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Sharp Extinction Rates
for Fast Diffusion Equations
on Generic Bounded Domains

Matteo Bonforte® and Alessio Figalli®

Abstract

We investigate the homogeneous Dirichlet problem for the Fast Diffusion Equation u; = Au™,
posed in a smooth bounded domain Q C R in the exponent range ms = (N—2);/(N+2) < m < 1.
It is known that bounded positive solutions extinguish in a finite time 7" > 0, and also that they
approach a separate variable solution u(t,z) ~ (T — t)"/0=™)§(z), as t — T~. It has been shown
recently that v(z,t) = u(t,z) (T — t)~/(1=™) tends to S(x) as t — T, uniformly in the relative
error norm. Starting from this result, we investigate the fine asymptotic behaviour and prove sharp
rates of convergence for the relative error. The proof is based on an entropy method relying on
a (improved) weighted Poincaré inequality, that we show to be true on generic bounded domains.
Another essential aspect of the method is the new concept of “almost orthogonality”, which can be
thought as a nonlinear analogous of the classical orthogonality condition needed to obtain improved
Poincaré inequalities and sharp convergence rates for linear flows.
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1 Introduction

Consider the Cauchy-Dirichlet problem for the Fast diffusion Equation (FDE)

ur(1,2) = Au"(1,2) for all (1,2) € (0,00) x 2,
(CDP) u(r,x) =0 for all (7,x) € (0,00) x 08,
u(0,z) = up(z) forall z € Q.

where m € (0,1), up > 0, and Q@ € RY is a smooth bounded domain of class C?®. The main goal of
this paper is to study the fine asymptotic behaviour of nonnegative solutions to this problem.

This problem has been addressed for the first time in the ’80s by Berryman and Holland in their
pioneering work [6]. However, the results of [6] were not conclusive and many question were left open,
due to the several difficulties hidden in this apparently simple problem. After that work, only a few
relevant improvements appeared, and many basic questions are still open in many relevant aspects. We
will give an account of the previous results concerning the problem under consideration, starting by a



quick review of analogous sharp results for the case m > 1, namely for the Heat and Porous Medium
Equations. This will help to have a better understanding of the difficulties that arise in the problem
under consideration.

The Heat Equation. In the linear case m = 1 the situation well understood: spectral theory and
Fourier series allow one to write a representation formula for the solution in terms of eigen-elements
(Ak, @) of the Dirichlet Laplacian:

(1.1) u(r,z) = Z e_)‘“ﬂo,kgbk (x)
k=1

where g, = fQ uo¢r dx are the Fourier coefficients of the initial datum wug. From the above formula
it is quite simple to deduce that eMTu(r,-) — dig1¢1 as T — oo in LP(Q), for all p € [1,00]. Actually,
one can do better: by standard results about the eigen-elements, one can show that

u(T, )

e SR AV < o~ (R2=A)T
eMTig 101

~

L (Q)

(1.2) ~1

o0
< e~ (R2=A)T Ze—()\k—)\z)T’ﬁo Kl H@
k=2 "l

Loe

The above asymptotic result is sharp (since @ > 0, recall that we are considering uy > 0 here), but it
heavily relies on tools typical of linear equation, that unfortunately are not at our disposal when dealing
with the nonlinear case, i.e. when m # 1. More general linear operators can be treated essentially in
the same way, also when a potential is present, see Section [2] for more details.

The Porous Medium Equation. In the case of slow diffusion, i.e. when m > 1, the situation gets
more complicated. The sharp asymptotic behaviour of the Cauchy-Dirichlet problem for the Porous
Medium Equation (PME) has been proven by Aronson and Peletier [5] for smooth nonnegative initial
data, and then by Vazquez in [40] for general initial data; see also [I7), I1]. The asymptotic behaviour
of nonnegative solutions is described in terms of a special separation of variables solution

Ulr,z) = S(a)r =1,

often called the “friendly giant”, because it takes the biggest possible initial datum U (0, z) = 400, see
[23] [40]. Here, S is the unique nonnegative solution to the associated elliptic (or stationary) problem

(EDP) —AS"=cS§ in €, S=0 on09Q,

Here, ¢ = 1/(m — 1) > 0, since m > 1. In order to better understand the asymptotic behaviour,
it is convenient to rescale logarithmically in time the problem (CDP): setting t = log(7 + 1) and
w(t,z) = 7/ Dy(r, ) , we can transform the problem (CDP) into

we(t,x) = Aw™(t,z) + cw(t,x) for all (t,z) € (0,00) x Q,
(1.3) w(t,z) =0 for all (t,z) € (0,00) x 02,
w(0,x) = up(x) forall x € Q.

The first advantage of this setting is that the separation of variables solution ¢ now becomes a stationary
solution to (L3 and corresponds to the (unique) solution S of the associated elliptic problem (EDD]).
The sharp asymptotic result of [5, 40] now reads as follows:

‘.
(1.4) HM -1 <cpe ™t forallt>>1

S

L>(Q)



for some ¢, > 0 depending on N, m, 2 and a weighted L' norm of uy. In the original variables, the
result can be rewritten as follows

u(r, ) B
ur,)

where g := ¢g ( fQ ugP1 dx)_(m_l), where ¢; is the first eigenfunction of the Dirichlet Laplacian as in
(L), and the constant ¢y > 0 only depends on N,~,m,Q. The above decay rate is of order 1/7, and
this is sharp: it has been first observed in [5] and then in [40], that this rate is attained by a solutions
by separation of variables shifted in time, for instance by the solution U(7 + 1, z), corresponding to the
initial datum U(1,z) = S(z); see also [I7), [II] for an alternative proof of this result, which allows one
to treat more general operators.

2 to

Loo (@) m—1tg+ 7

(1.5) for all 7 >ty

The Fast Diffusion Equation. In the case m < 1, a sharp and clear asymptotic result like (3] or
(L4 is still not known: the reason is that the situation gets significantly more complicated for many
reasons that we shall briefly explain next.

Basic theory: existence, uniqueness and boundedness of weak solutions. The theory of existence and
uniqueness of solutions to the (CDDP)) is well understood, see [42] 41]. The question of boundedness of
solutions however is not trivial: indeed, when m is below a certain threshold, Llloc initial data do not
produce necessarily bounded solutions, see for instance [18| [31] 41]. Hence we will always assume

(HO) 0 <wuyeLi(Q) with ¢ > 1 and ¢ > w when m < m, = 822,

Notice that the regularity assumption changes in the two regimes m € (mc, 1) (the so-called “good
regime”) and m € (O,mc] (the so-called very fast regime). In particular, local Harnack inequalities
change form, see for instance [I8 BI]. We notice that in this paper we shall consider the range
m € (msg, 1) with mg = %—jrg < N=2 — ., hence assumption (HQ) is needed. Under this hypotesis, our
solutions become instantaneously positive and globally bounded in the interior. This clears regularity

issues, since solutions turn out to be smooth in the interior and Hoélder continuous up to the boundary,
see for instance [33] and also [24], [30, [31].

About extinction in finite time and solutions by separation of variables. The first major difficulty is
represented by the fact that bounded solutions extinguish in finite time: there exists a time T =
T(up) > 0 such that u(7) =0 for all 7 > T. Hence the asymptotic behaviour in the fast diffusion case
corresponds to the behaviour of the solution as 7 — T'~. Notice that in general the extinction time T’
does not have an explicit form.

We note that the failure of mass conservation also happens for the Cauchy problem for FDE posed
in the whole Euclidean space R, in the so-called very fast diffusion regime m < m,.. However in that
case, even if mass is not conserved, there is the so-called conservation of relative mass, which means
that whenever the difference between the solution and a asymptotic profile is integrable, such quantity
is conserved, see [9]. This latter important fact allows one to select a suitable asymptotic profile,
and to obtain sharp asymptotic results by means of a nonlinear entropy method via Hardy-Poincaré
inequalities, cf. [7, O] 10, [13].

We observe that while for the Cauchy problem on the whole space the asymptotic profiles are explicit,
this is not the case in the present setting. In bounded domains, we can build solutions by separation

of variables of the form
1

(1.6) Ulr,z) = S(x) <T; T) o
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where S = Sy, 7 is a solution to the elliptic problem (EDP]) with m € (0,1). Unfortunately, in the
elliptic case, existence and uniqueness of solutions are not guaranteed for all m € (0, 1) and all domains,
as we shall briefly explain below. This in spite of the fact that solutions of the associated parabolic
problem exist and are positive and smooth for all m € (0, 1).

Rescaled equation. As in the case of the PME, the asymptotic behaviour it is better understood in
rescaled variables. Letting 7' = T'(ug) > 0 be the Finite Extinction Time (FET), we set

) )= (B2) e, = mios ().

In this way, the time interval 0 < 7 < T becomes 0 < t < 0o, and the Problem (CDP]) is mapped to

wy = A(w™) + ﬁ for all (t,z) € (0,00) x €,
(RCDP) w(0,z) = up(x) for all (¢,z) € (0,00) x 02,
w(t,x) =0 for t > 0 and x € 99.

The transformation can also be expressed as
t
(1.8) w(t,z) = eT=—mT y (T _ Te—t/T7x> 7

and the behaviour near extinction (i.e. as 7 — T'7) for the original flow corresponds now to the
behaviour as t — oo in the rescaled flow.

A first stabilization result. In a pioneering work, Berryman and Holland [6] reduced the study of the
behaviour near T of nonnegative solutions to ([CDPJ) to the study of the possible stabilization of solutions
to (RCDP)). Introducing the new variable V' = S™ and setting p = 1/m > 1 and ¢ = 1/[(1 —m)T], the
stationary problem (EDP]) can be written as a semilinear elliptic equation:

(EDP-V) —AV =cV? in €, V=0 on Q.

The result of [6] states that the rescaled solution v(t) = w(t)™ converges along subsequences to one
stationary state V', in the strong WO1 2(Q) topology. In the language of dynamical systems, one could
restate the result by saying that the omega-limit of w is included in the set of positive classical solutions
to the stationary problem (EDPI). It is worth noticing that, when m € (my, 1), all stationary solutions
S are smooth in the interior and satisfy the following boundary estimates, see for instance [29], B6] and
also [14] [15] and references therein: there exist two constants cp,c; > 0 depending on N, m, ) such
that

(1.9) co dist(z, 0Q) < V(z) = S™(x) < ¢y dist(x, 09) for all x € Q.

About the asymptotic profiles and the range of parameters. The second major difficulty comes from the
nature of the asymptotic profiles S. As we have mentioned, they are nonnegative solutions to (EDDP))
or equivalently (EDP-VI): this problem has been extensively studied, but in the case p > 1 it possesses
some intrinsic difficulties and some basic questions remain still nowadays open. For instance, existence
of nonnegative bounded solutions may fail when p is large: to avoid such issues, we restrict our analysis
to the case

N +2 N -2

(1.10) 1<p<ps:= N_3 or equivalently ms =N <m <1




As previously mentioned, another major difficulty is represented by the fact that nonnegative solutions
to (EDP]) need not to be unique. It is worth noticing that uniqueness depends on the geometry of the
domain Q, cf. [25] 206 27 29, B6], so that in general we can not expect uniqueness even in the the
“good” range to mgs < m < 1. However, even if not unique, H&(Q) solutions are absolutely bounded,

see [22] 29, B7] and also [15] [14] for more details.

Stabilization towards a unique profile. A natural question left open in [6] was to understand whether
the solution v converges to a unique stationary profile or not, especially when the set of stationary
solutions contains more than just one element. This has been positively answered by Feireisl-Simondon
in [34], where they use a Lojasiewicz-type inequality to prove that a nonnegative bounded weak solution
to (RCDP)) converges uniformly towards a unique stationary profile S. More precisely, Theorem 3.1 of
[34] states that any nonnegative weak solution w € L*((0,00) x Q) of (RCDP) is continuous for all
t > 0, and there exists a classical solution S to (EDPJ]) such that w(t) — S as t — oo in the strong

C(£2) topology. Unfortunately the arguments rely on compactness arguments and the way the initial
datum selects the stationary solution is still unclear.

Convergence in relative error and reqularity. In 2012, the first author together with Grillo and Vazquez
established convergence in relative error (see also [33] for a related result about the Global Harnack
Principle):

Theorem 1.1 (Convergence in Relative Error, [16]) Let m € (mg,1), let w be a bounded solu-
tion to Problem (RCDDP)) corresponding to the initial datum g satisfying assumption (HO), and let
T = T(ug) be its extinction time. Let S(x) be the positive classical solution to the elliptic problem
([EDP), such that [[w(t) — S||re) — 0 as t — co. Then

=0.

(1.11) lim Hw(t’ ) 4 o

S()

Inequality (CIT]) can be equivalently stated as follows: there exists a positive function §(t) — 0 as
t — oo, such that

(1.12) [1—0(t)]S(x) <wv(t,x) <[1+(t)]S(x) for all z €  and all ¢ > .
In the original variables, inequalities (LII)) and (LI2) become

T—1
T

(1.13) lim

T—T— T, )

_1
> T forallz e,

|u(7',-) .

=0 or J|u(r,z)—U(T,z)| <(t)S(x) (
Lo ()

1
where U(7,x) = S(x) (%) 1-m ig the solution by separation of variables given in (L.0J).

In order to emphasize the previous result that we will use in the sequel, we state the above result as
an hypothesis (that of course will be true in our setting): for any ¢ € (0,1) there exists a time ¢y > 0
such that

(H1)s lw(t,z) —S(x)| < §S(z) for a.e. (t,x) € [tp,00) x 2

First rates of convergence. In [16] some rates of convergence were obtained, for m € (my, 1) where my
was very close to 1, exploiting continuity properties of eigen-elements and Intrinsic Poincaré inequalities
in a (different) entropy method. However the results were not sharp and only applied to a strict subset



of the range (ms, 1) not easy to quantify. For more details, see Sections 4 and 5 of [16] or also the last
example at the end of Subsection 224l When dealing with strictly positive Dirichlet data, an entropy
method similar to [16] has been developed in [§].

Summing up, as far as we know, only the papers [0, 32} [33] [34] [I6] contain important contribution
to the subject of the asymptotic profile near extinction for solutions to the Dirichlet problem for the
FDE on bounded domains, and as explained above none of the above mentioned papers provides rates
of convergence for all m € (mg, 1), nor gives sharp rates.

Related Problems: signed solutions and subcritical range. In the case of signed solution the situation
gets even more involved [1l 2] [3, 4]. As for the subcritical range: the case m = mg corresponds to the
celebrated Yamabe flow, many results have been obtained in different settings, but sharp asymptotic
results are still missing for the Dirichlet problem. The only asymptotic result present in the literature
to the best of our knowledge is due to Galaktionov and King [35] and is valid for radial solutions on
a ball; see also [38, Section 5] for a formal discussion for general domains. When m € (0,ms), an
asymptotic analysis is performed at a formal level in [38, Section 5], also for domains with spikes,
where different kinds of selfsimilar solutions seem to provide the correct asymptotic behaviour; see also
[35] Section 1.2] for a brief discussion on this subcritical range.

1.1 Statement of the main result

Fix a € (0,1), and define the set
(1.14) O := {Q c RY : Qis open, Q is compact, and 99 € Cz’a} .
The topology on O can be defined through a family of neighborhoods as follows:
NAQ) = {2 €0 : 30 e C**RY;RY) with || @ — Id||c2 < e such that Q' = &(Q2) }.

Our main result states that, for generic domains, the convergence holds with sharp rates.

Theorem 1.2 (Sharp Rates of Convergence) There exists an open and dense set G C O such that

for any domain Q € G the following holds. Let m € (ms, 1), and let w be a solution to Problem (RCDDI)

on [0,00) x Q corresponding to the initial datum ug satisfying assumption ([HQ). Let S(x) be the positive

classical solution to (EDP) such that |w(t) — S||ree ) — 0 ast — co. Then there exist Ay, > 0 such
w™(t,x)

that, for all t > 0 large,
2
1.15 / —_— — 1‘ S () dy < ke 2Am?
(1.15) s ®

and the decay rate A, > 0 is sharp. Also, for all t > 0 large we have

o
50)

_>\m
< ke vt

L (Q)

(1.16) ~1

Remark 1.3 (i) In original variables, the estimates of the above Theorem can be stated as follows:
there exists T € [0,7) such that

(1.17)

<K <T_T> ’ for all 7 € [Tp, T.
L>(Q)



where U is the separate variable solution defined in (L@]). Also,

(1.18) /Q

(ii) The set G is the set of all “good” domains to which our result applies. Beside being open and
dense in the sense described above, we will characterize it more precisely in Subsection 2.4 The
set G contains the balls. Also, given Q € O, for p = 1/m > 1 sufficiently close to 1 the set

always contains €. In other words, if we denote by e “good” set corresponding to the
g al tains 2. In oth ds, if we denote by G, the “good” set ding to th
exponent p then

2

u™ (T, x) T—71

ALY
Um(r,x)

2
T m
> for all 7 € [Tp,T.

SH™(z)de < K <

Upo>1 Mi<p<py Gp = O,
see the discussion at the end of Subsection 241
(iii) About the sharpness of \p,. As we shall explain later, the rate A, turns out to be the same as
in the linear case, hence no better rate shall be expected in this degree of generality.

(iv) As m — 17, it is possible to show that \,, — A2 — A1, and the rate is the same as in (2, i.e.,
for the linear Heat equation, see Remark 2.4] or Section 4 of [16] for further details.

The goal of the rest of the paper is to prove Theorem To this aim, in Section [2] we shall first
analyze the equation obtained by linearizing the nonlinear FDE around the stationary state V = S™.
Then, in Section B we develop a nonlinear entropy method to deal with the original FDE and we
prove (LIH) with an almost sharp rate. Finally, in Section [l we prove some new smoothing effects in
order to deduce first (LI5]) with the sharp rate and then (I.IG]). For the convenience of the reader, we
summarize the proof of Theorem in Section

2 The linearized equation and improved Poincaré inequalities

In this section we want to prove an improved weighted Poincaré inequality, which will be an essential
tool in the entropy method for the nonlinear flow. This inequality will follow by the study of the
spectrum of a linearized operator in a suitable weighted space, and will have important consequences
in the analysis of the parabolic flow associated to the linearized FDE.

Let us recall that V' is a nonnegative solution of the homogeneous Dirichlet problem for the semi-
linear equation —AV = cVP, with p > 1. We will analyze first the fine asymptotic behaviour of the
homogeneous Cauchy-Dirichlet problem for the following linear equation

(2.1) pVPTLOf = Af + cpVPTlf

which is obtained by linearizing the (rescaled) nonlinear FDE 0,vP = Av 4 cvP around the stationary
solution V. Let us first notice a trivial but importan fact: V is not a stationary solution to equation
1), indeed —AV = cVP? # cpV? since p > 1.

Note that stationary solutions ¢ must satisfy the homogeneous Dirichlet problem associated to the
linear elliptic equation

(2.2) —Ap = cpVP 1y,

and whether or not the above linear elliptic equation —which is an elliptic Schrédinger equation with
potential VP~ admits nontrivial solutions will be essential for the understanding of the asymptotic
behaviour of the linear flow (2.I)). We devote the rest of this section to clarify this issue.



2.1 The Spectrum of the Dirichlet Laplacian in weighted L? spaces

It is well known that the Dirichlet Laplacian —A is a linear unbounded selfadjoint operator on L2(2),
defined as the Friedrichs extension associated to the Dirichlet form Q(f) = [, |V f|?> dz, see for instance
[28]. Tt is also well known that it has a discrete spectrum, with eigen-elements (g, 1), [|®r[l12) = 1,
0 < A < Ay < -+ < A < Agp1 — oo, and this fact easily follows by the fact that its inverse
(—A)71: L2(Q2) — L2(Q) is a compact operator with eigen-elements (ug, ®x), with 0 < g — 07, and
clearly A\p = ,u,;l.

We will need to construct the Dirichlet Laplacian —A as a linear unbounded selfadjoint operator on

L2, 1(€); let us recall that L2,,_, () is a Hilbert space with inner product

— p—1
<f79>Lg/p1(Q)—/Qf9V dz.

Short notation: In what follows we are going to use a simplified notation, replacing L%/p,l(Q) with

L2.
Lemma 2.1 (The Spectrum on L?/)

(i) The inverse operator (—A)~' : L% — L¥ is a compact operator with eigenvalues {{iyx}ren such
that 0 < pyy — 0% as k — co. We denote by Vi, C L%/ the finite dimensional spaces generated
by the eigenfunctions associated to the k' eigenvalue, and by T, L%, — V. the projection on the
eigenspace V. We also denote by Nj, = dim(Vy) and by ¢y ; with j = 1,..., Ny, the elements of a
basis of Vi, made of normalized eigenfunctions, H‘Zﬁk,jHL%, =1.

(ii) The operator —A is a linear unbounded selfadjoint operator on L%,, which is the Friedrichs extension
associated to the Dirichlet form Q(f) = [, IVf2de. —A has a discrete spectrum on L., with
the same eigenfunctions (and consequently the same eigenspaces Vi) as (—A)~! and eigenvalues
AV = ,u‘_,kl , so that

0< )\V,l < )\V’Q <0 < )\V,k < /\V,k—i-l — 00

(13i) The smallest eigenvalue v,y = ¢ > 0 is simple, namely the corresponding eigenspace Vy is 1-

dimensional, i.e. Ny = 1. Also the first positive eigenfunction is ¢1 1 = V/HVHL%/ = V/HVHil;ﬂ)m.

(iv) All the eigenfunctions are of class C**(Q)NC*(Q) for some a € (0,1), and have a similar boundary
behaviour: for all x € € there exist constants cjq > 0 such that

(2.3) CI_}Q dist(z,0Q) < @11 < 11,0 dist(x, 09Q) and |ok.(2)] < ¢jradii(x).

Proof. Properties (i) and (ii) follows by standard linear spectral theory, see for instance [21], 28] .

It is classical that Ay;; is simple and that ¢q; is the unique positive eigenfunction. Since V' > 0
and —AV = cVP = (cVP~)V, V is a positive eigenfunction corresponding to the eigenvalue c, thus
¢ = Ay,1. This proves (iii).

As for (iv), the result for ¢; ; = V/ ||VHL%/ follows for instance from [14, Theorem 5.9] (see also [33] [16])
since V' is a solution to the semilinear equation (EDP-VI). Once the result for ¢ ; is established, it suf-
fices to note that |¢y, ;| is a subsolution to the linear elliptic equation [¢ ;| < Avkl|V Lo @) (—A) ¢
to ensure that is enjoys the same upper boundary behaviour, see [12], Proposition 5.4]. []



Thanks to the previous lemma, given an element 1 € L%/ we can represent it in Fourier series adapted
to the spectral decomposition, using the projections my,:

o0 Ny

(24) = W where iy i=my () = > (b bk Phy = Zm%
— j=1

Also

(2.5) —Ap = Av,kVp_lgp for all ¢ € V.,

and the spaces Vj are mutually orthogonal, namely

(2.6) (1/1,(;7>L%/ = / Ve VPldz =0 for all ¢ € V;, and ¢ € V; with k # j.
Q

2.2 Orthogonality conditions and improved Poincaré inequalities

In order to obtain an asymptotic result, we need a weighted Poincaré with a sufficiently large constant,
namely

(2.7) )\/ VPl dx g/ IVel?dz,  with A > cp.
Q Q

Since we know from Lemma [2.I] that the eigenvalues Ay, of —A on L%/ are going to infinity as k£ — oo,
the above Poincaré inequality shall be true under appropriate orthogonality conditions. The other
information that we get from Lemma[2.Tlis that the first eigenvalue A\y;; = ¢ and the first eigenfunction
is ¢v;1 = V', hence we wonder wether pc is an eigenvalue or not. The answer strongly depends on the
geometry of the domain 2, and it turns out that generically cp is not an eigenvalue, see Remark [2.4](i)
and Subsection 2.4 for further details. The above discussion motivates our main assumption:

(H2) There is no nontrivial solution (i.e. ¢ # 0) to the homogeneous Dirichlet problem for the equation
—Ap=cpV? Ly inQ, p=0 on 0f.

Under assumption (H2), it is convenient to define the integer k, > 1 as the largest integer k for which
pc > Ay, so that

(2.8) 0< )\V,l =c << )‘Vvkp <pc < )‘V,kp+1-
As a consequence of the above discussion and of Lemma 2] we obtain the following:

Corollary 2.2 (Improved Poincaré Inequality) Under assumption (H2), let ¢ € L%/ be such that
(2.9) o =y, (p) =0 for all k < k,.

Then the following inequality holds true:

(2.10) 0 <Av,kp+1/ VP~ tda < / |Vo|? da .
Q Q

10



Proof. First, by Fourier series expansion, Plancharel identity, and hypothesis ([2.9]), we have

o o o o0
(2.11) = Zsﬁk = Z Pk 5 and H%’Hig/ = Z H‘PkHi% = Z Hﬁﬁk”izv :
k=1 ke=kp+1 k=1 k=kp+1

since ¢ = 0 for all 1 < k < k,. Recalling now (), i.e. that —Apg = Ay VP gy, it is easy to see
that || Vey|[f. = )\V,kH(pkHi%/ , which implies

(o @] o0 o0 (o]
||V90||ig/ => H%Hig/ = Z)\V,kHQDkHi%/ = > )\V,kHQDkHi%/ > Mokpt1 Y H%Hig/ = Av,k,,+1||90||ig/,
=1 =1 k=hpt1 k=hpt1

where we used (211)). O
For the application of the above inequality in the linear entropy method, it will be convenient to define
(2.12) Ap = AVk,+1 —cp >0,

and to rewrite the improved Poincaré inequality (Z10) in the following form:

Corollary 2.3 Under assumption (H2), let ¢ € L, be such that
o =y, (p) =0 for all k < ky,
and let A, > 0 be as in 2ZI2). Then the following inequality holds true:

(2.13) )\p/ Q? VPt d:ng/ |V<p|2d:n—cp/<p2Vp_1 dz.
Q Q Q

Remark 2.4 A simple but still important remark concerns the limit as p — 17 in the above Poincaré
inequality (27). It has been proven in [16] [14] that when p — 17 we have that V' — ®; and Ay =
c — A1, where (Aq, ®1) are the first eigen-elements of the classical Dirichlet Laplacian on (2.

As a consequence, the above Poincaré inequality (2.10) becomes the “second Poincaré inequality”,
namely Ao|[¢|[f, < [|[Velf,, and holds for functions orthogonal to @1, that is [, ¢®; dz = 0. Hence,
it is clear from the above discussion that A\, — Ao — A1 as p — 17. In particular, (H2) holds true for p
sufficiently close to 1 (the closeness depending on the domain €2).

2.3 The linear entropy method

We now briefly show how to prove the asymptotic behaviour of solutions to the linear parabolic equation
@1). Let us define the linear Entropy functional

(2.14) E[f] = /Qf2vp—1 dz .

The Entropy production. The derivative along the linear flow of this functional can be computed
as follows:

LEr() =2 /Q F(t.2) folt,2) VP (z) da = % /Q F(t.2) [AF(t2) + cpV? (@) (1, 0)] da

dt
(2.15) )
2dz — pc 2, 2) VP N 2)dx | = ==
(/Q|Vf<t,:c>| ds—p /Qfa, % <>d) S0)

2
p
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where we have defined the so-called “linear Entropy-Production functional”, namely

(2.16) |Uy:AUVﬂ%M—pgéf%m*dm

The Improved Poincaré inequality. First we observe that we need an improved Poincaré inequality
already to be able to guarantee that the Entropy Production functional | is nonnegative: indeed the first
Poincaré inequality (2I0]) (i.e. with constant A\y; = c) is not sufficient to guarantee the nonnegativity
of I. For this reason we need the improved Poincaré inequality (2.I3]) of Corollary 23] which is

(2.17) ME[f] = )\p/Qf2Vp_1d:L" §/Q|Vf|2d:n—cp/g<,02Vp_1d:n: I[f].

In order to guarantee the validity of such inequality, we have to impose the orthogonality condition
[23) and to prove that is preserved along the linear flow, which is the next step.

The orthogonality condition is preserved along the linear flow. In order to apply the Poincaré
inequality (2.I7) to the solutions to the linear parabolic equation (2I), we have to make sure that the
orthogonality conditions are preserved along the evolution: more precisely, we want to show that

(2.18) If my, (f(to)) =0forall k=1,...,kp, then my, (f(t)) =0forallt >tpand all k =1,...,k,.

Indeed, given 1, € Vi, we know that —Ayy, = /\Vkap_lwﬂ, SO we can compute
d
E/ Ft,@) iy () VP~ () do = / felt, )yp () VP~ (@) da
Q Q

= l/q/zk(x)Af(t,x) dx + c/ ft, ) () VP (z) da
(2.19) v o
-2 /Q F(t,2) Ay () de + ¢ /Q F(t, ) (2) VP (@) da
= PE R |t ain @)V o) da.

As a consequence, for all ¥ € Vj,

(2.20) [ 1ty i) v e do =5 [ o) i) Ve o,

which clearly implies ([2.I8]). Notice also that if we do not impose the orthogonality condition at the
initial time, the projections of the solution eventually blow up (in infinite time and with an exponential
rate), namely we have that for all ¢, € Vi, k € {1,...,kp}, the integrals [, f(t,z) ¥r(x) VP=l(z)dx —
00 as t — 00.

Exponential decay of the Entropy. Assuming (H2) and the orthogonality conditions (2.9]) on
the initial datum fp, the orthogonality condition then holds true for the solution f(t) at any time
and consequently the improved Poincaré (2.I7)). Combining the latter inequality with the Entropy
Entropy-Production equality (ZI5]), we obtain:

LI = 20 < - 2eepi,

which finally implies the exponential decay of the Entropy:

2
E[f(t)] < e_TptE[fo] , where A\, = Ay, 11 —pc > 0.

Hence f(t) converges exponentially fast to 0 in L.

12



Remark 2.5 In the limit p — 11 the above exponential decay becomes (cf. also Remark 2.4))

/ |[f(t.)]” dz < e—2(A2—A1)t/ | fol(@)[? dz.
Q Q

and holds for initial data fy orthogonal in L? to the first eigenfunction ®;. This is the optimal result for
the classical heat equation on bounded domains with Dirichlet boundary conditions, more specifically
for the equation f; = Af + A1 f, as already explained in the Introduction, cf. formula (LII).

2.4 Assumption (H2) is generically true

As explained above, we need to assume (H2), which can be equivalently states as follows:
e cp is not an eigenvalue for the Dirichlet Laplacian on L, i.e. cp & SpecL%(Q)(—A).

This fact is not easy to check in general, and it depends on the geometry of the domain. However, one
can show that this result is generically true. More precisely, let O be defined as in (I.14]) endowed with
the % topology. Then we define the family of sets for which (H2) holds as follows:

(2.21) G={QecO : cp¥¢ SpecL%(Q)(—A)}.
We recall here a result due to Saut and Temam [39, Theorem 1.2], adapted to our notation.
Theorem 2.6 (Saut-Temam [39]) The set G C O is open and dense.

Some examples.

e By the results of [25] Theorem 4.2], we know that (H2) is true on balls, namely that B,(x¢) € G
for all zg € R and r > 0, for any N > 2. In dimension N = 2, (H2) holds for domains which are
convex in the directions e; and symmetric with respect to the hyperplanes {z; = 0}, i = 1,2.

Also, by the results of [44] we know that (H2) is stable under C'' perturbation of the balls.

e We know that (H2) is not true for some annuli, see for instance [T 2, 3] [4], 25 27]. However, Theorem
implies that if we perturb a bit the annulus in the C?>® topology, then for most perturbations
(H2) holds true. A similar phenomenon happens for a dumb-bell shaped domain, [26], 27].

e As a consequence of Remark 24 given Q € O, for p sufficiently close to 1 we have that cp ¢
Specyz (@) (—A) and hypothesis (H2) holds true.

3 Nonlinear Entropy Method

In what follows it will be convenient to make the following change of function and parameters: let
p=1/m, v(t,x) = w™(t,x), and V=",
so that the equations for v and V take the form

(3.1) o = Av + co? and — AV =cVP,

13



both with homogeneous Dirichlet boundary condition. We also set
f=v=V.

For our new entropy method to work, we will need to use (H1)s, which can be rewritten as follows: for
any § € (0,1) there exists a time ¢ty > 0 such that

(H1')s lf(t,z)| <oV(x) for a.e. (t,x) € [tg,00) x Q

Let us notice that the validity of the above assumption in the range p € (1,ps) is guaranteed by the
convergence in relative error proven in [I6], as already discussed in the Introduction.

Let us define the new Entropy functional

(3.2) Ev] = /Q [(UPH — Vp+1) — ]%1(1)” - VPV dz,

which is a nonlinear analogue of the linear Entropy functional E[f] defined in ([2I4]). As explained in
Section [2] the time derivative of the linear entropy along the linear flow,

pVPLOf = Af + cpVPTlf,

is often called the entropy production and takes the form

SEF@) = 200 = =2 [ Vi de—pe [ Py,

p pPJa Q

Then, in order to get the exponential decay of the Entropy two main ingredients are needed: first,
we need the improved Poincaré inequality in the form of Corollary 2.3} second, we also need the
orthogonality condition (Z20) to be preserved along the linear flow, otherwise we can not use the
improved Poincaré inequality. This has been carefully explained in Section

Idea of the proof in the nonlinear case. The nonlinear entropy method that we propose here is based
on an improved Poincaré inequality, similar to the one used in the linear case. In Subsection B.1] we
first compare in a quantitative way linear and nonlinear Entropy and Entropy production. The next
step would use the improved Poincaré inequality of Corollary 23] but unfortunately the orthogonality
conditions are not preserved along the nonlinear flow, hence we cannot proceed in the straightforward
way. A first step in this direction is establishing that some improved Poincaré inequalities hold under
suitable almost-orthogonality conditions, cf. Subsection The almost orthogonality conditions are
introduced in Subsection and are expressed in terms of Rayleigh-type quotients of both linear and
nonlinear type. If these conditions were satisfied for all times then we could conclude the exponential
decay of Entropy, as in Subsections [3.4] (differential inequality for entropy - entropy production) and
B (exponential decay of entropy).

The most important and delicate part of this entropy method consists in showing that the almost
orthogonality is preserved along the nonlinear flow. Indeed, we will show that the almost-orthogonality
property improves as time grows: this phenomenon is quite unexpected, since in the linear case failure
of the (exact) orthogonality condition along the flow would imply blow up in infinite time. On the other
hand, in the nonlinear case we can take advantage of Theorem [[.Tlto show that the almost orthogonality
remains true for all times, as explained in Subsections (possible blow up when almost orthogonality
fails) and (almost-orthogonality improves along the nonlinear flow). The latter subsection contains
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qualitative and quantitative statements, the latter being needed to prove (LI5]) with an almost sharp
rate. Finally, to prove (ILI0) with a sharp rate and to show ([LI6]) a quantitative weighted smoothing
effect is needed. This motivates Section d], where we prove that the L° norm of the relative error is
bounded from above by a power of the Nonlinear Entropy, at least for large times.

Notation. In all the paper we assume p > 1. In the statements below, the quantities c,, ¢,,p, kp, Kp, 7p
will always denote positive constants depending on p (and possibly on other factors explicitly mentioned
in each case), such that the estimate will hold uniformly for [1,p]. Recall that ¢ = [(1 — m)T]™! =
p/[(p — 1)T], where T'= T'(ug) > 0 is the extinction time.

3.1 Comparing Linear and Nonlinear Entropy and Entropy-Production

The comparison between linear and nonlinear quantities can be made only when the solution v is
sufficiently close to the stationary state V', which always happens after a time tg > 0, as expressed by
the (H1')s condition. Before proving the main results of this subsection, we state a simple numerical
inequality that will be used in the rest of the paper (we leave its proof to the interested reader).

Lemma 3.1 Let p> 1, j > 0. Then there exists cj, > 0 such that

(3.3) <SA+EPT <1+¢,lE]  forallé] <1/2p.

1+ Cip ’f ‘
We now prove a quantitative two-sided inequality between linear and nonlinear entropies.

Lemma 3.2 (Comparing linear and nonlinear Entropy) Let v be a solution to the (RCDP), let
f=v—V, and assume (H1')s with 0 < § < 1/2p. Then, for all t > ty we have

_ptl
2(1 +¢,0)?

p+1

(3.4) E[f] < €] < (1 +750) E[f].

Proof. Given a > 0, define the function

ptl

Fy(v) = pPtl el
p

V(P —VP) —a(v— V)2

Then F(v) = (p+ 1)(v? — VoP™') = 2a(v — V) and F}(v) = (p+ 1)vP~?[p(v — V) + V| — 2a. Notice
that F,(V) = F.(V) = 0. Also, as a consequence of (H1)s,

(1=po)V <plo—=V)+V =pf+V < (1+ps)V.
Furthermore, (33]) with j =2 and £ = |f|/V < ¢ yields
(14 cap0) VP2 < (14 cop|f) VP2 < 0P™2 < (1 + capl fIVP2 < (14 c,0) VP2,

Thanks to these inequalities, to prove the lower bound of ([3.4)) it is sufficient to choose a > 0 such that
F” >0, and this amounts to choose ¢, = ¢, V p and

_p+1 yr-l <p—|—1
T2 (146,02 2

p+1

(3:5) VPTHL = ,6)(1 — pd) < va’"2 [p(v — V) +V].
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Analogously, for the upper bound, we choose a > 0 such that F” < 0, that is

p+1 p+1
2

(36) @=LV (14507 > LIV 1t 00,0)(1 4 ph) ;1vp2[p(v—V)+V]. =

Now we are ready to prove a quantitative upper bound for the nonlinear entropy production.

Proposition 3.3 (Comparing linear and nonlinear Entropy Production) Let v be a solution
to the (RCDP), let f =v —V, and assume (H1")s with 0 < § < 1/2p. Then for all t >ty we have

d p+1

(3.7) dtf‘i[ o(t)] = i If ()] + Ry[f(2)]
where
(3.8) IR,[f]] < /ip/Q]f]?’Vp_2dx.

Proof. Let us calculate the time derivative of the Entropy along the nonlinear flow d,v? = Av + cvP:

iS[fu(t)] = / <8tvp+1 — E(‘)ﬂﬂ’) dz = ptl (v=V) (Av+cP) dz
dt Q p p Q

(3.9) p—l—l [ /|Vv|2d:n—|—c/vp+1d:n /UAVd:E—C/’Ude:E]
Q Q Q

1
p+ [ /|Vv|2d:n—|-c/ p+1d:n+c/vadx—c/vdeaz},
Q Q Q

where we have integrated by parts in the second line (the boundary terms disappear because both v and
V' are zero at the boundary). In the third line we have used the equation for V', namely —AV = cVP.
Next, we recall that v =V + f so that

d _ptll 2 qu — 2 Qo — .
e =2 [ /Q\VV\ da /Q\Vf\ dz 2/vi Vfda

—l—c/ﬂ(’u—l—f)pHda:—i—c/Q(V—l—f)Vpda:—C/Q(V—i-f)de4

(3.10) _ptl {_c/ yrHl da:—/ |Vf|2d:c+2/ fAV dx
p Q Q Q

+C/Q(v—|—f)p+1d:n—|—c/QVp+1d:E+c/prdaj—c/(V+f)de3:}

p“ { /\Vf\2da:—c/prdx—i-c/(V—i—f)pHda: /(v+f)Pde}
Q

where again we have integrated by parts and we have used the equation for V, namely —AV = cV?
and [, [VV[*da = ¢ [, VP! da. Next, by a Taylor expansion we have

plp+ D —-1)
6

(V+ P =vPrl L (p+ D)VPF + ( )Vp e (V + f1)p=2y3

for some | fi| < 0V, as a consequence of (H1')s. Analogously, we have

V(V + f)p _ Vp—l—l +prf + p(p - 1) Vp—1f2 + p(p B 1)(p - 2) V(V + f2)p_3f3
2 6
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for some |fo| < V. Adding the two expressions above, we obtain
(VA P = V(V+ [P = V4 pVPlf?

. F 22D (v + i — -2V (v + o] 1

Hence, combining (3.10) and ([BII)) we obtain

ie[u(t)] :’%1 [—/Q\Vf\zdx—c/Qprda:—i-c/Qfodx—i—cp/QVp_lf2dx]

dt
(3.12) peltt U=l [ [0+ 0+ 2= -2V v + ] fas
Q
= =2+ R LA,

It only remains to estimate R,[f]. To this end, thanks to (H1’)s with 0 < § < 1/2p, we can ensure the
validity of inequality (B3]) with £ = |f|/V < é < 1/2p, which reads

(14¢jp0) VP < (V4 fP7 < (14¢,0)VP7,  withj=2and j = 3.

We therefore obtain (recalling that 0 < § < 1/2p <1)

Rotf)) < 2D [ ([ )+ 2]+ [0 - v + o) 1P

Q

(3.13) < CW / (14 c2p8)(p + 1)VP2 + p = 2|(1 + ¢3,0)VP?] | P dw
Q

< 1y /Q FPVP2de. O

3.2 Introducing the almost-orthogonality condition

Recall that in Section we have defined

Ap = AVky+1 —cp >0,
where k, was the largest k such that pc > Ay . Also, we know by Lemma 2.1l that the eigenspaces V,
are finite dimensional and mutually orthogonal; we recall that 7y, : L%/ — Vi, is the projection onto V.

Improved Poincaré inequalities of the form (2I0]), namely >\V,kp+1||90||iz [Velf,, are valid for
1%

functions ¢ which satisfy suitable orthogonality conditions (2.9), namely ¢ = my, (¢) = 0 for all
k < ky. Recall that dim(Vy) = Ny, that {¢x ;};j=1,..n, is an orthonormal basis, and that, as in ([2.4]),
we have defined for all ¢ € L%/

o) Ny,
(3.14) Y= W where gy =y () = > (k)i Pry = Zwk,J<z>k,]
_ j=1

Hence, it is convenient in what follows to express the orthogonality conditions (29 in an equivalent
way, by means of Rayleigh-type quotients:

| ey b1 VP~ 1da:| (¥, Pr.g)L2 |

(3.15) Qg Y] == =
(fu2 VP 1d$) [¥1lLe,

=0, forallk=1,...,kpand j=1,...,Nj.
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As explained in Subsections and [2.3] the above orthogonality conditions are preserved along the
linear flow. Unfortunately, this is not the case for the nonlinear flow. We hence introduce a new
concept of almost-orthogonality, which will play an analogous role for the nonlinear flow and allow us
to use improved Poincaré inequalities along the nonlinear flow. More precisely, we say that a function
f € L2, satisfies the e-almost-orthogonality condition for the linear functional, (AOL). for short, if the
Rayleigh quotients Qy, ; is small: namely, given € € (0,1),

(AOL). Qrjlfl <e forall k=1,...,ky,and all j =1,...,Nj.

We are going to show that the condition (AOL). always holds uniformly after some time along the
nonlinear flow, and that it also improves as time increases, roughly speaking that ¢ — 0 as t — co. This
is the most delicate part of our analysis, since it is in clear contrast with the linear case: as explained in
Subsection 23] if we do not impose exactly the orthogonality condition (8.I5]) on the initial datum, the
solution eventually blows up in infinite time, as in formula (220). On the contrary, for the nonlinear
case, condition will be true for large times, and the solution will asymptotically converge to
zero (with exponential rate). To be more precise, we will not be able to control but actually
a nonlinear version of it: we will show that the nonlinear Rayleigh quotients defined below remain
uniformly small along the nonlinear flow, and even that they will asymptotically converge to zero:

[Jo (vF = V?) ¢ da — Angl].
(Jo [orr = veet) — 2L (o — vi)v ] dz) JUE

(3.16) QkJ [U] =

NI

Indeed, as we shall see below, the nonlinear Rayleigh quotients Qy, ; are quantitatively comparable to
the linear ones Qi ; and, as a consequence, the [(AOL)| condition stated in terms of Qy ; is essentially
equivalent to the one stated in terms of Qy ;, namely

(AON). QO jlv] <e forall k=1,...,ky,and all j =1,...,Nj.
The equivalence between (AOL). and (AON). will be detailed in Remark below.

Lemma 3.4 (Comparing linear and nonlinear Rayleigh quotients) Let v be a solution to the
(RCDP), let f =v —V, and assume (H1")s with 0 < 6 < 1/2p. Then for all t >ty we have

V2p V2p
VD +1(1 +E,6) p+1

where ¢, > 0 is given in Lemma B2l

(1 +2,0)Quj [f ()] + G pELf]2

N

(3.17)

Qrj[f] = Gk jpE[f(D)]2 < Qg j[v(t)] <

:

Proof. We first recall that, by a Taylor expansion, we have

WP — VP =pVPHu - V) + Lp; 1)?77)_2(11 —V)?

where, thank to (H1')s with 0 < § < 1/2p and @3) with & = |f|/V < 6,
(14 2p0) VP2 <2 = (V4 )72 < (14 e9,0) VP2,

As a consequence, recalling (2.3]),

p(p—1)
(3.18) =5

- p(p—1 _
/Q(U — V)2 07 da| < Wcj,k7ﬁ(l+02,p)A(U—V)2Vp Yda =: ¢ ; Elf].
Lp+1
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Now observe that

Ap = '/ —VP)py ;dx| =

‘ / v— V), VP da + 2 Py 5 U/@—Vﬁ@ﬁ?—?dsn
Q

so that

p '/Q(U — V) VP! d;p‘ _ @

<p

< Alw

/Q( = V)2 0" d
/Q(v — V) ; VP dx‘ n p(p2— 1)

Combining the latter inequality with (BI8]) we obtain

/ (v —V)?¢p ;0P 2 dx| .
Q

(3.19) p — CoipElf] <Ay <p + ¢k pEL/]

/(v —V)gp; VP 1 da
Q

/(v —V)gp; VP 1 da
Q
which can be rewritten as follows (dividing by E[f]'/?):

(3.20) PQu[f(8)] — ¢ B2 < 2L < pQu[f(0)] + & ELf]2 .

Finally, combining ([34) with (20, we obtain inequality BI7). [J

Remark 3.5 As a consequence of (H1')s we have that the entropy is small, namely E[v] < ||VH€:,F+1152

so that (BI7) becomes

2 2p
Wﬁ; =5 Quald D=2 IV I8 < Quglo(t)] < \/\pr(Hcp )Qu L ()]l V505

Hence, by choosing ¢ sufficiently small, we can show that the almost orthogonality conditions (AOL).
and (AON). are equivalent: there exists x, > 1 such that, taking 6 < ¢, we have

(3.21) (AOL). =  (AON). =  (AOL)g..

3.3 Improved Poincaré inequality for almost-orthogonal functions
Recall that in Section we have defined

Ap = AVky+1 —cp >0,
where k, was the largest k such that pc > Ay . We aim at proving the following:

Lemma 3.6 (Improved Poincaré inequality for almost-orthogonal functions) Assume (H2),
and let ¢ € L%/ satisfy (AOL).. Then, the following improved Poincaré inequality holds:

(3.22) o+ =) [ PV lde < [ Volds,
Q Q
where Vp = ()\V,kp+1 — )\V,l)kkap-
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Remark 3.7 It is useful to rewrite the above Poincaré inequality (8.22]) in terms of the linear Entropy
and Entropy-Production:

(323) (N — 1)) Elp] = (O — 1pe?) / ©*VPlde < / Vip|* dz — cp / * VP da = [g] .
Q Q Q

Proof. Let recall that ¢;, = 7y, ¢, that all the ¢;, are mutually orthogonal in L%/, and that they satisfy
— A = A\, VP~ Ly, Therefore we have

Adllgill3. if i = j,
A%

(3.24) / Vi -Vyjde = / 0i(—A)pjdx = )\j/ pip; VPl da = o
0 0 Q 0 if i # j.

As a consequence,

o kp o
2 2 2 2
[ 1veas =S avallonlty =3 dvalienlly + 30 Avalienlly
k=1 k=1 k=kp+1

kp 00

>Avi ) H%Hizv F AWkt D H(PkH%zV
(3.25) k=1 k=kp+1

kp

o0
= Mikpt1 ) H%Hizv — A1 — Ava) Y loklize
k=1 =1

2 )‘V,kp+1|’90”i2v — (AVikpr1 — Avi1)kp Nkp52H(PH12JzV .

Note that in the last step we have used (AOL)., namely that | (1, ¢k,j>L%/| < EH(,OHL%/, that combined
with the expression of 7y, (¢) given in (B.14]) gives:

Ny

2
Hsﬁk”izv <> (¥, b1z | H¢k,j”i2v < Nk€2|’¢|’i2v < Nkp€2H<PH12JzV ;
j=1

since N < Ny, for all k < k,. The statement follows by recalling that k, has been defined so that
AV, < PC < Ay, +1, hence

AVikpt1 — (A1 — )‘V,l)kkap52 =pe+ A — 7p52- 0

3.4 Entropy-Entropy Production inequality for almost orthogonal functions

We combine the results of the previous Subsections to show two differential inequalities that will imply
exponential decay of the nonlinear entropy £, under suitable “almost orthogonality” conditions. The
first result combines the entropy-entropy production inequality and the improved Poincaré inequality,
but it is not sufficient to obtain sharp rates of convergence. The second inequality will lead to sharp
rates, but it requires stronger assumptions, namely that the quotients Qj ; and the relative error decay
like a power of the entropy: this latter (a priori stronger) assumption is guaranteed by the weighted
smoothing effects proved in Section [l
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Lemma 3.8 (Entropy Entropy-Production inequality for almost orthogonal functions I)
Let v be a solution to the (RCDP), and let f =v —V satisfy (H1"); with 0 < § < 1/2p. Assume (H2)
and that for some t > to we have that f(t) satisfies (AOL).. Then

(3.26) %E[U(t)] < - (% — (e + 5)> Eu(t)].

Proof. Under the running assumptions, by Proposition the Entropy Production is given by

d p+1
(3:27) Gl = = lr @) + R [r(0)

where
2 —1)6
(3%)WAWSC%@—DAUPW“ﬂmSuﬂw4ﬁAFVV%m§—%%%ﬁl

We now combine inequality (B.4]) with the improved Poincaré for quasi orthogonal functions, in the

form ([B.23) of Remark 3.7, to get
(3.29) f(0)] = (A — 1) ELF (1)) 2

Combining [3.27)), (3:28)), and ([3:29]), we obtain
— 2 _
%S[fu(t)] <_ (2()\p Wwe')  2cep(p—1)8

(14,0)%E ()]

200 — W 52)
(p+1)(1+7c,0)?

Elo(t)]-

u+@®ﬁsww]

p(1+72,0)? (p+1)
3.30 2% 2y (ANG(Ep+T) | colp—1) . )
330 = [ p  p2p+ Ep)2€2 < (2p +7¢)? MRS 2p+ p)2> 5} Elot®)

2\ -
< (Zr -4 +9) el O
We can prove a sharper inequality if we have a quantitative control in terms of the entropy of both the

quotients Qg ; and of the (L*°-norm of the) relative error along the flow, as follows.

Lemma 3.9 (Entropy Entropy-Production inequality for almost orthogonal functions IT)
Letv= f+V be a solution to the (RCDP) satisfying (H1")5 with 0 < § < 1/2p. Assume (H2) and that
for some n > 0 we have:

t —
3 |UV] cRep- 0P and Q)] < gy El(t - 1]
Vol
forallt>to>1and allk =1,...,ky, j=1,...,Nr. Then, for allt >ty > 1 we obtain
d 2\
(3.32) a&[v(t)] < —?p E(t)] + kpElv(t — 1)]" Ev(t)].

Proof. The proof easily follows by inequality ([3.26]), by choosing suitable £ and § (both depending on
t). Assumption (3.31)) allows the choices

v(t) =V
Ve i)
which in turn imply B32)). O

Remark. Notice that ([332]) is a ordinary differential inequality with delay: this will imply the sharp
exponential decay for the entropy, as we will explain in Subsection [3.71

<0:=RE(t—1)]7 and Qu;[f(t)] <e:= (1@:1/313}’;% Ep,k,j) Elw(t—1)]2,

Next, we show that having small nonlinear Rayleigh quotients Q. ; along the flow is enough to ensure
a quantitative decay of the entropy, and this is implied by condition (AON)..
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Lemma 3.10 (Entropy Entropy-Production inequality for almost orthogonal functions IIT)
Letv= f+V be a solution to the (RCDP) satisfying (H1")5 with 0 < § < 1/2p. Assume (H2) and that
v(t) satisfies (AON). for some t > to. Then, choosing §,e < 1 so that kpe? + 38 < 2,/ (pFp) with 7, as
in Lemma [38, we have that

d 2
(3.33) FEO1 =~ (22 =500 +9) £luto)] <0.
Proof. Recall that (AON). implies (AOL), (see Remark [3.5]). Thus, choosing § and & small enough
so that kpe? + 0 < 2),/(pYp), we obtain inequality (B.33]) using Lemma B8 [

3.5 Possible blow up when almost orthogonality fails

In the previous subsection we have shown that when the Rayleigh quotients are sufficiently small, then
the entropy decays in an exponential way. On the other hand, when the quotients are not small, i.e.
when (AOL). or (AON), fail for some ¢ and t( large, then can show that they must fail for all ¢t > tg
with the same ¢, and then we prove as consequence that Ay ; blows up in infinite time along the
nonlinear flow, similarly to what happens in the linear case.

The main result to show this phenomenon is contained in the following;:
Lemma 3.11 Let v = f + V be a solution to the (RCDP) and assume (H1")5 with 0 < § < 1/2p.
Fiz two integers k € [1,ky| and j € [1,Ng], and fix also t > tog > 0 and €9 € (0,1/2). There exists
Ko > 0 such that the following holds: if

(3.34) 0 < Kg€o and Q. ilf(t)] > eo

then there exists k1 > 0 such that

(3.35) %Ak,j[v(t)] > rie0Ak[v(t)], where Ay lv(t)] =

/ (0P (1, 7) — V() g5 (x) da
Q

Remark. We notice that the smallness condition on § with respect to £9 depends on kg, that only
depends on k, j, N, p, 2 and can have an explicit form, although its explicit value is not relevant to our
purposes. An analogous remark applies to k.

Proof of Lemma B.17]. We have to split the proof in two steps, since the argument in the case of the
first eigenfunction ¢ ; is different from the case of the other eigenfunctions.

e STEP 1. The case of the first eigenfunction ¢11 > 0.  Recalling that ¢;; = V/HVHL‘T;E , wWe
notice that it is equivalent to prove ([3.38]) with V' instead of ¢; ;. We first notice that by Mean Value
Theorem and assumption (H1')s

WP — VPV <p (WP PV VP Vie = V| < p(1+ 8P VPw — V.
Thus, by Holder inequality, we obtain

/ WP(t, ) — VP(2)| V(x) do < p(1 + 67— / v — V[VP da
Q Q

1 1
(3.36) < p(1+0)P! (/ yrrt da:) i </ lv — V|PvPt da:) i
Q Q

_\/5\(/_ 5)" (/va+1d$>%g[ ]%< ;g[v]é

22



where we used (B.4). Hence hypothesis [834]), i.e., Ay 1[v(t)] > eo€[v(t)], combined with (@36l implies

(3.37)

/ (WP(t, ) — VP(2)) V(z) da
Q

> 6'0/9|vp(t,:1:) VP ()| V(a) da

with gf = €0/c),. Let us compute next

d

o 0 vAVda:+c/

Q

(WP = VPV dx :/

(Av 4+ co?)Vdx = /
Q

WPVde = c/ (VPV —oVP) do
Q Q

p—1 _ y/p-1
(3.38) = c/ (vp_l - Vp_l) vVdx = c/ 1)1)1’7‘/1”1) (WP = VP)Vdx
Q Q -

=c /Q a(t,z) [VP(t,x) — VP(x)] V(z)dx

where we have used the equation for V', namely —AV = cVP, and we have defined

P~ —ypl p—1 p—1lv-V p>—1[v-V 2
3.39 t,x) = =
(3.39) a(t, ) T , + oV o ( v > +o0

Hence, thanks to assumption (H1')gs,

-1 -1
(3.40) pT — o <alt,z) < pT + 0, where ¢ ~ (p —1)/2p.
We now consider two cases, depending whether fQ(vp — VP)V dz is positive or negative.

Assume that [, (vP(t,2) — VP(z)) V(x)dz > 0. Then (3.37) implies
/ (WP =VP) Vdx —/ (WP =VP)_Vdx > 66/ (WP =VP) Vda:—l—E'O/ (WP = VP)_ Vdu,
Q Q Q Q
which we rewrite as

1+¢

(3.41) /Q 07 (t,2) = VI, V() de 2 /Q (WP(t, ) — VP(2))_ V(z)de.

Now, combining ([B.38)), (3:40]), and B41]), we get

d
T (vp—Vp)de:c/a(v”—V”)Jr de—c/a(vp—Vp)_ Vdz
Q Q Q
p_l " ) D
>c|=———¢,d (WP =VP) Vdzx
p Q
—1
—c<p—+c;;5>/(vp—vp)_ Vdx
(3.42) pfl e i1
> o //5_ o(& -~ ”(5 / p_ P vd
et ()] [
p—1 2 0 / »
- - —vP), vd
[p l+e) 1+¢ Q(U Jo Vda

—1
_cp— £0 /(vp—Vp)de
Q
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provided that 6 < g(. This is exactly (3.33]) in the first case.
The case [q, (vP(t,z) — VP(x)) V(x)dz < 0 is completely analogous. This completes Step 1.

e STEP 2. The case of all the other eigenfunctions. Fix k € [2,k,] and j € [1, Ni]|. First we observe
that assumption ([B.34]), implies

(3.43) Qi;[f(t)] > eo/4p and § < Koeh.

Indeed, recalling that (H1’)s implies E[v] < HVH’Jiﬁz, by [BI1) we have

p+1(1 —¢,0 N , . ) »
Qr;[f(1)] = \/—\/(i 9) (Qk,j[v(t)] - Ck,j,pE[f]2) > % (60 — Ck’-j?pHV||L121+15>
(3.44) 1 » “
C; R €0
= % <1 o Ck,j7p||v||Lp+1ﬁ0€0> gg > %

provided kg is small enough.

Next, we recall that ¢ =V/ ||V\|g,ﬂ)/ ? and that the eigenfunctions are orthogonal, hence

ptl ptl
(3.45) Vo ons)2 = IV /Q d110k VP da = [V 2 /Q dr gV da = 0.

We use the above equality to compute

% (WP = VP jda = /(Av + cv? )y, jdo = / vAQy j da + c/ vy jda
Q Q Q Q
= _)\V,k/ 'UQS]{;’]' dﬂ;‘ + C/ Up¢k7j d;U
Q Q
(3.46) — v [ (0= VIor V7 ot e [ (0 -V do
v—V)ypr-l
= /{;(Up - Vp)(ﬁkd |:C - )\Vk%] dx

= / (WP = VP)oy ja(t, x) dx
Q

where we used the equation for ¢y ; (namely —Adg ; = Ay VP 7Ly ;), in the third line we used (B.45),
and we define

B (v — V)Pl
(347 alfz) = [C TR T
Hence, thanks to assumption (H1')s, we have

A A
(3.48) c— % — 0 <alt,r) <c— % + ¢4 p0
where c’,;’p > 0 only depends on p and Ay .
Next, we show that
p_ P d c .
(349) |fQ(U )st,] l“ > — p ng[f] _ /kdvp E[f]1/2
Jo P = VPl ldz ~ ¢ ;0 Chjip Q2
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To prove ([3.49]) we recall the lower bound in ([B.I9]), namely

(3.50) Apj = ‘ / — VP) ¢y ; dx

>p‘/ v— V)b, VP da — ¢, pELf]-

Next, recalling ([2.3]) and proceeding analogously to (B.36]) we obtain

[NIES

(3.51) /Q WP — VP || da < s /Q WP~ VPV dz < ¢y, o ELf]

Combining (B50) and (BEI) we obtain (3:49)) .
Next, our assumption ([43]) that Qx[f(t)] > €0/4p, together with inequality (349, implies

Jo(WP = VP)¢y; da p hj €0 . 241
L T S L | o
fQ ’U - ’ ’(bk"]‘ x Ckvjvpvﬂ Ckvjvpvg Ckvjvpvﬂ Ckvjvpvg

where in the last step we used that E[f] < HVH’J&(SQ as a consequence of hypothesis (H1")s, and the
assumption § < &g.

We are now going to consider two cases, depending on the sign of [, (vP(t,z) — VP(z)) ¢y ; da.
Assume that [, (vP(t,z) — VP(x)) ¢y ; dz > 0. Then [B52) implies that

/Q (W — VP)py)., da— /Q (P — VP)ry)_ do > € /Q (P — VP)y )., date) /Q (W — VP

which we rewrite as

(3.53) /Q((v” — V)¢ ), do > ?_rj] /Q (V" = VP)br5)_ da

0

Now, combining (3.46]), 3.47)), (3.48) and ([B.53]), we get

(3.54)

d
T Lo =vmondn = [ atta) (@ = V7o), do = [ atta) (07 = V76w

AV AVk
> (c — 7 + c’k',p > /Q((Up _ Vp)<l5k,j)+ de — <c — 7 _ //7p5> /Q((up _ Vp)tbk,j)_ dx
)\V,k 1" 1-— E/O )\V,k " / » D .
(c p Chep0 72, c p Chep0 ; (P =V )qb;w)+ dz
< /

the last step being true if § < &f, (recall that pc — Ay, > pc — Avik, = Ap for all 1 < k < k). This
concludes the proof in the first case.
If [ (vP(t,x) — VP(x)) V(xz)de < 0 the proof is completely analogous, and Step 2 is also complete. []
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Lemma 3.12 Let v = f 4+ V be a solution to the (RCDP) satisfying (H1'); with 0 < 6 < 1/2p. Fix
two integers k € [1,k,] and j € [1, Ni], and t > tg > 0. Let ky be as in Lemmal3 11, and assume that

(3.55) 6 < kg Qrylv®)],  Qujlv(t)] < g,
with g, sufficiently small. Then
d
(3.56) S Qo] = SO,
t 2
where £y > 0 is as in Lemma 311

Proof. Let g := Qy j[v(t)]. Note that, if e is sufficiently small, it follows by [B33) that &'[v(t)] < 0.
Then we can apply Lemma BTl to compute the time derivative along the nonlinear flow of Qy, ;[v(t)]
and get

o Arglv®)]
1 1 0 1
[ ()]§ Elo®)]z Ev(t)] Elo(t)]z
where we have used that Aj ;[v(t)] > kye0.A,;[v(t)] (thanks to Lemma BIT). [

(3.57) Qk,][ vu(t)] = = 151 Qg [v(t)]?

3.6 The almost-orthogonality improves along the nonlinear flow

In this section we show that the almost-orthogonality, represented by a smallness condition on the
nonlinear Rayleigh quotients Qy, ;, improves along the nonlinear flow. We will provide qualitative
results first and then we refine them in a more quantitative way.

The qualitative version of the almost orthogonality along the nonlinear flow given below allows us
to ensure that Qy ;(t) is small for ¢ large, and remains uniformly small in ¢. This allows us to prove
an exponential decay of the Entropy, with an almost optimal rate, since it implies the hypotheses of
Lemma This result holds just by knowing the convergence in relative error, without any other
regularity assumption.

Proposition 3.13 (Qualitative almost orthogonality along the nonlinear flow) Letv be a so-
lution to the (RCDP), let f =v —V, and assume (H2). For every e > 0 small there exists t. >ty >0
such that if (H1")s holds for some ¢ < kge, then

(3.58) Qrjlv(t)] <e  forallt >t. and for allk =1,...,ky, and j=1,...,N.

Proof of Proposition B.13l Fix € > 0. Without loss of generality we can assume 0 < ¢ < g.
Assume by contradiction that there exists ¢ > tp and k € [1, k|, j € [1, Ng], such that Qy ;[v(?)] > e.

We consider two cases.

Case 1: there exists t; > t such that Qy ;[v(t1)] = € and Qy, ;[v(t)] > € for t € (to,t). By the choice of
t1 it follows that

d

— Hu(ty)] < 0.

5 Quslo(tn)] <0
On the other hand, it follows by Lemma B.12] that

d
= Quslo(t)] = F ()] >0,
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a contradiction.

Case 2: Qy j[v(t)] > e > 0 for all t > ¢. Then we are in the position of using Lemma B.I1] to obtain,
for all ¢ > t,

d o o e(t—i .
(359) A [v(®)] = meAr[v(t)] >0, which implies A j[v(t)] > e =0 Ao (D)],

which goes to infinity when ¢ — oo. This implies a contradiction, since we know by (B.36) when
k=j =1, and by (351l when k € (1,k,] and j € [1, Ni], that

A j[v(t)] < CE#)]Y? =0 as t — 0o,

where the convergence of E[v(t)] to zero follows by Theorem [Tl This concludes the proof. []

3.6.1 Quantitative improvement of almost-orthogonality

If we want to obtain sharp rates of decay for the Entropy, namely the same as in the linear case, we
need a more quantitative control on the almost orthogonality. More precisely, the nonlinear quotients
Qk,j need to be controlled by some power of the Entropy. For this, we will show in Section Ml that the
L°° norm of the relative error can be controlled from above by a power of the entropy, at least for large
times. As a consequence, we will deduce the following Proposition, which is a quantitative version of
the almost orthogonality and that will allow us to prove optimal rates of decay for the Entropy.

Proposition 3.14 (Quantitative almost orthogonality along the nonlinear flow) Let v be a
solution to the (RCDP) satisfying (H1")s with 0 < § < 1/2p small enough. Assume (H2) and

oy

(3.60) =

<EkE(E -1, forallt >ty >1

Loo ()
for some n > 0. Then, there exists a time Ty > to > 0 such that

(3.61) Qri(v(t)) < Ev(t — 1))z, for allt > Ty and all 1 < k < k.

Proof of Proposition B.I4l Let (t) := [|(v(t) = V)/V |l < EE(t — 1)]". Fix §,2 > 0 small so
that k,22 + 0 < 2\,/(p¥,) with 7, as in Lemma B8l Without loss of generality we can assume that
to is large enough so that ®E[v(t — 1)]7 < § and (thanks to Proposition BI3) Oy ;(v(t)) < £ for all
integers k € [1,kp] and j € [1, Ng], and for all ¢ > . Then, it follows by Lemma [3.10] that

d P
(3.62) E&[v(t)] < - (7 — Yp(kpE” + 5)> Ev(t)] <0 forallt >ty —1.
Assume now by contradiction that there exist ¢ > tg and k € [1, k], j € [1, Ni], such that Qy ;(v(t)) >
E[v(t — 1)]"/2. Then the following holds:
Claim. There exists a time t. >t > to such that Qy ;(v(t)) > E[v(t — 1)]"/? for all t € (%,t.) and
Quj(0(t.)) = Elolt. — V2.
Proof of the Claim. Assume by contradiction that Qy ;(v(t)) > E[v(t — 1)]"/2 for all ¢ € (%, 00). Since
5(t) < REM(t — 1)]" < E[u(t — 1)]"2 < Ok (v(t)), we can apply Lemma BTl for all ¢ € (7,00) (with
g0 = E[u(t — 1)]"?) to get

(3.63) L Ao (0)] 2 m Rt~ DI Ay [o(0)] > 0,
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which gives that Ay ;[v(t)] /4 0 as t — oo, a contradiction that concludes the proof of the Claim (see
Step 2 in the proof of Proposition B.13]).

As a consequence of the Claim, we have that & Oy ;[v(t,)] < & (5 [v(t*)]g> This will lead to another

contradiction. Indeed, on the one hand we have
d n n_
1 LealvIl < SEE)]ZT - E(u(ty)) <0

since by ([B:62]) we have that %5 [v(t)] < 0 for all t > ty. On the other hand, under our assumptions
we can use Lemma with g9 = E[v(t, — 1)]"/? (note that §(t) < £g) to obtain

d K

5 Qealv(t)] = TreoQuslv(ta)] > 0

which gives a contradiction and concludes the proof. []

3.7 Exponential decay of the Entropy along the nonlinear flow

Proposition implies that the solution v(t) to the nonlinear flow improves its quasi-orthogonality
as time grows in a qualitative way: this is enough to use the improved Poincaré inequality for almost
orthogonal functions of Proposition and obtain the closed differential inequality (with time delay)
B32) of Proposition The latter inequality, combined with the following lemma, will allow us to
conclude the (sharp) exponential decay of the entropy as in Proposition below.

Lemma 3.15 (Super solutions to ODEs with delay) Let Y : [tg,00) — [0,00) satisfy the follow-
ing ordinary differential equation for all t > tg+ 1:

Y'(t) < =AY () + Y7 (t — 1)Y(¢)

for some o > 0, and assume that Y(t) — 0 as t — oo. Up to enlarging ty, assume that C =
XY (to)=7 —1>0. Then, for all t > ty we have

1

(3.64) Y(t) <Y (t) = .
[e—)\o(t—l) + C]E

Proof. It is not difficult to check that Y is a supersolution, namely Y (¢) > —AY (t) + Y (t — 1)Y(t)
for all t > tg, and that Y (ty) = Y (o). By standard methods we can show that comparison holds, hence
inequality (3.64) follows. ]

Proposition 3.16 (Sharp Exponential decay for the entropy) Letv be a solution to the (RCDP)
satisfying (H1")5 with 0 < § < 1/2p. Assume (H2) and

v(t) =V

(3.65) =

<EEw(t—1)]7, forallt >ty > 1.

Lee(Q)
Then, there exists a Ty > tg > 0 such that for all t > Ty we have

2,

(3.66) Ev(t)] < Foe P
where Ky > 0 depends on p, N,n, Ty, E[v(Ty)].



Proof. Combine the ODE of Proposition (whose assumptions are guaranteed by Proposition [B.14])
with the result of Lemma BI5 with o = 1/2 and A = 2\, /p. O

Remark. In order to get sharp decay rates and conclude the proof of our main result, we need to
ensure the validity of hypothesis ([3.65), namely that a weighted L2 norm of the relative error controls
the L norm of the relative error in a quantitative way. As already mentioned, this is another delicate
point and will occupy the next Section.

4 Smoothing effects for the relative error

In this section we will prove weighted smoothing estimates for the relative error

w™ v f

where w is a solution to the (RCDP) or, equivalently, v satisfies the Cauchy-Dirichlet Problem for the
evolution equation 9,vP = Av + cvP. As already mentioned in the Introduction, we already know in
a qualitative way that h(t) € C°(Q), and also that h(t) — 0 as t — oo in the strong C°(Q) topology.
Our aim here is to show a quantitative upper bound for the L® norm of h in terms of a power of a
suitable weighted L? norm, which in the asymptotic regime turns out to be equivalent to the entropy
&, see Lemma [B.21 More precisely, we are going to prove the following:

Theorem 4.1 (Weighted smoothing effects for large times) Let h be the relative error defined
in @), and assume (H1")5 with 0 < 6 < 1/2p. Then the following estimates hold true for any t > ty:

1

sup 5[21(8)]) - + 2em(t — to)e2emt=to)

2cm(t—to)
(4.2) 1) e ) < FoeS (
s€|[to,t]

t—to
where Koo > 0 depends on N, p, ¢, Q, ||V |lLe ), |V [[Lr+1(q) -

As an immediate consequence of this result, we can guarantee the validity of the assumption of Propo-
sition [B.16] needed in order to have sharp decay rates for the entropy.

Corollary 4.2 (Entropy controls the L>° norm of the relative error) Let h be the relative er-

ror defined in (1), and assume (H1')g with 0 < § < 1/2p. Assume that to is large enough so that

Ev(ty)] <1 and %5[1}(75)] <0 for allt > tg—1. Then the following estimates hold true for any t > to:

5l

(4.3) h(@)l[Lee (@) < Fooflv(t — 1)),

where Koo > 0 depends on N, p, ¢, Q, ||V |, [V [ILr+1(q) -

Proof. Since E[v(t)] is decreasing for ¢ > tg, we have sup,cp, 4 E[v(s)] = E[v(to)] < 1. Choose
t=to+ 5[v(t0)]ﬁ <to+1, so that eZemlt=to) < g2em.

Then )
to=1t—E(ty)]*¥ >t—1, which yields Efu(ty)] < Ev(t —1)].
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Hence the upper bound (£2]) becomes

e2cm(t—to)

t —to
< (Foo + 2cm) €M E[u(t — 1)]

[h() e (@) < Foo E[U(to)]ﬁ + 2cm(t — to)e2emt—to)

(4.4)

as desired. ]

4.1 Proof of Theorem [4.7]

We now state two preliminary lemmata, fundamental for the proof of the smoothing effects. The
main ingredients are Green function estimates and time monotonicity estimates: this technique avoids
iterations a la De Giorgi-Nash-Moser, and follows some ideas used in [19] 20].

Lemma 4.3 (Time monotonicity estimates for rescaled flows) LetT > 0 be the extinction time
of u, and let h be the relative error. Then the following estimates hold true for any t; > tg > T log 2
and every x € Q:

1 "
1— e—2°m(t1_t°)] h(ty,z) — cm(t; —tg)? < / h(t,z)dt
45) 2m "
1 2 _ -
- em(ti—to) o 2 2cm(t1—to) )
<o [e 1] h(to, ) + cm(t; —tp)“e

Proof. The celebrated Benilan-Crandall inequality u, < u/(1 —m)7 holds true (in the distributional
sense) for nonnegative solutions u to the (CDPJ) for the equation d,u = Au™. As a consequence, the
function 7 +— 7=/~ (7, z) is monotonically nonincreasing in time for a.e. z € Q and all 7 > 0.
Passing to the rescaled solution v of the problem 9, 0P = Awv + cvP we lose the monotonicity but we
still obtain a useful property that we recall here below. We first recall that v = w™, where w is the
solution of the (RCDP)) for rescaled equation dyw = Aw™ + cw and that ¢ = 1/(1—m)T, where T' > 0
is the extinction time of u. Recall that

1
T—r\ Tm T
w(t,z) = < 7 T) u(T, x) with t=Tlog <T > .

-7
A simple computation shows that the Aronson-Benilan inequality

T bl 1 1 2
ur (7, 7) < becomes e < < = 2c

(4.6) urz) = (1—m)r w = T(1—m)(l—etT) = T(1—m)

where in the last inequality we used that ¢ > T'log2. Since v = w™ and h = (v — V)/V, the above
inequality implies

(4.7) Oh = -t < 2cm% =2cm(h+1) = h(t)+1< (h(t) + 1)e2emt=1)
Hence, for all ¢t > ¢

h(t) < e2cm(t—§)h(£) + e2cm(t—§) 1< e2cm(t—§)h(£) + 2cm(t - De2cm(t—§)
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where we used that e — 1 < ae® for all @ > 0. Analogously, for all t > ¢ > T'log 2,

e2cm(t—§) -1

h(t) > e 2™=Bh(t) — 2cm > e 2em=Dh () — (t—1).

=
As a consequence, for all ¢ € [tg,t1] C [T'log2,00) we obtain
(4.8) h(t1)€_2cm(t1_t) — 2cm(t1 — t) < h(t) < e2cm(t—t0)h(t0) 4 2cm(t o to)e2cm(t—t0).

An integration on [tg,t1] gives immediately (£3). O

Lemma 4.4 (Fundamental Pointwise Inequality) Let T > 0 be the extinction time of u, let h be
the relative error, and assume (Hl’)i with 0 < § < 1/2p. Then the following estimates hold true for
any t1 > tg > Tlog?2 and every x € Q:

(4.9) /t tlh(t,a;)dt‘ S[E1+E2(t1—t0)]< sup g[v(t)]fv.

0 t€(to,t1]

The constants Ry, Rz > 0 depend on N,p, ¢, |V |[Lec ), [Vir+1() -

Proof. The proof will be split in several steps.

e STEP 1. Dual equation for the relative error. We know that 0,vP = Av + cvP and that v = (h+ 1)V
and —AV = cVP so that —A[(h+1)V] = -A(hV) — AV = —9;vP + cvP. Hence

(4.10) —A(hV) = —9p0” + c (vP — VP) , or equivalently h(t,-)V = (=A)7L [=90P + c (P — VP)] .

Recalling that (—A)~o(z) = [, ¢(y)Ga(z,y) dy with Go the Green function of —A, we get

(4.11) h(t,z)V(x) = —/

(0P Go(z,y)dy + c/ (VP = VP)Gq(z,y)dy.
Q

Q

Integrating over (tg,t1) we get

V) [ htaydi = [ [0(to,y) — (1)) Gale ) dy
o o

—l—c/tol/Q[vp(t,y)—Vp(y)]GQ(x,y)dydt = (I) + (I1).

The next steps are devoted to estimate the two terms (I) and (II).

e STEP 2. Preliminaries. We first collect some inequalities that will be useful in the following steps.
We recall the numerical inequality |a? — bP| < p(ap_l v b”_l)|a — bl, valid for all a,b > 0 and p > 1.
Next we observe that by assumption (H1')s with 0 < 6 < 1/2p we have that |h(¢)] < 1/2, hence
%V <v< %V. As a consequence,

3\Pt
(4.13) 0P (to,y) — vP(t1,y)| < p <§> VP u(to,y) — v(t1,y)| == k1VP |h(to,y) — h(t1,y)| < K V?,
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where k1 = p (%)p - Analogously,

3\
(4.14) [V (ty) = V(y) <p <5> VP o(ty) = V)l = sV |h(ty)| < s V7.
Since h = (v —V)/V = f/V, we immediately get

(4.15) Ih|?. = [ h2vPHde = [ (v —V)2VPlde = | f2VvP~tdz = E[f].
by Q Q Q
We recall next that, by Lemma [3.2] there exists k9 > 1 such that

(4.16) ) < €l < maELf).

As a consequence:

(4.17) [h(to) =h@0IEz < IhG0)IEz  +IhE)IE | < ke sup ERp(H)] = rk

te [to ,tl]

We also recall the sharp Green function estimates, see for instance [28] [43], [16]:

1 V() > < V) ) . .
4.18 Gal(z,y) < ! AL, with V = dist(x,09) .
w1 ot = g () (52 (0%

As a consequence,

1
4.19 / G ﬂj,ydySI{V:E/ dy = k3V(z)r
( ) B(2) Q( ) 3 ( ) Bo(x) |$—y|N_1 3 ( )
Also, for any function 1,
K3V (x k3V (z
(4.20) [ ety S [ jujay < 2 jujay.
Q\Br(z) r Q\Br(z)

Let us recall that by Holder inequality

1

(4.21) / o(t,y) = V(y)|[VP(y)dy < (/ lo(t,y) = V() PVP(y) dy>% </Q VP (y) dy>§ < kB2,

where in the second inequality we used (I5]) and (£I6]). Similarly we can obtain

422 [ it (e vray < ([ |h<to,->—h(tl,->|2vp-1dy)% (f vp“dy)l s

e STEP 3. Estimating (I). We estimate the term (I) of inequality ([AI2]) as follows: with » > 0 to be
fixed, we compute

|(I)| < / |Up(t07y) _Up(tlvy)|GQ($7y) dy+/ |Up(t07y) _,Up(thy)“@ﬂ(x)y) dy
B, (z) QB (z)

< / VPGal(z,y) dy + k1 / Ih(to, ) — h(t1, )| V?Gal, ) dy
() O\ By ()

4.23
- < k1 ||V G d rsV(@) [ vrd
= ’{1” H %0 (€2) B () Q(l‘,y) Y+ K1 FN-1 0 | (t07 (tlv )| Yy

1

raV (@), eh < keV (2)EW

< I{1K3||V||€OO(Q)V($) r+ R1— =1 K
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where in the second inequality we used (AI3]) and in the third inequality we used (£20). In the
last inequality we have optimized in r: indeed, the function H(r) = Ar + Br'=N has a minimum at

r=((N—1)B/A) YN and the value is H (ruin) = cAYNBYN for some constant ¢ that depends on
N'. Note that the constant kg depends on N, p, k1, K3, K5, | V|10 ()-

e STEP 4. Estimating (II). We estimate the term (I7) of inequality (4I12)):

/Q\vp(t,y)—Vp(y)\Gn(w,y)dyS/ \’v”(t,y)—V”(y)\GQ(w,y)der/ WP (t,y) — VP (y)| Galz,y) dy

Br(x) Q\Br(z)
/{ V(z
< /leVHIL)oo(Q)/B ( )Gﬂ(l’,y) dy + k1~ 51 / Ih(t,y)| VP dy
Viz) =1 — 1
< k13| V [ ooV (@ )rml?’T(l) 1E2 < Ky V (2)EW

where in the first inequality we used (£I4]), in the second inequality we used ([£20)), and in the third
inequality we used ([{I9) and (£2]]). In the last step, we have optimized again the function H(r) =
Ar+ Br'=N as in Step 3. The constant 7 depends on N, p, ¢, k1, K3, Ka, [V][1.00 ()~ Finally, integrating
the above bound on (g, 1) allows us to estimate the term (1) of inequality (ZI12]):

(4.24) (1) < c / 1 /Q P (t,) — VP()] Gl y) dy dt < rrV (2)[tr — to] ETF |

Then (49) follows combining (£12) with (£23) and (£24).

We are now in the position to prove the main result of this Section.
Proof of Proposition 4.3l The proof consists in combining the estimates of Lemmata and (441
We split the proof in several steps.

Set £ = SUDt [0, E[V(E)]-
e STEP 1. Upper bounds. The lower estimates of Lemma 3] read as follows: for all t1 > tg

2cm t 2c2m2(t1 B t0)2
= 1 — e~ 2em{ti=to) / ht,) dt‘ - 1 — e—2cm(t1—to)
4.25) o
( e2cm(t1 —t0) .
< T [F1 + Raty — to)] E2N + 2cmlty — t0|e2cm(t1—t0)
1=

where in the second inequality we used Lemma 4] and we observed that 1 — e~2¢7(t1—t0) > 2cm(ty —
to)e—Qcm(tl —t0) .

e STEP 2. Lower bounds. The upper estimates of Lemma FL3 read, for all 1 > o,

~ 2 b 2c2m2(F — F)2e2em(fi—io)
h(fo,2) > ———— / h(t,z)dt| — 25— to)e
(4.26) ezem(ti—to) —1 | /g, oZem(hi—t0) _ |
1 o i1 L -
> ———— [R1 +Ra(t1 — t0)] EF — 2cmlt; — tole>emi—lo)

t —to

where in the second inequality we used again Lemma 4] and we observed that e2em(ti—to) _ | >
2cm(t; — tg).
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e STEP 3. We combine the two bounds. More precisely we choose tg = t; so that the bounds ([E25)
and ([E26]) imply, for all tg <t < #y,

e2cm(t1—t0) 1
(1, 0)] < ———— [F1 + Foa(ta — t0)] €7 + 2cmlts — to|e2em(t1—to)
(4.27) 1o 1 )
= [R1 + Rty — t1)] €N + 2emlfy — ty[e?emti=t)
1— U

Finally, choosing #; so that t; — ty = t; — t; we obtain #2). O

5 Conclusion: proof of Theorem

In this last section we summarize the argument to obtain Theorem First of all, we recall that the
set of “good” domains is defined in (22]]), and it follows by Theorem that this set is open and
dense.

For this class of domains, it follows by Proposition and Lemma that the nonlinear entropy
Elv(t)] is decreasing (and actually decays to zero exponentially fast, but possibly with a nonsharp
rate). This allows us to apply Corollary and control the relative error h(t) = f(t)/V with a power
of E[v(t — 1)]. So, we can apply Proposition to prove of (ILI5). Finally (II6) is an immediate
consequence of (LI5]) and Corollary

Acknowledgments. M.B. has been partially funded by Projects MTM2014-52240-P and MTM2017-
85757-P (Spain). A.F. has received funding from the European Research Council under the Grant
Agreement No 721675. Essential parts of this work were done while M.B. was visiting A.F. at UT
Austin (USA) and ETH Ziirich (CH) in the years 2016-18. M.B. would like to thank both the FIM
(Institute for Mathematical Research) at ETH Ziirich for the kind hospitality and for the financial
support, and the Mathematics Department of the University of Texas at Austin for its kind hospitality.

References

[1] G. Akagi, Stability of non-isolated asymptotic profiles for fast diffusion. Comm. Math. Phys. 345 (2016),
no. 1, 77-100.

[2] G. Akagi, R. Kajikiya, Symmetry and stability of asymptotic profiles for fast diffusion equations in annuli.
Ann. Inst. H. Poincaré Anal. Non Lineaire 31 (2014), no. 6, 1155-1173.

[3] G. Akagi, R. Kajikiya, Stability analysis of asymptotic profiles for sign-changing solutions to fast diffusion
equations. Manuscripta Math. 141 (2013), no. 3-4, 559-587

[4] G. Akagi, Stability and instability of group invariant asymptotic profiles for fast diffusion equations. Geo-
metric properties for parabolic and elliptic PDE’s, 1-16, Springer INdAAM Ser., 2, Springer, Milan, 2013.

[5] D. G. Aronson, L. A. Peletier, Large time behaviour of solutions of the porous medium equation in bounded
domains, J. Diff. Equations 39 (1981), 378-412.

[6] J. G. Berryman, C. J. Holland, Stability of the separable solution for fast diffusion. Arch. Rational Mech.
Anal. 74 (1980), no. 4, 379-388.

[7] A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo, J. L. Vazquez, Hardy-Poincaré inequalities and applica-
tions to nonlinear diffusions, C. R. Math. Acad. Sci. Paris, 344 (2007), 431-436.

[8] T. Bodineau, J. Lebowitz, C. Mouhot, C. Villani, Lyapunov functionals for boundary-driven nonlinear
drift-diffusion equations, Nonlinearity 27 (2014), no. 9, 2111-2132.

34



[9]

[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]

[21]

A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo, J. L. Vazquez, Asymptotics of the fast diffusion equation
via entropy estimates, Arch. Ration. Mech. Anal. 191 (2009), 347-385.

M. Bonforte, J. Dolbeault, G. Grillo, J. L. Vazquez, Sharp rates of decay of solutions to the nonlinear fast
diffusion equation via functional inequalities, Proc. Natl. Acad. Sci. USA 107 (2010), 16459-16464.

M. Bonforte, A. Figalli, J. L. Vazquez, Sharp global estimates for local and nonlocal porous medium-type
equations in bounded domains. Anal. PDE 11 (2018), No. 4, 945-982.

M. Bonforte, A. Figalli, J. L. Véazquez, Positivity, sharp boundary behaviour, Harnack inequalities and
reqularity for nonlinear nonlocal elliptic equations. Calc. Var. Partial Differential Equations 57 (2018), no.
2, 57.

M. Bonforte, G. Grillo, J. L. Véazquez, Special fast diffusion with slow asymptotics. Entropy method and
flow on a Riemannian manifold, Arch. Rational Mech. Anal. 196, (2010), 631-680.

M. Bonforte, G. Grillo, J. L. Vazquez, Quantitative bounds for Semilinear Elliptic Equations, Contemp.
Math. 595 (2013), ISBNs: 978-0-8218-9861-1 (print); 978-1-4704-0993-7 (online).

M. Bonforte, G. Grillo, J. L. Vazquez, Quantitative Local Bounds for Subcritical Semilinear Elliptic Equa-
tions, Milan J. Math. 80, (2012) n.1, 65-118 .

M. Bonforte, G. Grillo, J. L. Vazquez, Behaviour near extinction for the Fast Diffusion Equation on bounded
domains, J. Math. Pures Appl. 97, (2012), n.1, 1-38.

M. Bonforte, Y. Sire, J. L. Vazquez, Existence, Uniqueness and Asymptotic behaviour for fractional porous
medium equations on bounded domains. Discr. Cont. Dyn. Sys. 35 (2015), 5725-5767.

M. Bonforte, J. L. Vazquez, Positivity, local smoothing, and Harnack inequalities for very fast diffusion
equations, Advances in Math. 223 (2010), 529-578.

M. Bonforte, J. L. Vazquez, A Priori Estimates for Fractional Nonlinear Degenerate Diffusion Equations
on bounded domains, Arch. Ration. Mech. Anal. 218 (2015), no. 1, 317-362.

M. Bonforte, J. L. Vazquez, Fractional Nonlinear Degenerate Diffusion Equations on Bounded Domains
Part I. Existence, Uniqueness and Upper Bounds. Nonlin. Anal. TMA 131 (2016), 363-398.

H. Brezis, “Analyse fonctionnelle”. (French) [Functional analysis] Théorie et applications. [Theory and
applications| Collection Mathématiques Appliquées pour la Maitrise. [Collection of Applied Mathematics
for the Master’s Degree] Masson, Paris, 1983. xiv+234 pp. ISBN: 2-225-77198-7 46-01 (47-01)

H. Brezis, R. E. L. Turner, On a class of superlinear elliptic problems, Comm. PDE 2 (1977), 601-614.

B. Dahlberg, C. E. Kenig, Nonnegative solutions of the initial-Dirichlet problem for generalized porous
medium equations in cylinders. J. Amer. Math. Soc. 1 (1988), no. 2, 401-412.

P. Daskalopoulos, C. E. Kenig, “Degenerate diffusions. Initial value problems and local regularity theory”.
EMS Tracts in Mathematics, 1. European Mathematical Society (EMS), Ziirich, 2007. x+198 pp. ISBN:
978-3-03719-033-3

L. Damascelli, M. Grossi and F. Pacella. Qualitative properties of positive solutions of semilinear elliptic
equations in symmetric domains via the mazimum principle. Ann. Inst. H. Poincaré 16 (1999), 631-652.
E. N. Dancer. The effect of the domain shape on the number of positive solutions of certain nonlinear
equations. J. Diff. Eq. 74 (1988), 120-156.

E. N. Dancer. The effect of the domain shape on the number of positive solutions of certain nonlinear
equations. 11 J. Diff. Eq. 87 (1990), 316-339.

E. B. Davies, “Heat Kernels and Spectral Theory”, Cambridge University Press, 1989.

D. G. de Figueiredo, P.-L. Lions, R. D. Nussbaum, A priori estimates and existence of positive solutions of
semilinear elliptic equations. J. Math. Pures Appl. 61 (1982), 41-63.

E. DiBenedetto. “Degenerate parabolic equations”. Universitext. Springer-Verlag, New York, 1993. xvi+387
pp. ISBN: 0-387-94020-0

E. DiBenedetto, U. Gianazza, V. Vespri. “Harnack’s inequality for degenerate and singular parabolic equa-
tions” , Springer Monographs in Mathematics, Springer 2011.

E. DiBenedetto, Y. C. Kwong, Harnack Estimates and FExtinction Profile for Weak Solution of Certain
Singular Parabolic Equations, Trans. A.M.S. 330, n.2 (1992), 783-811.

E. DiBenedetto, Y. C. Kwong, V. Vespri, Local Space-Analiticity of Solutions of Certain Singular Parabolic
Equations, Indiana University Math. J. 40, n.2 (1991), 741-765.

35



[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]

[44]

E. Feiresl, F. Simondon, Convergence for Semilinear Degenerate Parabolic Equations in several Space Di-
mension, J. Din. and Diff. Eq. 12, (2000), 647-673.

Galaktionov V., King, J. R. Fast diffusion equation with critical Sobolev exponent in a ball. Nonlinearity 15
(2002), no. 1, 173-188

B. Gidas, Wei Ming Ni, L. Nirenberg, Symmetry and related properties via the mazimum principle. Comm.
Math. Phys. 68 (1979), 209-243.

B. Gidas, J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations. Comm.
Pure Appl. Math 34 (1981), 525-598.

King, J. R. Asymptotic analysis of extinction behaviour in fast nonlinear diffusion. J. Engrg. Math. 66
(2010), no. 1-3, 65-86.

J.-C. Saut, R. Temam, Generic properties of nonlinear boundary value problems. Comm. Partial Diff. Eq.
4 (1979), no. 3, 293-319.

J. L. Vézquez, The Dirichlet Problem for the Porous Medium Equation in Bounded Domains. Asymptotic
behaviour, Monatsh. Math. 142 (2004), 81-111.

J. L. Vézquez, “Smoothing and decay estimates for nonlinear diffusion equations”, vol. 33 of Oxford Lecture
Notes in Maths. and its Applications, Oxford Univ. Press, 2006.

J. L. Vazquez, “The Porous Medium Equation. Mathematical Theory”, vol. Oxford Mathematical Mono-
graphs, Oxford University Press, Oxford, 2007.

Q. S. Zhang. The boundary behavior of heat kernels of Dirichlet Laplacians, J. Differential Equations 182
(2002), no. 2, 416-430.

H. Zou. On the effect of the domain geometry on uniqueness of positive solutions of Au + u? = 0. Ann.
Scuola Norm. Sup. Pisa Cl. Sci. 21 (1994), no. 3, 343-356.

36



	1 Introduction
	1.1 Statement of the main result

	2 The linearized equation and improved Poincaré inequalities
	2.1 The Spectrum of the Dirichlet Laplacian in weighted L2 spaces
	2.2 Orthogonality conditions and improved Poincaré inequalities
	2.3 The linear entropy method
	2.4 Assumption (H2) is generically true

	3 Nonlinear Entropy Method
	3.1 Comparing Linear and Nonlinear Entropy and Entropy-Production
	3.2 Introducing the almost-orthogonality condition
	3.3 Improved Poincaré inequality for almost-orthogonal functions
	3.4 Entropy-Entropy Production inequality for almost orthogonal functions
	3.5 Possible blow up when almost orthogonality fails
	3.6 The almost-orthogonality improves along the nonlinear flow
	3.6.1 Quantitative improvement of almost-orthogonality

	3.7 Exponential decay of the Entropy along the nonlinear flow

	4 Smoothing effects for the relative error
	4.1 Proof of Theorem 4.1

	5 Conclusion: proof of Theorem 1.2
	   References

