sup
x∈K(t)

u(t, x)

B(t, x;M)
≤ H inf

x∈K(t)

u(t, x)

B(t, x;M)
, for any t ≥ 3 t∗. (2.16)

where the constant H depends only on m, d, γ, β and K(t) depends on M as in (2.15)
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Proof. In the proof we will make use the Smoothing Effect for solutions to (CP), namely the following
inequality which hold for any t > 0

‖u(t)‖L∞(Rd) ≤
κ1

t(d−γ)ϑ

[∫
Rd
|u0(y)| |y|−γ dy

]σϑ
, (2.17)

where ϑ and σ are defined in (1.2). The constant κ1 has an explicit form, cf. [13], it depends only on d,m, γ
and β and it is the same constant κ1 appearing in formula (3.3). Inequality (2.17) has been obtained in [13]
and can be easily deduced by taking x0 = 0 and letting R0 →∞ in estimate (3.3).

Let us now begin the proof. By applying Theorem 2.1 we deduce that u(t, x) ≥ B(t − τ , x;M) with

τ = t∗
2 = κ∗

2 R
1
ϑ
0

(
M
2

) 1
1−m and M = bM/2 where b is as in (2.12). In view of the Smoothing Effects (2.17)

and of inequality (2.2), it is enough to prove that there exists H such that

κ1 (b0 + b1)
1

1−m ≤ H b
1

1−m
0

t(d−γ)ϑ

Mσϑ
inf

x∈K(t)
B(t− τ , x;M)

This amounts to prove that the following quotient is uniformly bounded by H for t ≥ 3 t∗:

κ1

(
1 +

b1
b0

) 1
1−m Mσϑ

t(d−γ)ϑ

[
b0(t−τ)σϑ

M2ϑ(1−m) + b1t
σϑ

Mσϑ(1−m)

] 1
1−m

(t− τ)
1

1−m
≤ H .

Since τ = t∗/2 we easily conclude that H can be taken as

H = κ1

(
1 +

b1
b0

) 1
1−m

5
1

1−m

[
b0

(
2

b

)σϑ
+ b1

] 1
1−m

.

2.3 Uniform Convergence in relative error in Parabolic Cones

In this section we will prove that solutions to (CP) with initial data u0 ∈ L1
γ,+(Rd) converge to the Barenblatt

profile B(t, x;M) in relative error uniformly in parabolic cones, and as a consequence uniformly on compact
subsets of Rd. To obtain such a result we will use the convergence to the Barenblatt profile in L1

γ(Rd), namely

‖u(t)−B(t;M)‖L1
γ(Rd) → 0 as t→∞ , (2.18)

or equivalently, in self-similar variables

‖v(τ)− BM‖L1
γ(Rd) → 0 as τ →∞ , (2.19)

where v(τ, y) is defined in (1.10) and it is a solution to (NLWFP). The proof of (2.18) can be done by a
straightforward adaptation to our setting of the so called “4 step method”, carefully explained in [86, Theorem
1.1]. We leave the details to the interested reader, just noticing that the proof contained in [86] deals with the
case m > 1, and uses compactly supported initial data, hence compactly supported solutions (when m > 1
there is finite speed of propagation). In the present setting, the very same proof works, just by replacing the
compactly supported solutions by the ones which satisfy the GHP.

Theorem 2.4 (Uniform Convergence in relative error on parabolic cones) Let m ∈ (mc, 1) and let
u be a solution to (CP) with initial data 0 ≤ u0 ∈ L1

γ(Rd) and let M = ‖u0‖L1
γ(Rd). Then for any Υ > 0 we

have that

lim
t→∞

sup
x∈{|x|≤Υ tϑ}

∣∣∣∣u(t, x)−B(t, x;M)

B(t, x;M)

∣∣∣∣ = 0 . (2.20)
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Remark. As an easy corollary of the previous Theorem, we obtain that∥∥∥∥u(t, x)−B(t, x;M)

B(t, x;M)

∥∥∥∥
L∞(K)

−−−→
t→∞

0 for any compact set K ⊂ Rd.

This follows from inequality (2.20) just by observing that K ⊂ {|x| ≤ Υ tϑ} for some t0 > 0.

Proof. We split the proof into several steps. First we prove an uniform pointwise estimate on the solution
u(t, x) in domains of the form {|x| ≤ CR(t)}, where R(t) is as in (1.10) and C > 0. We remark that for any
t > 0 we have that {|x| ≤ Ctϑ} ⊂ {|x| ≤ CR(t)}. As a second step we will rescale u(t, x) to self-similar vari-
ables (we recall that domains of type {|x| ≤ CR(t)} are transformed into Bρ(0), where ρ = ζ C) and, using
the estimates obtained before, we estimate bv(τ, ·) −BMcCν(B3r) uniformly in time. Finally, by applying a
clever interpolation, Lemma 6.1 we prove that ‖v(τ, ·)−BM‖L∞(Br) → 0 as τ →∞, and finally (2.20) follows.

Uniform estimate on u(t, x) in {|x| ≤ 3 ΥR(t)}. Let ρ > 0 be such that
∫
Bρ
u0(x)|x|−γ dx = M

2 and define

t? = κ? ρ
1
ϑ

(
M
2

)1−m
where κ? is as in (2.1). By applying Theorem 2.1 and the global smoothing effect,

inequality (2.17), we obtain that for any t ≥ t?

B(t− t, x;M) ≤ u(t, x) ≤ κ1
Mσϑ

t(d−γ)ϑ
,

where t = t?
2 and M = b

2 M . By the above inequality, we can deduce the following matching lower bound,
by means of straightforward estimates relying on the explicit expression of B: there exists a constant κ1 > 0
which depends on d,m, γ, β,Υ and M such that

κ1

Mσϑ

t(d−γ)ϑ
≤ u(t, x) ≤ κ1

Mσϑ

t(d−γ)ϑ
for any t ≥ t? and any x ∈ {|x| ≤ 3 ΥR(t)} . (2.21)

Uniform and Hölder estimates in self-similar variables. We first rescale u in selfsimilar variables, according
to (1.10), and get v(τ, y). Analogously, the domain {|x| ≤ 3 ΥR(t)} is transformed into B3r(0) where r = Υζ.
Inequality (2.21) reads in rescaled variables:

κ1

ζd−γ
ϑϑMσϑ ≤ v(τ, y) ≤ 2

κ1

ζd−γ
ϑϑMσϑ for any τ ≥ 1

σ
log

R(t? ∨ 1)

R(0)
and any y ∈ B3r(0) . (2.22)

By applying Lemma 6.3 we deduce that there exist ν > 0, κ > 0 such that for any τ ≥ 1
σ log R(t?∨1)

R(0) + 1 we

have that

bv(τ, ·)c
Cν
(
B 3

2
r
(0)

) ≤ κ 2
κ1

ζd−γ
ϑϑMσϑ .

Using the subadditivity of b·cCν(Br(0)) and the fact that the above estimates can also be applied to the
Barenblatt profile BM (y), we conclude that

bv(τ, ·)− BMc
Cν
(
B 3

2
r
(0)

) ≤ 4κ
κ1

ζd−γ
ϑϑMσϑ for any τ ≥ 1

σ
log

R(t? ∨ 1)

R(0)
+ 1 . (2.23)

Convergence in L∞ norm. We only prove the case 0 < γ < d, which is the most delicate, the case γ ≤ 0 being
simpler. In what follows it is convenient to assume that r ≥ 2, namely that Υ ≥ 2

ζ , we will overcome this

technical assumption at the end of the proof. From the convergence in L1
γ , formula (2.19), we deduce that

there exists τ? such that for any τ ≥ τ? we have that ‖v(τ, ·)− BM‖L1
γ(B 3

2
r
(0)) ≤ |γ|d . We are in the position

to apply inequality (6.4) of Lemma 6.1 to v(τ, ·)− BM and get that for any τ ≥ τ? ∨ 1
σ log R(t?∨1)

R(0) + 1

‖v(τ, ·)− BM‖L∞(Br(0)) ≤ Cd,γ,ν,p (1 + r)
γ

(
1 + 4κ

κ1

ζd−γ
ϑϑMσϑ

) d
d+pν

‖v(τ, ·)− BM‖
ν
d+ν

L1
γ(B 3

2
r
(0)) (2.24)
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where we have used (2.23). Since B ≥ (C(M) + rσ)
−1

1−m on Br(0), it follows that

sup
y∈Br(0)

∣∣∣∣v(τ, y)− BM (y)

BM (y)

∣∣∣∣ ≤ (C(M) + rσ)
1

1−m ‖v(τ, ·)− BM‖L∞(Br(0)) ,

which, combined with (2.24) and the convergence in L1
γ , formula (2.19), shows that the relative error ap-

proaches zero as τ →∞. Rescaling back, we finally obtain (2.20), recalling that {|x| ≤ Υtϑ} ⊂ {|x| ≤ ΥR(t)}.
It only remains to overcome the technical assumption Υ ≥ 2

ζ . If Υ ≤ 2
ζ we can repeat the same argument for

Υ = 2
ζ . Next, we conclude that (2.20) takes place for any Υ′ ≤ 2

ζ using that {|x| ≤ Υ′R(t)} ⊂ {|x| ≤ ΥR(t)}
whenever Υ′ < Υ. The proof is now concluded.

3 Initial data in X . Global Harnack Principle and uniform con-
vergence in relative error

The space X is naturally invariant under the fast diffusion flow as explained in the introduction, see also
Proposition 5.3. As a consequence, solutions belonging to this space possess some extra properties, that we
summarize here:

• The tail is essentially the same as the Barenblatt solution, the GHP holds, see Subsection 1.1.

• The Uniform convergence in relative error (UREC) takes place, see Subsection 3.2. Moreover, we also
provide Almost Optimal Rates of convergence in Subsection 3.5, which turn out to be sharp in some cases.

• Boundary Harnack type inequalities hold true, and the behaviour at infinity of solutions does not depend
on the mass, see Subsection 3.4.

In Section 4 we will show that the above properties are false if u0 6∈ X .

3.1 Upper Bound and proof of Theorem 1.1

As already observed in the Introduction Theorem 1.1 is divided in two parts: the upper bound and the lower
bound of inequality (1.5). In this section we are going to discuss the upper bound, the main result of this
section is the following Theorem.

Theorem 3.1 Let u be the solution to (CP) corresponding to the initial data 0 ≤ u0 ∈ L1
γ,+(Rd). Then, for

any t0 > 0 there exist τ ,M > 0, explicitly given in (3.10), such that

u(t, x) ≤ B(t+ τ , x;M) for any x ∈ Rd and any t > t0 , (3.1)

if and only if
u0 satisfies (TC), i.e. u0 ∈ X .

The proof of inequality (3.1) is constructive and we are able to give values of τ and M , see formulae (3.10)
at the end of the proof. Here we just point out that they depend on M,A, d,m, γ, β and t0.

Proof of Theorem 1.1. The proof is a simple combination of Theorem 3.1 and Theorem 2.1.

Remark 3.2 We easily deduce from the above upper bound that

lim sup
|x|→∞

u(t, x) |x|
σ

1−m ≤ b1 (t+ τ)
1

1−m . (3.2)

Equality is achieved by the Barenblatt solution translated in time by τ . Notice that this maximal tail
behaviour only holds for u0 ∈ X , in which case it matches the optimal minimal behaviour given in Corollary
2.2. These two pieces of information combine well and allow to deduce the sharp behaviour at infinity, see
Section 3.4, Corollary 3.21.
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Proof of Theorem 3.1: Let us first explain the strategy of the proof. We will prove inequality (3.1) only
at time t0, then, by comparison (see for instance [10, Corollary 9]) it will hold for any t ≥ t0. The proof is
divided in several steps: first, we estimate the solution u(t0, x) in two different regions (on BR1

(0) and on
BR1

(0)c, with R1 to be chosen later), then we find conditions on τ and M necessary for inequality (3.1) to
hold. Finally, we show that such conditions can be fulfilled providing an explicit expression of τ and M in
terms of t0,M and A.

In this proof we will make use of the following estimate, [13, Theorem 1.2]: there exists κ1, κ2 > 0 such that
for any t > 0, x0 ∈ Rd and any R0 ∈ [|x0|/16, |x0|/32] (any R0 > 0 if x0 = 0) we have that

sup
y∈BR0

(x0)

u (t, y) ≤ κ1

t(d−γ)ϑ

[∫
B2R0

(x0)

|u0(y)| |y|−γ dy

]σϑ
+ κ2

[
t

Rσ0

] 1
1−m

, (3.3)

where ϑ and σ are defined in (1.2). The constants κ1, κ2 are explicit and depend only on d,m, γ and β. The
constant κ1 is the same one which appears in the smoothing effect given in inequality (2.17).

Estimate inside a ball. We want to find suitable conditions on M, τ and R1 such that

u(t0, x) ≤ B(t0 + τ , x;M) =
(t0 + τ)

1
1−m[

b0
(t0+τ)σϑ

Mσϑ(1−m) + b1|x|σ
] 1

1−m
, holds for all |x| ≤ R1. (3.4)

Recall that M =
∫
Rd u0|x|−γ dx. Inequality (3.3) implies that

u(t0, x) ≤ κ1t
−(d−γ)ϑ
0 Mσϑ for any x ∈ Rd and t0 > 0.

To deduce the above from (3.3) it suffices to take x0 = 0 and let R0 → ∞. In view of the above inequality,
to prove (3.4) it is enough to find suitable M, τ and R1 such that

κ1
Mσϑ

t
(d−γ)ϑ
0

≤ (t0 + τ)
1

1−m[
b0

(t0+τ)σϑ

M
σϑ(1−m) + b1|x|σ

] 1
1−m

for any |x| ≤ R1.

Since the righthand side is decreasing in |x| it suffices to have the previous inequality at |x| = R1, i.e.

b0
(t0 + τ)

σϑ

M
σϑ(1−m)

+ b1R
σ
1 ≤

(t0 + τ)t
(d−γ)θ(1−m)
0

κ1−m
1 Mσϑ(1−m)

. (3.5)

Inequality (3.5) is nothing but a first condition on M, τ and R1 in order to guarantee the validity of (3.4).

Estimate outside a ball. The goal of this step is to extend inequality (3.4) outside a ball, namely for all
|x| ≥ R1. This will end up to conditions on M, τ and R1 different from (3.5). In the next step we will take
care of checking the compatibility of the two conditions.

We first prove that for any fixed t0 > 0 there exists C1 = C1(t0, A) > 0 such that

u(t0, x) ≤ C1

|x|
σ

(1−m)
for any |x| > R1. (3.6)

Let x ∈ Rd, |x| ≥ R1 and let R be such that B2R(x) ⊂ B2R(0)c, for instance R = |x|/16. Applying inequality
(3.3) to u(t0, x) in the ball BR(x), we get

u(t0, x) ≤ κ1

t
(d−γ)ϑ
0

[∫
Bc2R(0)

u0(y) |y|−γ dy

]σϑ
+ κ2(16)−

σ
1−m

(
t0
|x|σ

) 1
1−m

≤ κ18
σ

1−m

t
(d−γ)ϑ
0

Aσϑ

|x|
σ

1−m
+

κ2

16
σ

1−m

(
t0
|x|σ

) 1
1−m

≤ C1

|x|
σ

1−m
,
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where in the third line we have used that
∫
BcR(0)

u0|x|−γ dx ≤ AR(d−γ)− 2+β−γ
1−m with R = |x|/16 and that

C1 = C1(t0, A) is given by

C1 = 8
σ

1−m
κ1

t
(d−γ)ϑ
0

Aσϑ +
κ2

16
σ

1−m
t

1
1−m
0 .

Hence inequality (3.6) holds. It only remains to show that

C1

|x|σ/(1−m)
≤ (t0 + τ)

1
1−m[

b0
(t0+τ)σϑ

M
σϑ(1−m) + b1|x|σ

] 1
1−m

for any |x| ≥ R1. (3.7)

This will give a condition on τ ,M and R1, as we explain next. Indeed, the above inequality is equivalent to

b1C
1−m
1 + b0

(t0 + τ)
σϑ

|x|σMσϑ(1−m)
≤ t0 + τ .

It is indeed enough to choose R1 > 0 such that

b1C
1−m
1 + b0

(t0 + τ)
σϑ

Rσ1M
σϑ(1−m)

≤ t0 + τ , (3.8)

since the second term in left-hand side is decreasing in |x|. We conclude that inequality (3.4) holds for any
|x| ≥ R1 whenever τ ,M and R1 satisfy condition (3.8).

Compatibility among the conditions (3.5) and (3.8). We only need to show the compatibility of the
conditions that imply the main estimates of the previous steps, i.e. that inequality (3.4) holds for all x ∈ Rd.
The two conditions (3.5) and (3.8)correspond to the following system of inequalities

(A) =


b1C

1−m
1 Rσ1 + b0

(t0 + τ)
σϑ

M
σϑ(1−m)

≤ Rσ1 (t0 + τ) ,

b1R
σ
1 + b0

(t0 + τ)
σϑ

M
σϑ(1−m)

≤ (t0 + τ)t
(d−γ)θ(1−m)
0

κ1−m
1 Mσϑ(1−m)

.

It is convenient to simplify the above system in order to be able to make explicit choices of τ ,M and R1.
The first simplification is the following:

(B) =


b1 (1 ∨ C1)

1−m
Rσ1 ≤

t0 + τ

2

[
Rσ1 ∧

t
(d−γ)θ(1−m)
0

κ1−m
1 Mσϑ(1−m)

]
,

b0
(t0 + τ)

σϑ

M
σϑ(1−m)

≤ t0 + τ

2

[
Rσ1 ∧

t
(d−γ)θ(1−m)
0

κ1−m
1 Mσϑ(1−m)

]
.

(3.9)

It is clear that any choice of τ ,M and R1 that satisfies (B) also satisfies (A). We need a further simplification,
but this time we will choose R1 = R1(R0, t0,M) in a particular way, as follows

R1 :=

(
t
(d−γ)θ
0

κ1Mσϑ

) 1−m
σ

so that Rσ1 =
t
(d−γ)θ(1−m)
0

κ1−m
1 Mσϑ(1−m)

,

and system (B) simplifies to

(B’) =


b1 (1 ∨ C1)

1−m ≤ (t0 + τ)

2
,

b0
(t0 + τ)

σϑ

M
σϑ(1−m)

≤ (t0 + τ)

2

t
(d−γ)θ(1−m)
0

κ1−m
1 Mσϑ(1−m)

,

=⇒


τ ≥

[
2b1 (1 ∨ C1)

1−m − t0
]
,

M ≥
(
2b0κ

1−m
1

) 1
σϑ(1−m)

(
t0 + τ

t0

) d−γ
σ

M ,
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It is now clear that choosing τ = τ(t0,M∞, C1, R1) and M = M(τ , t0,M) of the form

τ := 0 ∨
[
2b1 (1 ∨ C1)

1−m − t0
]

and M :=
(
2b0κ

1−m
1

) 1
σϑ(1−m)

(
t0 + τ

t0

) d−γ
σ

M ,

implies the validity of the two inequalities of system (B’), hence of system (B), and finally of (A).

Values of the constants. Letting A := |u0|X and M := ‖u0‖L1
γ(Rd) , we have

τ := 0 ∨

2b1

1 ∨

8
σ

1−m
κ1A

σϑ

t
(d−γ)ϑ
0

+
κ2t

1
1−m
0

16
σ

1−m

1−m

− t0

 ,

M :=
(
2b0κ

1−m
1

) 1
σϑ(1−m)

(
t0 + τ

t0

) d−γ
σ

M ,

(3.10)

where κ1, κ2 > 0 depend on d,m, γ, β, and they have an explicit expression given at the end of the proof of
Theorem 1.2 in [13]. The proof is concluded.

3.2 Proof of Theorem 1.3. Uniform Relative Error Convergence.

In this subsection we prove the sufficiency part of Theorem 1.3. The converse implication will be proven in
the next Section. We just recall that partial results in the non-weighted case, γ = β = 0, have been proven
in [20, 63, 86, 87, 14, 6, 12, 8]. For the weighted case, see [9, 10].

Theorem 3.3 (UREC) Let m ∈ (mc, 1) and let u be a solution to (CP) with initial data 0 ≤ u0 ∈ X \ {0}.
Then we have that

lim
t→0

∥∥∥u(t, x)−B(t, x;M)

B(t, x;M)

∥∥∥
L∞(Rd)

= 0 , where M = ‖u0‖L1
γ(Rd). (3.11)

Proof. It is convenient to work in self-similar variables: we transform u(t, x) into v(τ, y) accordingly to
formula (1.10). We will prove that for any ε > 0 there exits τε > 0 such that∥∥∥v(τ, y)−BM (y)

BM (y)

∥∥∥
L∞(Rd)

< 2ε for any τ ≥ τε . (3.12)

We argue that we only need to prove the following claim.

Claim. For any 1 > ε > 0 there exists ρε > and τε > 0 such that

sup
|y|≥ρε

∣∣∣∣v(τ, y)− BM (y)

BM (y)

∣∣∣∣ < ε for any τ ≥ τε . (3.13)

Indeed, once the Claim is proven, we just combine it with the convergence inside parabolic cones, i.e. the
main result of Theorem 2.4 and obtain inequality (3.12) as follows:

∥∥∥ v(τ, y)

BM (y)
− 1
∥∥∥

L∞(Rd)
≤
∥∥∥ v(τ, y)

BM (y)
− 1
∥∥∥

L∞({|y|≤Υ})
+
∥∥∥ v(τ, y)

BM (y)
− 1
∥∥∥

L∞({|y|≥Υ})
≤ 2 ε .

Recall that the change of variables (1.10) transforms the parabolic cones {|x| ≤ ΥR(t)} into balls {|y| ≤ Υ}.
Proof of the Claim. Let t0, R0 > 0 be such that ‖u0‖L1

γ(BR0
(0)) > 0. We know by Theorem 1.1 that

B(t− t, x;M) ≤ u(t, x) ≤ B(t+ t, x;M) .
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for suitable t, t > 0 and M,M > 0. As a consequence, recalling the change of variables (1.10), we get

a(t)d−γ (1 ∧ a(t))
−σ

1−m BM (y) ≤ v(τ, y) ≤ b(t)d−γ (b(t) ∨ 1)
−σ

1−m BM (y) , (3.14)

where R(t) = R?(t+ 1) and

τ =
1

σ
log

R(t)

R(0)
a(t) =

R?(t+ 1)

R?(t+ t)
and b(t) =

R?(t+ 1)

R?(t+ t)
.

Since a(t), b(t)→ 1 as t→∞ we deduce that there exists τε > 0 such that(
1− ε

3

)
BM (y) ≤ v(τ, y) ≤

(
1 +

ε

3

)
BM (y) for every τ > τε. (3.15)

Recall that all the Barenblatt solutions BM have the same behaviour at infinity, which is independent of the
mass M , namely lim

|y|→∞
BM1

(y)/BM2
(y) = 1for any M1,M2 > 0. Hence, there exists ρε = ρε(M,M) > 0 such

that

1− ε

3
≤
BM (y)

BM (y)
and

BM (y)

BM (y)
≤ 1 +

ε

3
, for any |y| ≥ ρε .

Combining the above inequality with (3.15) we obtain the proof of the Claim. The proof is concluded.

3.3 Proof of Theorem 1.3. The necessary part

We have already shown that the tail condition (TC) implies the Uniform Convergence in Relative Error: this
result is contained in Theorem 3.3. As a consequence, the sufficiency part of Theorem 1.3 has already been
proven, and we only need to prove the converse implication: if a solution converges uniformly in relative
error, then the initial datum u0 satisfies the tail condition (TC) or equivalently u0 ∈ X . The proof of the
necessary part is based on the following Lemma, which bears some similarity with a result by Herrero and
Pierre [53, Lemma 3.1], valid in the non-weighted case, and then generalized by the authors in [13] to the
present weighted case. Notice that we need to integrate on the complementary set of balls, instead of balls
as in [53, 13]. The proof is quite similar hence we only sketch it.

Lemma 3.4 Let m ∈ (mc, 1) and let u be a solution to (CP) with initial data 0 ≤ u0 ∈ L1
γ(Rd), then for any

R > 0 and for any t, s ≥ 0 there exist constants C1, C2 > 0 which depend on m, d, γ, β such that∫
Bc2R(0)

u(t, x)|x|−γ dx ≤ C1

∫
BcR(0)

u(s, x)|x|−γ dx+ C2 |t− s|
1

1−m R(d−γ)− σ
1−m . (3.16)

Proof. Let R > 0 and define A(R) = B2R(0) \ BR(0). Let 0 ≤ ψ ∈ C∞(Rd) be such that ψ = 1 in B2R(0)c

and ψ = 0 in BR(0). Let us sketch the proof. For any t > 0, let us formally compute∣∣∣∣ d

dt

∫
Rd
u(t, x)ψ(x)

dx

|x|γ

∣∣∣∣ =

∣∣∣∣∣
∫
A(R)

um(t, x) |x|γdiv
(
|x|−β∇ψ

) dx

|x|γ

∣∣∣∣∣
≤
∫
A(R)

um(t, x)ψm(x)ψ−m(x)
∣∣∣|x|γdiv

(
|x|−β∇ψ

) ∣∣∣ dx

|x|γ

≤

(∫
A(R)

u(t, x)ψ(x)
dx

|x|γ

)m (∫
A(R)

ψ
−m
1−m

∣∣∣|x|γdiv
(
|x|−β∇ψ

) ∣∣∣ 1
1−m dx

|x|γ

)1−m

≤ C
(∫

Rd
u(t, x)ψ(x)

dx

|x|γ

)m
R(d−γ)(1−m)−(2+β−γ) ,

(3.17)

where we have used Hölder and the fact that ψ
−m
1−m

∣∣∣|x|γdiv
(
|x|−β∇ψ

) ∣∣∣ 1
1−m ≤ cR

−2−β+γ
1−m , which can be easily

derived following the lines of the proof of Lemma 5.2 of [13]. Recall that the integration by parts done in the
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first line of (3.17) presents no difficulties, since ψ = 0 in a neighborhood of the origin, where the weight |x|−γ
can be singular or degenerate. Integrating the differential inequality (3.17), as done in [53, Lemma 3.1], one
obtains (3.16). The proof is concluded. A rigorous proof starts from the integrated version of (3.17) (which
follows by definition of weak solutions) and then follows by a Grownwall-type argument.

Proof of the necessary part of Theorem 1.3. The proof is based on Lemma 3.4 proven in the Appendix,
that we restate here for reader’s convenience in the form that we need. Let u be a solution to (CP) with
initial data 0 ≤ u0 ∈ L1

γ(Rd). Then, there exist constants C1, C2 > 0 which depend on m, d, γ, β such that
for any R > 0 and for any t ≥ 0∫

Bc2R(0)

u0(x)|x|−γ dx ≤ C1

∫
BcR(0)

u(t, x)|x|−γ dx+ C2 t
1

1−m R(d−γ)− σ
1−m . (3.18)

Let us proceed with the rest of the proof. Assume now that (1.8) holds, hence there exists a time t > 0 such
that for any x ∈ Rd ∣∣∣∣u(t, x)−B(t, x;M)

B(t, x;M)

∣∣∣∣ < 1 , hence u(t, x) ≤ 2B(t, x;M) .

Integrating the latter inequality over BcR we get that there exists a constant κ > 0 which depend on m, d, γ, β
and on t such that ∫

BcR(0)

u(t, x)|x|−γ dx ≤ κRd−
σ

1−m for all R > 0 .

Combining (3.18) at time t = t with the above estimate, we conclude that for any R > 0

(2R)
σ

1−m−d
∫
Bc2R(0)

u0(x)|x|−γ dx ≤ C κ
1

1−m + C
1

1−m
m,d,γ,β |t|

1
1−m .

As a consequence, the initial data u0 satisfies the tail condition (TC) and the proof is concluded.

3.4 Harnack inequalities for quotients and sharp behaviour at infinity

In this Subsection we show a results which can be interpreted as a boundary Harnack inequality, since it
extends to the whole space the Harnack inequalities on Parabolic Cones of Theorem 2.3. More precisely,
there exist a constant H > 0 such that for any t > 0 (large enough) we have

u(t, x)

u(t, y)
≤ H B(t, x;M)

B(t, y;M)
for all x, y ∈ Rd. (3.19)

The above inequality is equivalent to (3.20) and provides interesting information about the behaviour at
infinity of solutions to (CP) with data u0 ∈ X . Somehow, the behaviour at infinity does not depend on the
mass: indeed, we can show that for all M,M > 0, there exists τ > 0 such that

1 ≤
lim sup
|x|→∞

u(t, x)B−1(t, x;M)

lim inf
|x|→∞

u(t, x) B−1(t, x;M)
≤
(

1 +
τ

t

) 1
1−m

if and only if u0 ∈ X \ {0}.

The above inequalities are sharp, and are an equivalent statement of (3.21). It is remarkable that equality is
attained by Barenblatt profiles, possibly with different mass.

Theorem 3.5 Let u be a solution to (CP) with 0 ≤ u0 ∈ X such that ‖u0‖m,γ,β = A and ‖u0‖L1
γ(Rd) = M

and let R0 > 0 be such that ‖u0‖L1
γ(BR0

(0)) = M/2. Then there exists a constant H > 0, which depends only
on m, d, γ, β, such that

sup
x∈Rd

u(t, x)

B(t, x;M)
≤ H inf

x∈Rd
u(t, x)

B(t, x;M)
for any t ≥ t (3.20)
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where

t = 3 max

{
A1−m

(
κ1

κ2

) 1−m
σϑ

2
7
ϑ , κ∗R

1
ϑ
0 (M/2)

1
1−m

}
.

The constants κ1, κ2 and κ∗ are as in (3.3) and as in (2.1) respectively.

Moreover, we obtain a characterization of the sharp behaviour at infinity, namely we have that

1 ≤
lim sup
|x|→∞

u(t, x) |x|
σ

1−m

lim inf
|x|→∞

u(t, x) |x|
σ

1−m
≤
(

1 +
τ

t

) 1
1−m

if and only if u0 ∈ X \ {0}. (3.21)

Here, τ depends on the initial data and is as in Theorem 3.1.

Proof. We begin by proving inequality (3.20). In what follows we shall assume without loss of generality
that

κ
1

1−m
2 ≥ b−1

1 24σ+m−2 (3.22)

indeed, since κ2 comes from the upper bound (3.3) we can choose it as large as needed. By applying

Theorem 3.1 at time t0 = A1−m (κ1/κ2)
1−m
σϑ 2

7
ϑ and Theorem 2.1 at time t1 = κ?R

1
ϑ
0 (M/2)

1
1−m we obtain

that for any t ≥ t the following inequality holds

B(t− τ , x;M) ≤ u(t, x) ≤ B(t+ τ , x;M) , (3.23)

where

τ = t1/2 =
(κ?

2

)
R

1
ϑ
0

(
M

2

) 1
1−m

M = b
M

2

and

τ = (b1 22−m−4σ (κ2)
1−m − 1)t0 M = (2b0κ1)

1−m
(
b1 22−m−4σ (κ2)

1−m
) d−γ

σ

M .

Here is the point where the assumption (3.22) enters the game, since it implies that τ ≥ 0. By inequality (3.23)
it is enough to show that there exist a constant H such that for any t ≥ t

sup
x∈Rd

B(t+ τ , x;M)

B(t, x;M)
≤ H inf

x∈Rd
B(t− τ , x;M)

B(t, x;M)
.

A simple computation, which is left to the interested reader, shows that the previous inequality holds with a
constant which depends only on m, d, γ, β and not on the mass M neither on the parameter A. The proof of
(3.20) is then concluded.

Proof of (3.21). We just combine inequality (2.4) of Corollary 2.2 with inequality (3.2) of Remark 3.2.

3.5 Rates of convergence in X
As we have mentioned in Subsection 1.2, we know that solutions starting from 0 ≤ u0 ∈ X , will eventually
converge to a Barenblatt profile BM (with the same mass as u0), i.e. an element of the manifold MB. The
natural question that we address here is: are there “universal rates” of convergence towards MB? More
precisely:

In self-similar variables can we find a speed of convergence to the
stationary profile valid for all solutions starting from data in X?

The answer to this question is delicate and can not be easily given for all m ∈ (0, 1), neither for all
m ∈ (mc, 1). Some preliminary remarks are in order. In the case γ = β = 0 the question has a long story
(see [33]). When d−2

d < m < 1 it has been proven in [19, 17, 18, 31, 65, 71, 34, 67], that, under suitable
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assumptions, there exist (sharp) rates of convergence in different topologies, the most common being the d1

(see section 1.2). This results were proven by means of relative entropy functionals introduced in [68, 73], or
by means of the so called Bakry-Émery method, [3]. The rate t−1 of uniform convergence in relative error
in the whole range d−2

d < m < 1, has been computed first in [20] for radial data, and later extended to a
larger class of data in [63]. In a series of papers, similar results were obtained in the whole range m < 1, cf.
[5, 6, 8, 12]; notice that in the range m < d−2

d there is a dramatic change in the behaviour of solutions since
mass is not preserved and they can extinguish in finite time, see [87, 88]. In the general case γ 6= 0, β 6= 0,
rates of convergence were studied in [10, 9].

In what follows we will show how we can combine the techniques of this paper with the ones used in [6, 12, 8],
to obtain rates of convergence to the Barenblatt profile with an (almost) uniform rate in the whole X . For
reasons that are not entirely clear up to now, we need to restrict ourselves to the range d−1

d = m1 < m < 1

in the case γ = β = 0, and to the range 2d−2−β−γ
2(d−γ) < m < 1 for the general case, see [10, 9] for further

remarks. The latter restriction is somehow natural, since, at least when γ = β = 0, we have that the FDE
is a gradient flow of a displacement convex functional (the relative entropy) with respect to the so-called
Wesserstein distance, see [66, 71, 67]. The displacement convexity is lost below m1. The main result reads:

Theorem 3.6 (Almost Optimal Rates of Convergence in the non-weighted case) Let u be the so-
lution to (CP) corresponding to the initial data 0 ≤ u0 ∈ X \ {0},

∫
Rd xu0(x) dx = 0 and assume that

β = γ = 0 and m ∈
(
d−1
d , 1

)
. Then, for every δ ∈ (0, 1) there exist tδ, cδ > 0 (that may also depend on u0)

such that for all t > tδ

‖u(t)−B(t;M)‖L1(Rd) ≤
cδ
t1−δ

and tdϑ‖u(t)−B(t;M)‖L∞(Rd) ≤
cδ
t1−δ

, (3.24)

where M = ‖u0‖L1(Rd).

Remark. Notice that the above result new for the whole space X even if we are dealing with the case
γ = β = 0. Indeed, all the previous results deal with more restrictive assumption as radial data, a very
precise control for |x| → ∞ or being sandwiched between two Barenblatt profiles.

When dealing with CKN-weights, the result is a bit weaker, because of the possible lack of Ck regularity at
the origin and reads:

Theorem 3.7 (Minimal Rates of Convergence in the weighted case) Assume γ < 0 and let u be the
solution to (CP) corresponding to the initial data 0 ≤ u0 ∈ X \ {0} and let 2d−2−β−γ

2(d−γ) < m < 1. Then, there

exists a δ∗ ∈ (0, 1) such that for every δ ∈ (0, δ∗) there exist tδ, cδ > 0 (that may also depend on u0) such that
for all t > tδ

‖u(t)−B(t;M)‖L1
γ(Rd) ≤

cδ
t1−δ

and t(d−γ)ϑ‖u(t)−B(t;M)‖L∞(Rd) ≤
cδ
t1−δ

, (3.25)

where M = ‖u0‖L1
γ(Rd).

If we consider radial initial data in X we can provide a universal rate of convergence, very much in the
spirit of [20] or [63].

Theorem 3.8 (Sharp Universal Rates for Radial Data) Let u be the solution to (CP) corresponding
to the radial initial data 0 ≤ u0 ∈ X \ {0} and assume that γ = β = 0 and m ∈

(
d−2
d , 1

)
. Then, there exist

t0, c0 > 0 (that may also depend on u0) such that for all t > t0∥∥∥∥ u(t)

B(t;M)
− 1

∥∥∥∥
L∞(Rd)

≤ c0
t
, (3.26)

where M = ‖u0‖L1(Rd).

Remark 3.9 As an immediate consequence of (3.26) we obtain that for all t ≥ t0

‖u(t)−B(t;M)‖L1(Rd) ≤
c0
t

and t(d−γ)ϑ‖u(t)−B(t;M)‖L∞(Rd) ≤
c0
t
. (3.27)
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The above Theorem solves a problem left open in [20], i.e. identifying the largest class of nonnegative radial
L1 data for which the above rate of convergence holds. Such rates are proven to be sharp, since they are
fulfilled by two time-shifted Barenblatt, with the same mass, see [20, 63]. Finally, we observe that, even if
we restrict the analysis to radial data, the class X is much larger than those considered up to know in the
literature: we refer to Section 5 for examples of functions in X with a substantially different behaviour from
the Barenblatt profile.

Finally, let us give the proof of the above statements.

Proof of Theorem 3.6. Here we exploit the techniques introduced in [6, 12, 8]. Let us rescale u(t, x) to

v(τ, y) according to the change of variables (1.10) and define w := v(τ,y)
BM (y) where M = ‖u0‖L1(Rd). Let us

define the Free Energy or Relative Entropy F [w] and the Fisher Information I[w] as

F [w(τ)] :=
m

m− 1

∫
Rd

[
wm − 1

m
− (w − 1)

]
BmM dy ,

I[w] :=
m

1−m

∫
Rd
wBM

∣∣∣∇ [(wm−1 − 1
)
Bm−1
M

] ∣∣∣2 dy .

(3.28)

The Fisher information is related to the relative entropy by the time derivative along the flow

d

dτ
F [w] = −I[w] . (3.29)

It is well known that the relative entropy controls the L1 distance between the solution v(τ, y) and the
Barenblatt profile BM , via the celebrated Csiszár-Kullback inequality, see e.g. [64, 23, 40, 20, 71], more
precisely

‖v(τ)− BM‖L1(Rd) ≤
(

8

m
‖B2−m

M ‖L1(Rd)

) 1
2 √
F [w] . (3.30)

Therefore the decay of the relative entropy implies the same decay for of ‖u(t)− BM (t)‖L1(Rd).

For any m ∈
(
d−1
d , 1

)
the Entropy-Entropy Production inequality reads

4F [w] ≤ I[w] , (3.31)

and it is well known to be equivalent to a member of a suitable family of (optimal) Gagliardo-Nirenberg
inequalities, more details can be found in the pioneering work of Del Pino and Dolbeault [31]. The best
constant in (3.31) is 4, and combining it with (3.29), we obtain the (sharp) exponential decay of the relative
entropy along the flow, namely

F [w] ≤ F [w0] e−4τ .

The strategy in [6, 12, 8] consists in proving a faster decay of the entropy along the flow using an improved
(with a larger constant) entropy-entropy production inequality along the flow. Such improved inequality is ob-
tained by means of Hardy-Poincaré type inequalities (with improved constants), and by means of quantitative
inequalities that compare the linear(ized) entropy and Fisher information with their nonlinear counterparts.
Notice that we are in position to apply the results of [6, 12], since the running assumption guarantee that
GHP (Theorem 1.1) holds, and implies the validity of assumption (H1)′′ in those papers. Combining Lemma
3, Theorem 7 of [6] with Lemma 1 of [8], we can prove the following claim.

Claim. For any 0 < δ < 4 1−ϑ
ϑ there exists a time τδ > 0 such that(

4

ϑ
− δ
)
F [w(τ)] ≤ I[w(τ)] , for any τ ≥ τδ (3.32)

where ϑ is as in (1.2).

Sketch of the proof of the claim. We shall not provide the lengthy details of the proof of the above
claim, we will just explain how to deduce it as a straightforward combination of already published results,
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adapting them to the current notations. The claim follows by formula (11) of [8], that in the current notations
takes the form (at least for sufficiently large times)

2
[
Λα,d − d(1−m)

(
(1 + ε)4(2−m) − 1

)]
(1 + ε)7−3m

F [w(τ)] ≤ I[w(τ)] , (3.33)

where ε is (roughly speaking) the size of the relative error |w− 1| ∼ ε, which we need to be small in order to
guarantee the validity of the result (note that in formula (11) of [8] h = max{sup

Rd
|w|, 1 − inf

Rd
|w|} ∼ 1 + ε).

Notice that everything is quantified explicitly in terms of ε in the paper [8] which also relies on precise results
of [6, 12]. The smallness of ε for sufficiently large times follows by our Theorem 1.1, Global Harnack Principle,
together with the uniform convergence in relative norm, Theorem 3.3. Recalling now Lemma 1 of [12], we
get the expression for Λα,d = −4α− 2d, which in our notations becomes Λα,d = 2

ϑ(1−m) . Note that we need

to assume that the first moment is fixed, but this is well-known to be true along the nonlinear flow as well,
see [12]. This concludes the proof of the claim.

As a consequence of inequality (3.32), we obtain a faster decay of the relative entropy and conclude that

‖v(τ)− BM‖L1(Rd) ≤ Cδ e−( 2
ϑ−

δ
2 )τ , for any τ ≥ τδ. (3.34)

By re-scaling back to original variables and observing that e2τ = R(t) ∼ tϑ one concludes that

‖u(t, ·)−B(t, · ;M)‖L1(Rd) ≤ Cδ t−1+ δ
4ϑ ,

Notice that δ > 0 is arbitrary, but Cδ may diverge as δ → 0+. This proves the left inequality in (3.24).

It only remains to prove the second inequality in (3.24), to do so we need to invoke the following interpolation
Lemma which goes back to Gagliardo (see [45]) and Nirenberg (see [70, Pag. 126]): let f ∈ Ck(Rd) ∩ L1(Rd)
for some p ≥ 1 and k a positive integer, then

‖f‖L∞(Rd) ≤ Cp,k,d ‖f‖
d
d+k

Ck(Rd)
‖f‖

k
d+k

L1(Rd)
, (3.35)

where ‖ · ‖Ck(Rd) is given by

‖f‖Ck(Rd) := max
|η|=k

sup
z∈Rd

∣∣∣∂ηf(z)
∣∣∣ ,

where |η| = η1 + . . . + ηd is the length of the multi-index η = (η1, . . . , ηd) ∈ Zd. We recall that in the case
γ = β = 0 solution to (CP) are C∞(Rd) and for any k ≥ 1 we have that

sup
τ≥τ0

‖v(τ)− BM‖Cj(Rd) <∞ ,

for a proof of the above inequality see [6, Theorem 2 and Theorem 4]. Fix k ≥ 1 to be chosen later, combining
the above interpolation inequality (3.35) with the decay of the L1 norm given in (3.34) one obtains

‖v(τ)− BM‖L∞ . e−( 2
ϑ−

δ
2 )( k

d+k ) ,

and rescaling back to original variables we easily find that

tdϑ‖u(t, ·)−B(t, · ;M)‖L∞ ≤ C t−(1− δϑ4 −
d
d+k+ d δ ϑ

4(d+k) ) ,

since both k and δ we arbitrary we conclude that the second inequality in (3.24) holds by choosing k sufficiently
large, for instance k ≥ δ−4. This concludes the proof.

Proof of Theorem 3.7. The proof is very similar to the one of Theorem 3.6, here we only explain the
main differences. We cannot reach the rate t−1+δ for two reasons. The first: we can obtain an inequality
as the one (3.32), however the constant is smaller that

(
4
ϑ − δ

)
, see [10, 9]. The second: we need to assume
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γ < 0 to obtain an inequality similar to (3.35), see Lemma 6.1. Finally, solutions to (CP) do not enjoy C∞

regularity, indeed they can be only Cα at the origin, cf. [13], hence inequality (3.35) does not apply as in the
proof of Theorem 3.6: we can only interpolate with Cα norms, and we can not choose k arbitrarily large.
This concludes our considerations.

Proof of Theorem 3.8. In [20], the authors proved Theorem 3.8 under the assumption that the initial data

u0 is bounded, radially symmetric and satisfies u0 = O(|x|−
2

1−m ). It is only needed to show that radial data
in X produce solutions that satisfy the decay assumption above for any time t > t0 for some given t0. This
is exactly the statement of the GHP, Theorem 3.1. The proof is concluded.

4 Counterexamples and Generalized Global Harnack Principle

In this section we carefully construct the family of sub/super solutions presented in the introduction, such
a phenomena is possible only in X c. We show also examples of an anomalous “fat-tail” behaviour for both
integrable and not-integrable solutions. At the end of this section we show that in X c the convergence toward
the Barenblatt is slower due to a different tail behaviour of solutions.

4.1 Construction of a family of Subsolutions and anomalous tail behaviour

In the following Proposition we construct an explicit family of sub-solutions parameterized by the powers of
their decay at infinity. Every subsolution decay in space slowly then the Barenblatt profile.

Proposition 4.1 (Family of L1
γ-Subsolutions) Let m ∈ (mc, 1), ε ∈ (0, 2

1−m −
2
σ (d− γ)), A,B > 0 and

α =
1

1−m
− ε

2
> 0.

Define for some t0 ∈ R the function

D(t) :=
(
σ Am−1mB (d− γ) (1− α(1−m)) t+ t0

) 1
1−α(1−m) . (4.1)

Then, for all t > 0, the L1
γ(Rd) function

V (t, x) =
A

(D(t) +B|x|σ)α
(4.2)

is a subsolution to (CP). If m ∈ ( d−γ
(d−γ+σ) , 1) and ε ∈ (0, 2

1−m −
2(d−γ)
σ − 2) then |x|σ V (t, x) ∈ L1

γ(Rd).

Remark 4.2 We notice that ‖V (t, ·)‖L∞(Rd) � t
− α

1−α(1−m) as t→∞. This is not in contrast with the smooth-

ing effect (inequality (2.17)) which implies that any solution u(t, x) to (CP) decays in time less than t−(d−γ)ϑ:

a simple computation shows that the condition ε ∈
(

0, 2
1−m − 2d−γσ

)
implies that t−

α
1−α(1−m) < t−(d−γ)ϑ.

However, as |x| → ∞, V (t, x) exhibits quite an interesting behaviour, namely V (t, x) � |x|−σα. The power
−σα do not match the one of the fundamental solution: indeed, we have B(t, x;M) � |x|−

σ
1−m , as |x| → ∞.

This proves that, for any choice of the parameters A,B, t0 and for any choice of the mass M , the inequality
V (t, x) > B(t, x;M) holds for |x| large enough.
As a final remark, we can define another family of subsolution. Indeed, for some choice of the parameters
B′, F ′ and T the function W defined as

W (t, x) =
(T − t)

1
1−m

(B′ + F ′|x|σ)α
,

is a subsolution to (CP) which has the same qualitative behaviour as |x| → ∞, the drawback is that this is
meaningful only on a finite time interval, hence we prefer to use V .
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Proof of Proposition 4.1: We just need to verify that the function V (t, x) defined in (4.2) satisfies in a
pointwise sense, the inequality

∂tV (t, x) ≤ |x|γdiv
(
|x|−β∇V m

)
. (4.3)

Let r = |x|, and write -with a little abuse of notation- V (t, r) instead of V (t, x). We recall that the operator
Lγ,β = |x|γ∇ ·

(
|x|−β∇f

)
acts on a radial function f(r) in the following way

Lγ,β(f) = rγ−β
(
f ′′(r) +

(d− 1− β)

r
f ′(r)

)
. (4.4)

A straightforward computation shows the following identities:

∂tV (t, r) =
−Aα∂tD(t)

(D(t) + Frσ)
α+1 ,

Lγ,β (V (t, r)m) =
−(σ αmAm F )

(D(t) + Frσ)αm+2
[(d− γ)D(t) + F rσ (−σ αm+ d− 2− β)] .

As a consequence, the inequality ∂tV (t, r) ≤ Lγ,β (V (t, r)m) is satisfied if and only if

∂tD(t) ≥ σmF Am−1

(D(t) + Frσ)α(m−1)+1
[(d− γ)D(t) + F rσ (−σ αm+ d− 2− β)] , (4.5)

The reader may notice that if ε < 2/(1 − m) − 2 (d−γ)
σ then in the right-hand-side of inequality (4.5) the

term F rσ (−σ αm + d − 2 − β) is negative. A simple computations then shows that the supremum of the
right-hand-side of inequality (4.5) is achieved at r = 0. Hence inequality ∂tV (t, r) ≤ Lγ,β (V (t, r)m) will
follow by asking that

∂tD(t) ≥ σmF Am−1 (d− γ)D(t)α (1−m)

= sup
r≥0

σmF Am−1

(D(t) + Frσ)α(m−1)+1
[(d− γ)D(t) + F rσ (−σ αm+ d− 2− β)] .

We conclude the proof observing that, for any t0 ∈ Rd, such an inequality is satisfied by the function D(t)
defined in (4.1).

Anomalous tail Behaviour. As a corollary of Proposition 4.1 we have the following results about unex-
pected “fat-tails”, both integrable and not-integrable.

Corollary 4.3 (Anomalous Integrable Tail Behaviour) Under the assumptions of Proposition 4.1:

If u0(x) ≥ A

(C +B|x|σ)
α , then for any t > 0 we have lim inf

|x|→∞
|x|σ α u(t, x) ≥ A

B
.

Moreover, for any t > 0 we have

sup
x∈Rd

∣∣∣∣ u(t, x)

B(t, x;M)
− 1

∣∣∣∣ =∞ . (4.6)

Proof. The proof of the first statement of the above Corollary is an immediate application of Proposition 4.1.
As for formula (4.6), we see that if the initial data u0 do not satisfy the tail condition (TC) there are no
chances to conclude the convergence to the Barenblatt profile in uniform relative error. Indeed, since

u0(x) ≥ A

(C +B|x|σ)
α , by Proposition 4.1 we get that u(t, x) ≥ A

(D(t) +B|x|σ)α
,

for any t > 0, where D(t) =
(
σ Am−1mB (d− γ) (1− α(1−m)) t+ C1−α(1−m)

) 1
1−α(1−m) . A simple compu-

tation shows that the quotient

1

B(t, x;M)

A

(D(t) +B|x|σ)α
=

A

t
1

1−m

[
b0

tσϑ

Mσϑ(1−m) + b1|x|σ
] 1

1−m

(D(t) +B|x|σ)
1

1−m−
ε
1

∼ Ab
1

1−m
1

B
1

1−m−
ε
2

|x|σε2

t
1

1−m
as |x| → ∞ ,
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from which we deduce (4.6). The proof is then complete.

A Family of Subsolutions not in L1
γ. A closer inspection of the proof of Proposition 4.1 reveals that the

condition on ε for V to be a subsolution is actually mε ≤ 2
1−m−

2
σ (d−γ), while for ε > 1

m

(
2

1−m −
2
σ (d− γ)

)
,

V ceases to be a subsolution. Indeed, when ε > 2
1−m −

2
σ (d− γ), we can construct subsolutions which do not

belong to L1
γ(Rd), so that, in general, initial data u0 6∈ L1

γ(Rd) do not produce L1
γ(Rd) solutions for any time

t > 0. We resume this fact in the following corollary, considering the parameters m, ε,A,B, t0 in the “non
integrability range”:

m ∈ (mc, 1) , ε ∈
[

2

1−m
− 2

σ
(d− γ),

1

m

(
2

1−m
− 2

σ
(d− γ)

)]
, A,B, t0 > 0 , α =

1

1−m
− ε

2
> 0 . (4.7)

Corollary 4.4 (Family of Subsolutions not in L1
γ) Under assumptions (4.7), the function V (t, x) de-

fined in (4.2) is a non-integrable sub-solution to (CP). If u(t, x) is a (super)solution to (CP), we then have

u0 ≥ V (0, ·) 6∈ L1
γ(Rd) then u(t, ·) ≥ V (t, ·) 6∈ L1

γ(Rd).

4.2 Construction of a family of Supersolutions

In this section we construct a family of supersolutions which share the same spatial tail behaviour with the
subsolutions constructed in the previous Section in Proposition 4.1.

Proposition 4.5 (Family of L1
γ-Supersolutions) Let m ∈ (mc, 1), ε ∈ (0, 2

1−m −
2
σ (d−γ)), E,F > 0 and

α = 1
1−m −

ε
2 > 0. Define for some t0 ∈ R and H > 0 the function

V (t, x) =
EG(t)α

(G(t) + F |x|σ)α
∈ L1

γ(Rd) , where G(t) := t0 +H t . (4.8)

Then, V is a supersolution for all t > 0 whenever H is sufficiently big, more precisely for all

H ≥ mσF 2Em−1 (2 + β − d+ σ αm) . (4.9)

Proof of Proposition 4.5: We just need to verify that the function V (t, x) defined in (4.8) satisfies
inequality

∂tV (t, x) ≥ |x|γdiv
(
|x|−β∇V m

)
(t, x) . (4.10)

under the assumption (4.9). Let r = |x|, and write -with a little abuse of notation- V (t, r) instead of V (t, x).
We have the following identities (recalling the radial form of Lγ,β , formula (4.4).)

∂tV (t, r) =
αE G(t)α−1H

(G(t) + F rσ)
α+1 F r

σ .

Lγ,β
(
V
m

(t, r)
)

=
σ αmF EmG(t)αm

(G(t) + F rσ)αm+2
[F rσ(2 + β − d+ σ αm)− (d− γ)G(t)]

It is straightforward to verify that (4.10) holds at r = 0 since for any t > 0 the derivative in time ∂tV (t, 0) = 0

and Lγ,β
(
V
m

(t, 0)
)

is negative. When r > 0 a direct computation shows that (4.10) is equivalent to

H ≥
(

G(t)

G(t) + F rσ

)1−α(1−m)

mσF Em−1

[
F (2 + β − d+ σ αm)− (d− γ)

G(t)

rσ

]
. (4.11)

Finally, we check that (4.9) implies (4.11), just by using that
(

G(t)
G(t)+F rσ

)1−α(1−m)

< 1 and (d− γ)G(t)
rσ > 0.

Therefore, V (t, x) is a supersolution and the proof is concluded.
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A closer look at the above proof, reveals that if we allow ε < 0, then V (t, x) ceases to be a supersolution.
Indeed, if ε < 0 we have that 1− α(1−m) < 0 and so in (4.11) we would have that(

G(t)

G(t) + F rσ

)1−α(1−m)

=

(
1 +

F rσ

G(t)

)α(1−m)−1

→∞ as r →∞ ,

and an inequality as (4.11) would be impossible.

4.3 Slower convergence rates in X c

We have shown in Section 3.5, that when u0 ∈ X , then there are always power-type rates of convergence to
a Barenblatt profile and in some cases the sharp decay rate O(1/t) is obtained. In this paragraph we show,
by means of an explicit counterexample, that power-like decay rates are simply not possible for general data
outside X . However, we are not able to exclude the possibility of slower decay rates (e.g. log, log log, etc.).
The latter question is really delicate and deserves a thorough study that goes beyond the scope of this paper.

Theorem 4.6 For any δ > 0 there exists initial data u0,δ ∈ L1
γ(Rd) such that the corresponding solution

uδ(t, x) to (CP) satisfies

lim
t→∞

tδ+(d−γ)ϑ‖uδ(t)−B(t;M)‖L∞(Rd) =∞ , and lim
t→∞

tδ‖uδ(t)−B(t;M)‖L1
γ(Rd) =∞. (4.12)

Proof. We only give a detailed proof of the left limit in (4.12) in the non-weighted case γ = β = 0,
the weighted case being completely analogous. For the same reasons, we will just sketch the proof of the
right-limit in the non-weighted case.

Proof of the left-limit. Fix any δ > 0 and let ε ∈
(

0, 2
1−m − d

)
be such that

δ >
2ϑ

ε(1−m)

(
2

1−m
− d− ε

)
. (4.13)

A simple computation shows that this choice of ε is always possible. Let uδ(t, x) be the solution to (CP)
corresponding to the initial data

u0,δ(x) =
A

(1 +B|x|2)
α , where α = 1

1−m −
ε
2 and A,B > 0 are chosen such that ‖u0,δ‖L1(Rd) = 1.

A simple rescaling shows that for any choice of B, we can always choose A such that ‖u0,δ‖L1(Rd) = 1, namely

A

∫
Rd

dy

(1 + |y|2)
α = B

d
2 . (4.14)

Let us consider the subsolution V given in Proposition (4.1)

V (t, x) =
A

(D(t) +B|x|2)α
, where D(t) :=

(
2Am−1mB d (1− α(1−m)) t+ 1

) 1
1−α(1−m) .

We recall that u0,δ(x) = V (0, x) so that by comparison uδ(t, x) ≥ V (t, x) for all t ≥ 0. The following claim
allows to conclude the proof:

Claim. For any B sufficiently large, there exists t0 = t0(B) > 0 and c > 0 such that for any for any t ≥ t0
and for any |x|2 ∈ [D(t), 2D(t)], we have that

V (t, x) > B(t, x; 1) and (V (t, x)−B(t, x; 1)) > c t−
α

1−α(1−m) . (4.15)

Let us assume momentarily the validity of the claim and conclude the proof. The above inequality (4.15)
immediately implies that uδ(t, x) ≥ B(t, x; 1) for any |x|2 ∈ [D(t), 2D(t)]. Let now |x|2 = D(t), we then have

tdϑ+δ ‖uδ(t)−B(t; 1)‖L∞(Rd) ≥ tdϑ+δ |uδ(t, x)−B(t, x; 1)|
≥ tdϑ+δ (uδ(t, x)−B(t, x; 1))

≥ tdϑ+δ(V (t, x)−B(t, x; 1)) ≥ c tdϑ+δ− α
1−α(1−m)

(4.16)
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where in the last line we have used again (4.15). Notice that dϑ+ δ − α
1−α(1−m) > 0, since δ is as in (4.13),

therefore (4.12) follows as a consequence of (4.16). The proof of the left-limit is complete.

Proof of the right-limit. The proof follows by integrating on the region |x|2 ∈ [D(t), 2D(t)], the last line of
inequality (4.16) and recalling that uδ(t, x) ≥ V (t, x) for all t ≥ 0.

It only remains to prove the Claim.

Proof of the Claim. Let us define R(t) = {x ∈ Rd : D(t) ≤ |x|2 ≤ 2D(t)}, for any t > 0. To prove the first
inequality in (4.15) we need to check that for t large enough we have

inf
x∈R(t)

V (t, x) > sup
x∈R(t)

B(t, x; 1) , which amounts to prove that V (t, 2D(t)) > B(t,D(t); 1) ,

where in the last inequality we made a small abuse of language: we write B as a radial function B(t, r; 1).
We rewrite V (t, 2D(t)) > B(t,D(t); 1) in the equivalent form

A

(1 + 2B)α
D(t)

ε
2

t
1

1−m
−
[
b1 + b0

t2ϑ

D(t)

] −1
1−m

≥ a > 0 , (4.17)

for some a > 0. The proof of (4.17) follows by observing that in the limit t → ∞, we have that for all B
large enough

(1 + 2B)
ε
2

(
B

1 + 2B

) 1
1−m

(mdε (1−m)) > b
1

m−1

1 .

Hence, inequality (4.17) holds for B and t large enough, since it is true in the limit t → ∞ and all the
quantities that appear in (4.17) are continuous with respect to t, B > 0.

It only remains to prove the last inequality in (4.15): for any x ∈ R(t) we have that

V (t, x)−B(t, x; 1) ≥ V (t, 2D(t))−B(t,D(t); 1)

=

(
t

D(t)

) 1
1−m

 A

(1 + 2B)α
D(t)

ε
2

t
1

1−m
− 1(

b1 + b0
t2ϑ

D(t)

) 1
1−m

 ≥ c t −α
1−α(1−m) ,

where we have used that t/D(t) � t
−α(1−m)
1−α(1−m) and (4.17). The proof of the claim and of the Theorem is now

concluded.

5 On the Fast Diffusion Flow in X
In this section we analyze some properties of the tail space X that plays a key role in the proof of the upper
estimates of Theorem 3.1 and it is the optimal space for uniform convergence in relative error.

5.1 An equivalent tail condition

Here we analyze the tail condition (TC’) introduced by Vazquez in [86]: we will prove that it is equivalent
to (TC), but this fact is not trivial: its proof needs the GHP of Theorem 1.1, as we shall see below.

Proposition 5.1 Let d ≥ 3, γ, β < d real numbers such that γ − 2 < β ≤ γ(d − 2)/d and m ∈ (mc, 1).
Assume f ∈ L1

γ(Rd). Then,

f satisfies (TC) if and only if it satisfies (TC’)

Proof. We will first prove that (TC) implies (TC’). Assume that |f |X <∞ and let x ∈ Rd, x 6= 0. We have
the following chain of inequalities∫

B |x|
2

(x)

|f(y)| dy

|y|γ
≤
∫
Bc|x|

2
(0)

|f(y)| dy

|y|γ
≤ 2

2+β−γ
1−m −(d−γ) |f |X |x|d−γ−

2+β−γ
1−m = O(|x|d−γ−

2+β−γ
1−m ) ,
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which is exactly (TC’). In the above line we have used that B |x|
2 (x)

⊂ Bc|x|
2 (0)

. Assume now that f satis-

fies (TC’), without loss of generality we can assume that f 6= 0. Let u(t, x) be the solution to (CP) with
initial data u(0, x) = |f(x)|. As proven by Vazquez in [86] and also by Vazquez and one of the authors in [14],
u(t, x) satisfies inequality (1.5), i.e. the GHP. Therefore, by Theorem 1.1 we have that u0 = |f | ∈ X \ {0},
which means that f satisfies (TC). The proof is concluded.

5.2 A non-equivalent tail condition: an example of a “bad” functions in X
In [14] a (non sharp) sufficient condition for the validity of the GHP takes the form: there exists R > 0 and
A > 0 such that

|f(x)| ≤ A

|x|
2+β−γ
1−m

for any |x| ≥ R . (5.1)

It is easy to check that the above condition is sufficient to guarantee that f ∈ X , but not necessary, as we
shall explain by means of the following example: we construct a function f ∈ X which does not satisfy (5.1).

Let d ≥ 3 and, to fix ideas, let us assume that γ = β = 0. Define the function f to be

f(y) =

∞∑
N=2

χBN−2 (xN )(y)

N
2

1−m−1

where N ∈ [2,∞) ∩ N, xN = (N,0), where 0 ∈ Rd−1 is the zero vector. The function f is well defined, since
by construction BN−2(xN ) ∩ BM−2(xM ) = ∅ unless N = M , and 2

1−m − 1 > 1 in since d−2
d < m < 1. We

then have that∫
Rd
|x|

2
1−m f(x) dx =

∞∑
N=2

∫
B 1
N2

(xN )

|x|
2

1−m f(x) dx ≤ c
∞∑
N=2

N
2

1−m−2d

N
2

1−m−1
≤ c

∞∑
N=2

1

N2d−1
<∞ ,

where 0 < c = c(m, d) <∞ and we have used the fact that if x ∈ B 1
N2

(xN ) then |x| ≤ 2N and we recall that

the last series converges since d ≥ 3. As a consequence, we have that f ∈ X : indeed for any R > 1

R
2

1−m−d
∫
BcR(0)

f dx ≤ R
2

1−m

∫
BcR(0)

f dx ≤
∫
BcR(0)

|x|
2

1−m f dx <∞ .

On the other hand, a straightforward computation shows that f does not satisfy the pointwise decay condition
in (5.1). As expected, the pointwise condition is more restrictive than the integral one.

To conclude, we give also an example of a radial function h ∈ X which does not satisfy (5.1). Let

h(y) =

∞∑
N=2

χAN (y)

|N − |y||η
,

where N ≥ 2 is an integer, AN := {x ∈ Rd : N ≤ |x| ≤ N +N−α} with 0 < η < 1 and (1− η)α > 2/(1−m).

5.3 The Fast Diffusion flow as a curve in X
In this section we will consider solutions to (CP) as continuous curves in X . To this end, we provide
some details about the natural topology of X . Indeed, the metric associated to the “natural” norm | · |X
would provide X with a non-complete topology and this is a bit unpleasant. To see this, just consider
0 < ε < σ

1−m − (d− γ) and define the function

f(x) = |x|−
σ

1−m (1− χB1(0)) + |x|−(d−γ)−ε χB1(0) .

The above function f does not belong to L1
γ(Rd) nevertheless |f |X <∞, hence f ∈ X . Unfortunately, f can

be approximated in the topology induced by | · |X , by the family {fr(x)}r∈(0,1] ⊂ L1
γ(Rd), where:

fr(x) = |x|−
σ

1−m (1− χB1(0)) + |x|−(d−γ)−ε χB1(0)\Br(0) , 0 < r < 1 .
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We have that fr ∈ X for any 0 < r ≤ 1 and a simple (but lengthy) computation shows that |fr − f |X → 0
as r → 0. Hence, we prefer to introduce the following norm on X

‖f‖X := sup
R>0

(1 ∨R)
2+β−γ
1−m −(d−γ)

∫
BcR(0)

|f(x)||x|−γ dx <∞ . (5.2)

The main difference between | · |X and ‖ · ‖X is that the latter takes into account the influence of the L1
γ(Rd)-

norm, and provides a complete topology, as in the following:

Proposition 5.2 Let d ≥ 3, γ, β < d real numbers such that γ−2 < β ≤ γ(d−2)/d and m ∈ (mc, 1). Then,

i) For any f ∈ X we have that
‖f‖X = max{‖f‖L1

γ(Rd), |f |X } ; (5.3)

ii) X equipped with the norm ‖ · ‖X , defined in (5.2), is a Banach space;

iii) Compactly supported functions are not dense in X equipped with the norm ‖ · ‖X .

iv) The Barenblatt profile has finite X norm, indeed

|BM |X = lim
R→∞

R
σ

1−m−(d−γ)

∫
BcR(0)

BM |x|−γ dx = (1−m)ϑωd . (5.4)

The proof of the above Proposition is long but straightforward, hence we refrain from giving it here; however,
it can be found in [84, Chapter 4].

As we already explained before, the space L1
γ,+(Rd) can be split into two disjoint sets X and X c. A

remarkable fact is that X and X c are two invariant sets of L1
γ,+(Rd) for the fast diffusion flow, in a sense

made precise in the following Proposition.

Proposition 5.3 (Invariance of X and X c) Let u(t) be a solution to (CP) with u0 ∈ L1
γ,+(Rd). Then,

i) X is invariant under the flow, namely u0 ∈ X if and only if u(t, ·) ∈ X for all t > 0 .

ii) X c is invariant under the flow, namely u0 ∈ X c if and only if u(t, ·) ∈ X c for all t > 0 .

iii) If u0 ∈ X c, then ∥∥∥ u(t)

B(t;M)
− 1
∥∥∥

L∞(Rd)
=∞ for all t > 0.

iv) If u0 ∈ X \ {0}, then the following limit holds

lim
t→∞

|u(t)|X
t

1
1−m

= lim
t→∞

‖u(t)‖X
t

1
1−m

= (σm)
1

1−m

(
ϑ

1−m

) m
1−m

ωd . (5.5)

v) If u0 ∈ X \ {0}, then for any t > 0 the function t 7→ t
1

m−1 |u(t, ·)|X is non increasing, and

|u(t− h)|X
(t− h)

1
1−m

≥ |u(t)|X
t

1
1−m

≥ (σm)
1

1−m

(
ϑ

1−m

) m
1−m

ωd , for all 0 ≤ h ≤ t. (5.6)

Remark 5.4 Inequality (5.6) is sharp, because equality is achieved by the Barenblatt profile B(t , · ;M) for
any M > 0.
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Proof. Recall first Lemma 3.4, whose proof is contained in the Appendix: for any R, t, s ≥ 0 we have that(∫
BcR(0)

u(t, x)
dx

|x|γ

)1−m

≤

(∫
Bc2R(0)

u(s, x)
dx

|x|γ

)1−m

+ C |t− s|R(d−γ)(1−m)−σ , (5.7)

where C is a positive constant which only depends on d,m, γ, β. By taking the supremum in R > 0 in
inequality (5.7) we can deduce that there exist c > 0 depending only on d,m, γ, β, such that for any t, s ≥ 0

|u(t, ·)|X ≤ c
(
|u(s, ·)|X + |t− s|

1
1−m

)
. (5.8)

Let us prove first i). From (5.8) we deduce that if u0 ∈ X then u(t) ∈ X for all t > 0 just by letting s = 0.
The opposite choice lead to the converse implication. Part ii) follows analogously from (5.8). To prove iii)
we proceed by contradiction. Suppose that there exists t such that∥∥∥ u(t)

B(t;M)
− 1
∥∥∥

L∞(Rd)
≤ C <∞ .

Then, reasoning as in the proof of Theorem 1.3 (the necessary part, Subsection 3.3) we conclude that u(t) ∈ X ,
and by point i), we would have that u0 ∈ X , a contradiction. As for the proof of iv), we will use the GHP of
Theorem 1.1: fix t0 > 0, then there exist τ , τ > 0 and M,M > 0 such that for any t ≥ t0 > 0 we have

B(t− τ , x;M) ≤ u(t, x) ≤ B(t+ τ , x;M) , for any x ∈ Rd .

Then, a lengthy still not difficult computation, gives the following inequality(
R?(t− τ)

ζ

) 1
(1−m)ϑ

≤ |u(t, ·)|X
ωd (1−m)ϑ

≤
(
R?(t+ τ)

ζ

) 1
(1−m)ϑ

. (5.9)

Recall that R? is defined in (1.2), so that inequality (5.5) follows from (5.9), together with the following

lim
t→∞

R?(t+ T )
1

(1−m)ϑ t−
1

1−m = ϑ−
1

1−m , for any T ∈ R.

We prove v) through a smooth approximation by means of auxiliary norms: Let k > 0 be a positive integer
and φk(x) be such that

φk(x) = 1 on |x| ≥ 1 +
1

k
, φk(x) = 0 on |x| ≤ 1 , and φk(x) > 0 on 1 < |x| < 1 +

1

k
.

Let us define

|||f |||k,X = sup
R>0

R
σ

1−m−(d−γ)

∫
Rd
f(x)φk

( x
R

)
|x|−γ dx . (5.10)

For any k ≥ 1 and for any f ∈ X we have that(
k

k + 1

) σ
1−m−(d−γ)

|f |X ≤ |||f |||k,X ≤ |f |X ,

as a consequence of the above inequality for any f ∈ X the following limit holds

lim
k→∞

|||f |||k,X = |f |X . (5.11)

We take advantage of the auxiliary norms (5.10). Let k > 0 be a positive integer and R > 0 and define
Yk(t) =

∫
Rd φk

(
x
R

)
u(t, x) dx

|x|γ . Using now time monotonicity, the so-called Benilan-Crandall estimates [4],

ut ≤ u
(1−m)t valid in the distributional sense, we find that

Y ′k(t) ≤ 1

(1−m)t
Yk(t) , so that for all τ > s > 0

Yk(s)

s
1

1−m
≥ Yk(τ)

τ
1

1−m
.
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Multiplying by Rσ/(1−m)−(d−γ) and taking the supremum in R > 0 in the above inequality we get

|||u(s, ·)|||k,X
s

1
1−m

≥ |||u(t, ·)|||k,X
t

1
1−m

,

taking the limit as k → ∞ in the above inequality one gets the monotonicity of t−1/(1−m)|u(t, ·)|X . Let
τ > s > 0 as before (we can take any τ > s, hence also τ →∞) to obtain inequality (5.6), namely

|u(s, ·)|
s

1
1−m

≥ |u(τ, ·)|
τ

1
1−m

≥ lim
τ→∞

|u(τ, ·)|
τ

1
1−m

= (σm)
1

1−m

(
ϑ

1−m

) m
1−m

ωd ,

where in the last step we have used (5.5). The proof is then concluded.

5.4 Convergence to the Barenblatt in X
Finally we address here the question of convergence to the Barenblatt profile of solutions to (CP) in X with
the topology induced by ‖ · ‖X . We find that it is false in general that

‖u(t, ·)−B(t, · ;M)‖X → 0 as t→∞ .

To see this fact we provide an explicit counterexample. Consider the Barenblatt solution B(t, x;M) and its
translation in time B(t+ τ, x;M), for R > 0 large enough we have that∣∣∣B(t+ τ, x;M)−B(t, x;M)

∣∣∣ ≥ 1

2

[(
1 +

τ

t

) 1
1−m − 1

]
B(t, x;M) for any |x| ≥ R ,

we therefore conclude, thanks to (5.4) and (5.6), that∣∣∣B(t+ τ, x;M)−B(t, x;M)
∣∣∣
X

& t
m

1−m .

However, if we suitably renormalize ‖ · ‖X by the factor t
1

1−m we find the following result.

Proposition 5.5 Under the assumption of Theorem 1.3 we have that

lim
t→∞

‖u(t, ·)−B(t, ·;M)‖X
t

1
1−m

= 0 . (5.12)

Remark 5.6 It is interesting to stress that the above limit, rewritten in self-similar variables (1.10), does

not need the renormalization factor t
1

1−m , namely

lim
τ→∞

‖v(τ, ·)− BM (·)‖X = 0 .

Proof. By Proposition 5.2 we know that ‖ · ‖X = max{| · |X , ‖ · ‖L1
γ(Rd)}. To prove (5.5) we need to show

lim
t→∞

|u(t, ·)−B(t, ·;M)|X
t

1
1−m

= 0 and lim
t→∞

‖u(t, ·)−B(t, ·;M)‖L1
γ(Rd)

t
1

1−m
= 0 .

By conservation of mass the second limit is straightforward, hence we only need to prove the first. Under the
running assumption we know by Theorem 1.3 that u(t, x) converge to B(t, x;M) uniformly in relative error.
We restate this result in the following way: there exists a positive function g(t) →0 as t → ∞ such that for
any x ∈ Rd and for any t large enough we have

|u(t, x)−B(t, x;M)| ≤ g(t)B(t, x;M) .

By the above inequality we deduce that

lim sup
t→∞

|u(t, ·)−B(t, ·;M)|X
t

1
1−m

≤ lim
t→∞

g(t)
|B(t, ·;M)|X

t
1

1−m
= 0 ,

where we have used identity (5.5) and the fact that g(t)→ 0 as t→∞. The proof is therefore concluded.

35



6 Appendix

6.1 How to recover the Mass of the Barenblatt profile BM
The following identity is a consequence of the integral representation formula of the Euler Beta function,
see [2, 6.2.1, pag. 258]:

M =

∫
Rd

(
1 + |x|2+β−γ) 1

m−1 |x|−γ dx = |Sd−1|
Γ
(

d−γ
2+β−γ

)
Γ
(

1
1−m −

d−γ
2+β−γ

)
(2 + β − γ) Γ

(
1

1−m

) .

By scaling we obtain

M =

∫
Rd

(
C(M) + |x|2+β−γ) 1

m−1 |x|−γ dx = C(M)
1

m−1−
γ
σ

∫
Rd

(
1 + |x/C(M)1/σ|σ

) 1
m−1 |x/C(M)1/σ|−γ dx

= C(M)
1

m−1 + d−γ
σ

∫
Rd

(
1 + |x|2+β−γ) 1

m−1 |x|−γ dx = C(M)
1

m−1 + d−γ
σ M,

therefore we have that C(M) =
(
M
M

) σ(1−m)
σ−(d−γ)(1−m)

.

6.2 Interpolation Inequality

Let Ω ⊂ Rd be a bounded domain and u : Ω→ R be a function and define for any ν ∈ (0, 1)

bucCν(Ω) := sup
x,y∈Ω
x 6=y

|u(x)− u(y)|
|x− y|ν

. (6.1)

We say that u ∈ Cν(Ω) whenever bucCν(Ω) <∞. Notice that bucCν(Ω) = 0 if and only if u is constant, since
in what follows we need to use strictly positive quantities we shall use the following inequality which hold for
u ∈ Cν (Ω)

|u(x)− u(y)| ≤
(
1 + bucCν(Rd)

)
|x− y|ν . (6.2)

Let Ω′ ⊂ Ω be a subdomain, we define the distance between Ω and Ω′ as

dist(Ω,Ω′) = inf
x∈∂Ω,
y∈∂Ω′

|x− y| ,

where ∂Ω is the boundary of Ω and ∂Ω′ is the boundary of Ω′. The purpose of this appendix is to prove the
following lemma.

Lemma 6.1 Let p ≥ 1, ν ∈ (0, 1) and u : Ω→ R be a function such that u ∈ Lpγ(Ω)∩Cν (Ω). Assume γ ≤ 0
and let Ω′ ⊂ Ω be such that dist(Ω,Ω′) > 0, then there exists a positive constant Cd,γ,ν,p, which depends on
d, γ, p and ν, such that

‖u‖L∞(Ω′) ≤ Cd,γ,ν,p

(
1 +

‖u‖Lpγ(Ω)(
1 + bucCν(Ω)

)
dist(Ω,Ω′)

1
p

) d−γ
d−γ+pν (

1 + bucCν(Ω)

) d−γ
d−γ+pν ‖u‖

pν
d−γ+pν
Lpγ(Ω)

. (6.3)

Assume 0 < γ < d, and let in addiction Ω′ ⊂ Ω be two bounded domains, then there exists a positive constant
Cd,γ,ν,p, which depends on d, γ, p and ν, such that

‖u‖L∞(Ω′) ≤ Cd,γ,ν,p
(

dist(Ω,Ω′) + sup
x∈Ω′

|x|
) γ
p

(
1 +

‖u‖Lpγ(Ω)(
1 + bucCν(Ω)

)
dist(Ω,Ω′)

1
p

) d
d+pν

×
(
1 + bucCν(Ω)

) d
d+pν ‖u‖

pν
d+pν

Lpγ(Ω)
,

(6.4)
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Proof. For any x, y ∈ Ω′ we have, by the triangle inequality, that

|u(x)|p ≤ (|u(x)− u(y)|+ |u(y)|)p ≤ 2p (|u(x)− u(y)|p + |u(y)|p) .

Let x ∈ Ω′, 0 ≤ R < dist(Ω,Ω′), averaging on a ball BR(x) ⊂ Ω we have

|u(x)|p ≤ 2p

µγ(BR(x))

∫
BR(x)

|u(x)− u(y)|p|y|−γ dy +
2p

µγ(BR(x))

∫
BR(x)

|u(y)|p|y|−γ dy

≤ 2pRpν
(
1 + bucCν(Ω)

)p
+ 2p

‖u‖p
Lpγ(Ω)

µγ(BR(x))
,

(6.5)

where in the last step we have used (6.2) and that
∫
BR(x)

|u(y)|p|y|−γ dy ≤ ‖u‖p
Lpγ(Ω)

. We claim that for any

x0 ∈ Rd and for any R ≥ 0 there exist positive constants cγ,d, Cγ,d such that

cγ,dR
d

(
|x0| ∨

R

2

)−γ
≤ µγ(BR(x0)) ≤ Cγ,dRd

(
|x0| ∨

R

2

)−γ
. (6.6)

The above inequality can be proven using the techniques developed in [13, Lemma 5.2, Appendix B], we will
not include the proof here. Now we consider two cases, namely γ ≤ 0 and γ > 0.

Assume that γ ≤ 0, plugging the lower bound of (6.6) in (6.5) we deduce

|u(x)|p ≤ C
(
Rpν

(
1 + bucCν(Ω)

)p
+Rγ−d ‖u‖p

Lpγ(Ω)

)
. (6.7)

Then, inequality (6.3) follows by letting

2R =

(
(d− γ) ‖u‖p

Lpγ(Ω)

pν
(
1 + bucCν(Ω)

)p
) 1
d−γ+pν

∧ dist(Ω,Ω′) .

Assume that 0 < γ < d, then using (6.6) in (6.5) we have for any 0 ≤ R < dist(Ω,Ω′) := D

|u(x)|p ≤ C

(
Rpν

(
1 + bucCν(Ω)

)p
+

(
|x0| ∨ R

2

)γ
Rd

‖u‖p
Lpγ(Ω)

)
≤ C (D + |x0|)γ

(
Rpν

(
1 + bucCν(Ω)

)p
+R−d ‖u‖p

Lpγ(Ω)

)
where in the last step we have used that

(
|x0| ∨ R

2

)γ ≤ (D + |x0|)γ . Letting

2R =

(
d ‖u‖p

Lpγ(Ω)

pν
(
1 + bucCν(Ω)

)p
) 1
d+pν

∧ dist(Ω,Ω′) ,

taking the supremum in x0 ∈ Ω′ we get (6.4). The proof is then complete.

6.3 Holder Continuity of solution to weighted equations

We present here some regularity results for nonnegative local weak solutions to both linear and nonlinear
parabolic equations with weights. The results contained in this section are mainly contained in [13, Part III]
and references therein. We provide similar results here, adapted to the present setting and assumptions, for
convenience of the reader. Consider local weak solutions in the cylinder Q := (0, T )× Ω to the equation

vt = wγ

N∑
i,j=1

∂i (Ai,j(t, x) ∂jv) , (6.8)
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where Ai,j = Aj,i and there exist constants 0 < λ0 ≤ λ1 < +∞ such that for some γ, β < N , satisfying
γ − 2 < β ≤

(
N−2
N

)
γ, we have for any ξ ∈ Rd and any x ∈ Rd

wγ � |x|γ and 0 < λ0|x|−β |ξ|2 ≤
N∑

i,j=1

Ai,j(t, x)ξiξj ≤ λ1|x|−β |ξ|2 . (6.9)

We shall restrict ourselves to the class of bounded, nonnegative, local weak solutions to equation (6.8),
precisely defined in [13, 22, 51]. Notice that this class of solutions is large enough for our purposes.

It is convenient to introduce the notion of distance between nested cylinders of the form Q = (0, T ) × Ω.
Let Q′ = (T1, T2)× Ω′ ⊂ Q, we define

dγ,β(Q,Q′) := inf
(t,x)∈{[0,T ]×∂Ω}∪{{0}×Ω},

(s,y)∈Q′

|x− y| ∨
(
ργ,βy

)−1
(|t− s|) . (6.10)

where γ, β are as above and
(
ργ,βy

)−1
is the inverse of ργ,βy (well defined for any y ∈ Rd) defined as

ργ,βy (R) :=

(∫
BR(y)

|x|(β−γ)N2 dx

) 2
N

.

Finally, we introduce the a notion of Cα norm which takes into account the presence of the weights. With
the above notation we define

bucCαγ,β(Q) := sup
(t,x),(τ,y)∈Q′
(t,x),6=(τ,y)

|v(t, x)− v(τ, y)|
(|x− y|+ |t− τ | 1

2∨σ )α
(6.11)

The proof of the following result can be found in [13, Proposition 4.2, Corollary 4.3].

Notice that the following results involve both the “parabolic” Hölder norm bucCαγ,β(Q′) defined in (6.12),

and the “elliptic” one, bucCν(Ω), defined in (6.1).

Proposition 6.2 (Hölder Continuity for linear equations with weights) Let v be a nonnegative bounded
local weak solution to equation (6.8) on Q := (0, T )×Ω, under the assumption (6.9). Let Q′ := (T1, T2)×Ω′ ⊂
Q. Then there exist α ∈ (0, 1) and κα > 0 , such that for all (t, x), (s, y) ∈ Q′

bucCαγ,β(Q′) ≤
κα

dγ,β(Q,Q′)α
‖v‖L∞(Q), (6.12)

where κα > 0 is given by

κα = κ′α


1 , if σ ≥ 2,(
T

1
σ ∨ sup

x0∈Ω
|x0|
) γ−β

2

, if 0 < σ < 2 .
(6.13)

The constants α, κ′αdepend only on N, γ, β, λ0, λ1.

Proposition 6.12 can be fruitfully used to deduce regularity results also for nonlinear parabolic equation:
for example we can consider nonnegative bounded solutions to ut = |x|γ∇

(
|x|−β∇um

)
as solutions to the

linear equation ut = |x|γ∇
(
|x|−β a(t, x)∇u

)
where a(t, x) = mu(t, x)m−1. Indeed the same can be done for

solutions to the Fokker-Planck type equation (NLWFP) as follows.

Lemma 6.3 Let ρ, τ0 > 0, 0 < λ0 ≤ λ1 <∞, m ∈ (0, 1) and let v(τ, y) : (0,∞)× Rd → R be a nonnegative
bounded solution to (NLWFP), assume that

λ0 ≤ mvm−1(τ, y) ≤ λ1 for any τ ≥ τ0 and |y| ≤ ρ .
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Then there exist ν > 0 and κ > 0 such that if τ1 > τ0 and τ ∈
[
τ1 + 1

σ logR?(2), τ1 + 1
σ logR?(3)

]
then

bv(τ, ·)cCν(Bρ/2(0)) ≤ κ ‖v‖L∞([τ1,τ1+ 1
σ logR?(4)]×Bρ(0)) . (6.14)

The constants ν, κ depend on m, d, γ, β, λ0, λ1; κ depends also on ρ.

Proof. The proof is divided in several steps. It is convenient to consider a time-shifted solution:

v (τ, y) := v (τ + τ1) for any τ ≥ 0 .

Rescaling to originals variables. The rescaled function u(t, x) defined by

u(t, x) :=
ζd−γ

R?(t+ 1)d−γ
v

(
1

σ
log

R?(t+ 1)

R?(1)
,
ζx

R?(t)

)
=

ζd−γ

R?(t+ 1)d−γ
v (τ, y) , (6.15)

satisfies (CP). Define the following domains

Q1 :=

{
(t, x) : 0 ≤ t ≤ 3, |x| ≤ ρR?(t+ 1)

ζ

}
, Q2 :=

{
(t, x) : 1 ≤ t ≤ 2, |x| ≤ ρR?(t+ 1)

2 ζ

}
On both Q1 and Q2 the following estimate holds true

R?(1)(d−γ)(1−m)

ζ(d−γ)(1−m)
λ0 ≤ mũm−1(t, x) ≤ λ1

R?(4)(d−γ)(1−m)

ζ(d−γ)(1−m)

Application of the linear result. We can consider u as a bounded solution to the linear equation

ut = |x|γ ∇
(
|x|−β a(t, x)∇u

)
where a(t, x) = mu(t, x) ,

on the domain Q1. From Proposition 6.2 we deduce that there exists ν > 0 and κν > 0 such that

‖u‖Cνγ,β(Q2) ≤ κν
‖u‖L∞(Q1)

dγ,β(Q1, Q2)ν
. (6.16)

The constant ν shall depend only on d,m, γ, β and λ0, λ1, since R?(1), R?(4), ζ are numerical constants which
only depend on d,m, γ, β. However, the constant κν will depend on ρ when 0 < σ < 2, see the expression of
the constant κα in Proposition 6.2. Finally, we notice that dγ,β(Q1, Q2)ν depend as well on ρ. We shall now
freeze the time variable and consider u(t, x) as a function in space only. From (6.16) we deduce that for any
t ∈ [1, 2] we have that

bu(t, ·)c
Cν
(
BR̃(t)(0)

) ≤ κν ‖u‖L∞(Q1)

dγ,β(Q1, Q2)ν
where R̃(t) =

ρR?(t+ 1)

2 ζ
. (6.17)

Rescaling back to self-similar variables. The domains Q1 and Q2 will be back to
[
τ1, τ1 + 1

σ logR?(4)
]
×Bρ(0)

and
[
τ1 + 1

σ logR?(2), τ1 + 1
σ logR?(3)

]
×Bρ/2(0) respectively. While (6.17) become (6.14) where

κ =

(
R?(4)

R?(2)

)d−γ (
ζ

R?(1)

)ν
κν

dγ,β(Q1, Q2)ν
.

The proof is then concluded.
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