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Abstract

The purpose of this paper is to prove quantitative local upper and lower bounds for weak
solutions of elliptic equations of the form −∆pu = λus, with p > 1, s > 0 and λ > 0, defined on
bounded domains of Rd, d ≥ 1, without reference to the boundary behaviour. We give an explicit
expression for all the involved constants. As a consequence, we obtain local Harnack inequalities
with explicit constants. Finally, we discuss the issue of local absolute bounds, which are new to
our knowledge. Such bounds will be true only in a restricted range of s or for a special class of
weak solutions, namely for local stable solutions. In the study of local absolute bounds for stable
solutions there appears the so-called Joseph-Lundgren exponent as a limit of applicability of such
bounds.
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1 Introduction

In this paper we obtain local upper and lower estimates for the weak solutions of nonlinear elliptic
equations of the form

(1.1) −∆pu = −div(|∇u|p−2∇u) = f(u),

with p > 1, posed in a bounded domain Ω ⊂ Rd , with d ≥ 1. The choice of right-hand side that we have
in mind is f(u) = λus with λ, s > 0. Our main purpose is to obtain local estimates for solutions that
are defined inside the domain without reference to their boundary behaviour. The notion of solution
that we will use in the whole paper is the following.

Definition 1.1 (Local weak solutions) Let Ω ⊂ Rd a bounded domain. A function u is a local weak
solution to −∆pu = f(u) in Ω if and only if u ∈W 1,p

loc (Ω), f(u) ∈ L1
loc(Ω) and it satisfies

ˆ
K

[
|∇u|p−2∇u · ∇ϕ− f(u)ϕ

]
dx = 0

for any compact K ⊂ Ω and for all bounded ϕ ∈ C1
0 (K).

The estimate that we prove in this paper are local upper bounds for solutions of any sign, lower bounds
for non-negative solutions, and also local Harnack inequalities. The estimates that we obtain are not
essentially new from a qualitative point of view, and enjoy a large literature [2, 4, 5, 10, 11, 13, 14, 15, 16,
17, 18, 19, 20, 25, 30, 28, 29, 31, 32, 37, 39, 41, 47, 48, 51, 52, 53, 54, 55] and the books [33, 34, 36, 49];
however, it is hopeless to give a complete bibliography for this nowadays classical problem. We try
to contribute to the general theory on these elliptic equations, with quantitative local bounds; to our
knowledge, there does not exists in literature a systematic set of local quantitative estimates in the
explicit form given here. By quantitative estimates we mean keeping track of all the constants during
the proofs. This paper follows the ideas of [4], in which the authors treated the case p = 2 , i. e. the
case of semilinear equations. Here we extend the techniques and the results of [4] to the more general
case represented by the p-Laplacian elliptic equation (1.1) .

The interest in obtaining quantitative control of the constants of such inequalities relies in the appli-
cations. On one hand, our results are useful in understanding regularity properties of the stationary
solutions of the associated parabolic equation (the so-called doubly nonlinear evolution equation); it is
needed for instance in the results of [3] on the asymptotic properties of solutions of the fast diffusion
equation in bounded domains. On the other hand, it is interesting to see the stability of the estimates
(therefore of the regularity of the solutions), when the parameters s or p reach their limiting values;
for example, we can consider the (formal) limit p → 1+ in the local upper estimates of Theorems 4.1
and 4.5 and easily check that the constant is stable under such limiting process; the upper estimates
therefore should hold also for the solutions of the 1-Laplacian, often called the Total Variation Flow
(TVF). Weak solutions to the TVF have a different definition from the one we provide here for the
p-Laplacian, but are sometimes obtained as the limit for p → 1+ of suitable families {up} of smooth
solution to the p-Laplacian, see [1] for more details; we refrain from doing this limiting process, since
it falls out from the scope of this paper.

The range of exponents of interest will be p > 1 and 0 < s < r − 1, where r is the exponent of the
Sobolev imbedding of W 1,p, namely r = p∗ = pd/(d − p) if p < d and any r ∈ [p∗,∞) if p ≥ d; it is
clear at this point that there is a restriction on the parameter s only when p < d . It is worth noticing
that the restriction s < r− 1 = p∗− 1 appears only when we consider p < d , and it is related to several
deep aspects of the theory of the equation at hand: for example, when dealing with the homogeneous
Dirichlet problem, the existence of bounded weak solutions may fail above that exponent, as well as
the absolute upper bounds, see [11, 23, 31, 32, 46, 52]; it is known that when s ≥ p∗ − 1 there exist
solutions1 which are not bounded, therefore not regular, cf. [24, 40, 42, 43, 44, 45]. On the other

1for p = 2, very weak solutions
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hand, when s < p∗ − 1, bounded solutions are known to be C1,α , cf. [25], and the C1,α modulus of
continuity directly depends on the local maximum of the solution. Therefore having absolute bounds
for the solution allow to have absolute bounds for the C1,α modulus of continuity. We will see that the
C1,α modulus of continuity is independent on the solution when s < s∗c < p∗ − 1, while it depends on
(some Lq-norms of) the solution when s∗c < s < p∗ − 1 .

Finally, when dealing with quantitative local absolute bounds for the smaller class of stable solutions,
cf. Section 7, there will naturally appear the so-called Joseph-Lundgren exponent sJL - which is finite
only for “big” dimensions - as a further limit on the range of s to which our absolute bounds apply, as
we shall explain in Section 7. As a reference for this topic see for example [13, 14, 16, 28, 29] .

1.1 Plan of the paper and main results

We begin with a section devoted to the basic energy estimates. As a consequence, we obtain quantitative
Caccioppoli type estimates that allow us to obtain absolute bounds for the s − 1 -“norm”, which to
our knowledge have never been observed before, see Corollary 2.5 ; such absolute bounds will be the
key tool needed in Section 7 to derive our local absolute bounds. In Section 3 we recall the Sobolev
inequalities that we will use in the paper and derive some preliminary inequalities in the form of reverse
Poincaré inequalities, as a direct consequence of the energy estimates and Sobolev inequalities.

We then focus on local upper estimates in Section 4. Our first main result is Theorem 4.1, which can
be considered as a smoothing effect with very precise constants. In the case p − 1 < s < r − 1, the
estimates of Theorem 4.1 seem to be new to our knowledge. Next, we obtain local upper estimates for
−∆pu = b up−1 with unbounded coefficient b in Theorems 4.2 and 4.4 and we apply them to the case
b = us−(p−1) in Theorem 4.5. The last upper bounds have the advantage that they do not require the
restriction s < r−1, they hold for any nonnegative weak solution which moreover belongs to Lqloc , with
q > r[s− (p− 1)]/(r− p) . This last requirement seems to be essential, since in the case s > r− 1 there
are solutions u∞ which are not bounded, and u∞ ∈ Lqloc with q < r[s− (p− 1)]/(r − p) , at least when
p = 2, see [24, 40, 42, 43, 44, 45].

Section 5 is devoted to the local lower estimates. The main result is Theorem 5.1, which holds for all
p > 1 and 0 < s < r − 1. The proof is based on a quantitative lower Moser iteration, joined with the
reverse Hölder inequalities of Appendix 8.1, which are obtained via a simplified John-Nirenberg type
Lemma proved in [4] in a quantitative form. Next we prove a more precise quantitative reverse Hölder
inequality, Proposition 5.2, but only in the smaller range of exponents p − 1 < s < r(p − 1)/p = s∗c .
The fourth main result of the paper, is Theorem 5.4, in which we use such reverse Hölder inequality to
improve the lower bounds of Theorem 5.1 in this smaller range of exponents.

In Section 6 we combine the upper bounds of Section 4 with the lower bounds of Section 5 to obtain
various form of Harnack inequalities. The general form, valid in the whole range of exponents, is
given in Theorem 6.1, but, unfortunately, the constant of such inequality, depends on a quotient of
Lq norms. Next we specialize to the subcritical range 0 < s ≤ p − 1, Theorem 6.2, and supercritical
range p − 1 < s < s∗c , Theorem 6.3, and we prove clean versions of the Harnack inequality, i.e. the
constant is independent on the solution. In the range s∗c < s < r − 1 , we are not able to prove such
clean forms of Harnack inequalities, and we conjecture that the dependence on some Lq norm of the
solution can not be avoided. As far as we know, the Harnack inequality that we derive for s > p− 1 is
not stated explicitly in the literature. The fact that the “constant” involved has to depend on u when
s∗c ≤ s < r−1 is confirmed by the results of [9, 6, 7, 8, 26, 27] applied to separation of variable solutions
of parabolic problems. This is also related to the fact that, in the range s∗c ≤ s < r − 1, there exist
(very weak) singular solutions, at least when p = 2, see [24, 40, 42, 43, 44, 45].

Finally, in Section 7 we derive the quantitative local absolute bounds, which represent the novelty
of the paper. In Theorem 7.1 we obtain quantitative local lower bounds when 0 ≤ s < p − 1 and
local absolute upper bounds when p− 1 < s < s∗c . We have already discussed why the above absolute
bounds cannot be extended s > s∗c without further assumption on the solution. The last part of the
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section is devoted to the derivation of absolute upper bounds for all s > 0, but for the class of local
stable solutions. In Theorem 7.6 we obtain quantitative absolute upper bounds for all s > 0 when

the dimension is small, namely d ≤ p(p+3)
p−1 , while we reach a bigger exponent sJL ∈ (r − 1,∞) for

bigger dimension. The exponent sJL is the celebrated exponent discovered by Joseph and Lundgren in
[35] , see also in [13, 14, 16, 28, 29] . The Appendix contains some technical results used in the paper,
complemented with a proof when needed. We will use the notation ‖g‖Lq(BR) = ‖g‖q,R, |BR| = ωdR

d

and ωd = |B1|.

1.2 More general nonlinearities

We can apply the method used in the proofs to obtain quantitative estimates to a larger class of
operators and nonlinearities. We can consider a more general equation, namely

A(u) = −div a(x, u,∇u) = f(u) ,

where a(x, σ, ξ) is a Carathèodory vector valued on Ω×R×Rd such that, for some constants ν1 ≥ ν2 > 0

1. |a(x, σ, ξ)| ≤ ν1[1 + |ξ|p−1],

2. a(x, σ, ξ)ξ ≥ ν2|ξ|p,

3. [a(x, σ, ξ)− a(x, σ, η)][ξ − η] > 0,

for a. e. x ∈ Ω and ∀ σ ∈ R, ξ, η ∈ Rd, ξ 6= η.

The proofs of all the results apply also to this case with minor modifications, but the constants in
the estimates will also depend on ν1 and ν2. As far as the the right-hand side is concerned, we deal
with the model case f(u) = λus. Indeed, we could have considered a more general nonlinearity f(u)
satisfying the following conditions: there exist 0 ≤ b0 ≤ b1, b2 ≥ 0:

b0 u
s ≤ f(u) ≤ b1(u+ b2)s.

Also In this case the proofs of all the results apply with minor modifications, and it is not so difficult
to keep track of the new constants bi throughout the proof.

We have decided here to consider the model case, to simplify the exposition and to focus on the main
ideas.

2 Local energy estimates and Caccioppoli inequalities

We shall pursue in the sequel the well-known idea that local weak solutions satisfy reverse Sobolev
or Poincaré inequalities. Such local reverse inequalities are the key to prove local upper and lower
estimates of next sections, and indeed imply that such functions satisfy Harnack inequalities.

Lemma 2.1 (Energy Estimates) Let Ω ⊂ Rd be a bounded domain and let u be a local nonnegative
weak solution to −∆pu = λus in Ω, p > 1 and λ, s ≥ 0. Then the following energy estimate holds true
for any α 6= −(p− 1), δ > 0 and any test function φ ∈ C2(Ω) ∩ C1

0 (Ω), φ > 0

|α|
p

∣∣∣∣ p

α+ (p− 1)

∣∣∣∣p ˆ
Ω

|∇[(u+ δ)
α+(p−1)

p ]|pφ dx ≤ λ

ˆ
Ω

(u+ δ)α+sφ dx

+
1

p |α|p−1

ˆ
Ω

(u+ δ)α+(p−1) |∇φ|p

φp−1
dx.(2.1)
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If α = −(p− 1), for any δ > 0, we have the Caccioppoli estimate

(2.2)
(p− 1)2

p

ˆ
Ω

|∇ log(u+ δ)|pφ dx+ λ

ˆ
Ω

us

(u+ δ)p−1
φdx ≤ 1

p

ˆ
Ω

|∇φ|p

φp−1
dx.

In addition for any α < 0 and δ > 0

(2.3)
|α|
p

∣∣∣∣ p

α+ (p− 1)

∣∣∣∣p ˆ
Ω

|∇[(u+ δ)
α+(p−1)

p ]|pφ dx ≤ 1

p |α|p−1

ˆ
Ω

(u+ δ)α+(p−1) |∇φ|p

φp−1
dx.

Remark 2.2 We underline that when α > −(p − 1) we can let δ → 0+ in the energy estimates (2.1)
and (2.3) to get

(2.4)
pp−1 |α|

[α+ (p− 1)]p

ˆ
Ω

|∇(u
α+(p−1)

p )|pφdx ≤ λ
ˆ

Ω

uα+sφdx+
1

p |α|p−1

ˆ
Ω

uα+(p−1) |∇φ|p

φp−1
dx

and for −(p− 1) < α < 0,

(2.5)
pp−1 |α|

[α+ (p− 1)]p

ˆ
Ω

|∇(u
α+(p−1)

p )|pφdx ≤ 1

p |α|p−1

ˆ
Ω

uα+(p−1) |∇φ|p

φp−1
dx.

Proof of Lemma 2.1. Let 0 < φ ∈ C2(Ω) ∩ C1
0 (Ω) and δ > 0. Multiply the equation by (u + δ)αφ,

α 6= −(p− 1) and integrate by parts on Ω to get
ˆ

Ω

|∇u|p−2∇u · ∇φ (u+ δ)α dx+ α

ˆ
Ω

|∇u|p(u+ δ)α−1φ dx =

ˆ
Ω

|∇u|p−2∇u · ∇[(u+ δ)αφ] dx

= −
ˆ

Ω

∆pu(u+ δ)αφdx

= λ

ˆ
Ω

us(u+ δ)αφdx.

(2.6)

So, for any α 6= −(p− 1), we have

|α| pp

|α+ (p− 1)|p

ˆ
Ω

|∇[(u+ δ)
α+(p−1)

p ]|pφ dx = |α|
ˆ

Ω

|∇u|p(u+ δ)α−1φdx

≤ λ

ˆ
Ω

us(u+ δ)αφdx+

ˆ
Ω

|∇u|p−1(u+ δ)α|∇φ|dx.(2.7)

Now applying the inequality (8.5) with σ = p
p−1 > 1 to the second term in the right hand side of (2.7),

we obtainˆ
Ω

|∇u|p−1 |∇φ|(u+ δ)α dx ≤ ε(p− 1)

p

∣∣∣∣ p

α+ (p− 1)

∣∣∣∣p ˆ
Ω

|∇[(u+ δ)
α+(p−1)

p ]|pφ dx

+
1

p εp−1

ˆ
Ω

(u+ δ)α+(p−1) |∇φ|p

φp−1
dx.

Simplifying and choosing ε > 0 such that

|α| − ε(p− 1)

p
> 0,

for example ε = |α|, we arrive at the following energy estimate

|α|
p

∣∣∣∣ p

α+ (p− 1)

∣∣∣∣p ˆ
Ω

|∇[(u+ δ)
α+(p−1)

p ]|pφdx ≤ λ
ˆ

Ω

(u+ δ)α+sφ dx

+
1

p |α|p−1

ˆ
Ω

(u+ δ)α+(p−1) |∇φ|p

φp−1
dx.

(2.8)
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In the particular case α < 0, since u is assumed to be nonnegative, we get from (2.6)

|α|
ˆ

Ω

|∇u|p(u+ δ)α−1φ dx ≤
ˆ

Ω

|∇u|p−1|∇φ|(u+ δ)α dx.

So, proceeding as above, we arrive at

|α|
p

(
p

|α+ (p− 1)|

)p ˆ
Ω

|∇[(u+ δ)
α+(p−1)

p ]|pφ dx ≤ 1

p |α|p−1

ˆ
Ω

(u+ δ)α+(p−1) |∇φ|p

φp−1
dx.

Now let us consider the case α = −(p − 1), as before, multiplying the equation by (u + δ)−(p−1)φ,
δ > 0, and integrating by parts on Ω, we getˆ

Ω

|∇u|p−2∇u · ∇φ
(u+ δ)p−1

dx− (p− 1)

ˆ
Ω

|∇u|p

(u+ δ)p
φdx =

ˆ
Ω

|∇u|p−2∇u · ∇[(u+ δ)−(p−1)φ] dx

= −
ˆ

Ω

∆pu(u+ δ)−(p−1)φ dx

= λ

ˆ
Ω

us(u+ δ)−(p−1)φ dx

So

(p− 1)

ˆ
Ω

|∇u|p

(u+ δ)p
φdx+ λ

ˆ
Ω

us

(u+ δ)p−1
φ dx ≤

ˆ
Ω

|∇u|p−1 |∇φ|
(u+ δ)p−1

dx.

Applying Young inequality to the last term of the previous inequality and rewritingˆ
Ω

|∇u|p

(u+ δ)p
φdx =

ˆ
Ω

|∇ log(u+ δ)|pφdx

we get (2.2).

Now we can compute some useful calculations in order to get an explicit expression for all the constants.

Lemma 2.3 (A test function) Fix two balls BR1 ⊂ BR0 ⊂⊂ Ω. Then there exists a test function
φ ∈ C2(Ω) ∩ C1

0 (Ω) which is radially symmetric, supp(φ) = BR0 , φ = 1 on BR1 , and satisfies

(2.9)
|∇φ|p

φp−1
≤ 2p−1pp

(R0 −R1)p
and ‖∇φ‖∞ ≤

p

R0 −R1
for any p > 1.

Proof. Consider the radial test function defined on BR0 ⊂⊂ Ω

φ(|x|) =



1 , if 0 ≤ |x| ≤ R1

1− 2p−1(|x|−R1)p

(R0−R1)p , if R1 < |x| ≤ R0+R1

2

2p−1(R0−|x|)p
(R0−R1)p , if R0+R1

2 < |x| ≤ R0

0 , if |x| > R0

for any 0 < R1 < R0. We have

∇φ(|x|) =



0 , if 0 ≤ |x| ≤ R1 or if |x| > R0

− 2p−1p(|x|−R1)p−1

(R0−R1)p
x
|x| , if R1 < |x| ≤ R0+R1

2

− 2p−1p(R0−|x|)p−1

(R0−R1)p
x
|x| , if R0+R1

2 < |x| ≤ R0

So we easily obtain the bounds (2.9).
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Remark 2.4 As a consequence of the first inequality in (2.9), we have that

ˆ
Ω

|∇φ|p

φp−1
dx ≤ 2p−1 pp |BR0 |

(R0 −R1)p
=

2p−1 ppRd0 ωd
(R0 −R1)p

.

Corollary 2.5 (Quantitative Caccioppoli Estimates) Let δ > 0. Under the assumption of Lemma
2.1 and using the test function φ of Lemma 2.3, we have the quantitative Caccioppoli estimates, for
any δ > 0:

(2.10)
(p− 1)2

p

ˆ
BR1

∣∣∇ log(u+ δ)
∣∣p dx+ λ

ˆ
BR1

us

(u+ δ)p−1
dx ≤ pp−1 2p−1Rd0 ωd

(R0 −R1)p
.

Proof. Using (2.2) with φ as in Lemma 2.3 and recalling Remark 2.4 we easily obtain the desired
result.

Remark 2.6 Letting δ → 0+ in (2.10), we get

(2.11) λ

ˆ
BR1

us−(p−1) dx ≤ pp−1 2p−1ωdR
d
0

(R0 −R1)p
.

As a consequence of this fact in Section 7 we obtain a local absolute upper bound in the range p−1 < s <
s∗c = r(p− 1)/p, r defined in (3.2) and a local absolute lower bound if u 6≡ 0 on BR0

and 0 < s < p− 1.

3 Sobolev and reverse Poincaré inequalities

In this section we will recall the Sobolev inequalities that will be used throughout the paper and
we also show how they combine with the energy inequalities of the previous section to give a kind of
reverse Poincaré inequalities, that will be necessary for the upper bounds when dealing with unbounded
coefficients.

Sobolev inequalities. Our local bounds will be a consequence of the Sobolev imbedding theorems on
balls Bρ ⊂ Rd. Indeed the following Sobolev type inequalities hold true:

(3.1) ‖g‖pLr(Bρ) ≤ S
p
p

(
‖∇g‖pLp(Bρ) +

1

ρp
‖g‖pLp(Bρ)

)
for any g ∈W 1,p(Ω), where Ω is a bounded open domain of Rd with smooth boundary, Bρ ⊂ Ω , and

(3.2)


if p < d, r = p∗ =

pd

d− p
, Sp ,

if p = d, r ∈ (p,+∞) , Sp = S ′pdiam(Ω)
d
r

if p > d, r = +∞ , Sp = S ′pdiam(Ω)1− dp

and Sp,S ′p > 0 only depends on p, d , see e.g. Theorem 3.11 and 3.12 of [34] . On the other hand,

whenever g ∈W 1,p
0 (Bρ) we have

(3.3) ‖g‖pLr(Bρ) ≤ S
p
p ‖∇g‖

p
Lp(Bρ),

where r is defined in (3.2) and Sp is the Sobolev constant, which only depends on p, d , see e.g. Theorem

3.9 of [34]. We will denote by r the Sobolev exponent corresponding to W 1,p
0 (Bρ) through all the paper.

Now we state and prove a lemma originally due to Trudinger [53] (see Lemma 5.1 p. 745 there). For a
proof in the case p = 2 see Lemma 3.2 in [4].
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Lemma 3.1 Let v ∈ Lr(BR) and b ∈ Lm(BR) for m > r/(r− p) with r > p defined in (3.2). Then for
any γ > 0 the following inequality holds

ˆ
BR

b vp dx ≤ γ

(ˆ
BR

vr dx

) p
r

(3.4)

+
Km,p,r

γ
mp+r

m(r−p)−r
|BR|

p
r

(ˆ
BR

bm dx

) r
m(r−p)−r

ˆ
BR

vp dx,

where

(3.5) Km,p,r :=
m(r − p)− r

rm

(
pm+ r

rm

) mp+r
m(r−p)−r

.

Proof. Let us estimate for any 0 < γ1 < p,

ˆ
BR

bv(p−γ1)+γ1 dx ≤(a)

(ˆ
BR

v(p−γ1) rp dx

) p
r
(ˆ

BR

b
r
r−p vγ1

r
r−p dx

) r−p
r

≤(b)

(ˆ
BR

vr dx

) p−γ1
r

|BR|
γ1
r

(ˆ
BR

b
r
r−p vγ1

r
r−p dx

) r−p
r

≤(c)
γ0(p− γ1)

p

(ˆ
BR

vr dx

) p
r

+
γ1

p

1

γ
p−γ1
γ1

0

|BR|
p
r

(ˆ
BR

b
r
r−p vγ1

r
r−p dx

) p(r−p)
γ1r

≤(d)
γ0(p− γ1)

p

(ˆ
BR

vr dx

) p
r

+
γ1

p

1

γ
p−γ1
γ1

0

|BR|
p
r

(ˆ
BR

bm dx

) p
γ1m

×
(ˆ

BR

v
γ1rm

m(r−p)−r

) p[m(r−p)−r]
γ1rm

=(e)
(pm+ r)γ0

rm

(ˆ
BR

vr dx

) p
r

+
m(r − p)− r

mr

1

γ
mp+r

m(r−p)−r
0

|BR|
p
r

×
(ˆ

BR

bm dx

) r
m(r−p)−r

ˆ
BR

vp dx,

where in (a) we have used Hölder inequality with exponents r/p and r/(r − p), in (b) with p/(p− γ1)
and p/γ1; in (c) we have applied the Young inequality (8.5), with ε = γ0, σ = p/(p − γ1). In (d) we
have used again Hölder inequality with exponents m(r−p)/r > 1, since we are assuming m > r/(r−p),
and m(r − p)/[m(r − p)− r] and in (e) we have put

0 < γ1 =
p[m(r − p)− r]

rm
< p.

To obtain the desired result it is sufficient take

γ = γ0
pm+ r

rm
.

Theorem 3.2 (Reverse Poincaré inequality) Let u be a weak solution to −∆pu = b up−1 on BR,
with p > 1. Let b ∈ Lm(BR), for m > r/(r − p) and r > p defined in (3.2). Suppose that u ∈
Lα+(p−1)(BR). Then for any positive test function 1 ≥ φ ∈ C2(BR) ∩ C1

0 (BR) and any α > 0 the
following estimate holds trueˆ

BR

∣∣∣∇(uα+(p−1)
p

)∣∣∣p φp dx ≤ Λ(b)

ˆ
BR

uα+(p−1) dx,

9



with

Λ(b) :=

{[
1 + 2

(
α+ (p− 1)

α

)p]
‖∇φ‖p∞

+ Km,p,r
2p

α

(
2p pSpp
α

) mp+r
m(r−p)−r

(
α+ (p− 1)

p

) mpr
m(r−p)−r

|BR|
p
r

(ˆ
BR

bm dx

) r
m(r−p)−r

}
,

Km,p,r given in (3.5).

Remark 3.3 We underline that the requirement u ∈ Lα+(p−1)(BR) will be dispensed later, without
further comment by using a Moser iteration technique.

Proof. We divide the proof in few steps.

• Step 1. Energy estimates. Multiplying −∆pu = b up−1 by (u + δ)α φp, 1 ≥ φ ∈ C2(BR) ∩ C1
0 (BR),

α > 0, δ > 0 and integrating by parts on BR, we get

(3.6) α

ˆ
BR

|∇u|p (u+ δ)α−1φp dx ≤ p
ˆ
BR

|∇u|p−1 |∇φ|φp−1(u+ δ)α dx+

ˆ
BR

b up−1 (u+ δ)αφp dx.

Using (8.5) with σ = p/(p− 1) to estimate the first term in the right hand side of (3.6), we obtain

[α− ε(p− 1)]

(
p

α+ (p− 1)

)p ˆ
BR

|∇[(u+ δ)
α+(p−1)

p )]p φp dx ≤
ˆ
BR

b (u+ δ)α+(p−1) φp dx

+
1

εp−1

ˆ
BR

(u+ δ)α+(p−1) |∇φ|p dx.

Choosing ε = α/p, we arrive at

α

p

(
p

α+ (p− 1)

)p ˆ
BR

|∇[(u+ δ)
α+(p−1)

p ]|p φp dx ≤
ˆ
BR

b (u+ δ)α+(p−1) φp dx

+
pp−1

αp−1

ˆ
BR

(u+ δ)α+(p−1) |∇φ|p dx.(3.7)

• Step 2. Sobolev inequality in W 1,p
0 (BR). We apply inequality (3.4) of Lemma 3.1 to v = (u +

δ)
α+(p−1)

p φ ∈W 1,p
0 (BR), so that for any γ > 0:

ˆ
BR

b (u+ δ)α+(p−1) φp dx ≤ γ

(ˆ
BR

(u+ δ)[α+(p−1)] rp φr dx

) p
r

+
Km,p,r

γ
mp+r

m(r−p)−r
|BR|

p
r

(ˆ
BR

bm dx

) r
m(r−p)−r

ˆ
BR

(u+ δ)α+(p−1) φp dx,(3.8)

where Km,p,r is given in (3.5). Since v = (u + δ)
α+(p−1)

p φ ∈ W 1,p
0 (BR), the Sobolev inequality (3.3)

reads (ˆ
BR

[(u+ δ)
α+(p−1)

p φ]r dx

) p
r

≤ Spp 2p−1

ˆ
BR

|∇[(u+ δ)
α+(p−1)

p ]|p φp dx

+Spp 2p−1

ˆ
BR

(u+ δ)α+(p−1) |∇φ|p dx.

10



We combine the above Sobolev inequality with (3.8) to get

ˆ
BR

b (u+ δ)α+(p−1) φp dx ≤ γ Spp2p−1

ˆ
BR

|∇[(u+ δ)
α+(p−1)

p ]|p φp dx

+ γ Spp2p−1

ˆ
BR

(u+ δ)α+(p−1) |∇φ|p dx

+
Km,p,r

γ
mp+r

m(r−p)−r
|BR|

p
r

(ˆ
BR

bm dx

) r
m(r−p)−r

ˆ
BR

(u+ δ)α+(p−1) φp dx.(3.9)

• Step 3. Putting together (3.7) and (3.9) and recalling that φ ≤ 1, we obtain[
α

p

(
p

α+ (p− 1)

)p
− γ Spp 2p−1

]ˆ
BR

|∇[(u+ δ)
α+(p−1)

p ]|p φp dx

≤

{[
γ Spp 2p−1 +

pp−1

αp−1

]
‖∇φ‖p∞ +

Km,p,r

γ
mp+r

m(r−p)−r
|BR|

p
r

(ˆ
BR

bm dx

) r
m(r−p)−r

}ˆ
BR

(u+ δ)α+(p−1) dx.

Choosing

γ =

(
p

α+ (p− 1)

)p
α

p 2p Spp

and letting δ → 0 we obtain the desired result.

Remark 3.4 If we take φ as in Lemma 2.3 we obtain

ˆ
BR1

|∇(u
α+(p−1)

p )|p dx ≤ Λ(b)

ˆ
BR0

uα+(p−1) dx,

with

Λ(b) :=

{[
1 + 2

(
α+ (p− 1)

α

)p]
pp

(R0 −R1)p
+Km,r,p

2p

α

(
2p pSpp
α

) mp+r
m(r−p)−r

×
(
α+ (p− 1)

p

) mpr
m(r−p)−r

ω
p
r

d R
dp
r

0

(ˆ
BR0

bm dx

) r
m(r−p)−r

 ,(3.10)

for all α > 0, m > r/(r − p), and Km,p,r as in (3.5).

4 Local upper bounds

This section is devoted to the proof of quantitative local upper bounds for local nonnegative weak
solutions to −∆pu = λus, for any λ > 0 and any s ≥ 0. We also get quantitative local estimates
for solutions to the problem −∆pu = b(x)up−1 with b ∈ Lm, eventually unbounded. We prove our
results for nonnegative solutions, but the careful reader can realize that almost the same proof holds
for nonnegative subsolutions, or for solutions with any sign.

4.1 Local upper bounds I. The upper Moser iteration

The first form of the upper bounds that we present in this section, is a consequence of energy estimates,
Caccioppoli inequalities and the “local” Sobolev inequality on balls.
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Theorem 4.1 (Local Upper Estimates) Let Ω ⊂ Rd and λ > 0. Let u be a local nonnegative weak
solution to −∆pu = λus in Ω with p > 1 , 0 ≤ s < r − 1 and r as in (3.2). Then the following bound
holds true for any BR∞ ⊂ BR0

⊆ Ω and for any q > q := [s− (p− 1)]+ r/(r − p)

(4.1) ‖u‖∞,R∞ ≤ I∞,q

( 
BR0

uq dx

) (r−p)µ
r

( 
BR∞

u[s−(p−1)]+ dx

)−µ
where µ = r/{(r − p)q − r[s − (p − 1)]+} and the constant I∞,q is depends on d, p, s, q, r, R0, R∞, and
when s 6= p− 1 does not depend on λ , see an explicit expression in formula (4.4) below.
Moreover, when 0 ≤ s ≤ p− 1 , the above estimate takes the simplified form:

(4.2) ‖u‖∞,R∞ ≤ I∞,q

( 
BR0

uq dx

) 1
q

,

and holds for all q > 0. The constant I∞,q is the same as above and is given in formula (4.4).

Remark on the result. Inequality (4.1) is a kind of reverse Hölder inequality, indeed we can rewrite
it as:

(4.3) ‖u‖µ[s−(p−1)]+
[s−(p−1)]+,R∞

‖u‖∞,R∞ ≤ C ‖u‖
q(r−p)µ

r

q,R0
.

This form makes clearer the fact that if there is a constant that makes true (4.3) for a q ≥ q , then
by Hölder inequality, the same inequality holds true for all q′ > q, with the same constant . The same
applies to (4.1).

Remark on the constant. The proof below allow us to find an explicit expression of the constant:

I∞,q =

[
|BR0 |

r−p
r +1

|BR∞ |
Spp q

p pp c1

rp (R0 −R∞)p

{
Λs,0 r

p q

(
R0 −R∞
R∞

)p

+

(
R0 −R∞
R∞

)p
c2 +

cp−1
1 2p−1

cp0

} (
r

p

) pr
r−p
] r
q(r−p)−r[s−(p−1)]+

(4.4)

with
1

cp0
≤
(

r

(r − p) q − [s− (p− 1)]+ r

)p
,

c1 :=



pq

pq − r(p− 1)
, if q > s∗c = r(p−1)

p ,

max
i=0,1

(
r
p

)j0+i−1

q∣∣∣∣( rp)j0+i−1

q − (p− 1)

∣∣∣∣ , if 0 < q < s∗c = r(p−1)
p ,

c2 := max

{
|p q − r(p− 1)| rp

(p q)p+1
,

(
p

p− 1

)p
1

(p+ 1)p+1

}
and

(4.5) Λs,0 =
λ

pp−1
Rp0 if s = p− 1 and Λs,0 = 2p−1+d if s 6= p− 1.

Moreover when 0 < q < s∗c we require the additional condition

(4.6) j0 := i.p.

[
log r(p−1)

qp

log r
p

]
6=

log r(p−1)
qp

log r
p

12



where i.p.[t] denotes the integer part of t ∈ R.

Finally, we would like to remark that this latter condition (4.6) is not really essential: indeed, we can

obtain an explicit constant I∞,q for a q > q such that i.p.
[
(log r(p−1)

qp )/(log r
p )
]

= (log r(p−1)
qp )/(log r

p ) ,

simply by considering a q′ ∈ (q, q) such that condition (4.6) holds so that the explicit constant is given
by I∞,q′ ; then by the remark after formula (4.3), we obtain the desired bound also for q > q′ with the
same constant (I∞,q = I∞,q′) as a consequence of Hölder inequality.

Proof of Theorem 4.1. We are going to use the energy estimate (2.1) for any α > −(p − 1), α 6= 0, to
prove Lq−L∞ local estimates via Moser iteration, keeping track all the constants. We divide the proof
in several steps.

• Step 1. Let φ the function defined in Lemma 2.3. The local Sobolev inequality (3.1) on the ball BR1

applied to g = u[α+(p−1)]/p together with the energy estimate (2.4), gives, using the properties of the
function φ, established in Lemma 2.3,[ˆ

BR1

u[α+(p−1)] rp dx

] p
r

≤ Spp

[ˆ
BR1

|∇(u
α+(p−1)

p )|p dx+
1

Rp1

ˆ
BR0

uα+(p−1) dx

]

≤ Spp

{
p

|α|

(
α+ (p− 1)

p

)p
λ

ˆ
BR0

uα+s dx(4.7)

+

[
1

Rp1
+

(
α+ (p− 1)

|α|

)p
2p−1

(R0 −R1)p

]ˆ
BR0

uα+(p−1) dx

}
.

• Step 2. Caccioppoli estimates and first iteration step. Now we need to split into two cases, namely
0 ≤ s ≤ p− 1 and p− 1 < s < r − 1.

Superlinear case: p− 1 < s < r − 1. We continue estimate (4.7) as follows:[ˆ
BR1

u[α+(p−1)] rp dx

] p
r

≤ Spp

{
p

|α|

(
α+ (p− 1)

p

)p
λ+

[
1

Rp1
+

(
α+ (p− 1)

|α|

)p

× 2p−1

(R0 −R1)p

] ´
BR0

uα+(p−1) dx´
BR0

uα+s dx

}ˆ
BR0

uα+s dx

≤(a) Spp
|BR0

|
‖u‖s−(p−1)

s−(p−1),R0

 p

|α|

(
α+ (p− 1)

p

)p
λ
‖u‖s−(p−1)

s−(p−1),R0

|BR0
|

(4.8)

+

[
1

Rp1
+

(
α+ (p− 1)

|α|

)p
2p−1

(R0 −R1)p

]}ˆ
BR0

uα+s dx

≤(b)

Spp |BR0
|

(R0 −R1)p‖u‖s−(p−1)
s−(p−1),R0

{
[α+ (p− 1)]p 2p−1+d

|α|

(
R0 −R1

R0

)p
+

(
R0 −R1

R1

)p
+

[α+ (p− 1)]p 2p−1

|α|p

}ˆ
BR0

uα+s dx.

In (a) we have used the convexity in the variable t > 0 of the function N(t) = log ‖u‖tt. Hence, since the
incremental quotient is increasing (see for example [50] for more details), choosing α+ (p− 1) ≥ α > 0,
we obtain

N(α+ s− (p− 1))−N(α)

s− (p− 1)
≤ N(α+ s)−N(α+ (p− 1))

s− (p− 1)
that is

‖u‖α+s−(p−1)
α+s−(p−1)

‖u‖αα
≤

‖u‖α+s
α+s

‖u‖α+(p−1)
α+(p−1)

.
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Then, using Hölder inequality with exponents [α+s−(p−1)]/[s−(p−1)] > 1 and [α+s−(p−1)]/α > 1,
since we are assuming s > p− 1, we have

‖u‖α+s
α+s,R0

‖u‖α+(p−1)
α+(p−1),R0

≥
‖u‖α+s−(p−1)

α+s−(p−1),R0

‖u‖αα,R0

=
‖u‖αα+s−(p−1),R0

‖u‖αα,R0

‖u‖s−(p−1)
α+s−(p−1)

≥ |BR0 |
− s−(p−1)
α+s−(p−1) ‖u‖s−(p−1)

s−(p−1),R0
|BR0

|−
α

α+s−(p−1) =
‖u‖s−(p−1)

s−(p−1),R0

|BR0 |
,

In (b) we have used the Caccioppoli estimate (2.11) with R0 and 2R0, that is

(4.9)
λ‖u‖s−(p−1)

s−(p−1),R0

|BR0 |
≤ pp−1 2p−1

(2R0 −R0)p
|B2R0

|
|BR0 |

=
pp−1 2p−1+d

Rp0
.

Sublinear case: 0 ≤ s ≤ p−1. We first assume 0 ≤ s < p−1, we discuss the case s = p−1 separately.
We continue estimate (4.7) as follows:[ˆ

BR1

u[α+(p−1)] rp dx

] p
r

≤ Spp

{
p

|α|

(
α+ (p− 1)

p

)p
λ

´
BR0

uα+s dx´
BR0

uα+(p−1) dx

+
1

Rp1
+

[α+ (p− 1)]p

|α|p
2p−1

(R0 −R1)p

} ˆ
BR0

uα+(p−1) dx

≤
Spp

(R0 −R1)p

{
[α+ (p− 1)]p 2p−1+d

|α|

(
R0 −R1

R0

)p
(4.10)

+

(
R0 −R1

R1

)p
+

[α+ (p− 1)]p 2p−1

|α|p

}ˆ
BR0

uα+(p−1) dx.

Indeed the properties of the function N(t) = log ‖u‖tt give

N(α)−N(α+ s− (p− 1))

(p− 1)− s
≤ N(α+ (p− 1))−N(α+ s)

(p− 1)− s
that is

‖u‖α+s
α+s

‖u‖α+(p−1)
α+(p−1)

≤
‖u‖α+s−(p−1)

α+s−(p−1)

‖u‖αα
.

Then, using Hölder inequality, the following reverse Hölder inequality(ˆ
BR0

uα dx

)− (p−1)−s
α

≤

´
BR0

us−(p−1) dx

|BR0 |
α+(p−1)−s

α

and (4.9) give

‖u‖α+s
α+s,R0

‖u‖α+(p−1)
α+(p−1),R0

≤
‖u‖α+s−(p−1)

α+s−(p−1),R0

‖u‖αα,R0

≤ |BR0
|
(p−1)−s

α

‖u‖(p−1)−s
α,R0

≤

´
BR0

us−(p−1)

|BR0 |
≤ 1

λ

pp−1 2p−1+d

Rp0
.

Notice that when s = p− 1, we obtain from (4.7) directly[ˆ
BR1

u[α+(p−1)] rp dx

] p
r

≤
Spp

(R0 −R1)p

{
p

|α|
[α+ (p− 1)]p λ

pp
(R0 −R1)p

+

(
R0 −R1

R1

)p
+

[α+ (p− 1)]p 2p−1

|α|p

}ˆ
BR0

uα+(p−1) dx.(4.11)
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• Step 3. The first iteration step. Now we are ready to write the first iteration step for all s ≥ 0. Let
β = α + (p − 1) ≥ β0 > 0 and recall that we are requiring β 6= (p − 1) as well, then inequalities (4.8),
(4.10) and (4.11) can be written as[ˆ

BR1

uβ
r
p dx

] p
r

≤ I(β, s, p,R1, R0)

ˆ
BR0

uβ+[s−(p−1)]+ dx

with

I(β, s, p,R1, R0) :=
Spp

(R0 −R1)p
|BR0 |´

BR0
u[s−(p−1)]+ dx

{
βp Λs

|β − (p− 1)|

(
R0 −R1

R0

)p
+

(
R0 −R1

R1

)p
+

βp 2p−1

|β − (p− 1)|p

}
,(4.12)

and

(4.13) Λs =
λ

pp−1
Rp0 if s = p− 1 and Λs = 2p−1+d if s 6= p− 1.

• Step 4. The Moser iteration. Let us define the sequence of exponents βn > 0 so that

βn + [s− (p− 1)]+ = βn−1
r

p
⇒ βn = βn−1

r

p
− [s− (p− 1)]+

it turns out that, for any given β0 > 0 and all n ≥ 1, by (8.4),

βn = β0

(
r

p

)n
− [s− (p− 1)]+

n−1∑
k=0

(
r

p

)k
=

(
r

p

)n β0 − [s− (p− 1)]+

n∑
j=1

(p
r

)j
=

(
r

p

)n{
β0 − [s− (p− 1)]+

p

r − p

}
+ [s− (p− 1)]+

p

r − p
.

Moreover we have that for all s ≥ 0,

βn

(p
r

)n
→ β0 − [s− (p− 1)]+

p

r − p
, as n→ +∞.

Requiring that β0 > p[s − (p − 1)]+/(r − p), which will be assumed from now on, then implies that
βn → +∞ as n→ +∞. We shall also require βn 6= (p− 1) for any n.

We will explicitly choose a decreasing sequence of radii 0 < R∞ < ... < Rn < Rn−1 < ... < R0 in the
next step, in order to estimate the constants. The first iteration step reads:

(4.14) ‖u‖βn rp ,Rn ≤ I(βn, s, p, Rn, Rn−1)
1
βn

[ˆ
BRn−1

uβn+[s−(p−1)]+ dx

] 1
βn

= I
1
βn
n ‖u‖

r
p

βn−1
βn

βn−1
r
p ,Rn−1

where the constants I(βn, s, p, Rn, Rn−1) are as (4.12), that is

In =
Spp

(Rn−1 −Rn)p
|BRn−1 |´

BRn−1
u[s−(p−1)]+ dx

{
βpn Λs,n

|βn − (p− 1)|

(
Rn−1 −Rn
Rn−1

)p
+

(
Rn−1 −Rn

Rn

)p
+

βpn 2p−1

|βn − (p− 1)|p

}
,

with

Λs,n =
λ

pp−1
Rpn−1 if s = p− 1 and Λs,n = Λs = 2p−1+d if s 6= p− 1.
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Iterating (4.14), we get

‖u‖βn r
p ,Rn

≤ ... ≤ I
1
βn
n I

r
p

1
βn

n−1 ...I
( rp )

n−1 1
βn

1 ‖u‖(
r
p )
n β0
βn

r
p β0,R0

=

n∏
j=1

I
( rp )

n−j 1
βn

j ‖u‖(
r
p )
n β0
βn

r
p β0,R0

,

with
β0 > [s− (p− 1)]+

p

r − p
or q =

r

p
β0 > q := [s− (p− 1)]+

r

r − p
.

Taking the limit as n→ +∞ we obtain

‖u‖∞,R∞ = lim
n→∞

‖u‖βn r
p ,Rn

≤ lim
n→∞

n∏
j=1

I
( rp )

n−j 1
βn

j ‖u‖(
r
p )
n β0
βn

r
p β0,R0

= I∞ ‖u‖
(r−p)q

(r−p)q−r[s−(p−1)]+

q,R0
.

Notice that the last step follows because we shall see below that

n∏
j=1

I
( rp )

n−j 1
βn

j

has a limit I∞ as n → ∞. As a consequence of the above estimate we obtain the boundedness of the
solution u so that the previous bound holds for any q > [s− (p− 1)]+ r/(r − p), as stated.

• Step 5. Estimating all the constants. Now it remains to estimate I∞. We will prove later that

(4.15) Ij ≤ I0
(
r

p

)pj
.

Using such bound we show that

I∞ = lim
n→∞

n∏
j=1

I
( rp )

n−j 1
βn

j = lim
n→∞

exp

(r
p

)n
1

βn

n∑
j=1

(p
r

)j
log(Ij)


≤ lim

n→∞
exp

(r
p

)n
1

βn

n∑
j=1

(p
r

)j
log

[
I0

(
r

p

)pj]
= exp

{
p

β0(r − p)− [s− (p− 1)]+ p

[
log(I0) +

rp

r − p
log

(
r

p

)]}

= I
p

β0(r−p)−[s−(p−1)]+ p

0 ·
(
r

p

) pr
r−p

p
β0(r−p)−[s−(p−1)]+ p

=

[
I0 ·

(
r

p

) pr
r−p
] p
β0(r−p)−[s−(p−1)]+ p

where we have used the identities (8.2) and (8.3). Now we have to prove (4.15) and so an explicit
estimate for I0 in order to finally obtain (4.4).

Estimating Ij. To obtain (4.15) for any j we choose a decreasing sequence of radii 0 < R∞ < ... <
Rj < Rj−1 < ... < R0 such that

(Rj−1 −Rj)p = (R0 −R∞)p
cp0
βpj
, with c0 =

 ∞∑
j=1

1

βj

−1

<∞,

so that
∞∑
j=1

(Rj−1 −Rj) = R0 −R∞.
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So

Ij ≤
Spp β

p
j

cp0 (R0 −R∞)p
|BR0 |´

BR∞
u[s−(p−1)]+

{
Λs,0 c

p
0

|βj − (p− 1)|

(
R0 −R∞
R∞

)p
+
cp0
βpj

(
R0 −R∞
R∞

)p
+

βpj 2p−1

|βj − (p− 1)|p

}

recalling that

Λs,0 =
λ

pp−1
Rp0 if s = p− 1 and Λs,0 = 2p−1+d if s 6= p− 1.

Notice that
|βj − (p− 1)|

βp+1
j

≤ max

{
|β0 − (p− 1)|

βp+1
0

,

(
p

p− 1

)p
1

(p+ 1)p+1

}
=: c2,

and

βj =

(
r

p

)j {
β0 − [s− (p− 1)]+

p

r − p

}
+ [s− (p− 1)]+

p

r − p
≤ β0

(
r

p

)j
, ∀ j.

Moreover

βj
|βj − (p− 1)|

≤ c1 :=


β0

β0 − (p− 1)
, if β0 > p− 1,

max
i=0,1

βj0+i

|βj0+i − (p− 1)|
, if 0 < β0 < p− 1.

As a matter of fact, when β0 > p− 1, we have

βj
|βj − (p− 1)|

≤ β0

β0 − (p− 1)

since the one-variable real function

t

|t− (p− 1)|
=

t

t− (p− 1)
is decreasing for t ≥ β0 > p− 1.

The case 0 < β0 < p − 1 deserves a further explanation. We define j0 to be the greatest integer for
which βj0 < p− 1, so that βj0+1 > p− 1, that is

βj0 < p− 1 < βj0+1 if and only if j0 = i.p.

[
log p−1

β0

log r
p

]

and we shall take β0 ∈ (0, p− 1) such that

(4.16)
log p−1

β0

log r
p

6= i.p.

[
log p−1

β0

log r
p

]

Summing up, when we consider 0 < β0 < p − 1, we have to be careful to choose it so that βj 6= p − 1
for all j which amounts (4.16), then we can assure that βj0 < p− 1 < βj0+1 and we can estimate

βj
|βj − (p− 1)|

≤ max
i=0,1

βj0+i

|βj0+i − (p− 1)|
= max
i=0,1

(
r
p

)j0+i

β0∣∣∣∣( rp)j0+i

β0 − (p− 1)

∣∣∣∣ .

17



Hence, we can go on estimating Ij , we get

Ij ≤
Spp β

p
j

(R0 −R∞)p
|BR0

|´
BR∞

u[s−(p−1)]+

βj
|βj − (p− 1)|

×

{
Λs,0
βj

(
R0 −R∞
R∞

)p
+

(
R0 −R∞
R∞

)p |βj − (p− 1)|
βp+1
j

+

(
βj

|βj − (p− 1)|

)p−1
2p−1

cp0

}

≤
Spp β

p
0 c1

(R0 −R∞)p
|BR0 |´

BR∞
u[s−(p−1)]+

{
Λs,0
β0

(
R0 −R∞
R∞

)p
+

(
R0 −R∞
R∞

)p
c2 +

cp−1
1 2p−1

cp0

} (
r

p

)jp
= I0

(
r

p

)jp
.

Estimate (4.15) is now proved.

After some simple calculations, the proof is concluded by letting β0 = pq/r.

4.2 Local upper bounds II. The case of unbounded coefficients.

In this section we establish upper bounds for nonnegative solution to −∆pu = b(x)up−1 on BR with
b ∈ Lm(BR) eventually unbounded. These estimates follow from the energy estimates together with
the Reverse Poincaré inequalities, which are consequence of Sobolev inequality on balls, see Section 3 .

Theorem 4.2 (The Moser iteration) Let u be a nonnegative weak (sub)solution to −∆pu = b up−1

on BR, with b ∈ Lm(BR), m > r/(r − p) and r > p as in (3.2). Then the following bound holds true
for any R∞ < R0 < R and q > p− 1

(4.17) ‖u‖∞,R∞ ≤
I∞,q (b)

(R0 −R∞)
pr

q(r−p)

‖u‖q,R0
,

with constant

I∞,q(b) =
(
Spp q

mr(p−1)
m(r−p)−r

) r
q(r−p)

(
p

r − p

) mr2(p−1)
q(r−p)[m(r−p)−r]

(
r

p

) mr2(p−1)(r+p)

q(r−p)2[m(r−p)−r]

×

[
3

(
q

q − (p− 1)

)p
pp

q
rm(p−1)
m(r−p)−r

+Km,p,r
2
mr+(mp+r)(p−1)

m(r−p)−r

p
rm(p−1)
m(r−p)−r

(
q

q − (p− 1)

) mr
m(r−p)−r

× (R0 −R∞)p |BR0 |
p
r ‖b‖

mr
m(r−p)−r
m,R0

+

(
R0 −R∞
R∞

)p
1

(p− 1)
mr(p−1)
m(r−p)−r

] r
q(r−p)

and Km,p,r as in (3.5).

Remark 4.3 Notice that in the case of bounded coefficients, i. e. b ∈ L∞(BR), we can pass to the limit
as m→∞ in the above expression I∞,q (b) to get

I∞,q(b) =
(
Spp q

r(p−1)
r−p

) r
q(r−p)

(
p

r − p

) r2(p−1)

q(r−p)2
(
r

p

) r2(p−1)(r+p)

q(r−p)3

×

[
3

(
q

q − (p− 1)

)p
pp

q
r(p−1)
r−p

+
r − p
r

(p
r

) p
r−p 2

r+p(p−1)
r−p

p
r(p−1)
r−p

(
q

q − (p− 1)

) r
r−p

× (R0 −R∞)p |BR0
|
p
r ‖b‖

r
r−p
∞,R0

+

(
R0 −R∞
R∞

)p
1

(p− 1)
r(p−1)
r−p

] r
q(r−p)

.
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Proof. We divide the proof in two steps.

• Step 1. Sobolev and Reverse Poincaré inequalities. We start considering the radiiR∞ < ρ1 < ρ0 < R0

and we use (3.1) on the ball Bρ1
with g = u[α+(p−1)]/p, for some α > 0, to get[ˆ

Bρ1

u
α+(p−1)

p r dx

] p
r

≤ Spp

[ˆ
Bρ1

|∇(u
α+(p−1)

p )|p dx+
1

ρp1

ˆ
Bρ1

uα+(p−1) dx

]
.

To estimate the first term in the right hand side of the previous inequality we use Theorem 3.2 (see
Remark 3.4), we get

(4.18)

[ˆ
Bρ1

u
α+(p−1)

p r dx

] p
r

≤ Spp
[
Λ(b) +

1

ρp1

]ˆ
Bρ0

uα+(p−1) dx

with Λ(b) as in (3.10) and Km,p,r in (3.5).

Notice that

Λ(b) ≤ [α+ (p− 1)]
mr(p−1)
m(r−p)−r

(ρ0 − ρ1)p

{
3

(
α+ (p− 1)

α

)p
pp

[α+ (p− 1)]
mr(p−1)
m(r−p)−r

+Km,p,r
2
mr+(mp+r)(p−1)

m(r−p)−r

p
mr(p−1)
m(r−p)−r

×
(
α+ (p− 1)

α

) mr
m(r−p)−r

(R0 −R∞)p |BR0 |
p
r ‖b‖

rm
m(r−p)−r
m,R0

}
.

Hence, we get, since α > 0,

Spp

[
Λ(b) +

1

ρp1

]
≤

Spp [α+ (p− 1)]
mr(p−1)
m(r−p)−r

(ρ0 − ρ1)p

{
3

(
α+ (p− 1)

α

)p
pp

[α+ (p− 1)]
mr(p−1)
m(r−p)−r

+Km,p,r
2
mr+(mp+r)(p−1)

m(r−p)−r

p
mr(p−1)
m(r−p)−r

(
α+ (p− 1)

α

) mr
m(r−p)−r

(R0 −R∞)p|BR0 |
p
r ‖b‖

rm
m(r−p)−r
m,R0

+

(
R0 −R∞
R∞

)p
1

(p− 1)
mr(p−1)
m(r−p)−r

}
.

• Step 2. The Moser iteration. We now fix β0 = α+ (p− 1) > p− 1 and we define the sequence

βn =
r

p
βn−1 =

(
r

p

)n
β0

and that of radii R∞ = ρ∞ < ... < ρn < ρn−1 < ... < ρ0 = R0 such that

(4.19) (ρn−1 − ρn)p = cp3 (R0 −R∞)p
(p
r

)mr(p−1)n
m(r−p)−r

with

c3 :=

[ ∞∑
k=1

(p
r

) mr(p−1)k
p[m(r−p)−r]

]−1

so that
∞∑
k=1

(ρk−1 − ρk) = (R0 −R∞).

Moreover, recalling (8.2), we get the following estimate for c3

(4.20) c3 =

(
r

p

) mr(p−1)
p[m(r−p)−r]

− 1 ≥
(
r

p
− 1

) mr(p−1)
p[m(r−p)−r]

=

(
r − p
p

) mr(p−1)
p[m(r−p)−r]

.
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With these choices inequality (4.18), in which α+ (p− 1) is replaced by βn−1 > p− 1 and ρ1, ρ0 by ρn,
ρn−1 respectively, reads[ˆ

Bρn

uβn dx

] p
r

≤
Spp β

mr(p−1)
m(r−p)−r
n−1

(ρn−1 − ρn)p

3

(
βn−1

βn−1 − (p− 1)

)p
pp

β
mr(p−1)
m(r−p)−r
n−1

+Km,p,r
2
mr+(mp+r)(p−1)

m(r−p)−r

p
mr(p−1)
m(r−p)−r

×
(

βn−1

βn−1 − (p− 1)

) mr
m(r−p)−r

(R0 −R∞)p |BR0
|
p
r ‖b‖

mr
m(r−p)−r
m,R0

+

(
R0 −R∞
R∞

)p
1

(p− 1)
mr(p−1)
m(r−p)−r

} ˆ
Bρn−1

uβn−1 dx = In−1

ˆ
Bρn−1

uβn−1 dx.

Letting Yn := ‖u‖βn,ρn , we have obtained

Yn ≤ I
1

βn−1

n−1 ‖u‖βn−1,ρn−1 = I
( pr )

n−1 1
β0

n−1 Yn−1 = Iσ θ
n−1

n−1 Yn−1,

where we have set σ = 1/β0 and θ = p/r ∈ (0, 1). We shall prove that In−1 ≤ Cn−1 I0, for some C > 0,
in order to apply Lemma 8.5. Indeed

In−1 ≤
Spp β

mr(p−1)
m(r−p)−r
0

(R0 −R∞)p

(
p

r − p

) mr(p−1)
m(r−p)−r

3

(
β0

β0 − (p− 1)

)p
pp

β
mr(p−1)
m(r−p)−r
0

+
2
mr+(mp+r)(p−1)

m(r−p)−r

p
mr(p−1)
m(r−p)−r

×Km,p,r

(
β0

β0 − (p− 1)

) mr
m(r−p)−r

(R0 −R∞)p |BR0
|
p
r ‖b‖

mr
m(r−p)−r
m,R0

+

(
R0 −R∞
R∞

)p
1

(p− 1)
mr(p−1)
m(r−p)−r

}(
r

p

) mr(p−1)
m(r−p)−r

(
r

p

) 2mr(p−1)
m(r−p)−r (n−1)

=: I0 C
n−1,

where we have used (4.19), (4.20), the definition of βn−1 and the following facts

βn−1

βn−1 − (p− 1)
≤ β0

β0 − (p− 1)
, for β0 > p− 1 and

1

βn−1
≤ 1

β0
.

So by Lemma 8.5 with the above choices of σ, θ, I0 and C, we get

Y∞ ≤ I
σ

1−θ
0 C

σ θ
(1−θ)2 Y0 which is ‖u‖∞,R∞ ≤ I∞(b) ‖u‖β0,R0

with

I∞(b) =

Spp β
mr(p−1)
m(r−p)−r
0

(R0 −R∞)p

(
p

r − p

) mr(p−1)
m(r−p)−r

3

(
β0

β0 − (p− 1)

)p
pp

β
mr(p−1)
m(r−p)−r
0

+
2
mr+(mp+r)(p−1)

m(r−p)−r

p
mr(p−1)
m(r−p)−r

Km,p,r

(
β0

β0 − (p− 1)

) mr
m(r−p)−r

(R0 −R∞)p |BR0
|
p
r ‖b‖

mr
m(r−p)−r
m,R0

+

(
R0 −R∞
R∞

)p
1

(p− 1)
mr(p−1)
m(r−p)−r

]} r
β0(r−p) (

r

p

) mr2(p−1)(r+p)

β0[m(r−p)−r](r−p)2

.

The proof is concluded once we let β0 = q > p− 1.

Theorem 4.4 (Extending Local Upper Bounds) Let u be a nonnegative weak solution to −∆pu =
b up−1 on BR, with p > 1 , b ∈ Lm(BR), m > r/(r−p) and r > p as in (3.2). Then the following bound
holds for any R∞ < R0 < R and for any q0 > 0

‖u‖∞,R∞ ≤
A

(1)
q0

(R0 −R∞)
pr

q0(r−p)

[
A(2)
q0 +A(3)

q0 ‖b‖
mr

m(r−p)−r
m,R0

] r
q0(r−p)

‖u‖q0,R0
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the constants A
(i)
q0 , for i = 1, 2, 3 depend on d, p, s, q, r, R0, R∞, see an explicit expression in formulas

(4.21) below.

Remark on the constant. The proof below allow us to find an explicit expression of the constant:

A(1)
q0 :=

(
Spp q

mr(p−1)
m(r−p)−r
0

) r
q0(r−p)

(
p

r − p

) mr2(p−1)
q0(r−p)[m(r−p)−r]

(
r

p

) mr2(p−1)(r+p)

q0(r−p)2[m(r−p)−r]

if q0 > p− 1

A(1)
q0 := 3

(
Spp [q0 + (p− 1)]

mr(p−1)
m(r−p)−r

) r
q0(r−p)

(
p

r − p

) mr2(p−1)
q0(r−p)[m(r−p)−r]

(
r

p

) mr2(p−1)(r+p)

q0(r−p)2[m(r−p)−r]

×
(

pr

q0(r − p)

) pr
q0(r−p)

2
p−1
q0

+ 2pr
q0(r−p) if 0 < q0 ≤ p− 1

A(2)
q0 := 3

(
q0

q0 − (p− 1)

)p
pp

q
mr(p−1)
m(r−p)−r
0

+

(
R0 −R∞
R∞

)p
1

(p− 1)
mr(p−1)
m(r−p)−r

if q0 > p− 1

A(2)
q0 := 3

(
q0 + (p− 1)

q0

)p
pp

[q0 + (p− 1)]
mr(p−1)
m(r−p)−r

+

(
R0 −R∞
R∞

)p
1

(p− 1)
mr(p−1)
m(r−p)−r

if 0 < q0 ≤ p− 1

and

A(3)
q0 := Km,p,r

2
mr+(mp+r)(p−1)

m(r−p)−r

p
mr(p−1)
m(r−p)−r

(
q0

q0 − (p− 1)

) mr
m(r−p)−r

(R0 −R∞)p |BR0 |
p
r if q0 > p− 1

A(3)
q0 := Km,p,r

2
mr+(mp+r)(p−1)

m(r−p)−r

p
mr(p−1)
m(r−p)−r

(
q0 + (p− 1)

q0

) mr
m(r−p)−r

(R0 −R∞)p|BR0
|
p
r if 0 < q0 ≤ p− 1,

(4.21)

with Km,p,r as in (3.5).

Proof. The statement of the theorem, in the case q0 > p − 1, easy follows from Theorem 4.2. When
0 < q0 ≤ p− 1 we have to apply Lemma 8.7. By Theorem 4.2 (with q = q0 + (p− 1) > p− 1), we have

‖u‖∞,R∞ ≤
I∞,q0+(p−1)(b)

(R0 −R∞)
pr

[q0+(p−1)](r−p)

‖u‖q0+(p−1),R0

and hence we arrive at the desired result using Lemma 8.7 with q = ∞, q = q0 + (p − 1), K =
I∞,q0+(p−1)(b) and γ = pr/{[q0 + (p− 1)](r − p)}.

The above theorem has the following important consequence, when applied to the equation −∆pu =
λus.

Theorem 4.5 (Local Upper Bounds, second form) Let u be a nonnegative weak solution to
−∆pu = λus on BR, with p > 1 λ > 0, s > p − 1 and r > p as in (3.2). If u ∈ Lm(BR0

), with
m > r[s− (p− 1)]/(r − p), then the following bound holds for any R∞ < R0 < R and for any q0 > 0

‖u‖∞,R∞ ≤
A

(1)
q0

(R0 −R∞)
pr

q0(r−p)

[
A(2)
q0 +A(3)

q0 λ
mr

m(r−p)−r[s−(p−1)] ‖u‖
mr[s−(p−1)]

m(r−p)−r[s−(p−1)]

m,R0

] r
q0(r−p)

‖u‖q0,R0
,

where A
(1)
q0 , A

(2)
q0 and A

(3)
q0 are as in Theorem 4.4.
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Proof. Since u is a solution to −∆pu = λus on BR, then u is also a solution to −∆pu = b up−1 on BR
with b = λus−(p−1). Therefore we need to assume us−(p−1) ∈ Lm(BR), with m > r/(r − p) that it is
equivalent to require u ∈ Lm(BR), with m = m[s− (p− 1)] > r[s− (p− 1)]/(r − p). So that

‖b‖
mr

m(r−p)−r
m,R0

=

[
λm

ˆ
BR0

um[s−(p−1)] dx

] r
m(r−p)−r

= λ
mr

m(r−p)−r[s−(p−1)] ‖u‖
mr[s−(p−1)]

m(r−p)−r[s−(p−1)]

m,R0
.

Hence the result follows from Theorem 4.4.

5 Local lower bounds via Moser iteration

In this section we prove quantitative local lower bounds for nonnegative weak solutions to −∆pu = λus.
The strategy to prove the lower bounds is classical, and combines a lower Moser iteration with some
reverse Hölder inequalities obtained via a John-Nirenberg type Lemma. Since we are interested keeping
track of all (the relevant) constants, we need a quantitative version of a John-Nirenberg type Lemma
to obtain quantitative reverse Hölder inequalities; this has been done in [4] and the proofs of [4] also
adapt to the current setting with minor modifications that we give in Appendix 8.1.

We first show how the lower Moser iteration proves quantitative local lower bounds in a general form,
that hold in the whole range 0 ≤ s < r − 1. In the next subsection, we will improve the results in a
smaller range, namely p− 1 < s < s∗c = r(p− 1)/p .

Theorem 5.1 (Local Lower Estimates) Let Ω ⊂ Rd. Let u be a nonnegative local weak solution to
−∆pu = λus in Ω, with p > 1, λ ≥ 0 and 0 ≤ s < sc = r − 1, r as in (3.2). Then for any ε > 0, for
any

0 < q ≤ (p− 1)
2
p 2

(d−1)(p−1)
p

pω2
d d [e(d− 1) + ε]

= q0

and for any BR∞ ⊂ BR0
⊆ Ω the following bound holds

inf
x∈BR∞

u(x) = ‖u‖−∞,R∞ ≥ I−∞,q
‖u‖q,R0

|BR0
|
1
q

where

(5.1) I−∞,q =

 (R0 −R∞)R∞

R
d(r−p)
rp

0


pr

q(r−p) [
1

Spp [2p−1Rp∞ + (R0 −R∞)p] 2
pr
r−p

] r
q (r−p) [

ε

2d(e d+ ε)
√
ωd

] 2
q

.

Proof. The proof is divided in two steps.

• Step 1. In this step we want to prove L−q − L−∞ local estimates via Moser iteration. Consider
α < −(p− 1), choosing φ as in Lemma 2.3 in the estimate (2.3), we obtainˆ

BR1

|∇[(u+ δ)
α+p−1
p ]|p dx ≤ 2p−1 |α+ (p− 1)|p

|α|p (R0 −R1)p

ˆ
BR0

(u+ δ)α+p−1 dx.

Applying now the Sobolev inequality (3.1) on the ball BR1
, one gets[ˆ

BR1

(u+ δ)
α+p−1
p r dx

] p
r

≤ Spp

[ˆ
BR1

|∇[(u+ δ)
α+p−1
p ]|p dx+

1

Rp1

ˆ
BR1

(u+ δ)α+p−1 dx

]

≤ Spp

[
2p−1 |α+ (p− 1)|p

|α|p (R0 −R1)p
+

1

Rp1

] ˆ
BR0

(u+ δ)α+p−1 dx

≤ Spp

[
2p−1

(R0 −R1)p
+

1

Rp1

] ˆ
BR0

(u+ δ)α+p−1 dx,
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since |α+ (p− 1)|/|α| < 1 for any α < −(p− 1). Let for a given γ0 < 0,

γn =
r

p
γn−1 =

(
r

p

)n
γ0.

Notice that γn → −∞ monotonically. The above inequality, with α = αn and γn−1 = αn + (p− 1) < 0
reads

‖u+ δ‖γn,Rn ≥
[
Spp

(
2p−1

(Rn−1 −Rn)p
+

1

Rpn

)] 1
γn−1

[ˆ
BRn−1

(u+ δ)γn−1 dx

] 1
γn−1

=: I
1

γn−1
n ‖u+ δ‖γn−1,Rn−1 .

The iteration is simple now, and gives

(5.2) ‖u+ δ‖γn,Rn ≥ I
1

γn−1
n I

1
γn−2

n−1 ...I
1
γ0
1 ‖u+ δ‖γ0,R0

=

n∏
j=1

I
1

γj−1

j ‖u+ δ‖γ0,R0
,

where we have chosen 0 < R∞ < ... < Rn < Rn−1 < ... < R0 such that

∞∑
j=1

(Rj−1 −Rj) = R0 −R∞ and Rj−1 −Rj =
R0 −R∞

2j

so that

Ij = Spp

(
2p−1 2pj

(R0 −R∞)p
+

1

Rpj

)
≤

Spp
(R0 −R∞)p

[
2p−1 +

(
R0 −R∞
R∞

)p]
2pj =: I0 2pj

and

n∏
j=1

(I0 2pj)
1

γj−1 = exp


n∑
j=1

1

γj−1
log(I0 2pj)

 = exp

 1

γ0

r

p

n∑
j=1

(p
r

)j
log(I0 2pj)


= exp

 1

γ0

r

p
log I0

n∑
j=1

(p
r

)j
+

1

γ0
r log 2

n∑
j=1

j
(p
r

)j
= I

1
γ0

r
p

∑n
j=1(

p
r )
j

0 2
r
γ0

∑n
j=1 j(

p
r )
j

−−−−→
n→∞

I
1
γ0

r
p

∑∞
j=1(

p
r )
j

0 2
r
γ0

∑∞
j=1 j(

p
r )
j

Using (8.2) and (8.3), we get

n∏
j=1

(I0 2pj)
1

γj−1 −−−−→
n→∞

I
1
γ 0

r
r−p

0 2
r
γ0

pr

(r−p)2 = (I0 2
rp
r−p )

r
γ0 (r−p) .

We can now take the limit in (5.2) to get for any γ0 < 0

‖u+ δ‖−∞,R∞ ≥ lim
n→∞

‖u+ δ‖γn,Rn ≥ lim
n→∞

n∏
j=1

(I0 2pj)
1

γj−1 ‖u+ δ‖γ0,R0

=

{
Spp

(R0 −R∞)p

[
2p−1 +

(
R0 −R∞
R∞

)p]
2
pr
r−p

} r
γ0 (r−p)

‖u+ δ‖γ0,R0
(5.3)

• Step 2. Reverse Hölder inequalities. Joining inequality (5.3) and (8.1) and letting γ0 = −q, for any

0 < q ≤ (p− 1)
2
p 2

(d−1)(p−1)
p

pω2
d d [e(d− 1) + ε]

.
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we obtain

‖u+ δ‖−∞,R∞ ≥

 (R0 −R∞)pRp∞

Spp [2p−1Rp∞ + (R0 −R∞)p]2
rp
r−p R

d(r−p)
r

0

 r
q (r−p) [

ε

2d(e d+ ε)
√
ωd

] 2
q ‖u+ δ‖q,R0

|BR0
|
1
q

.

To conclude the proof it is sufficient let δ → 0+.

5.1 Reverse Hölder inequalities and additional local lower bounds

In this section we will prove first a more precise quantitative reverse Hölder inequality, that holds in
the smaller range of exponents s > p− 1. We have in mind to join local upper and lower estimates to
get a clean form of Harnack inequality (see next section). The difficulty here is that the lower bound
of the previos section has the form of reverse smoothing effect from Lq to L−∞ for a suitable explicit
q , which can be very small, sometimes too small: we need to reach higher values of q, namely above
r[s− (p−1)]/(r−p) and this will be possible through a reverse Hölder inequality, that holds only when
p− 1 < s < r(p− 1)/p = s∗c . Under no further assumptions on the solution at hand, it is impossible -to
our knowledge- to extend this reverse Hölder inequality to higher values of s in a quantitative way.

Proposition 5.2 (Reverse Hölder inequalities) Let Ω ⊂ Rd and let λ > 0. Let u be a nonnegative
local weak solution to −∆pu = λus in Ω, with p− 1 < s < r(p− 1)/p = s∗c . Let BR̄ ⊂ BR0

⊆ Ω. Then

(5.4)
‖u‖q,R̄
|BR̄|

1
q

≤ Iq,q0
‖u‖q0,R0

|BR0
|

1
q0

,

for any q0 ∈ (0, q], with
r[s− (p− 1)]

r − p
< q <

r(p− 1)

p
= s∗c ,

(5.5) Iq,q0 :=

{
Spp

[
2p−1 pp qp

[r(p− 1)− pq]p
+

(
R0 − R̄
R̄

)p]} r
pq

Rd( 1
p−

1
r )

0 ω
1
p−

1
r

d

R0 − R̄

 r
q (

R0

R̄

) d
q

if pq/r ≤ q0 ≤ q and

Iq,q0 := 3 · 2
pq−rq0
(r−p)q0

{
Spp

[
2p−1 pp qp

[r(p− 1)− pq]p

(
R̄

R0 − R̄

)p
+ 1

]} r(q−q0)

(r−p)q0q

×

4 r p (q − q0)ω
r−p
rp

d

(r − p) q q0


rp(q−q0)

(r−p)qq0

R
d
q0
0

R̄
pr(q−q0)

(r−p)qq0
+ d
q

,(5.6)

if 0 < q0 < pq/r.

Remark 5.3 We note that the interval in which q can vary is not empty, since we are assuming s < s∗c .

Proof. Let −(p− 1) < α < 0. Consider the energy estimate (2.5). It implies, using φ as in Lemma 2.3,
with R∞ < R0

ˆ
BR∞

|∇(u
α+(p−1)

p )|p dx ≤ 2p−1 [α+ (p− 1)]p

|α|p (R0 −R∞)p

ˆ
BR0

uα+(p−1) dx.
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Applying now Sobolev inequality (3.1) with g = u[α+(p−1)]/p on the ball BR∞ we arrive at[ˆ
BR∞

u
α+(p−1)

p r dx

] p
r

≤ Spp

[ˆ
BR∞

|∇(u
α+(p−1)

p )|p dx+
1

Rp∞

ˆ
BR∞

uα+(p−1) dx

]

≤ Spp

[
2p−1 [α+ (p− 1)]p

|α|p (R0 −R∞)p
+

1

Rp∞

] ˆ
BR∞

uα+(p−1) dx.

Letting 0 < α+ (p− 1) =: β < p− 1, we get

(5.7)

[ˆ
BR∞

uβ
r
p dx

] p
rβ

≤ S
p
β
p

(R0 −R∞)
p
β

[
2p−1 βp

|β − (p− 1)|p
+

(
R0 −R∞
R∞

)p] 1
β

[ˆ
BR∞

uβ dx

] 1
β

.

Let q = rβ/p, then

r[s− (p− 1)]

r − p
< q <

r

p
(p− 1) imply

p[s− (p− 1)]

r − p
< β < p− 1.

We note that the interval in which β can vary is compatible with the request 0 < β < p − 1 and it
is not empty since we are assuming p − 1 < s < s∗c . With this choice, from (5.7) we get, for any
R∞ ≤ ρ < R ≤ R0,

(5.8) ‖u‖q,ρ ≤
{
Spp

[
2p−1 pp qp

[r(p− 1)− pq]p
+

(
R0 −R∞
R∞

)p]} r
pq ‖u‖ p

r q,R

(R− ρ)
r
q
.

Let q = pq/r < q. We consider separately the case q ≤ q0 ≤ q and the case 0 < q0 < q < q. In the first
case we can use Hölder inequality in (5.8), to obtain

‖u‖q,ρ ≤
{
Spp

[
2p−1 pp qp

[r(p− 1)− pq]p
+

(
R0 −R∞
R∞

)p]} r
pq

 R
d
p ω

1
p−

1
r

d

(R− ρ) ρ
d
r

 r
q

|Bρ|
1
q
‖u‖q0,R
|BR|

1
q0

,

which is (5.4) when q ≤ q0 ≤ q, once we let R = R0 and ρ = R∞ = R̄. On the other hand, when
0 < q0 < q < q, we can use inequality (5.8) rewritten as

‖u‖q,ρ ≤
{
Spp

[
2p−1 pp qp

[r(p− 1)− pq]p
+

(
R0 −R∞
R∞

)p]} r
pq ‖u‖ p

r q,R

(R− ρ)
r
q

=:
K

(R− ρ)
r
q
‖u‖ p

r q,R
,

so that Lemma 8.7 applied with γ = r/q and q = q = p q/r gives that for all 0 < q0 < q < q

‖u‖q,R∞ ≤ 3 · 2
pq−rq0
q0(r−p)

{
Spp

[
2p−1 pp qp

[r(p− 1)− pq]p

(
R∞

R0 −R∞

)p
+ 1

]} r(q−q0)

q0q(r−p)

×
(

4 r p(q − q0)

q q0(r − p)

) pr(q−q0)

q0q(r−p) R
d
q0
0 ω

1
q0

d

R
d
q+

rp(q−q0)

qq0(r−p)
∞ ω

1
q

d

|BR∞ |
1
q
‖u‖q0,R0

|BR0
|

1
q0

,

therefore the statement follows putting R∞ = R̄.

As a consequence of the above proposition we can improve the local lower bounds of Theorem 5.1 in
this good supercritical range.

Theorem 5.4 (Local Lower Estimates) Let Ω ⊂ Rd and let λ > 0. Let u be a nonnegative local
weak solution to −∆pu = λus in Ω, with p − 1 < s < s∗c = r(p − 1)/p, r as in (3.2). Then for any
BR∞ ⊂ BR̄ ⊂ BR0

⊆ Ω, the following bound holds

inf
x∈BR∞

u(x) = ‖u‖−∞,R∞ ≥
I−∞,q

Iq,q

‖u‖q,R̄
|BR̄|

1
q

, with
r[s− (p− 1)]

r − p
< q <

r

p
(p− 1)
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where q ∈ (0, q0 ∧ q] with

(5.9) q0 =
(p− 1)

2
p 2

(d−1)(p−1)
p

pω2
d d

2 e
,

I−∞,q as in (5.1) and Iq,q as in (5.5)– (5.6) with q0 = q there.

Proof. It is suffices combine the local lower bound proved in Theorem 5.1, with ε = e and the reverse
Hölder inequality of Proposition 5.2 with q0 = q and 0 < R∞ < R̄ < R0.

6 Harnack inequalities

In this section we combine the upper bounds of Section 4 with the lower bounds of Section 5 to obtain
various form of Harnack inequalities. The general form, valid in the whole range of exponents, is given
in Theorem 6.1. As far as we know, the Harnack inequality that we derive for s > p − 1 is not stated
explicitly in the literature. Unfortunately, the constant of the general Harnack inequality of Theorem
6.1 depends on u through a quotient of Lq norms. Such quotient simplifies to a constant in some
cases and gives clean versions of the Harnack inequality (i.e. the constant does not depend on u); this
happens in the subcritical range, i.e. when 0 < s ≤ p − 1, cf. Theorem 6.2, or in the supercritical
range p − 1 < s < s∗c , cf. Theorem 6.3. In the range s∗c < s < r − 1 , we are not able to prove such
clean forms of Harnack inequalities, and we conjecture that the dependence on some Lq norm of the
solution can not be avoided, as already mentioned in the introduction. The fact that the “constant”
involved has to depend on u when s∗c ≤ s < r − 1 is confirmed by the results of [6, 7, 9, 8, 26, 27], [26]
applied to separation of variable solutions of parabolic problems, see also [27]. This is also related to
the fact that, in the range s∗c ≤ s < r − 1, there may exist (very weak, when p = 2) singular solutions,
cf. [24, 40, 42, 43, 44, 45].

When s < p∗−1, in the case r = p∗, so p < d, bounded weak solutions are known to be C1,α , see [25],
and the C1,α modulus of continuity depends on the local L∞-norm of the solution or on the constant
in the Harnack inequality. Therefore having absolute bounds (independent of u) for the solution or
for the Harnack constant, allow to have absolute bounds for the C1,α modulus of continuity. What we
show here, is that the C1,α modulus of continuity is independent on the solution when s < s∗c < p∗− 1,
while it depends on (some Lq-norms of) the solution when s∗c < s < p∗ − 1 . If one wants to have a
C1,α modulus of continuity independent on u also when s > s∗c , one has to add some extra hypothesis
on the solution, and this will be done in the next section, for the special class of stable solutions.

Theorem 6.1 (Harnack inequality for 0 ≤ s < sc) Let Ω ⊂ Rd. Let u be a nonnegative local weak
solution to −∆pu = λus in Ω, with p > 1, λ ≥ 0, 0 ≤ s < sc = r − 1, r as in (3.2). Then for any
R∞ < R0 and ε > 0, we assume

0 < q ≤ q0 :=
(p− 1)

2
p 2

(d−1)(p−1)
p

pω2
d d[e(d− 1) + ε]

, q >
r[s− (p− 1)]+

r − p
.

Moreover, if 0 < q < s∗c = r(p− 1)/p we also assume

i.p.

[
log r(p−1)

qp

log r
p

]
6=

log r(p−1)
qp

log r
p

.

Then the following bound holds true

(6.1) sup
x∈BR∞

u(x) ≤ Hs[u] inf
x∈BR∞

u(x)
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where Hs[u] depends on u through some local norms as follows

Hs[u] = Hs[u](d, p, r, R0, R∞, q, q, ε)

=
I∞,q
I−∞,q

( 
BR0

uq dx

) 1
q

( 
BR0

uq dx

) 1
q



( 
BR0

uq dx

) [s−(p−1)]+
q

 
BR∞

u[s−(p−1)]+ dx



r
(r−p)q−r[s−(p−1)]+

with I∞,q as in (4.4) and I−∞,q as in (5.1).

Proof. The local upper estimates of Theorems 4.1, give for any BR∞ ⊂ BR0 ⊆ Ω,

(6.2) sup
x∈BR∞

u(x) = ‖u‖∞,R∞ ≤ I∞,q



( 
BR0

uq dx

) [s−(p−1)]+
q

 
BR∞

u[s−(p−1)]+ dx



r
(r−p)q−r[s−(p−1)]+

‖u‖q,R0

|BR0 |
1
q

,

for any q > r[s− (p− 1)]+/(r − p), I∞,q given by (4.4) and when 0 < q < s∗c we require the additional
condition (4.6). Moreover Theorem 5.1 states that, for any ε > 0,

(6.3) inf
x∈BR∞

u(x)
|BR0

|
1
q

I−∞,q ‖u‖q,R0

≥ 1,

I−∞,q given by (5.1) and

0 < q ≤ (p− 1)
2
p 2

(d−1)(p−1)
p

pω2
d d [e(d− 1) + ε]

= q0.

Combining (6.2) and (6.3) we obtain the desired result.

Theorem 6.2 (Harnack inequality, 0 ≤ s ≤ p− 1) Let Ω ⊂ Rd and let λ > 0. Let u be a nonnega-
tive local weak solution to −∆pu = λus in Ω, with 0 ≤ s ≤ p− 1. Then, for any R∞ < R0 the following
bound holds true

sup
x∈BR∞

u(x) ≤ Hs inf
x∈BR∞

u(x)

where

Hs =

(
r

p

) p2r
q0(r−p)


2d
[
(p− 1)

2
p−1 2

(d−1)(p−1)
p

(
r
p

)n0− 1
p

+ e pω2
d d

]
√
ωd

(p− 1)
2
p−1 2

(d−1)(p−1)
p

(
r
p

)n0− 1
p − e (d− 1) pω2

d d


2
q0

×
R

d
q0

( rp+1)+ rd
q0(r−p)

0 ω
p
q0

d

R
(d+p) r

q0(r−p)
∞ (R0 −R∞)

2rp
q0(r−p)

{
S2p
p [2p−1Rp∞ + (R0 −R∞)p]2

pr
r−p qp0 c1

} r
q0(r−p)

×

[
Λs,0 r

p q0

(
R0 −R∞
R∞

)p
+ c2

(
R0 −R∞
R∞

)p
+

2p−1 cp−1
1

cp0

] r
q0(r−p)

(6.4)
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with

q0 =
(p
r

)n0− 1
p

(p− 1), n0 =

 log
pω2

d d e (d−1)

(p−1)
2
p
−1

2
(d−1)(p−1)

p

log r
p

+
1

p

+ 1,

1

cp0
≤
(

r

(r − p)q0

)p
, c1 =

r
1
p

r
1
p − p

1
p

, c2 = max

{
|pq0 − r(p− 1)| rp

(p q0)p+1
,

(
p

p− 1

)p
1

(p+ 1)p+1

}
and

Λs,0 =
λ

pp−1
Rp0 if s = p− 1 and Λs,0 = 2p−1+d if s 6= p− 1.

Proof. The goal of the proof is to simplify the quotient of Lq-norms in the expression of the constant
Hs[u] of the Harnack inequality (6.1). Since we are dealing with the range 0 ≤ s ≤ p−1, we can choose
any q > 0, hence we can let

0 < q = q = q0 = q0(ε) =
(p− 1)

2
p 2

(d−1)(p−1)
p

pω2
d d[e(d− 1) + ε]

with i.p.

[
log r(p−1)

qp

log r
p

]
6=

log r(p−1)
qp

log r
p

.

In fact, we shall arrive, with a suitable choice of the parameter ε, at a value of q0 smaller than r(p−1)/p,

so that the request log r(p−1)
qp / log r

p not be integer is necessary. The last condition means q0(ε) 6=
(p/r)n−1(p− 1) for all n ∈ N and this is possible since we can always choose ε

0 < ε =
(p− 1)

2
p−1 2

(d−1)(p−1)
p

pω2
d d

(
r

p

)n0− 1
p

− e(d− 1) so that q0 =
(p
r

)n0− 1
p

(p− 1),

where n0 is the first integer n such that ε(n) > 0, which is

n0 =

 log
pω2

d d e (d−1)

(p−1)
2
p
−1

2
(d−1)(p−1)

p

log r
p

+
1

p

+ 1.

The constants become in this case

I∞,q = I∞,q0 =

{
|BR0

|
r−p
r +1

|BR∞ |
Spp q

p
0 p

p c1

rp (R0 −R∞)p

[
Λs,0 r

p q0

(
R0 −R∞
R∞

)p

+

(
R0 −R∞
R∞

)p
c2 +

cp−1
1 2p−1

cp0

](
r

p

) rp
r−p
} r
q0(r−p)

where Λs,0 is given by (4.5),

1

cp0
≤
(

r

q0(r − p)

)p
, c2 = max

{
|pq0 − r(p− 1)| rp

(p q0)p+1
,

(
p

p− 1

)p
1

(p+ 1)p+1

}
and since q0 < r(p− 1)/p

c1 = max
i=0,1

(
r
p

)j0+i−1

q0∣∣∣∣( rp)j0+i−1

q0 − (p− 1)

∣∣∣∣ = max
i=0,1

(
r
p

)i+ 1
p

(
r
p

)i+ 1
p − 1

=
r

1
p

r
1
p − p

1
p

since

j0 = i.p.

[
log r(p−1)

q0p

log r
p

]
= i.p.

[
1 +

log p−1
q0

log r
p

]
= i.p.

[
n0 + 1− 1

p

]
= n0 + 1.
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Moreover

I−∞,q = I−∞,q0 =

 (R0 −R∞)R∞

R
d(r−p)
rp

0


pr

q0(r−p) {
Spp [2p−1Rp∞ + (R0 −R∞)p]2

pr
r−p

}− r
q0(r−p)

×


(p− 1)

2
p−1 2

(d−1)(p−1)
p

(
r
p

)n0− 1
p − e (d− 1) pω2

d d

2d
[
(p− 1)

2
p−1 2

(d−1)(p−1)
p

(
r
p

)n0− 1
p

+ e pω2
d d

]
√
ωd


2
q0

.

Hence we get the expression of Hs = I∞,q0/I−∞,q0 as in (6.4).

Unfortunately, when s > p − 1 we can not join the upper and the lower bound so easily, we need a
further iteration.

Theorem 6.3 (Harnack Inequalities when p− 1 < s < s∗c) Let Ω ⊂ Rd. Let u be a nonnegative
local weak solution to −∆pu = λus in Ω, with p > 1, λ > 0 and p− 1 < s < s∗c = r(p− 1)/p. Then for
any 0 < R∞ < R̄ < R0 there exists an explicit constant Hs > 0 such that

(6.5) sup
x∈BR∞

u(x) ≤ Hs inf
x∈BR∞

u(x)

where Hs does not depend on u, and is given by

(6.6) Hs = I∞,q

(
Iq,q

I−∞,q

) q(r−p)
q(r−p)−r[s−(p−1)]

with q ∈ (0, q0 ∧ q], q0 and I−∞,q are given in (5.9) and (5.1) respectively, Iq,q in (5.5) and (5.6) and

I∞,q in (4.4); moreovere, since q < s∗c we require the additional condition (4.6).

Proof. Let BR∞ ⊂ BR̄ ⊂ BR0
⊆ Ω, then by Theorem 5.4 we have

(6.7)
‖u‖q,R̄
|BR̄|

1
q

≤
Iq,q

I−∞,q
inf

x∈BR∞
u(x),

with r[s− (p− 1)]/(r − p) < q < r(p− 1)/p, q ∈ (0, q0 ∧ q], q0 as in (5.9), Iq,q as in (5.5) and (5.6) and

I−∞,q as in (5.1). Moreover Theorem 4.1, applied with R0 = R̄, gives

sup
x∈BR∞

u(x) = ‖u‖∞,R∞ ≤ I∞,q
‖u‖q,R̄
|BR̄|

1
q

 ‖u‖[s−(p−1)]

q,R̄

|BR̄|
[s−(p−1)]

q

|BR∞ |´
BR∞

u[s−(p−1)] dx

 r
(r−p)q−r[s−(p−1)]

≤ I∞,q
‖u‖q,R̄
|BR̄|

1
q

(
‖u‖q,R̄
|BR̄|

1
q

1

infx∈BR∞ u(x)

) r[s−(p−1)]
(r−p)q−r[s−(p−1)]

,

for any q > r[s− (p− 1)]/(r − p) and I∞,q as in (4.4). Therefore, using twice the lower bound (6.7) in
the previous inequality, we conclude the proof of the theorem.

7 Local absolute bounds

The interest of having absolute upper bounds for solutions of nonlinear elliptic equations is related
to several aspects of the theory of such equations. If we have at our disposal at local absolute upper
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bounds, then the constant in the general Harnack inequality of Theorem 6.1 can be independent of u
and also the C1,α modulus of continuity will be independent of u, as already discussed at the beginning
of Section 6. The absolute estimates that we present here have a local nature, which means that they are
independent of the boundary conditions, which can be of Dirichlet, Neumann, Robin, or also “large” ,
i.e. u = +∞ on the boundary. Such absolute bounds have many more applications, for example, they
may imply Liouville-type Theorems on Rd [32, 52], or they imply existence of large solutions, and the
fact that the constant is explicit is really useful although not always indispensable. For the homogeneous
Dirichlet problem for semilinear equations (namely for p = 2) , absolute upper bounds, sometimes called
universal bounds, have been proved by many authors, [11, 23, 31, 32, 46, 52], but in that papers the
constant was not quantitative, and to our knowledge it can not be made quantitative with the proofs
presented there. An effort to provide quantitative global absolute bounds for this Dirichlet problem has
been done in [5] .

In this section we first prove absolute upper and lower bounds for weak solutions, in the range p−1 <
s < s∗c and 0 < s ≤ p − 1 respectively. Next we want to obtain quantitative absolute upper bounds
for s > s∗c , which are known to be false in the whole class of weak (or very weak when p = 2)
solutions, in view of the existence of singular solutions, as already mentioned in the Introduction, cf.
[24, 40, 42, 43, 44, 45]; therefore we have to pass to a special class of solutions, the so-called stable
solutions [13, 14, 16, 22, 28, 29], for which we can bound absolutely from above the Lm-norm of the
solution, for m sufficiently large, and we combine such bounds with the upper bounds of type II of
Theorem 4.5 to get our quantitative absolute upper bounds for stable solutions. We can cover the

whole range of s > 0 only for small spatial dimensions, namely d ≤ p(p+3)
p−1 ; for larger dimensions, it

appears a new exponent r − 1 < sJL < ∞, the so-called Joseph-Lundgren exponent, and the absolute
bounds holds only until that exponent.

7.1 Local absolute bounds for s < s∗c

In this section we will prove local absolute lower bounds when 0 < s < p − 1 and a local absolute
upper bounds when p− 1 < s < s∗c as a consequence of the Harnack inequalities of the previous section
together with the Caccioppoli estimate (2.11).

Theorem 7.1 (Local absolute bounds) Let Ω ⊂ Rd. Let u be a nonnegative local weak solution to
−∆pu = λus in Ω, with p > 1, λ ≥ 0 and 0 ≤ s < s∗c = r(p − 1)/p, r as in (3.2). Then for any
0 < R∞ < R̄ < R0 there exists a constant Hs that does not depend on u, such that

sup
x∈BR̄

u(x) ≤ Hs
(

pp−1 2p−1Rd0
λ (R0 − R̄)p R̄d

) 1
s−(p−1)

if p− 1 < s < s∗c

with Hs given by (6.6), and, if u 6= 0 on BR0

inf
x∈BR̄

u(x) ≥ H−1
s

(
λ (R0 − R̄)p R̄d

pp−1 2p−1Rd0

) 1
(p−1)−s

if 0 ≤ s < p− 1,

with Hs given by (6.4).

Proof. First, we note that the Caccioppoli estimate (2.11), with R1 = R, implies when s > p− 1

inf
x∈BR̄

u(x) ≤

(
1

|BR̄|

ˆ
BR̄

us−(p−1) dx

) 1
s−(p−1)

≤
(
pp−1 2p−1Rd0
λ(R0 − R̄)p R̄d

) 1
s−(p−1)

.

Moreover, since u 6= 0 on BR0
, if 0 ≤ s < p− 1, (2.11), applied always with R1 = R̄, gives(

λ(R0 − R̄)p R̄d

pp−1 2p−1Rd0

) 1
(p−1)−s

≤

(
|BR̄|´

BR̄
us−(p−1) dx

) 1
(p−1)−s

≤ sup
x∈BR̄

u(x).
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The above estimates can be now combined with the corresponding Harnack inequalities (6.5) and (6.2)
to obtain the desired bounds in both cases.

7.2 Local absolute bounds for stable solutions. The supercritical case

In this section we establish local upper bounds for stable solutions. From now on, we assume p ≥ 2.
The results can be proved also in the case 1 < p < 2, but we need some modifications in the definitions
of stable solutions and in the proofs. We have decided to deal with p ≥ 2 in order to simplify the
exposition. When 1 < p < 2 we refer to [14] and references therein. Let us mention that the proof that
we give here is a modification of an idea originally due to A. Farina, see [16, 28, 29]; see also [13, 14] for
an alternative approach. Our proof is slightly different from [16, 28, 29] and provides explicit constants.

Definition 7.2 A function u is a local stable solution to −∆pu = λus, if and only if 0 ≤ u ∈W 1,p
loc (Ω)

and satisfies

(7.1)

ˆ
Ω

{
|∇u|p−2

[
|∇ϕ|2 + (p− 2)

(
∇ϕ · ∇u

|∇u|

)2
]
− λsus−1ϕ2

}
dx ≥ 0

for all bounded ϕ ∈ C1
0 (K) and for any compact K ⊂ Ω.

We recall that the stability condition translates into the fact that the second variation of the energy
functional is non-negative, see [13, 14, 16, 22, 28, 29] for more a more detailed study of stable solutions
related to this kind of problem.

Remark 7.3 From the stability condition (7.1) we immediately obtain

(7.2) λs

ˆ
Ω

us−1ϕ2 dx ≤ (p− 1)

ˆ
Ω

|∇u|p−2|∇ϕ|2 dx,

for any compact K ⊂ Ω and for all bounded ϕ ∈ C1
0 (K).

Now we have the following estimate for nonnegative stable solutions.

Lemma 7.4 Let Ω ⊂ Rd be a bounded domain and let u be a local nonnegative stable weak solution to
−∆pu = λus in Ω, λ > 0 and s > p − 1. Then the following estimate holds true for any α > −1, δ,
ε ∈ (0, 1] and any test function φ ∈ C2(Ω) ∩ C1

0 (Ω), φ > 0

λs

ˆ
Ω

us+αφ
s+α

s−(p−1) dx ≤

[
(p− 1)

(
1 +

ε

2

)(α+ 1

2

)2

+
p− 1

4

(
1 +

1

2ε

)
(s+ α)2

[s− (p− 1)]2
δ(p− 2)

p

]

× pp

[α+ (p− 1)]p

ˆ
Ω

∣∣∣∇(uα+(p−1)
p

)∣∣∣p φ s+α
s−(p−1) dx(7.3)

+
p− 1

4

(
1 +

1

2ε

)
(s+ α)2

[s− (p− 1)]2
2

p δ
p−2
p

ˆ
Ω

uα+(p−1)|∇φ|pφ
s+α

s−(p−1)
−p dx.

Proof. Let 0 < φ ∈ C2(Ω) ∩ C1
0 (Ω). Using as test function ϕ2 := uα+1φγ ,

γ :=
s+ α

s− (p− 1)
> 0 and α > −1

in (7.2) and Young inequality with ε > 0, we get

λs

ˆ
Ω

us+αφγ dx ≤ (p− 1)
(

1 +
ε

2

)(α+ 1

2

)2 ˆ
Ω

uα−1|∇u|pφγ dx

+
p− 1

4

(
1 +

1

2ε

)
γ2

ˆ
Ω

|∇u|p−2 uα+1|∇φ|2φγ−2 dx.
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Again using Young inequality with δ > 0 and exponents p/2, p/(p− 2) we obtain, for the second terms
in the right hand side of the previous inequality, the following estimate

ˆ
Ω

|∇u|p−2 uα+1|∇φ|2φγ−2 dx ≤ δ(p− 2)

p

ˆ
Ω

|∇u|puα−1φγ dx+
2

p δ
p−2

2

ˆ
Ω

uα+(p−1)|∇φ|pφγ−p dx.

Combining the previous estimates and noticing that

ˆ
Ω

|∇u|puα−1φγ dx =
pp

[α+ (p− 1)]p

ˆ
Ω

∣∣∣∇(uα+(p−1)
p

)∣∣∣p φγ dx

we arrive at the desired result.

Combining the previous estimate, coming from the stability condition (7.2), and the following form of
the energy estimate (2.4),

pp

[α+ (p− 1)]p

ˆ
Ω

|∇(u
α+(p−1)

p )|pφ
s+α

s−(p−1) dx ≤ λ p [s− (p− 1)]

pα[s− (p− 1)]− (s+ α)ε̄(p− 1)

ˆ
Ω

uα+sφ
s+α

s−(p−1) dx

+
s+ α

ε̄p−1{pα[s− (p− 1)]− (s+ α)ε̄(p− 1)}

×
ˆ

Ω

uα+(p−1) |∇φ|pφ
s+α

s−(p−1)
−p dx(7.4)

for any

0 < ε̄ <
pα[s− (p− 1)]

(s+ α)(p− 1)
, α > 0 and s > p− 1.

For the proof of the above inequality we have to follow the proof of Lemma 2.1 and change slightly the

test function (we have to use uαφ
s+α

s−(p−1) instead of (u+ δ)αφ). We get the following.

Lemma 7.5 Let Ω ⊂ Rd be a bounded domain and let u be a local nonnegative stable weak solution to
−∆pu = λus in Ω, λ > 0 and s > p− 1. Then the following estimate holds true for any

(7.5) 0 < α < ᾱ :=
2s− (p− 1) + 2

√
s2 − s(p− 1)

p− 1
,

and any test function φ ∈ C2(Ω) ∩ C1
0 (Ω), φ > 0

(7.6)

ˆ
Ω

us+αφ
s+α

s−(p−1) dx ≤ c4
ˆ

Ω

uα+(p−1)|∇φ|p φ
s+α

s−(p−1)
−p dx,

where c4 is a positive constant that depends on s, p, λ and α.

Proof. Using (7.4) to estimate the second term in the right hand side of (7.3) and operate some simple
manipulations, we arrive at{

λs−

[
(p− 1)

(
1 +

ε

2

)(α+ 1

2

)2

+
p− 1

4

(
1 +

1

2ε

)
(s+ α)2

[s− (p− 1)]2
δ(p− 2)

p

]

× λp[s− (p− 1)]

pα[s− (p− 1)]− (s+ α)ε̄(p− 1)

}ˆ
Ω

uα+sφ
s+α

s−(p−1) dx ≤ c
ˆ

Ω

uα+(p−1)|∇φ|p φ
s+α

s−(p−1)
−p dx,

where c = c(α, δ, ε, ε̄, p, s). Now, since α < ᾱ, we can always choose ε, δ and ε̄ such that α < αε,δ,ε̄ < ᾱ
and this fact assures that the constant that appears in the left hand side of the previous inequality is
strictly positive. The lemma is proved.
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Theorem 7.6 Let Ω ⊂ Rd. Let u be a local nonnegative stable weak solution to −∆pu = λus in Ω,
with λ > 0 and s > p− 1. Then for any BR1

⊂ BR0
⊂⊂ Ω there exists a constant that does not depend

on u such that

(7.7) ‖u‖s+α,R1 ≤ c5

for any

(7.8) 0 < α < ᾱ :=
2s− (p− 1) + 2

√
s2 − s(p− 1)

p− 1
,

and

(7.9) c5 = c
1

s−(p−1)

4

[
2p−1 pp

(R0 −R1)p

] 1
s−(p−1)

R
d

s+α

0 ω
1

s+α

d .

Proof. The result follows from the previous Lemma, Hölder inequality and using the test function
defined in Lemma 2.3. Indeed, by Hölder inequality with exponents (s + α)/[α + (p − 1)] and (s +
α)/[s− (p− 1)], applied to the right hand side of (7.6), we have

ˆ
Ω

us+αφ
s+α

s−(p−1) dx ≤ c4
[ˆ

Ω

us+α φ
s+α

s−(p−1) dx

]α+(p−1)
α+s

[ˆ
Ω

(
|∇φ|p

φp−1

) s+α
s−(p−1)

dx

] s−(p−1)
s+α

.

Hence, we arrive to the desired results simplifying and choosing φ as in in Lemma 2.3.

The Joseph-Lundgren exponent sJL. The above Theorem proves absolute bounds for some local
Lm-norm, and we would like to have m sufficiently large, namely

m >
r[s− (p− 1)]

r − p

to be able to combine the above absolute bounds (7.7) with the upper bounds of type II of Theorem 4.5.
Letting then m = s+ α , with α satisfying the condition (7.8) , we have that

r[s− (p− 1)]

r − p
< m = s+ α < s+ α = s+

2s− (p− 1) + 2
√
s2 − s(p− 1)

p− 1
.

where we take r = p∗ = pd/(d − p), the Sobolev exponent, i.e. we are in the case p < d. Notice
that when p ≥ d , we can take r → ∞ and the above condition is always satisfied. In the case under
consideration, namely 1 < p < d , the above condition is satisfied by all the s in some interval, more
precisely, there exists an exponent sJL such that for all s ∈ (0, sJL) we have

‖u‖m,R1
≤ c5 , with m >

r[s− (p− 1)]

r − p

where c5 is given in (7.9). Moreover, we call the exponent sJL the Joseph-Lundgren exponent and it
has the explicit form

(7.10) sJL :=


+∞ if d ≤ p(p+3)

p−1

[(p− 1)d− p]2 + p2(p− 2)− p2(p− 1)d+ 2p2
√

(p− 1)(d− 1)

(d− p)[(p− 1)d− p(p+ 3)]
if d > p(p+3)

p−1

See [29, 30, 35] for more details on the derivation of the Joseph-Lundgren exponent.

All the above discussion can be summarized in the following:
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Theorem 7.7 (Local absolute bounds for stable solutions) Let Ω ⊂ Rd. Let u be a local non-
negative stable weak solution to −∆pu = λus in Ω, with λ > 0 and p − 1 < s < sJL. Then for any
BR∞ ⊂ BR0

⊂⊂ Ω there exists a constant that does not depend on u such that

(7.11) ‖u‖∞,R∞ ≤ c6

where

(7.12) c6 =
A

(1)
m

(R0 −R∞)
pr

m(r−p)

[
A

(2)
m +A

(3)
m λ

mr
m(r−p)−r[s−(p−1)] c

mr[s−(p−1)]
m(r−p)−r[s−(p−1)]

5

] r
m(r−p)

c5

where A
(1)
q0 , A

(2)
q0 and A

(3)
q0 are as in Theorem 4.4 and c5 is given in (7.9).

Proof. Combine the upper bounds (4.5) (with the choice q0 = m with the absolute upper bounds (7.7)
to get

‖u‖∞,R∞
A

(1)
q0

(R0 −R∞)
pr

q0(r−p)

[
A(2)
q0 +A(3)

q0 λ
mr

m(r−p)−r[s−(p−1)] ‖u‖
mr[s−(p−1)]

m(r−p)−r[s−(p−1)]

m,R0

] r
q0(r−p)

‖u‖q0,R0

≤ A
(1)
m

(R0 −R∞)
pr

m(r−p)

[
A

(2)
m +A

(3)
m λ

mr
m(r−p)−r[s−(p−1)] c

mr[s−(p−1)]
m(r−p)−r[s−(p−1)]

5

] r
m(r−p)

c5

where A
(1)
q0 , A

(2)
q0 and A

(3)
q0 are as in Theorem 4.4 and c5 is given in (7.9).

8 Appendix

8.1 The John-Nirenberg Lemma and reverse Hölder inequalities

First of all we recall a quantitative version of Lemma 7.20 of [33], proved in [4] (see Lemma 4.2 there).
From now on we denote, as usual, by Mm(Ω) the Marcinkiewicz spaces for any m > 1 and by Vµ[g] the
Riesz potential of a function g, that is

Vµ[g](x) =

ˆ
Ω

g(y)

|x− y|d(1−µ)
dy, µ ∈ (0, 1].

Lemma 8.1 (A ”potential” version of the Moser-Trudinger imbedding) Let g ∈Mσ(Ω) with
σ > 1 and let us suppose ‖g‖Mσ(Ω) ≤ K. Then there exist two constants k2 and k3 such that

ˆ
Ω

exp


∣∣∣V 1

σ
[g](x)

∣∣∣
k2K

 dx ≤ k3.

One can take

k2 > (σ − 1)e and k3 = |Ω|+ diam(Ω)d√
2π

s eωd
k2 − (σ − 1) e

.

Now a quantitative version of Jonh-Nirenberg lemma for convex domains; for the proof see Lemma 4.3
in [4].
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Lemma 8.2 (Jonh-Nirenberg) Let g ∈ W 1,1(Ω) where Ω is convex, and suppose there exists a con-
stant K such that ˆ

BR∩Ω

|∇g|dx ≤ KRd−1, for all balls BR.

Then the following inequality holds ˆ
Ω

exp

[
|g − gΩ|
k0K

]
dx ≤ k1,

where for any k2 > (d− 1)e

k0 =
d|Ω|

diam(Ω)d
k2, k1 =

ωd diam(Ω)d(k2 + e)

k2 − (d− 1)e
and gΩ =

1

|Ω|

ˆ
Ω

g dx.

The John-Nirenberg Lemma has an important consequence when applied to g = log(u+ δ), δ > 0.

Proposition 8.3 (Reverse Hölder inequalities) Let δ ≥ 0 and let u be a positive measurable func-
tion such that log(u + δ) ∈ W 1,1(Ω), where Ω is convex, and suppose there exists a constant K (inde-
pendent of δ) such that ˆ

BR∩Ω

|∇ log(u+ δ)|dx ≤ KRd−1, for all balls BR.

Then the following inequality
‖u+ δ‖q,Ω
‖u+ δ‖−q,Ω

≤ k2/q
1

holds for any

0 < q ≤ 1

k0K
,

where the constants ki are given in Lemma 8.2.

Proof. See Proposition 4.4 in [4].

We conclude this section by showing that reverse Hölder inequalities hold for local solutions to our
problem, as a consequence of Caccioppoli estimates (see Corollary 2.5).

Proposition 8.4 (Reverse Hölder inequalities) Let Ω ⊂ Rd and let λ > 0. Let u be a local weak
solution to −∆pu = λus, with 0 ≤ s < sc = r − 1, r as in (3.2). Then for any ε > 0, the following
inequality holds true for any δ ≥ 0

(8.1)

[
ε

2d (e d+ ε)

]2/q ‖u+ δ‖q,R0

|BR0 |
1
q

≤ ‖u+ δ‖−q,R0

|BR0 |
− 1
q

, for all 0 < q ≤ (p− 1)
2
p 2

(d−1)(p−1)
p

pω2
d d [e(d− 1) + ε]

.

Proof. The Caccioppoli estimate (2.10), with R1 = r and R0 = 2r, implies thatˆ
Br

|∇ log(u+ δ)|p dx ≤ 2d+p−1 pp rd−p ωd
(p− 1)2

,

hence the hypothesis of the previous proposition are satisfied, more precisely

ˆ
BR0
∩Br
|∇ log(u+ δ)|dx ≤ |Br|1−

1
p

[ˆ
Br

|∇ log(u+ δ)|p dx

] 1
p

≤ rd−1ωd
2
p+d−1
p p

(p− 1)
2
p

=: K rd−1.

Therefore putting K = ωd
2
p+d−1
p p

(p−1)
2
p

, taking an ε > 0 and choosing k2 = e (d − 1) + ε, by the Proposi-

tion 8.3, we get the desired result.
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8.2 Technical tools

In this section we recall, in order to be complete, some tools that we use in this paper. The first lemma
concerns the geometric convergence of some sequences of real numbers.

Lemma 8.5 (Numerical Iteration) Let Yn ≥ 0 be a sequence of numbers such that

Yn ≤ Iσ θ
n−1

n−1 Yn−1 with In−1 ≤ I0 Cn−1

for some σ, I0, C > 0, θ ∈ (0, 1). Then {Yn} is a bounded sequence and one has

Y∞ := lim sup
n→+∞

Yn ≤ I
σ

1−θ
0 C

σ θ
(1−θ)2 Y0.

Proof. See for example Lemma 7.1 of [34].

The following lemma is due to E. De Giorgi and its proof is contained in several books and papers,
see for example [34], Lemma 6.1.

Lemma 8.6 (De Giorgi) Let Z(t) be a bounded non-negative function in the interval [t0, t1]. Assume
that for t0 ≤ t < s ≤ t1 we have

Z(t) ≤ θ Z(s) +
A

(s− t)α
,

with A ≥ 0, α > 0 and 0 ≤ θ < 1. Then

Z(t0) ≤ Ac(α, λ, θ)

(t1 − t0)α

where

c(α, λ, θ) =
1

(1− λ)α
(
1− θ

λα

) for any λ ∈ (θ
1
α , 1).

This lemma has an important consequence, indeed it is necessary to obtain extending local upper bounds
(see Section 4). More precisely, it allows to prove that if a reverse Hölder inequality holds for some
0 < q < q ≤ ∞, then it holds for any 0 < q0 < q ≤ ∞.

Lemma 8.7 Assume that the following bound holds true for some 0 < q < q < ∞ and for any
R∞ ≤ ρ < R ≤ R0,

‖u‖q,r ≤
K

(R− ρ)γ
‖u‖q,R.

Then we have that for all 0 < q0 ≤ q < q <∞

‖u‖q,R∞ ≤ 3 · 2
q(q−q0)

q0(q−q)

[(
4 γ

q(q − q0)

q0(q − q)

)γ
K

(R0 −R∞)γ

] q(q−q0)

q0(q−q)

‖u‖q0,R0
.

Moreover if q =∞,

‖u‖∞,R∞ ≤ 3 · 2
q−q0
q0

[(
4 γ

q

q0

)γ
K

(R0 −R∞)γ

] q

q0

‖u‖q0,R0
.

Proof. See Lemma 3.7 (Extending Local Upper Bounds) of [4].

36



8.3 Numerical identities and inequalities

Now, in order to be complete and to simplify the reading of this paper, we recall some numerical
identities and inequalities that we will use in the following.

(8.2)

∞∑
j=1

sj =
s

1− s
, ∀ 0 ≤ s < 1 =⇒

∞∑
j=1

(p
r

)j
=

p

r − p
, for r > p.

∞∑
j=1

jN sj =

[
s

d

ds

](N)(
1

1− s

)
, ∀ 0 ≤ s < 1, N ∈ N

and so

(8.3)

∞∑
j=1

j sj =
s

(1− s)2
, ∀ 0 ≤ s < 1 =⇒

∞∑
j=1

j
(p
r

)j
=

pr

(r − p)2
, for r > p.

(8.4)

k∑
j=1

sj =
s(1− sk)

1− s
, ∀ 0 ≤ s < 1 =⇒

k∑
j=1

(p
r

)j
=

p

r − p

[
1−

(p
r

)k]
, for r > p.

∞∑
j=k+1

sj =
s

1− s
sk ∀ 0 ≤ s < 1 =⇒

∞∑
j=k+1

(p
r

)j
=

p

r − p

(p
r

)k
, for r > p.

Stirling’s formula:

n! =
√

2π n
(n
e

)n
eαn with

1

12n+ 1
≤ αn ≤

1

12n
.

ε-version of Young’s inequality:

(8.5) a · b ≤ ε

σ
aσ +

σ − 1

σ

b
σ
σ−1

ε
1

σ−1

,

for any ε > 0, a, b ≥ 0 and σ > 1.
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[2] M.F. Bidaut-Vèron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler
type, Arch. Rational Mech. Anal., 107 (4) (1989) 293–324.

[3] M. Bonforte, G. Grillo, J. L. Vázquez, Behaviour near extinction for the Fast Diffusion Equation
on bounded domains, J. Math. Pures Appl. 97 (2012), 1–38.

[4] M. Bonforte, G. Grillo, J. L. Vázquez, Quantitative Local Bounds for Subcritical Semilinear Elliptic
Equations, Milan J. Math. 80, (2012), 65–118.

37



[5] M. Bonforte, G. Grillo, J. L. Vázquez, Quantitative bounds for the Dirichlet problem for semilinear
elliptic equations on bounded domains, Contemp. Math, Vol. 595, (2013), In press.
http://dx.doi.org/10.1090/conm/595/11799.

[6] M. Bonforte, R. G. Iagar, J. L. Vázquez, Local smoothing effects, positivity, and Harnack inequal-
ities for the fast p -Laplacian equation, Advances in Math. 224, (2010), 2151–2215
doi:10.1016/j.aim.2010.01.023

[7] M. Bonforte, J. L. Vázquez, Global positivity estimates and Harnack inequalities for the fast diffu-
sion equation, J. Funct. Anal., 240 (2006), pp. 399–428.

[8] M. Bonforte, J. L. Vazquez, Reverse Smoothing Effects, Fine Asymptotics and Harnack Inequalities
for Fast Diffusion Equations, Boundary Value Problems (2007).

[9] M. Bonforte, J. L. Vázquez, Positivity, local smoothing, and Harnack inequalities for very fast
diffusion equations, Advances in Math. 223 (2010), 529–578.

[10] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev
exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437–477.

[11] H. Brezis, R. E. L. Turner, On a class of superlinear elliptic problems, Comm. PDE 2 (1977),
601–614.

[12] C. Budd, J. Norbury, Semilinear Elliptic Equations and Supercritical Growth, J. Diff. Eq. 68 (1987),
169–197.
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