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Abstract

The purpose of this paper is to prove local upper and lower bounds for weak solutions of
semilinear elliptic equations of the form −∆u = cup, with 0 < p < ps = (d+ 2)/(d− 2), defined on
bounded domains of Rd, d ≥ 3, without reference to the boundary behaviour. We give an explicit
expression for all the involved constants. As a consequence, we obtain local Harnack inequalities
with explicit constant, as well as gradient bounds.
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1 Introduction

In this paper we obtain local upper and lower estimates for the weak solutions of semilinear elliptic
equations of the form

(1.1) −∆u = f(u)

posed in a bounded domain Ω ⊂ Rd. The choice of right-hand side we have in mind is f(u) = λup

with λ, p > 0. The range of exponents of interest will be 1 < p < ps := (d + 2)/(d − 2) if d ≥ 3, or
p > 1 if d = 1, 2. This problem is one of the most popular problems in nonlinear elliptic theory and
enjoys a large bibliography [2, 8, 9, 12, 16, 17, 18, 19, 20, 21, 23, 24, 29, 30, 31, 32] for 0 ≤ p < ps
and [7, 11] for p = ps. We refrain from attempting to give a complete bibliography for this nowadays
classical problem.

We focus our attention on obtaining local estimates for solutions that are defined inside the domain
without reference to their boundary behaviour. This is the notion of solution we use.

Definition 1.1 A local weak solution to equation −∆u = f(u) in Ω is defined as a function u ∈W 1,2
loc (Ω)

with f(u) ∈ L1
loc(Ω) which satisfies

(1.2)

ˆ
K

[∇u · ∇ϕ− f(u)ϕ] dx = 0

for any subdomain with compact closure K ⊂ Ω and all bounded ϕ ∈ C1
0 (K).

Our aim is to contribute quantitative estimates in the form of upper bounds for solutions of any
sign, lower bounds for positive solutions, and also local Harnack inequalities and gradient bounds. By
quantitative estimates we mean keeping track of all the constants during the proofs. As far as we
know, there does not exist in literature a systematic set of quantitative estimates of local upper and
lower bounds, and neither of the Harnack constant, in the form we explicitly provide here. We recall
that the quantitative control of the constants of such inequalities may have an important role in the
applications; it is needed for instance in the results of [3] on the asymptotic properties of solutions of
the fast diffusion equation in bounded domains.

Contents and main results. We start with a section devoted to basic energy estimates. We then
consider in Section 3 the upper estimates for nonnegative solutions of the equation −∆u = λup. The
exponent range is 0 ≤ p < ps, a main restriction of the theory, as it is already well known. See also
[10] for L∞-bounds of different type for Equation (1.1) with more general nonlinearities. Our first main
result, Theorem 3.1, can be considered as a smoothing effect with very precise constants; it is much
simpler for p ≤ 1, but we also obtain the more complicated and novel estimates for 1 < p < ps. Next
we obtain local upper estimates for −∆u = b(x)u with unbounded coefficients in Theorem 3.8 and we
apply them to the case b(x) = up−1 in Theorem 3.9.

In Section 4 we prove quantitative lower estimates, Theorems 4.6, 4.8. We prove Harnack inequalities
in Theorems 5.1, 5.2 and 5.3. All of these results appear to be well known from a qualitative point
of view. Let us mention that, as far as we know, the Harnack inequality for solutions to (1.2) when
p > 1 is not stated explicitly in the literature. The fact that the “constant” involved has to depend on
u when pc ≤ p < ps is confirmed by the results of [6], [14] applied to separation of variable solutions
of parabolic problems, see also the very recent monograph [15]. This is also related to the fact that, in
the range pc ≤ p < ps, there exist (very weak) singular solutions. Notice also that in such a range the
notion of weak and very weak solution is really different, cf. [13, 22, 25, 26, 27, 28].

In Section 6 we derive quantitative absolute upper (for 1 < p < pc) and lower bounds (for 0 ≤ p < 1)
which are new as far as we know, cf. Theorem 6.1. The last section is devoted to quantitative gradient
estimates, cf. Theorem 7.1, and absolute upper bounds for the gradient when 1 < p < pc, cf. Theorem
7.2.
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As a consequence of the above theory, we conclude that functions in the so-called De Giorgi class
(satisfying Sobolev and local reverse Sobolev inequalities, at least at the level of truncates) are indeed
locally bounded functions.

Much of the known theory takes into account boundary conditions of different types: Dirichlet, Neu-
mann, Robin, or other. Our results apply to all those cases. We will study the precise estimates for the
Dirichlet problem in an upcoming paper [4].

2 Preliminaries. Local energy estimate

We shall pursue in the sequel the well-known idea that local weak solutions satisfy reverse Sobolev
or Poincaré inequalities. Such local reverse inequalities are the key to prove local upper and lower
estimates of next sections, and indeed imply that such functions are Hölder continuous. We comment
that a similar line of reasoning could be adapted to deal with function belonging to suitably defined De
Giorgi classes.

Lemma 2.1 (Energy Estimates) Let Ω ⊂ Rd be a bounded domain, and let p ≥ 0 and λ > 0. Let u
be a local nonnegative weak solution in Ω to −∆u = λup. Then the following energy equality holds true
for any δ > 0 , α 6= −1 and any positive test function ϕ ∈ C2(Ω) and compactly supported in Ω:

(2.1) 4α

ˆ
Ω

∣∣∇((u+ δ)
α+1

2

) ∣∣2ϕdx = λ(α+ 1)2

ˆ
Ω

up(u+ δ)αϕdx+ (α+ 1)

ˆ
Ω

(u+ δ)α+1∆ϕdx.

Moreover, for any δ ≥ 0 we have the Caccioppoli estimates

λ

ˆ
Ω

up

u+ δ
ϕdx+

ˆ
Ω

∣∣∇ log(u+ δ)
∣∣2ϕ dx ≤

ˆ
Ω

|∇ϕ|2

ϕ
dx.(2.2)

Local subsolutions u of −∆u ≤ λup satisfy, for α 6= −1 and δ > 0:

(2.3) 4α

ˆ
Ω

∣∣∇((u+ δ)
α+1

2

) ∣∣2ϕdx ≤ λ(α+ 1)2

ˆ
Ω

up(u+ δ)αϕdx+ (α+ 1)

ˆ
Ω

(u+ δ)α+1∆ϕdx

while local supersolution −∆u ≥ λup satisfy, for any α 6= −1 and δ > 0:

(2.4)
4α

(α+ 1)2

ˆ
Ω

∣∣∇((u+ δ)
α+1

2

) ∣∣2ϕdx ≥ λ
ˆ

Ω

up(u+ δ)αϕdx+
1

α+ 1

ˆ
Ω

(u+ δ)α+1∆ϕdx ,

and the Caccioppoli estimates also work.

Remark. Notice that when α > −1, we can let δ = 0 in the energy identity (2.1) to get

(2.5) 4α

ˆ
Ω

∣∣∇(uα+1
2

) ∣∣2ϕdx = λ(α+ 1)2

ˆ
Ω

up+αϕdx+ (α+ 1)

ˆ
Ω

uα+1∆ϕdx.

The same remark applies to subsolutions:

(2.6) 4α

ˆ
Ω

∣∣∇(uα+1
2

) ∣∣2ϕdx ≤ λ(α+ 1)2

ˆ
Ω

up+αϕdx+ (α+ 1)

ˆ
Ω

uα+1∆ϕdx

Proof. Let ϕ ∈ C2(Ω) ∩ C1
0 (Ω) and δ ≥ 0. Multiply −∆u by (u+ δ)αϕ, with α 6= −1 and integrate by

parts to get

−
ˆ

Ω

ϕ(u+ δ)α∆udx =

ˆ
Ω

∇ϕ ·
(
∇u
)
(u+ δ)α dx+ α

ˆ
Ω

ϕ(u+ δ)α−1
∣∣∇u∣∣2 dx

= − 1

α+ 1

ˆ
Ω

(u+ δ)α+1∆ϕdx+
4α

(α+ 1)2

ˆ
Ω

∣∣∇(u+ δ)
α+1

2

∣∣2ϕdx.

(2.7)
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For local weak solutions of −∆u = λup, the above equality immediately gives the energy identity (2.1)
for α 6= −1. Similar considerations hold, in the stated range of α, for sub and supersolutions. To derive
the Cacciopoli estimate we use the test function ϕ/(u+ δ) to get

0 ≤ λ
ˆ

Ω

up

u+ δ
ϕdx = −

ˆ
Ω

ϕ

u+ δ
∆udx = −

ˆ
Ω

ϕ

(u+ δ)2

∣∣∇u∣∣2 dx+

ˆ
Ω

∇ϕ · ∇u
u+ δ

√
ϕ
√
ϕ

dx

≤ −
ˆ

Ω

ϕ
∣∣∇ log(u+ δ)

∣∣2 dx+
1

2

ˆ
Ω

|∇ϕ|2

ϕ
dx+

1

2

ˆ
Ω

∣∣∇ log(u+ δ)
∣∣2ϕdx

≤ −1

2

ˆ
Ω

ϕ
∣∣∇ log(u+ δ)

∣∣2 dx+
1

2

ˆ
Ω

|∇ϕ|2

ϕ
dx ,

where we have used the inequality a · b ≤ (|a|2 + |b|2)/2.

We shall also need the following particular computation.

Lemma 2.2 Fix two balls BR1
⊂ BR0

⊂⊂ Ω. Then there exists a test function ϕ ∈ C1
0 (BR0

), with
∇ϕ ≡ 0 on ∂Ω, which is radially symmetric and piecewise C2 as a function of r, satisfies supp(ϕ) = BR0

and ϕ = 1 on BR1 , and moreover satisfies the bounds

(2.8) ‖∇ϕ‖∞ ≤
4

R0 −R1
and ‖∆ϕ‖∞ ≤

4d

(R0 −R1)2
.

Proof. Consider the radial test function defined on BR0

(2.9) ϕ(|x|) =



1 if 0 ≤ |x| ≤ R1

1− 2(|x|−R1)2

(R0−R1)2 if R1 < |x| ≤ R0+R1

2

2(R0−|x|)2

(R0−R1)2 if R0+R1

2 < |x| ≤ R0

0 if |x| > R0

for any 0 < R1 < R0. We have

∇ϕ(|x|) =



0 if 0 ≤ |x| ≤ R1 or if |x| > R0

− 4(|x|−R1)
(R0−R1)2

x
|x| if R1 < |x| ≤ R0+R1

2

− 4(R0−|x|)
(R0−R1)2

x
|x| if R0+R1

2 < |x| ≤ R0

and, recalling that ∆ϕ(|x|) = ϕ′′(|x|) + (d− 1)ϕ′(|x|)/|x|,

∆ϕ(|x|) =



0 if 0 ≤ |x| ≤ R1 or if |x| > R0

− 4
(R0−R1)2 − d−1

|x|
4(|x|−R1)
(R0−R1)2 if R1 < |x| ≤ R0+R1

2

− 4
(R0−R1)2 − d−1

|x|
4(R0−|x|)
(R0−R1)2 if R0+R1

2 < |x| ≤ R0

As a consequence we easily obtain the bounds (2.8).

Corollary 2.3 (Quantitative Caccioppoli Estimates) Let δ ≥ 0. Let Ω ⊂ Rd be a bounded do-
main, and let p ≥ 0 and λ > 0. Let u be a local positive weak solution in Ω to −∆u = λup. For any
BR ⊂ BR0

⊂⊂ Ω we have

λ

ˆ
BR

up

u+ δ
dx+

ˆ
BR

∣∣∇ log(u+ δ)
∣∣2 dx ≤ 8ωdR

d
0

(R0 −R)2
(2.10)

where ωd denotes the volume of the unit ball in Rd .
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Proof. We use (2.2), using the test function ϕ of Lemma 2.2 with R replacing R1:

λ

ˆ
BR

up

u+ δ
dx+

ˆ
BR

∣∣∇ log(u+ δ)
∣∣2 dx ≤ λ

ˆ
Ω

up

u+ δ
ϕdx+

ˆ
Ω

ϕ
∣∣∇ log(u+ δ)

∣∣2 dx

≤
ˆ

Ω

|∇ϕ|2

ϕ
dx ≤ 8|supp(ϕ)|

(R0 −R)2
=

8ωdR
d
0

(R0 −R)2
.

Note that the case δ > 0 follows immediately from the case δ = 0 since u ≥ 0.

Remark. Letting δ = 0 in the Caccioppoli estimates (2.10) shows that

(2.11) λ

ˆ
BR

up−1 dx ≤ 8ωdR
d
0

(R0 −R)2

When p > 1 this yields a local absolute upper bound for the local Lp−1-norm, a fact that will allow to
conclude an absolute local L∞-bound in the range 1 < p < pc := d/(d− 2), as we shall see in Section 6.
This absolute upper bound represents a novelty both because it is quantitative and because it is local:
to our knowledge this is the first absolute local bound for elliptic equations. When p = 1 such absolute
bound is easily seen to be impossible, while in the case 0 < p < 1 we get an absolute lower bound for
the local Lp−1-integral, which is new, at least as far as we know. It will be used below.

2.1 More general nonlinearities

As long as we deal with local estimates, we can apply the method to a larger class of operators and
nonlinearities. (i) First of all, namely we can treat local solutions of:

(2.12) −∇ ·A(x, u,∇u) = λup ,

where A is a Carathéodory function such that

ν1|ξ|2 ≤ A(x, u, ξ) · ξ ≤ ν2|ξ|2 and |A(x, u, ξ)|2 ≤ ν2|ξ|2

for suitable constants 0 < ν1 < ν2. The proofs of the inequalities are the same, and the results contain
ν1 (resp. ν2) depending on whether you consider subsolutions (resp. supersolutions).

(ii) Second we can consider supersolutions of the problem

(2.13) −∇ ·A(x, u,∇u) = f(x, u) ,

as long as f(u) ≥ a0 u
p with a0 > 0, since they are supersolutions of −∇ ·A(x, u,∇u) = a0 u

p.

(iii) We can consider subsolutions of (2.13) with f(u) ≤ a1(u + b1)p , and a1, b1 ≥ 0. Then we can
obtain an estimate for v = u+ b1.

The only thing that changes a bit are the energy estimates, and it is not so difficult to keep track of
the new constants throughout the proof. We have decided here to consider the model case, to simplify
the presentation and to focus on the main ideas.

(iv) Other semilinear problems of this type are treated in the literature. Thus, Ambrosetti and Prodi’s
book [2] discusses right-hand sides of the form f(x, u) = λu+ c(u) + h(x), with a ∈ R , c(·) ∈ C0(R) ∩
L∞(R) and h ∈ C0,α(Ω), for some α ∈ (0, 1) . Such nonlinearities can be treated with the methods
presented here as well. We refrain from dealing with it in this work.

3 Local Upper Bounds

This section is devoted to the proof of the upper bounds and we will provide two kinds of estimates. We
prove local upper bounds for nonnegative subsolutions, then by Kato’s inequality it is easy to extend
such results to solutions with any sign.
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3.1 Local upper bounds I. The upper Moser iteration

The local upper bounds follow from the local Sobolev imbedding theorem on balls BR ⊂ Rd

(3.1) ‖f‖2L2∗ (BR) ≤ S
2
2

(
‖∇f‖2L2(BR) +

1

R2
‖f‖2L2(BR)

)
where S2 = S2(B1) is the best constant and 2∗ = 2d/(d − 2). We are requiring hereafter without any
further comment that d ≥ 3. The Sobolev inequality combines with the energy inequalities of Lemma
2.1 which can be considered as local reverse Sobolev (or Poincaré) inequalities. The proof of the local
upper bounds goes though the celebrated Moser iteration. We adopt the notation ‖f‖Lq(BR) = ‖f‖q,R,

we recall that |BR| = ωdR
d and that

ffl
X
f(x) dx =

´
X
f(x) dx/|X|. Throughout this section we are

considering nonnegative subsolutions u to −∆u = λup, unless otherwise explicitly stated.

Theorem 3.1 (Local Upper Estimates) Let Ω ⊆ Rd and let λ > 0. (i) Let u ≥ 0 be a local weak
subsolution to −∆u = λup in Ω, with 1 < p < ps = 2∗ − 1 = (d + 2)/(d − 2). Then, for any
q > q := d(p− 1)+/2 and for any BR∞ ⊂ BR0 ⊆ Ω, the following bound holds true

(3.2) ‖u‖L∞(BR∞ ) ≤ I∞,q

( 
BR0

uq dx

) 1+(p−1)µ
q

( 
BR∞

up−1 dx

)−µ
where µ = d/(2q − d(p − 1)) = d/2(q − q) , and the constant I∞,q > 0 depends on d, p, q, R0, R∞, but
not on λ.

(ii) For 0 ≤ p ≤ 1 the estimate simplifies into

(3.3) ‖u‖L∞(BR∞ ) ≤ I∞,q

( 
BR0

uq dx

)1/q

.

valid for all q > 0. I∞,q > 0 has the same dependence as before, and it also depends on λ when p = 1,
but not otherwise.

Exponents of the
local upper estimates.

Remarks on the result. (i) Inequality (3.2) is a kind of reverse Hölder inequality, indeed we can
rewrite it as:

(3.4) ‖u‖µ(p−1)
Lp−1(BR∞ )‖u‖L∞(BR∞ ) ≤ C ‖u‖

1+µ(p−1)
Lq(BR0

) .

7



Written in this form, it is clear from Hölder’s inequality that a constant which makes (3.4) true for a
q > q, make the same inequality true also for all q′ > q . The same applies to (3.3) .

(ii) The linear case p = 1 is well known, cf. [16, 19, 20].

Remarks on the constant. (i) The proof below allows to find the following expression for the
constant:

I∞,q =

c1S2
2ω

2(p−1)+
d(p−1)

d

(1− ρ)2


d

2q−d(p−1)+ {(
d

d− 2

)d
2(d− 2)(√
d−
√
d− 2

)2 ×
×
[
Λp +

d− 2

q
+ (1− ρ)2 max

{
d− 2

(dq)2
|dq − (d− 2)|, 1

4

}]} d
2q−d(p−1)+

(3.5)

where ρ = R∞/R0 < 1 and we have used the convention x+/x = 0 when x = 0 and, moreover, we have
set Λp = 2 if p 6= 1, Λp = λ/4 if p = 1, with

(3.6) c1 :=


(d−2)q

(d−2)q−d if q > d
d−2

max
i=0,1

( d
d−2 )

k0−1+i
[
q− d(p−1)+

2

]
+(p−1)+

d−2
2∣∣∣( d

d−2 )
k0−1+i

[
q− d(p−1)+

2

]
+(p−1)+

d−2
2 −1

∣∣∣ if 0 < q < d
d−2 .

(iii) When q also satisfies 0 < q < d/(d− 2), we will require in the proof the additional condition

(3.7)
log 2∗−d(p−1)+

2q−d(p−1)+

log d
d−2

is not an integer, and we let k0 = i.p.

 log 2∗−d(p−1)+

2q−d(p−1)+

log d
d−2

 ,
(i.p. is the integer part of a real number). Notice that taking q = p+ 1 > d(p− 1)/2 is possible if and
only if p < ps = (d+ 2)/(d− 2).

(iv) Of course, condition (3.7) is not essential, in view of the remark after formula (3.4). In fact, let

q > d(p−1)+

2 be such that that A(q) := log 2∗−d(p−1)+

2q−d(p−1)+
/log d

d−2 is an integer. Take q̂ ∈ (d(p − 1)+/2, q)

such that A(q̂) is not an integer. Then (3.2) is valid with q̂ instead of q.

Proof. We are going to use the energy identity (2.1) for any α > −1, α 6= 0, in the form (2.3) valid for
subsolution, to prove Lq − L∞ local estimates via Moser iteration, keeping track of all the constants.
We divide the proof in several steps.

• Step 1. Let u as in Lemma 2.1 and ϕ the test function of Lemma 2.2, which is supported in BR0 and
such that ϕ ≡ 1 on BR1 . The local Sobolev inequality (3.1) on the ball BR1 applied to f = u(α+1)/2,
together with the energy inequality (2.3) (we can take δ = 0 as in (2.6)), gives

[ˆ
BR1

u
2∗
2 (α+1) dx

] 2
2∗

≤ S2
2

(ˆ
BR1

∣∣∇uα+1
2

∣∣2 dx+
1

R2
1

ˆ
BR1

uα+1 dx

)

≤ S2
2

(ˆ
BR0

∣∣∇uα+1
2

∣∣2ϕdx+
1

R2
1

ˆ
BR1

uα+1 dx

)

= S2
2

(
λ(α+ 1)2

4|α|

ˆ
BR0

up+αϕdx+
α+ 1

4|α|

ˆ
BR0

uα+1∆ϕdx+
1

R2
1

ˆ
BR1

uα+1 dx

)

≤ S2
2

(
λ(α+ 1)2

4|α|

ˆ
BR0

up+α dx+

[
(α+ 1)‖∆ϕ‖∞

4|α|
+

1

R2
1

]ˆ
BR0

uα+1 dx

)

≤ S2
2

(
λ(α+ 1)2

4|α|

ˆ
BR0

up+α dx+

[
d(α+ 1)

|α|(R0 −R1)2
+

1

R2
1

]ˆ
BR0

uα+1 dx

)

(3.8)
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in the last step we have used the inequality ‖∆ϕ‖∞ ≤ 4d/(R0 −R1)2 of Lemma 2.2.

• Step 2. Caccioppoli estimates and the first iteration step. Now we need to split two cases, namely
0 ≤ p ≤ 1 and 1 < p < ps, and in both cases we will use the Caccioppoli estimate (2.10) with δ = 0
which holds for any p > 0 and reads

(3.9) λ
‖u‖p−1

p−1,R∞

|BR0
|
≤ 8

(R0 −R∞)2
.

Superlinear case: 1 < p < ps. We continue estimate (3.8) as follows:[ˆ
BR1

u
2∗
2 (α+1) dx

] 2
2∗

≤ S2
2

(
λ(α+ 1)2

4|α|
+

[
d(α+ 1)

|α|(R0 −R1)2
+

1

R2
1

] ´
BR0

uα+1 dx´
BR0

up+α dx

) ˆ
BR0

up+α dx

≤(a) S2
2

(
λ(α+ 1)2

4|α|
+

[
d(α+ 1)

|α|(R0 −R1)2
+

1

R2
1

]
|BR0

|´
BR0

up−1 dx

)ˆ
BR0

up+α dx

=
S2

2 |BR0
|

‖u‖p−1
p−1,R0

(
λ(α+ 1)2

4|α|
‖u‖p−1

p−1,R0

|BR0
|

+

[
d(α+ 1)

|α|(R0 −R1)2
+

1

R2
1

])ˆ
BR0

up+α dx

≤(b)
S2

2 |BR0 |
‖u‖p−1

p−1,R0

(
2(α+ 1)2

|α|(R0 −R1)2
+

[
d(α+ 1)

|α|(R0 −R1)2
+

1

R2
1

])ˆ
BR0

up+α dx

=
S2

2 |BR0
|

(R0 −R1)2‖u‖p−1
p−1,R0

[
1

|α|
(
2(α+ 1)2 + d(α+ 1)

)
+

(R0 −R1)2

R2
1

]ˆ
BR0

up+α dx

(3.10)

where in (a) we have used the convexity in the variable r > 0 of the function N(r) = log ‖u‖rr, the
incremental quotient is increasing, hence choosing α+ 1 ≥ α > 0, we obtain

N(p− 1 + α)−N(α)

p− 1
≤ N(α+ p)−N(α+ 1)

p− 1
that is

‖u‖p−1+α
p−1+α

‖u‖αα
≤
‖u‖α+p

α+p

‖u‖α+1
α+1

Then we have

‖u‖α+p
α+p

‖u‖α+1
α+1

≥
‖u‖p−1+α

p−1+α

‖u‖αα
=
‖u‖αp−1+α

‖u‖αα
‖u‖p−1

p−1+α ≥ |BR0
|
−(p−1)
α+p−1 |BR0

|
p−1

α+p−1−1‖u‖p−1
p−1 =

‖u‖p−1
p−1

|BR0 |

since by Hölder inequality:

‖u‖p−1+α

‖u‖α
≥ |BR|

−(p−1)
α+p−1 and ‖u‖p−1+α ≥ |BR|

1
α+p−1−

1
p−1 ‖u‖p−1.

In (b) we have used the Caccioppoli estimate (3.9).

Sublinear case: 0 ≤ p ≤ 1. We first assume 0 ≤ p < 1, we discuss the case p = 1 separately. We
continue estimate (3.8) as follows:

[ˆ
BR1

u
2∗
2 (α+1) dx

] 2
2∗

≤ S2
2

(
λ(α+ 1)2

4|α|

´
BR0

up+α dx´
BR0

uα+1 dx
+

d(α+ 1)

|α|(R0 −R1)2
+

1

R2
1

)ˆ
BR0

uα+1 dx

≤ S2
2

(
2(α+ 1)2

|α|(R0 −R∞)2
+

d(α+ 1)

|α|(R0 −R1)2
+

1

R2
1

)ˆ
BR0

uα+1 dx

=
S2

2

(R0 −R∞)2

[
1

|α|
(
2(α+ 1)2 + d(α+ 1)

)
+

(R0 −R1)2

R2
1

] ˆ
BR0

uα+1 dx

(3.11)
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which follows by the convexity in the variable r > 0 of the function N(r) = log ‖u‖rr, which implies that
the incremental quotient is increasing, hence choosing α+ 1 ≥ α := β0 > 0, we obtain

N(p− 1 + α)−N(α)

p− 1
≤ N(α+ p)−N(α+ 1)

p− 1
that is

‖u‖p−1+α
p−1+α

‖u‖αα
≤
‖u‖α+p

α+p

‖u‖α+1
α+1

hence ´
BR0

up+α dx´
BR0

uα+1 dx
=
‖u‖α+p

α+p

‖u‖α+1
α+1

≤
‖u‖α−(1−p)

α−(1−p)

‖u‖αα
≤ |BR0

|
1−p
α

‖u‖1−pα

≤
‖u‖p−1

p−1,R0

|BR0 |
≤ 8

λ(R0 −R∞)2

again by Hölder inequalities, we just stress on the last step in which we have used that

‖u‖p−1,R0

|BR0
|

1
p−1

≤ ‖u‖α
|BR0 |

1
α

hence
|BR0 |

1−p
α

‖u‖1−pα

≤
‖u‖p−1

p−1,R0

|BR0
|
≤ 8

λ(R0 −R∞)2

which is true since p− 1 < 0 < α, and in the last step we have used the Caccioppoli estimate (3.9).

Notice that when p = 1, we obtain directly that[ˆ
BR1

u
2∗
2 (α+1) dx

] 2
2∗

≤ S2
2

(
λ(α+ 1)2

4|α|
+

d(α+ 1)

|α|(R0 −R1)2
+

1

R2
1

)ˆ
BR0

uα+1 dx

=
S2

2

(R0 −R∞)2

[
1

|α|

(
λ

4
(α+ 1)2 + d(α+ 1)

)
+

(R0 −R1)2

R2
1

] ˆ
BR0

uα+1 dx

(3.12)

The first iteration step. We can write the first iteration step for all p ≥ 0 in the following way: let
β = α + 1 ≥ β0 > 0 and recall that we are requiring β 6= 1 as well, then inequalities (3.10) and (3.11)
can be written as [ˆ

BR1

u
2∗
2 β dx

] 2
2∗

≤ I(p, β,R1, R0)

ˆ
BR0

uβ+(p−1)+ dx(3.13)

where

(3.14) I(p, β,R1, R0) =
S2

2

(R0 −R1)2

|BR0
|´

BR0
u(p−1)+ dx

[
Λpβ

2 + dβ

|β − 1|
+

(R0 −R1)2

R2
1

]
where Λp = 2 if p 6= 1 and Λp = λ/4 if p = 1.

• Step 3. The Moser iteration. Let us define the sequence of exponents βn > 0 so that

βn + (p− 1)+ =
2∗

2
βn−1 that is βn =

2∗

2
βn−1 − (p− 1)+

it turns out that, for any given β0 and all n ≥ 1:

βn =

[
2∗

2

]n [
β0 − (p− 1)+

n−1∑
k=0

(
2∗

2

)k−n]
=

[
2∗

2

]n β0 − (p− 1)+

n∑
j=1

(
2

2∗

)j
=

[
2∗

2

]n [
β0 − (p− 1)+

d− 2

2

(
1−

(
2

2∗

)n)]
=

[
2∗

2

]n [
β0 − (p− 1)+

d− 2

2

]
+ (p− 1)+

d− 2

2

(3.15)

since
∑k
j=1 s

j = (1− sk)s/(1− s). Moreover we have that for all p ≥ 1,(
2∗

2

)−n
βn −−−−→

n→∞
β0 −

d− 2

2
(p− 1)+.
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Requiring that β0 > (p−1)+(d−2)/2, which will be assumed from now on, then implies that βn → +∞
as n→ +∞. We shall also require that βn 6= 1 for all n.

We will explicitly choose a decreasing sequence of radii 0 < R∞ < . . . < Rn < Rn−1 < . . . < R0 in the
next step, in order to estimate explicitly the constants. The first iteration step then reads:

‖u‖ 2∗
2 βn,Rn

=

[ˆ
BRn

u
2∗
2 βn dx

] 2
2∗βn

≤ I(p, βn, Rn, Rn−1)
1
βn

[ˆ
BRn−1

u(p−1)++βn dx

] 1
βn

:= I
1
βn
n ‖u‖

βn+(p−1)+
βn

βn+(p−1)+,Rn−1
= I

1
βn
n ‖u‖

2∗
2

βn−1
βn

2∗
2 βn−1,Rn−1

(3.16)

where the constants I(p, β,R1, R0) are defined in (3.14). Hence

(3.17) In = I(p, βn, Rn, Rn−1) =
S2

2

(Rn−1 −Rn)2

|BRn−1
|´

BRn−1
u(p−1)+ dx

[
2β2

n + dβn
|βn − 1|

+
(Rn−1 −Rn)2

R2
n

]
Iterating the above inequality yields

‖un‖ 2∗
2 βn,Rn

≤ I
1
βn
n ‖un‖

2∗
2

βn−1
βn

2∗
2 βn−1 Rn−1

≤ I
1
βn
n I

2∗
2

1
βn

n−1 ‖un‖
( 2∗

2 )
2 βn−2

βn
2∗
2 βn−2 Rn−2

≤ I
1
βn
n I

2∗
2

1
βn

n−1 . . . I
( 2∗

2 )
n−1 1

βn
1 ‖un‖

( 2∗
2 )

n β0
βn

2∗
2 β0,R0

≤
n∏
j=1

I
( 2∗

2 )
n−j 1

βn
j ‖un‖

( 2∗
2 )

n β0
βn

2∗
2 β0,R0

(3.18)

with

β0 >
d− 2

2
(p− 1)+ or q :=

2∗

2
β0 >

d(p− 1)+

2
.

Taking the limit as n→∞ we obtain

‖u‖∞,R∞ = lim
n→∞

‖u‖ 2∗
2 βn,Rn

≤ lim
n→∞

n∏
k=1

I
( 2∗

2 )
n−k 1

βn

k ‖u‖
β0

β0−
d−2

2
(p−1)+

2∗
2 β0,R0

≤ lim
n→∞

n∏
k=1

I
( 2∗

2 )
n−k 1

βn

k ‖u‖
β0

β0−
d−2

2
(p−1)+

2∗
2 β0,R0

= I∞‖u‖
2q

2q−d(p−1)+

q,R0

(3.19)

notice that the penultimate passage follows because we shall see below that
∏n
k=1 I

( 2∗
2 )

n−k 1
βn

k has a
limit I∞ as n→ +∞.

As a consequence of the above estimates u ∈ L∞, so that the above bounds holds for any q > d(p−1)+/2
as stated, provided we show that the constant I∞ is finite and can be estimated as in (3.5).

• Step 4. Estimating all the constants. Now it remains to estimate I∞. We will prove later that

(3.20) Ik ≤ I0(p)

[
2∗

2

]2k

where I0(p) will have the explicit form given in formula (3.25). Using such bound we show that

I∞ = lim
n→∞

n∏
k=1

I
( 2∗

2 )
n−k 1

βn

k = lim
n→∞

exp

[
n∑
k=1

log

(
I
( 2∗

2 )
−k

( 2∗
2 )

n 1
βn

k

)]

= lim
n→∞

exp

[(
2∗

2

)n
1

βn

n∑
k=1

(
2

2∗

)k
log (Ik)

]

≤ lim
n→∞

exp

[(
2∗

2

)n
1

βn

n∑
k=1

(
2

2∗

)k
log

(
I0

[
2∗

2

]2k
)]

= lim
n→∞

exp

[(
2∗

2

)n
1

βn

(
log(I0)

n∑
k=1

(
2

2∗

)k
+ 2 log

(
2∗

2

) n∑
k=1

(
2

2∗

)k
k

)]
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= exp

[
1

β0 − d−2
2 (p− 1)+

(
log(I0)

+∞∑
k=1

(
2

2∗

)k
+ 2 log

(
2∗

2

) +∞∑
k=1

(
2

2∗

)k
k

)]

= exp

[
2

2β0 − (d− 2)(p− 1)+

(
log(I0)

d− 2

2
+ 2 log

(
2∗

2

)
d(d− 2)

4

)]
= exp

[
d− 2

2β0 − (d− 2)(p− 1)+
log(I0) +

d(d− 2)

2β0 − (d− 2)(p− 1)+
log

(
2∗

2

)]

= I
d−2

2β0−(d−2)(p−1)+

0

(
2∗

2

) d(d−2)
2β0−(d−2)(p−1)+

=

[
I0

(
2∗

2

)d] d−2
2β0−(d−2)(p−1)+

We shall now obtain an explicit estimate for I0 in order to finally obtain (3.5).

Estimating Ik. We want to obtain estimates (3.20), and to this end we choose a decreasing sequence of
radii 0 < R∞ < . . . < Rk < Rk−1 < . . . < R0 such that

(Rk−1 −Rk)2 = (R0 −R∞)2 c
2
0

βk
with c0 =

( ∞∑
k=1

√
1

βk

)−1

< +∞

so that
∞∑
k=1

(Rk−1 −Rk) = R0 −R∞.

We now estimate Ik:

Ik =
S2

2

(Rk−1 −Rk)2

|BRk−1
|´

BRk−1

u(p−1)+ dx

[
Λpβ

2
k + dβk
|βk − 1|

+
(Rk−1 −Rk)2

R2
k

]

=
S2

2β
2
k

|βk − 1|(Rk−1 −Rk)2

|BRk−1
|´

BRk−1

u(p−1)+ dx

[
Λp +

d

βk
+

(Rk−1 −Rk)2

R2
k

|βk − 1|
β2
k

]

≤(a)
S2

2β
3
k

c20|βk − 1|(R0 −R∞)2

|BR0
|´

BR∞
u(p−1)+ dx

[
Λp +

d

β0
+

(R0 −R∞)2

R2
∞

max

{
|β0 − 1|
β2

0

,
1

4

}]
≤(b)

c1S2
2β

2
k

c20(R0 −R∞)2

|BR0 |´
BR∞

u(p−1)+ dx

[
Λp +

d

β0
+

(R0 −R∞)2

R2
∞

max

{
|β0 − 1|
β2

0

,
1

4

}]

≤(c)

2c1S2
2

[
β0 − (p− 1)+

d−2
2

]
c20(R0 −R∞)2

|BR0 |´
BR∞

u(p−1)+ dx

[
Λp +

d

β0
+

(R0 −R∞)2

R2
∞

max

{
|β0 − 1|
β2

0

,
1

4

}][
2∗

2

]2n

≤(d)
2(d− 2)c1S2

2 |BR0
|(√

d−
√
d− 2

)2
(R0 −R∞)2

´
BR∞

u(p−1)+ dx

[
Λp +

d

β0
+

(R0 −R∞)2

R2
∞

max

{
|β0 − 1|
β2

0

,
1

4

}][
2∗

2

]2n

in (a) we have used that

(3.21)
|βk − 1|
β2
k

≤ max

{
|β0 − 1|
β2

0

,
1

4

}
.

In (b) we have also used the inequality

(3.22)
βk

|βk − 1|
≤ c1 :=


β0

β0−1 if β0 > 1

max
i=0,1

βk0+i

|βk0+i−1| if 0 < β0 < 1 with k0 = k0 = i.p.

 log
1−(p−1)+

d−2
2

β0−(p−1)+
d−2

2

log d
d−2

 .
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which we state in the general case p 6= 1 for later use and we now prove. First notice that the numerical
inequality

s

|s− 1|
≤ max

{
a

1− a
,

b

b− 1

}
for all 0 < a < 1 < b < +∞ and all s ∈ [0, a] ∪ [b,∞)

holds true. When β0 > 1 (3.22) follows applying such numerical inequality to s = βk and noticing
that βk > β0 = b > 1 and that the function x/|x − 1| is decreasing when x > 1. Suppose instead that
0 < β0 < 1. Notice that, since we are also requiring that β0 > (p − 1)+(d − 2)/2, this is possible only
when 0 < p < pc = d/(d − 2) < ps. We define k0 to be the greatest integer for which βk < 1, so that
βk0+1 > 1, so that

βk0
< 1 < βk0+1 with k0 = i.p.

 log
1−(p−1)+

d−2
2

β0−(p−1)+
d−2

2

log d
d−2


and we shall take β0 ∈ (0, 1) such that

(3.23)
log

1−(p−1)+
d−2

2

β0−(p−1)+
d−2

2

log d
d−2

is not an integer.

The elementary properties of the function x/|x− 1| then show that, for all k:

βk
|βk − 1|

≤ max
i=0,1

βk0+i

|βk0+i − 1|
= max
i=0,1

(
d
d−2

)k0+i [
β0 − (p− 1)+

d−2
2

]
+ (p− 1)+

d−2
2∣∣∣∣( d

d−2

)k0+i [
β0 − (p− 1)+

d−2
2

]
+ (p− 1)+

d−2
2 − 1

∣∣∣∣
= max
i=0,1

(
d
d−2

)k0−1+i [
q − d(p−1)+

2

]
+ (p− 1)+

d−2
2∣∣∣∣( d

d−2

)k0−1+i [
q − d(p−1)+

2

]
+ (p− 1)+

d−2
2 − 1

∣∣∣∣
as claimed, where we have put β0 = 2

2∗ q = d−2
d q and q has to be chosen such that (3.23) holds.

In (c) we have used that βk = β0(2∗/2)k > β0

βn =

[
2∗

2

]n [
β0 − (p− 1)+

d− 2

2

]
+ (p− 1)+

d− 2

2
≤ 2

[
2∗

2

]n [
β0 − (p− 1)+

d− 2

2

]
(3.24)

Finally in (d) we estimate 1/c20 as follows:

1

c20
=

( ∞∑
k=1

√
1

βk

)2

≤

( ∞∑
k=1

1(
β0 − (p− 1)+

d−2
2

)
1/2

(
2

2∗

) k
2

)2

=
1(

β0 − (p− 1)+
d−2

2

) d− 2(√
d−
√
d− 2

)2
since the explicit expression of βk shows that

βk ≥
(
β0 − (p− 1)+

d− 2

2

)(
2∗

2

)k
and

+∞∑
k=1

(
2

2∗

)k/2
=

+∞∑
k=1

(
d− 2

d

)k/2
=

√
d− 2√

d−
√
d− 2

.
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We conclude that we can take I0(p) as follows for any p > 0:

I0(p) =
2(d− 2)(√
d−
√
d− 2

)2 c1S2
2

(R0 −R∞)2

|BR0 |´
BR∞

u(p−1)+ dx

[
Λp +

d

β0
+

(R0 −R∞)2

R2
∞

max

{
|β0 − 1|
β2

0

,
1

4

}](3.25)

and c1 given by (3.22) and we recall that Λp = 2 if p 6= 1 and Λp = λ/4 if p = 1. The proof is concluded
once we let β0 = 2q/2∗ as in the previous step.

3.2 Local upper bounds II. The linear case with unbounded coefficients

The local upper bounds for nonnegative subsolutions to

−∆u = b(x)u

with b ∈ Lr(BR) eventually unbounded, follow from the local Sobolev imbedding theorem on balls
BR ⊂ Rd

(3.26) ‖f‖2L2∗ (BR) ≤ S
2
2

(
‖∇f‖2L2(BR) +

1

R2
‖f‖2L2(BR)

)
where S2 = S2(B1) is the best constant and 2∗ = 2d/(d− 2). In the case f ∈W 1,2

0 (BR), we have

(3.27) ‖f‖2L2∗ (BR) ≤ S
2
2 ‖∇f‖2L2(BR).

We are requiring hereafter without any further comment that d ≥ 3. We adopt the notation ‖f‖Lq(BR) =

‖f‖q,R and |BR| = ωdR
d.

3.2.1 Energy Estimates and Reverse Poincaré inequalities

Lemma 3.2 Let v ∈ L2∗(BR) and b ∈ Lr(BR) for some r > d/2. Then for any δ > 0 the following
inequality holds

ˆ
BR

b(x)v2(x) dx ≤ δ
[ˆ

BR

v2∗ dx

] 2
2∗

+
K

(1)
r,d

δ
d+r(d−2)

2r−d

|BR|
2

2∗

[ˆ
BR

br(x) dx

] d
2r−d

ˆ
BR

v2(x) dx(3.28)

where

(3.29) K
(1)
r,d :=

2r − d
rd

[
rd

d+ r(d− 2)

] d+r(d−2)
2r−d

Proof. Let us estimate for any 0 < ε < 2:

ˆ
BR

bv(2−ε)+ε dx ≤(a)

[ˆ
BR

v(2−ε) 2∗
2 dx

] 2
2∗
[ˆ

BR

b
d
2 vε

d
2 dx

] 2
d

≤(b) |BR|
ε

2∗

[ˆ
BR

v2∗ dx

] 2−ε
2∗
[ˆ

BR

b
d
2 vε

d
2 dx

] 2
d

≤(c)
δ0(2− ε)

2

[ˆ
BR

v2∗ dx

] 2
2∗

+
ε

2δ
2−ε
ε

0

|BR|
2

2∗

[ˆ
BR

b
d
2 vε

d
2 dx

] 4
dε

≤(d) δ0
d+ r(d− 2)

rd

[ˆ
BR

v2∗ dx

] 2
2∗

+
2(2r − d)

2rdδ
d+r(d−2)

2r−d
0

|BR|
2

2∗

[ˆ
BR

br dx

] d
2r−d

ˆ
BR

v2 dx

≤(e) δ

[ˆ
BR

v2∗ dx

] 2
2∗

+
1

δ
d+r(d−2)

2r−d

2r − d
rd

[
rd

d+ r(d− 2)

] d+r(d−2)
2r−d

|BR|
2

2∗

[ˆ
BR

br dx

] d
2r−d

ˆ
BR

v2 dx

14



where in the step (a) we have used Hölder inequality with the conjugate exponents s = 2∗/2 = d/(d−2)
and s′ = s/(s− 1) = d/2. In (b) we have used the inequality[ˆ

BR

v(2−ε) 2∗
2 dx

] 2
2∗

≤ |BR|
ε

2∗

[ˆ
BR

v2∗ dx

] 2−ε
2∗

In (c) we have applied the Young inequality, valid for every σ > 1, δ0 > 0, a, b ≥ 0:

ab ≤ δ0
σ
aσ +

σ − 1

σ

b
σ
σ−1

δ
1

σ−1

0

with σ = 2/(2− ε), so that σ/(σ − 1) = 2/ε. In (d) we have used the estimate[ˆ
BR

b
d
2 vε

d
2 dx

] 4
dε

≤
[ˆ

BR

br dx

] d
2r

4
dε
[ˆ

BR

vε
d
2

2r
2r−d dx

] 2r−d
2r

4
dε

=

[ˆ
BR

br dx

] d
2r−d

ˆ
BR

v2 dx

where in the first step we have used Hölder inequality with the conjugate exponents s = 2r/d and
s′ = s/(s − 1) = 2r/(2r − d) (notice that we are assuming r > d/2, hence s > 1), while in the second
step we have chosen 0 < ε = 2(2r − d)/(rd) ≤ 2. In (e) we have put

δ = δ0
d+ r(d− 2)

rd

notice that δ > 0 is in fact arbitrary since for every fixed r we can choose appropriately δ0 to get any
given value of δ by the above definition of δ.

Theorem 3.3 (Reverse Poincaré inequality for subsolutions) Consider a weak subsolution u to
−∆u = b(x)u on BR with b ∈ Lr(BR) with r > d/2. Suppose that u ∈ Lα+1(BR). Then for any
positive test function ϕ ∈ C2

0 (BR) with |∇ϕ| ≡ 0 on ∂BR we have that for any R > 0 and α > 0:

(3.30)

ˆ
BR

∣∣∇uα+1
2

∣∣2ϕ2 dx ≤ K(2)[b]

ˆ
BR

uα+1 dx

with

K(2)[b] = K(2)(b, R, α, ϕ, r, d)

:=
α+ 1

α

[
2‖ϕ‖∞‖∆ϕ‖∞ + ‖∇ϕ‖2∞ + S

2[d+r(d−2)]
2r−d

2

(
(α+ 1)2

2α

) rd
2r−d

Kr,d‖ϕ‖2∞|BR|
2

2∗ ‖b‖
dr

2r−d
r

]
.

(3.31)

Remark. The requirement u ∈ L1+α(BR) will be dispensed with later, without further comment by
using a Moser iteration technique.

Proof. It will divided into several steps.

• Step 1. Energy estimates. Proceeding as in (2.3), one shows that subsolutions to −∆u ≤ b(x)u,
satisfy, even for any α 6= −1:

(3.32)
4α

(α+ 1)2

ˆ
BR

∣∣∇uα+1
2

∣∣2ϕ2 dx ≤ 1

α+ 1

ˆ
BR

uα+1∆ϕ2 dx+

ˆ
BR

b uα+1ϕ2 dx.

• Step 2. Sobolev inequality in W 1,2
0 (BR). We apply inequality (3.28) of Lemma 3.2 to v = u(α+1)/2ϕ ∈

W 1,2
0 (BR) so that for any δ > 0:

ˆ
BR

buα+1ϕ2 dx ≤ δ
[ˆ

BR

(
u
α+1

2 ϕ
)2∗

dx

] 2
2∗

+
Kr,d

δ
d+r(d−2)

2r−d

|BR|
2

2∗

[ˆ
BR

br dx

] d
2r−d

ˆ
BR

uα+1ϕ2 dx

(3.33)

15



where Kr,d is given in (3.29). We notice that v = u(α+1)/2ϕ ∈W 1,2
0 (BR), so that the Sobolev inequality

(3.27) reads[ˆ
BR

(
u
α+1

2 ϕ
)2∗

dx

] 2
2∗

≤ S2
2

ˆ
BR

∣∣∇uα+1
2 ϕ

∣∣2 dx

= S2
2

[ˆ
BR

∣∣∇uα+1
2

∣∣2ϕ2 dx+

ˆ
BR

∣∣∇ϕ∣∣2uα+1 dx+
1

2

ˆ
BR

∇ϕ2 · ∇uα+1 dx

]
= S2

2

[ˆ
BR

∣∣∇uα+1
2

∣∣2ϕ2 dx−
ˆ
BR

ϕ
(
∆ϕ
)
uα+1 dx

]
since ∆ϕ2 = 2ϕ∆ϕ+ 2|∇ϕ|2. We combine the above Sobolev inequality with (3.33) to get

ˆ
BR

buα+1ϕ2 dx ≤ δS2
2

[ˆ
BR

∣∣∇uα+1
2

∣∣2ϕ2 dx−
ˆ
BR

ϕ
(
∆ϕ
)
uα+1 dx

]
+

Kr,d

δ
d+r(d−2)

2r−d

|BR|
2

2∗

[ˆ
BR

br dx

] d
2r−d

ˆ
BR

uα+1ϕ2 dx

(3.34)

where Kr,d is given in (3.29).

• Step 3. Putting the pieces together, i.e. combining inequalities (3.34) and (3.32) we obtain

4α

(α+ 1)2

ˆ
BR

∣∣∇uα+1
2

∣∣2ϕ2 dx ≤ 1

α+ 1

ˆ
BR

uα+1∆ϕ2 dx+

ˆ
BR

b uα+1ϕ2 dx

≤ 1

α+ 1

ˆ
BR

uα+1∆ϕ2 dx

+ δS2
2

[ˆ
BR

∣∣∇uα+1
2

∣∣2ϕ2 dx−
ˆ
BR

ϕ
(
∆ϕ
)
uα+1 dx

]
+

Kr,d

δ
d+r(d−2)

2r−d

|BR|
2

2∗

[ˆ
BR

br dx

] d
2r−d

ˆ
BR

uα+1ϕ2 dx

which thus implies(
4α

(α+ 1)2
− δS2

2

)ˆ
BR

∣∣∇uα+1
2

∣∣2ϕ2 dx

≤ 1

α+ 1

ˆ
BR

uα+1∆ϕ2 dx− δS2
2

ˆ
BR

ϕ
(
∆ϕ
)
uα+1 dx+

Kr,d

δ
d+r(d−2)

2r−d

|BR|
2

2∗

[ˆ
BR

br dx

] d
2r−d

ˆ
BR

uα+1ϕ2 dx

≤

[(
2

α+ 1
+ δS2

2

)
‖ϕ‖∞‖∆ϕ‖∞ +

2

α+ 1
‖∇ϕ‖2∞ +

Kr,d‖ϕ‖2∞
δ

rd
2r−d−1

|BR|
2

2∗

(ˆ
BR

br dx

) d
2r−d

] ˆ
BR

uα+1 dx

Letting δS2
2 = 2α

(α+1)2 gives the following reverse Poincaré inequality:

ˆ
BR

∣∣∇uα+1
2

∣∣2ϕ2 dx ≤ Λ0

ˆ
BR

uα+1 dx

16



with the constant that we can estimate as follows

Λ0 =
(α+ 1)2

2α

[
2(2α+ 1)

(α+ 1)2
‖ϕ‖∞‖∆ϕ‖∞ +

2

α+ 1
‖∇ϕ‖2∞

+ S
2[d+r(d−2)]

2r−d
2

2α

(α+ 1)2

(
(α+ 1)2

2α

) rd
2r−d

Kr,d‖ϕ‖2∞|BR|
2

2∗ ‖b‖
dr

2r−d
r

]

≤ α+ 1

α

[
2‖ϕ‖∞‖∆ϕ‖∞ + ‖∇ϕ‖2∞ + S

2[d+r(d−2)]
2r−d

2

(
(α+ 1)2

2α

) rd
2r−d

Kr,d‖ϕ‖2∞|BR|
2

2∗ ‖b‖
dr

2r−d
r

]

≤
(
α+ 1

)1+ rd
2r−d

α

[
2‖ϕ‖∞‖∆ϕ‖∞ + ‖∇ϕ‖2∞ + S

2[d+r(d−2)]
2r−d

2

(
α+ 1

2α

) rd
2r−d

Kr,d‖ϕ‖2∞|BR|
2

2∗ ‖b‖
dr

2r−d
r

]
=: K(2)[b].

In fact, the last bound in the above formula for K(2)[b] could be avoided, but will make the following
calculations somewhat easier.

Lemma 3.4 (Numerical Iteration) Let Yn ≥ 0 be a sequence of numbers such that

(3.35) Yn ≤ Iσθ
n−1

n−1 Yn−1 with In−1 ≤ I0C n−1

for some σ, I0, C > 0, θ ∈ (0, 1). Then {Yn} is a bounded sequence and one has

(3.36) Y∞ := lim sup
n→+∞

Yn ≤ I
σ

1−θ
0 C

σ θ
(1−θ)2 Y0.

Proof. We iterate inequality (3.35) to get

Yn ≤ Iσθ
n−1

n−1 Yn−1 ≤
(
I0C

n−1
)σθn−1

Yn−1 = Iσθ
n−1

0 Cσ(n−1)θn−1

Yn−1 ≤
n−1∏
j=0

Iσθ
j

0 Cσjθ
j

Y0

= I
σ
∑n−1
j=0 θ

j

0 Cσ
∑n−1
j=0 jθ

j

Y0

We thus get, as n→ +∞, Y∞ ≤ I
σ
∑∞
j=0 θ

j

0 Cσ
∑∞
j=0 jθ

j

Y0 = I
σ

1−θ
0 C

σ θ
(1−θ)2 Y0.

Now we are ready to perform the Moser iteration, by combining a local Sobolev inequality with the
reverse Poincaré inequality of Theorem 3.3 and then using the above numerical Lemma.

Theorem 3.5 (Moser Iteration) Let u ≥ 0 be a weak subsolution to −∆u = b u on BR with b ∈
Lr(BR) with r > d/2, and let q > 1, R∞ < R0 < R.

(3.37) ‖u‖∞,R∞ ≤
K

(3)
q [b]

(R0 −R∞)
d
q

‖u‖q,R0

with constant

K(3)
q [b] =

(
qdd

2d

) rd2

2(2r−d)q

[
8
q(d+ 2)

q − 1
+

(
S2

2

2

) rd
2r−d 2r − d

rd

(
qrd

(q − 1)[d+ r(d− 2)]

)1+ rd
2r−d

×(R0 −R∞)2|BR0
| 2
2∗ ‖b‖

rd
2r−d
Lr(BR0

) +

(
R0 −R∞
R∞

)2
] d

2q

.

(3.38)
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Notice that in the case of bounded coefficients b(x) ∈ L∞(BR0
) we can pass to the limit as r → ∞ in

the above expression of K
(3)
q [b] to get

K(3)
q [b] =

(
qdd

2d

) d2

4q

[
8
q(d+ 2)

q − 1
+

(
S2

2

2

) d
2 2

d

(
qd

(q − 1)(d− 2)

)1+ d
2

×(R0 −R∞)2|BR0 |
2

2∗ ‖b‖
d
2

L∞(BR0
) +

(
R0 −R∞
R∞

)2
] d

2q

.

(3.39)

Proof. The proof is divided in several steps.

• Step 1. Sobolev and Reverse Poincaré inequalities. We start choosing radii r1, r0 with R∞ < r1 <
r0 < R0 and use the test function of Lemma 2.2 on the balls Br1 , Br0 . We use the Reverse Poincaré
inequality (3.30) on the ball Br0 and the fact that ϕ ≡ 1 on Br1 to get

ˆ
Br1

∣∣∇uα+1
2

∣∣2 dx ≤
ˆ
Br0

∣∣∇uα+1
2

∣∣2ϕ2 dx ≤ K(2)[b]

ˆ
Br0

uα+1 dx

so that the local Sobolev inequality in W 1,2(Br1) applied to f = v
α+1

2 for any α > 0 yields(ˆ
Br1

u
2∗
2 (α+1) dx

) 2
2∗

≤ S2
2

[ˆ
Br1

∣∣∇uα+1
2

∣∣2 dx+
1

r2
1

ˆ
Br1

uα+1 dx

]

≤ S2
2

(
K(2)[b] +

1

r2
1

)ˆ
Br0

uα+1 dx

(3.40)

where the constant K(2)[b] is given by (3.30), and we can estimate it as follows:

K(2)[b] =

(
α+ 1

)1+ rd
2r−d

α

[
2‖ϕ‖∞,r0‖∆ϕ‖∞,r0 + ‖∇ϕ‖2∞,r0

+S
2[d+r(d−2)]

2r−d
2

(
α+ 1

2α

) rd
2r−d 2r − d

rd

(
rd

d+ r(d− 2)

)1+ rd
2r−d

‖ϕ‖2∞,r0 |Br0 |
2

2∗ ‖b‖
rd

2r−d
Lr(Br0 )

]

≤(a)
α+ 1

α

(
α+ 1

) rd
2r−d

[
8(d+ 2)

(r0 − r1)2
+ S

2[d+r(d−2)]
2r−d

2

(
α+ 1

2α

) rd
2r−d 2r − d

rd

×
(

rd

d+ r(d− 2)

)1+ rd
2r−d

|Br0 |
2

2∗ ‖b‖
rd

2r−d
Lr(Br0 )

]

≤(b)

(
α+ 1

) rd
2r−d

(r0 − r1)2

[
8(d+ 2)

α+ 1

α
+
S2

2[d+r(d−2)]
2r−d

2
rd

2r−d

2r − d
rd

×
(

(α+ 1)rd

α[d+ r(d− 2)]

)1+ rd
2r−d

(R0 −R∞)2|BR0
| 2
2∗ ‖b‖

rd
2r−d
Lr(BR0

)

]

where in (a) we have used the fact that the test function of Lemma 2.2 satisfies ‖ϕ‖∞,r0 = 1 ‖∇ϕ‖∞,r0 ≤
4/(r0 − r1) and ‖∆ϕ‖∞,r0 ≤ 4d/(r0 − r1)2, and in (b) the fact that 0 < R∞ < r1 < r0 < R0. Finally
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we get:

S2
2

(
K(2)[b] +

1

r2
1

)
≤ S2

2

(
α+ 1

) rd
2r−d

(r0 − r1)2

[
8(d+ 2)

α+ 1

α
+
S2

2[d+r(d−2)]
2r−d

2
rd

2r−d

2r − d
rd

×
(

(α+ 1)rd

α[d+ r(d− 2)]

)1+ rd
2r−d

(R0 −R∞)2|BR0
| 2
2∗ ‖b‖

rd
2r−d
Lr(BR0

) +
1

r2
1

(r0 − r1)2(
α+ 1

) rd
2r−d


≤ S2

2

(
α+ 1

) rd
2r−d

(r0 − r1)2

[
8(d+ 2)

α+ 1

α
+
S2

2[d+r(d−2)]
2r−d

2
rd

2r−d

2r − d
rd

×
(

(α+ 1)rd

α[d+ r(d− 2)]

)1+ rd
2r−d

(R0 −R∞)2|BR0 |
2

2∗ ‖b‖
rd

2r−d
Lr(BR0

) +

(
R0 −R∞
R∞

)2
]

(3.41)

we have also used the fact that α > 0.

• Step 2. The Moser iteration. We now fix β0 = α+ 1 > 1, and we define the sequence

βn =
2∗

2
βn−1 =

(
2∗

2

)n
β0

Next we pick a sequence of radii R∞ = r∞ < . . . < rn < rn−1 < . . . < r0 = R0, such that

(rn−1 − rn)2 = c20 (R0 −R∞)2

(
2

2∗

) rd n
2r−d

with

(3.42) c0 =

( ∞∑
k=1

(
2

2∗

) rd
2(2r−d)

k
)−1

=

(
2∗

2

) rd
2(2r−d)

− 1 ≥
(

2∗

2
− 1

) rd
2(2r−d)

=

(
2

d− 2

) rd
2(2r−d)

where the inequality in the above formula is easily shown to hold when d ≥ 3 and r > d/2 as assumed,
so that

∞∑
k=1

(rk−1 − rk) = R0 −R∞,

the above series being convergent. With these choices, inequality (3.40) in which α + 1 is replaced by
βn−1, this being allowable since βn > 1 for all n, and r1, r0 replaced by rn, rn−1 reads, noticing in
addition that βn/(βn − 1) ≤ β0/(β0 − 1) for all n,(ˆ

Brn

u
2∗
2 βn−1 dx

) 2
2∗

≤ S2
2

(
K(2)[b] +

1

r2
n

)ˆ
Brn−1

uβn−1 dx

≤
S2

2β
rd

2r−d
n−1

(rn−1 − rn)2

[
8(d+ 2)

β0

β0 − 1
+
S2

2[d+r(d−2)]
2r−d

2
rd

2r−d

2r − d
rd

(
β0rd

(β0 − 1)[d+ r(d− 2)]

)1+ rd
2r−d

×(R0 −R∞)2|BR0
| 2
2∗ ‖b‖

rd
2r−d
Lr(BR0

) +

(
R0 −R∞
R∞

)2
] ˆ

Brn−1

uβn−1 dx := In−1

ˆ
Brn−1

uβn−1 dx

Letting Yn := ‖u‖βn,Rn , we have obtained

Yn = ‖u‖βn,Rn ≤ I
1

βn−1

n−1 ‖u‖βn−1,Rn−1
= I

1
βn−1

n−1 Yn−1 = I
1
β0

( 2
2∗ )

n−1

n−1 Yn−1 = Iσθ
n−1

n−1 Yn−1

19



where we have set σ = 1/β0 and θ = 2/2∗ ∈ (0, 1). We shall prove that In ≤ I0Cn. Indeed:

In−1 =
S2

2β
rd

2r−d
n−1

(rn−1 − rn)2

[
8(d+ 2)

β0

β0 − 1
+
S2

2[d+r(d−2)]
2r−d

2
rd

2r−d

2r − d
rd

(
β0rd

(β0 − 1)[d+ r(d− 2)]

)1+ rd
2r−d

×(R0 −R∞)2|BR0 |
2

2∗ ‖b‖
rd

2r−d
Lr(BR0

) +

(
R0 −R∞
R∞

)2
]

≤ β
rd

2r−d
0

c20(R0 −R∞)2

[
8(d+ 2)

β0

β0 − 1
+
S2

2[d+r(d−2)]
2r−d

2
rd

2r−d

2r − d
rd

(
β0rd

(β0 − 1)[d+ r(d− 2)]

)1+ rd
2r−d

×(R0 −R∞)2|BR0 |
2

2∗ ‖b‖
rd

2r−d
Lr(BR0

) +

(
R0 −R∞
R∞

)2
](

2∗

2

) 2rd n
2r−d

≤
(
d− 2

2

) rd
2r−d β

rd
2r−d
0

(R0 −R∞)2

[
8(d+ 2)

β0

β0 − 1
+
S2

2[d+r(d−2)]
2r−d

2
rd

2r−d

(
β0rd

(β0 − 1)[d+ r(d− 2)]

)1+ rd
2r−d

×2r − d
rd

(R0 −R∞)2|BR0 |
2

2∗ ‖b‖
rd

2r−d
Lr(BR0

) +

(
R0 −R∞
R∞

)2
](

2∗

2

) 2rd
2r−dn

:= I0C
n−1

(3.43)

where in the last inequality we estimated c0 as in (3.42). Finally we use Lemma 3.4 with the above
choices of σ and θ, thus proving that

Y∞ ≤ I
σ

1−θ
0 C

σ θ
(1−θ)2 Y0 which is ‖u‖∞,R∞ ≤ I

d
2β0
0 C

d(d−2)
4β0 ‖u‖β0,R0

= K(3)
q [b] ‖u‖β0,R0

which is exactly (3.37) with

K(3)
q [b] =

(
d− 2

2

) rd2

2(2r−d)β0 β
rd2

2(2r−d)β0
0

(R0 −R∞)
d
β0

[
8(d+ 2)

β0

β0 − 1
+
S2

2[d+r(d−2)]
2r−d

2
rd

2r−d

(
β0rd

(β0 − 1)[d+ r(d− 2)]

)1+ rd
2r−d

×2r − d
rd

(R0 −R∞)2|BR0
| 2
2∗ ‖b‖

rd
2r−d
Lr(BR0

) +

(
R0 −R∞
R∞

)2
] d

2β0
(

d

d− 2

) rd2

(2r−d)β0
(

d

d− 2

) rd2(d−2)
2β0(2r−d)

≤
(
d

2

) rd3

2(2r−d)β0 β
rd2

2(2r−d)β0
0

(R0 −R∞)
d
β0

[
8(d+ 2)

β0

β0 − 1
+
S2

2[d+r(d−2)]
2r−d

2
rd

2r−d

(
β0rd

(β0 − 1)[d+ r(d− 2)]

)1+ rd
2r−d

×2r − d
rd

(R0 −R∞)2|BR0
| 2
2∗ ‖b‖

rd
2r−d
Lr(BR0

) +

(
R0 −R∞
R∞

)2
] d

2β0

,

as in (3.38). The proof is concluded once we let β0 = q > 1.

3.2.2 Extending local upper bounds. A lemma by E. De Giorgi

In this section extend the local upper bound of the previous section. More precisely we show that a
bound of the type

‖u‖∞,r ≤
A

(R− r)
d
q

‖u‖q,R

which is valid for any q > 1 and any a ≤ r < R ≤ b indeed implies that

‖u‖∞,a ≤
A

(b− a)
d
q0

‖u‖q0,b
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for all q0 > 0 and and any a ≤ r < R ≤ b maybe with a different constant A. The proof relies on the
following lemma, originally due to E. De Giorgi, whose proof is contained in several books and papers,
see for example [20], Lemma 6.1.

Lemma 3.6 (De Giorgi) Let Z(t) be a bounded non-negative function in the interval [t0, t1]. Assume
that for t0 ≤ t < s ≤ t1 we have

(3.44) Z(t) ≤ θ Z(s) +
A

(s− t)α

with A ≥ 0, α > 0 and 0 ≤ θ < 1. Then

(3.45) Z(t0) ≤ Ac(α, λ, θ)

(t1 − t0)α

where

c(α, λ, θ) =
1

(1− λ)α
(
1− θ

λα

) for any λ ∈
(
θ

1
α , 1
)
.

Proof. Consider the sequence {si} defined by

t0 = s0, si+1 = si + (1− λ)λi(t1 − t0)

so that sk = t0 + (1 − λ)(t1 − t0)
∑k−1
i=0 λ

i and in particular sk ↑ t1 as k → +∞. From (3.44), by
induction we get

Z(t0) ≤ θkZ(sk) +
A

(1− λ)α(t1 − t0)α

k−1∑
i=0

[
θ

λα

]i
Since θ/λα < 1 by assumption, the series on the right-hand side converges and therefore taking the
limit as k →∞ and using the boundedness of Z we get (3.45).

The above Lemma has important consequences, indeed it allows to prove that if a reverse Hölder
inequality holds for some 0 < q < q, then it holds for any 0 < q0 < q.

Lemma 3.7 (Extending Local Upper Bounds) Assume that the following bounds holds true:

(3.46) ‖u‖q,r ≤
K

(R− r)γ
‖u‖q,R

for some 0 < q < q , γ > 0 and for any R∞ ≤ r < R ≤ R0. Then we have that for all 0 < q0 ≤ q < q

(3.47) ‖u‖q,R∞ ≤ 3 · 2
q(q−q0)

q0(q−q)

[(
4γ
q(q − q0)

q0(q − q)

)γ
K

(R0 −R∞)γ

] q(q−q0)

q0(q−q)

‖u‖q0,R0 .

Proof. Define, for t < R0, the bounded nonnegative function

Z(t) = ‖u‖Lq(Bt) = ‖u‖q,t

then (3.46) reads, for s > t,

(3.48) Z(t) = ‖u‖q,t ≤
K

(s− t)γ
‖u‖q,s ≤

K

(s− t)γ
‖u‖1−σq0,s ‖u‖

σ
q,s ,

where in the last step we have used that for all 0 < q0 ≤ q < q ≤ +∞

‖u‖q,s ≤ ‖u‖1−σq0,s ‖u‖
σ
q,s = ‖u‖

q0(q−q)
q(q−q0)

q0,s ‖u‖
q(q−q0)

q(q−q0)

q,s , with σ =
q(q − q0)

q(q − q0)
∈ [0, 1)
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Inequality (3.48) gives then

(3.49)

Z(t) = ‖u‖q,t ≤
K

(s− t)γ
‖u‖1−σq0,sZ(s)σ ≤ 1

2
Z(s) +

(2σK)
1

1−σ

(s− t)
γ

1−σ
‖u‖q0,s

≤ 1

2
Z(s) +

(2σK)
1

1−σ

(s− t)
γ

1−σ
‖u‖q0,R0

where we have used Young’s inequality valid for any ν > 1, a, b ≥ 0, ε > 0:

ab ≤ ε

ν
aν +

ν − 1

ν

b
ν
ν−1

ε
1

ν−1

≤ εaν +
b

ν
ν−1

ε
1

ν−1

with the choices

ε = 1/2 a = Z(s)σ, ν =
1

σ
> 1 and b =

K

(s− t)γ
‖u‖1−σq0,R0

.

Inequality (3.49) is of the form appearing in Lemma 3.6 with α = γ/(1 − σ) > 0, θ = 1/2 and

A = (2σK)
1

1−σ ‖u‖q0,R0 . Thus we get

‖u‖q,R∞ = Z(R∞) ≤ c(α, λ, θ) (2σK)
1

1−σ

(R0 −R∞)
γ

1−σ
‖u‖q0,R0

≤ 3

(
4γ

1− σ

) γ
1−σ (2σK)

1
1−σ

(R0 −R∞)
γ

1−σ
‖u‖q0,R0

= 3 · 2
q(q−q0)

q0(q−q)

[(
4γ
q(q − q0)

q0(q − q)

)γ
K

(R0 −R∞)γ

] q(q−q0)

q0(q−q)

‖u‖q0,R0

noticing that
σ

1− σ
=
q(q − q0)

q0(q − q)
, and α =

γ

1− σ
= γ

q(q − q0)

q0(q − q)

which is the desired bound, once we notice that whenever θ < λα < 1,

c(α, λ, θ) =
1

(1− λ)α
(
1− θ

λα

) =
2(1 + θ)[

2
1
α − (1 + θ)

1
α

]α
(1− θ)

=
12[

4
1
α − 3

1
α

]α ≤ 12
4α αα

4
= 3 (4α)α

since we can choose 1/2 = θ < λα = (1 + θ)/2 < 1, and since α = γ/(1− σ) > 1 ,(
41/α − 31/α

)α
≥ 4

4α αα

since we know that a1/α − b1/α ≥ a1/α(a− b)/(αa), for all a ≥ b ≥ 0 and α ≥ 1.

The above lemma can be used to extend the local upper bounds (3.50) of Theorem 3.5.

Theorem 3.8 (Local Upper bounds, unbounded coefficient) Consider a weak subsolution u to
−∆u = b u on BR with b ∈ Lr(BR) with r > d/2 Let 0 < R∞ < R0 < R. Then for any q0 > 0 , the
following bound holds true

(3.50) ‖u‖∞,R∞ ≤
A

(1)
q0

(R−R∞)
d
q0

[
A(2)
q0 +A(3)

q0 ‖b‖
rd

2r−d
Lr(BR0

)

] d
2q0

‖u‖q0,R

with

(3.51) A(1)
q0 :=


(
q0d

d

2d

) rd2

2(2r−d)q0
, if q0 > 1 ,

3 · 2
2d+1
q0

(
d
q0

) d
q0
(

(q0+1)dd

2d

) rd2

2(2r−d)q0
, if 0 < q0 ≤ 1 ,
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(3.52) A(2)
q0 :=

 8 q0(d+2)
q0−1 +

(
R−R∞
R∞

)2

, if q0 > 1 ,

8 (q0+1)(d+2)
q0

+
(
R−R∞
R∞

)2

, if 0 < q0 ≤ 1 ,

(3.53) A(3)
q0 :=


(
S2

2

2

) rd
2r−d 2r−d

rd

(
q0rd

(q0−1)[d+r(d−2)]

)1+ rd
2r−d

(R−R∞)2|BR|
2

2∗ , if q0 > 1 ,(
S2

2

2

) rd
2r−d 2r−d

rd

(
(q0+1)rd

q0[d+r(d−2)]

)1+ rd
2r−d

(R−R∞)2|BR|
2

2∗ , if 0 < q0 ≤ 1 .

Proof. The upper bounds (3.50) of Theorem 3.5 can be rewritten as

(3.54) ‖u‖∞,r ≤
K

(3)
q [b]

(R− r)
d
q

‖u‖q,R

for any q > 1 and R∞ ≤ r < R ≤ R0, where K
(3)
q [b] is given by (3.38). It is clear that inequality (3.54)

guarantees that we can use Lemma 3.7 with 0 < q = q < +∞ = q , γ = d/q > 1 , K = K
(3)
q [b] and for

any R∞ ≤ r < R ≤ R0. Then we have that for all 0 < q0 ≤ q = q

‖u‖∞,R∞ ≤ 3 · 2
q−q0
q0

[(
4
d

q

q

q0

) d
q K

(3)
q [b]

(R0 −R∞)
d
q

] q
q0

‖u‖q0,R0
= 3 · 2

2d+1
q0

(
d

q0

) d
q0 K

(3)
q0+1[b]

q0+1
q0

(R0 −R∞)
d
q0

‖u‖q0,R0

since we can always choose q = q0 + 1 > 1. Finally we notice that we can rewrite the upper bound for
all q0 > 0 in the following form:

‖u‖∞,r ≤
A

(1)
q0

(R0 −R∞)
d
q0

[
A(2)
q0 +A(3)

q0 ‖b‖
rd

2r−d
Lr(BR0

)

] d
2q0

‖u‖q0,R

where A
(j)
q are as in (3.51), (3.52) and (3.53) respectively.

The above Theorem has the following important consequence, when applied to the equation −∆u = λup.

Theorem 3.9 (Local Upper bounds, second form) Consider a weak subsolution u to −∆u = λup

on BR, with λ > 0, 1 < p < ps = 2∗− 1 = (d+ 2)/(d− 2). Let 0 < R∞ < R0 < R. If u ∈ Lr(BR0
) with

r > d(p− 1)/2 := q then the following bound holds true for any q0 > 0

(3.55) ‖u‖∞,r ≤
A

(1)
q0

(R0 −R∞)
d
q0

[
A(2)
q0 +A(3)

q0 λ
d(p−1)

2r−d(p−1) ‖u‖
d(p−1)r

2r−d(p−1)

r,R0

] d
2q0

‖u‖q0,R

where A
(j)
q are as in (3.51), (3.52) and (3.53) respectively.

Proof. Since u is a subsolution to −∆u = λup = bu with b = λup−1, we need to assume that up−1 ∈ Lr

with r > d/2, which amounts to require u ∈ Lr with r = r(p− 1) > d(p− 1)/2, so that

‖b‖
rd

2r−d
Lr(BR0

) =

(
λ

ˆ
BR0

ur(p−1) dx

) d
2r−d

= λ
d(p−1)

2r−d(p−1) ‖u‖
d(p−1)r

2r−d(p−1)

r,R0

Finally, we can apply the bounds of Theorem 3.8 to get the bounds (3.55) with the constants written
above.
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4 Lower bounds

The lower bounds can be obtained in two steps: first we perform a Moser iteration, then we need reverse
Hölder inequalities, which are a consequence of the celebrated John-Nirenberg Lemma.

4.1 A short reminder about the spaces Mp(Ω).

We recall here some basic definitions and properties of suitable functional spaces, that will be used in
the sequel. We omit the proofs, but we give appropriate references.

We say that a measurable function on Ω ⊆ Rd belong to the space Mp(Ω) if and only if there exists a
constant K ≥ 0 such that ˆ

Ω∩BR(x0)

|f |dx ≤ KR
d(p−1)
p for all BR(x0),

and we define the norm on Mp(Ω) as follows

‖f‖Mp(Ω) = inf

{
K > 0 :

ˆ
Ω∩BR(x0)

|f |dx ≤ KR
d(p−1)
p for all BR(x0)

}
.

One can easily check the strict inclusion Lp(Ω) ⊂ Mp(Ω) for all 1 < p < ∞, and when Ω is bounded,
the equalities L1(Ω) = M1(Ω) and L∞(Ω) = M∞(Ω). Moreover it is easy to check that when Ω is
bounded one has:

(4.1) ‖f‖L1(Ω) ≤ diam(Ω)
d(p−1)
p ‖f‖Mp(Ω).

We now proceed with a series of results that relate the Marcinckievitz norm with the Riesz potential

(4.2) Vµ[f ](x) :=

ˆ
Ω

f(y)

|x− y|d(1−µ)
dy with µ ∈ (0, 1].

We collect hereafter some well known results, whose proof can be found for instance in [19].

Lemma 4.1 Let Vµ be defined as above. Then the following holds.

(i) The operator Vµ maps continuously Ls(Ω) into Lr(Ω) for any 1 ≤ r ≤ ∞ satisfying

0 ≤ 1

s
− 1

r
< µ.

Moreover, for any f ∈ Lp(Ω),

‖Vµf‖r ≤
(
s(r + 1)− r
s(µ r + 1)− r

) s(r+1)−r
sr

ω1−µ
d |Ω|

s(µ r+1)−r
sr ‖f‖s.

(ii) Let f ∈Mp(Ω), with p > 1/µ ≥ 1. Then

|Vµ[f ](x)| ≤ p− 1

pµ− 1
diam(Ω)

d
p (pµ−1)‖f‖Mp(Ω).

(iii) A “potential” version of the Morrey inequality. Let Ω be a convex bounded subset of Rd. Then for
all f ∈W 1,1(Ω) the following inequality holds

(4.3) |f(x)− fΩ′ | ≤
diam(Ω)d

d |Ω′|

∣∣∣V 1
d
[ |∇f |](x)

∣∣∣
for any measurable Ω′ ⊆ Ω with

fΩ′ =

ˆ
Ω′
f

dx

|Ω′|

Proof. Part (i) is exactly Lemma 7.12 of [19], part (ii) is exactly Lemma 7.18 of [19] and part (iii) is
exactly Lemma 7.16 of [19].
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4.2 The John-Nirenberg Lemma and reverse Hölder inequalities.

The Caccioppoli estimates proved in Corollary 2.3 show that the gradient of the logarithm of the
solution belongs to the Marcinckievitz space Md(Ω), see Proposition 4.5 below. Such Md−regularity
then guarantees the validity of the celebrated John-Nirenberg lemma which as a consequence give a
reverse Hölder inequality of the form

‖u‖q,R0

‖u‖−q,R0

≤ κ2/q
1

for some 0 < q < 1 and some constant κ1.

We need a lemma concerning estimates on the Riesz potential Vµ defined in (4.2). It is a quantified
version of Lemma 7.20 of [19].

Lemma 4.2 (A “potential” version of the Moser-Trudinger imbedding.) Let f ∈Mp(Ω) with
p > 1 and suppose ‖f‖Mp(Ω) ≤ K. Then there exist two constants κ2 and κ3 such that

(4.4)

ˆ
Ω

exp


∣∣∣V 1

p
[f ](x)

∣∣∣
κ2K

 dx ≤ κ3.

One can take

κ2 > (p− 1) e and κ3 = |Ω|+ diam(Ω)d√
2π

p eωd
κ2 − (p− 1) e

.

Proof. Let q ≥ 1, µ = 1/p and g = Vµ[f ]. Then

|x− y|d(µ−1) = |x− y|
d
q (µq−1)|x− y|d(1− 1

q )(µq +µ−1)

and by Hölder inequality we obtain

(4.5) |Vµ[f ]| ≤
∣∣∣Vµ

q
[f ]
∣∣∣ 1
q
∣∣∣Vµ+µ

q
[f ]
∣∣∣1− 1

q

.

Applying now estimates (i) of Lemma 4.1 with s = r = 1, to Vµ
q

[f ], we obtain,

‖Vµ
q
f‖1 ≤

q ω
1−µq
d

µ
|Ω|

µ
q ‖f‖1 ≤ p q ω

1− 1
pq

d |Ω|
1
pq diam(Ω)

d(p−1)
p ‖f‖Mp(Ω)

≤ p q ωddiam(Ω)d(1− 1
p+ 1

pq )‖f‖Mp(Ω) ≤ p q ωddiam(Ω)d(1− 1
p+ 1

pq )K

(4.6)

where we have used inequality (4.1) together with the fact that |Ω| ≤ ωddiam(Ω)d. Next we apply
estimates (ii) of Lemma 4.1 to Vµ+µ

q
[f ] (the operator Vν is well-defined on L1, if Ω is bounded, for

ν > 1 as well) and we obtain

(4.7)
∣∣∣Vµ+µ

q
[f ](x)

∣∣∣ ≤ p− 1

p
(
µ+ µ

q

)
− 1

diam(Ω)
d
p (p(µ+µ

q )−1)‖f‖Mp(Ω) ≤ q(p− 1) diam(Ω)
d
pqK

for all x ∈ Ω, hence the same bound is valid for the L∞(Ω)-norm, provided p(µ+µ/q) > 1 which indeed
holds true since µ = 1/p. Joining now inequalities (4.5), (4.6) and (4.7), we obtain

‖Vµ[f ]‖qq ≤
∥∥∥Vµ+µ

q
[f ]
∥∥∥q−1

L∞

∥∥∥Vµ
q

[f ](x)
∥∥∥

L1(Ω)
≤ pωd
p− 1

[(p− 1)K q]
q

diam(Ω)d
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Letting now 1 ≤ q = k ∈ N we get, for k2 as in the statement,

ˆ
Ω

∞∑
k=1

|g|k

k!(κ2K)k
dx ≤ pωd

p− 1
diam(Ω)d

∞∑
k=1

[(p− 1)K k]
k

k!(κ2K)k
≤ pωd
p− 1

diam(Ω)d
∞∑
k=1

[
p− 1

κ2

]k
kk

k!

≤ pωd
p− 1

diam(Ω)d
∞∑
k=1

[
(p− 1) e

κ2

]k
1√
2πk

≤ pωd
p− 1

diam(Ω)d√
2π

(p− 1) e

κ2 − (p− 1) e
=

diam(Ω)d√
2π

p eωd
κ2 − (p− 1) e

we have used Stirling’s formula:

(4.8) n! =
√

2π n
[n
e

]n
eαn with

1

12n+ 1
≤ αn ≤

1

12n
.

We prove hereafter a simplified but quantitative version of the celebrated John-Nirenberg Lemma,
which holds in convex domains. Indeed we will use it only on balls and in such case the constants
simplify a bit.

Lemma 4.3 (John-Nirenberg) Let f ∈W 1,1(Ω) where Ω is convex, and suppose there exists a con-
stant K such that ˆ

BR∩Ω

∣∣∇f ∣∣dx ≤ KRd−1 for all balls BR

Then the following inequality holds true

(4.9)

ˆ
Ω

exp

[
|f − fΩ|
κ0K

]
dx ≤ κ1

where for any κ2 > (d− 1) e

κ0 =
d |Ω|

diam(Ω)d
κ2 κ1 =

ωd diam(Ω)d
(
κ2 + e

)
κ2 − (d− 1) e

and fΩ =

ˆ
Ω

f
dx

|Ω|
.

Proof. The proof relies on the previous Lemma 4.2 in the special case p = d. Indeed inequality (4.4) in
that case takes the form

(4.10)

ˆ
Ω

exp


∣∣∣V 1

d
[|∇f |](x)

∣∣∣
κ2K

 dx ≤ diam(Ω)d√
2π

d eωd
κ2 − (d− 1) e

+ |Ω| ≤ κ3

where

κ2 > (d− 1) e and κ3 = ωd diam(Ω)d
[

d e

κ2 − (d− 1) e
+ 1

]
=
ωd diam(Ω)d

(
κ2 + e

)
κ2 − (d− 1) e

.

We combine this latter inequality with inequality (4.3) (which requires convexity of the domain) with
Ω′ = Ω and |∇f | ∈Md(Ω).

The John-Nirenberg Lemma has an important consequence when applied to f = log(u+ δ):

Proposition 4.4 (Reverse Hölder inequalities) Let δ ≥ 0 and u be a positive measurable function
such that log(u+ δ) ∈W 1,1(Ω), where Ω is convex, and suppose there exists a constant K such that

(4.11)

ˆ
BR∩Ω

∣∣∇ log(u+ δ)
∣∣dx ≤ KRd−1 for all balls BR.
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Then the following inequality

(4.12)
‖u+ δ‖q,Ω
‖u+ δ‖−q,Ω

≤ κ2/q
1 holds true for any 0 < q ≤ 1

κ0K

where the constants κi are given in Lemma 4.3.

Proof. Let δ > 0. The validity of (4.11) for u entails the validity of the same inequality for u + δ.
Notice now that

‖u+ δ‖q,Ω
‖u+ δ‖−q,Ω

≤ κ ⇐⇒
(ˆ

Ω

(u+ δ)q dx

)(ˆ
Ω

(u+ δ)−q dx

)
≤ κq

Then, letting f = log(u+ δ):(ˆ
Ω

(u+ δ)q dx

)(ˆ
Ω

(u+ δ)−q dx

)
=

(ˆ
Ω

e[q log(u+δ)] dx

)(ˆ
Ω

e[−q log(u+δ)] dx

)
=

(ˆ
Ω

eqf dx

)(ˆ
Ω

e−qf dx

)
=

(ˆ
Ω

eq(f−fΩ) dx

)(ˆ
Ω

e−q(f−fΩ) dx

)
≤
(ˆ

Ω

eq|f−fΩ| dx

)2

≤ κ2
1

where we used (4.9) for f = log(u+ δ), and have assumed q ≤ 1/(κ0K) in order to ensure its validity.
The case δ = 0 is also true, just by taking the limit δ → 0.

We conclude this section by showing that reverse Hölder inequalities holds for local supersolutions to
our problem, as a consequence of Caccioppoli estimates.

Proposition 4.5 (Reverse Hölder inequalities for supersolutions) Let Ω ⊂ Rd and let λ > 0.
Let u be a local weak supersolution to −∆u = λup, with 1 ≤ p < ps = 2∗ − 1 = (d + 2)/(d − 2). Then
for any ε > 0 the following inequality holds true for any δ ≥ 0[

ε

2d (e d+ ε)

]2/q ‖u+ δ‖q,R0

|BR0 |
1
q

≤ ‖u+ δ‖−q,R0

|BR0 |
− 1
q

for all 0 < q ≤ 2
d−3

2

dω2
d[e(d− 1) + ε]

.

Proof. The Caccioppoli estimates (2.2) with R0 replaced by 2r and R replaced by r imply the hypothesis
of the above Lemma, in fact:

ˆ
Br∩BR0

∣∣∇ log(u+ δ)
∣∣ dx ≤ ˆ

Br

∣∣∇ log(u+ δ)
∣∣dx

≤ |Br|
1
2

[ˆ
Br

∣∣∇ log(u+ δ)
∣∣2 dx

] 1
2

≤ 2
d+3

2 ωdr
d−1 := K rd−1.

(4.13)

Therefore putting K = 2
d+3

2 ωd, taking an ε > 0 and choosing κ2 = e(d− 1) + ε, we obtain that

1

κ0K
=

2
d−3

2

dω2
d [e(d− 1) + ε]

and κ1 = 2dωdR
d
0

ε+ e d

ε
= |BR0

|2d ε+ e d

ε
.

4.3 Lower Moser iteration

Now we are ready to run the Moser iteration to obtain quantitative local lower bounds in the form:
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Theorem 4.6 (Local Lower Estimates) Let Ω ⊆ Rd and let λ > 0. Let u be a nonnegative local
weak supersolution in BR0

⊆ Ω to −∆u = λup, with 0 ≤ p < ps = 2∗ − 1 = (d + 2)/(d − 2). Then for
any ε > 0 and for any

(4.14) 0 < q ≤ 2
d−3

2

dω2
d[e(d− 1) + ε]

= q0

the following bound holds true

(4.15) inf
x∈BR∞

u(x) = ‖u‖−∞,R∞ ≥ I−∞,q
‖u‖q,R0

|BR0
|
1
q

.

where

(4.16) I−∞,q =

[
2dS2

2

(
dR2

0

(R0 −R∞)2
+

R2
0

R2
∞

)]− d
2q
[

ε

2d (e d+ ε)
√
ωd

] 2
q

.

Remark. One can see that when the dimension d is sufficiently low one has q0 < 1 whereas q0 > 1 in
higher dimensions. Notice also that the equality inf

x∈BR∞
u(x) = ‖u‖−∞,R∞ holds since u is nonnegative.

Left figure: Plot of q0(d) defined in (4.14), for 1 ≤ d ≤ 16, with ε = 0.1.
Right figure: Zoom for the plot of the same q0(x) near its minimum that lies in (5 , 6).

Proof. The proof is divided in two steps. We always consider a local supersolution u of −∆u ≥ λup.
• Step 1. In this step we consider α < 0, and we want to prove L−q − L−∞ local estimates via Moser
iteration. The the energy inequality (2.4) for α < −1 and δ > 0 gives the estimate

ˆ
Ω

∣∣∇((u+ δ)
α+1

2

) ∣∣2ϕdx ≤ λ(α+ 1)2

4α

ˆ
Ω

up(u+ δ)αϕdx+
α+ 1

4α

ˆ
Ω

(u+ δ)α+1∆ϕdx

≤ α+ 1

4α

ˆ
Ω

(u+ δ)α+1
∣∣∆ϕ∣∣dx(4.17)
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Applying now the Sobolev inequality (3.1) on the ball BR1
and the properties of the test function ϕ

defined in Lemma 2.2, one gets[ˆ
BR1

(u+ δ)
2∗
2 (α+1) dx

] 2
2∗

≤ S2
2

(ˆ
BR1

∣∣∇(u+ δ)
α+1

2

∣∣2 dx+
1

R2
1

ˆ
BR1

(u+ δ)α+1 dx

)

≤ S2
2

(ˆ
Ω

∣∣∇(u+ δ)
α+1

2

∣∣2ϕdx+
1

R2
1

ˆ
BR1

(u+ δ)α+1 dx

)

≤ S2
2

(
α+ 1

4α

ˆ
Ω

(u+ δ)α+1
∣∣∆ϕ∣∣ dx+

1

R2
1

ˆ
BR1

(u+ δ)α+1 dx

)

≤ S2
2

(
α+ 1

4α

∥∥∆ϕ
∥∥
∞ +

1

R2
1

)ˆ
BR0

(u+ δ)α+1 dx

≤ S2
2

(
d

(R0 −R1)2
+

1

R2
1

)ˆ
BR0

(u+ δ)α+1 dx

(4.18)

Let, for a given γ0 < 0, γn :=
[

2∗

2

]n
γ0 so that γn = 2∗

2 γn−1. Notice that γn → −∞ monotonically.

Consider the above inequality for α = αn and let αn + 1 = γn−1 so that

‖u+ δ‖γn,Rn = ‖u+ δ‖ 2∗
2 γn−1,Rn

=

[ˆ
BRn

(u+ δ)
2∗
2 γn−1 dx

] 2
2∗γn−1

≥
[
S2

2

(
d

(Rn−1 −Rn)2
+

1

R2
n

)] 1
γn−1

[ˆ
BRn−1

(u+ δ)γn−1 dx

] 1
γn−1

≥
[
S2

2

(
d

(Rn−1 −Rn)2
+

1

R2
n

)] 1
γn−1

‖u+ δ‖γn−1,Rn−1 := I
1

γn−1
n ‖u+ δ‖γn−1,Rn−1

(4.19)

Hence, iterating the above inequality:

(4.20) ‖u+ δ‖γn,Rn ≥ I
1

γn−1
n I

1
γn−2

n−1 . . . I
1
γ0
1 ‖u+ δ‖γ0,R0

=

n∏
k=1

I
1

γk−1

k ‖u+ δ‖γ0,R0

where have chosen 0 < R∞ < . . . < Rn+1 < Rn < . . . < R0 such that

∞∑
k=1

(Rk−1 −Rk) = R0 −R∞ and Rk−1 −Rk =
R0 −R∞

2k

so that

Ik = S2
2

(
d

(Rn−1 −Rn)2
+

1

R2
n

)
≤ S2

2

(
d

(R0 −R∞)2
+

1

R2
∞

)
4k := I04k

and

n∏
k=1

I
1

γk−1

k = exp

[
n∑
k=1

1

γk−1
log Ik

]
= exp

[
2∗

2γ0

n∑
k=1

[
2

2∗

]k
log Ik

]

= exp

[
2∗

2γ0

n∑
k=1

[
2

2∗

]k
log I0 +

2∗ log 4

2γ0

n∑
k=1

k

[
2

2∗

]k]

≥ I
2∗
2γ0

∑n
k=1[ 2

2∗ ]
k

0 4
d2

4γ0 .
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Taking limits we obtain
∞∏
k=1

I
1

γk−1

k ≥ I
2∗
2γ0

d−2
2

0 4
d2

4γ0 =
(
2d I0

) d
2γ0 .

We can now take the limit in (4.20) to get for any γ0 < 0:

‖u+ δ‖−∞,R∞ ≥
∞∏
k=1

I
1

γk−1

k ‖u+ δ‖γ0,R0
≥
(
2d I0

) d
2γ0 ‖u+ δ‖γ0,R0

=

[
2dS2

2

(
d

(R0 −R∞)2
+ 1

)] d
2γ0

‖u+ δ‖γ0,R0
.

(4.21)

Now we need some Reverse Hölder inequalities, which is the subject of the next step.

• Step 2. Reverse Hölder inequalities. The John-Nirenberg lemma implies reverse Hölder inequalities
for super-solutions, in the form of Proposition 4.5: for any ε > 0 the following inequality holds true

(4.22)

[
ε

2d (e d+ ε)

] 2
q ‖u+ δ‖q,R0

|BR0 |
2
q

≤ ‖u+ δ‖−q,R0
for all 0 < q ≤ 2

d−3
2

dω2
d[e(d− 1) + ε]

.

Joining inequality (4.21) and (4.22) and letting γ0 = −q with q as in (4.22) we obtain

‖u+ δ‖−∞,R∞ ≥
[
2dS2

2

(
d

(R0 −R∞)2
+

1

R2
∞

)]− d
2q

‖u+ δ‖−q,R0

≥
[
2dS2

2

(
d

(R0 −R∞)2
+

1

R2
∞

)]− d
2q
[

ε

2d (e d+ ε)

] 2
q ‖u+ δ‖q,R0

|BR0
|
2
q

=

[
2dS2

2

(
dR2

0

(R0 −R∞)2
+

R2
0

R2
∞

)]− d
2q
[

ε

2d (e d+ ε)
√
ωd

] 2
q ‖u+ δ‖q,R0

|BR0
|
1
q

:= I−∞,q
‖u+ δ‖q,R0

|BR0 |
1
q

.

(4.23)

Finally we observe that we can let δ → 0+, and obtain the desired result.

4.4 Reverse Hölder inequalities and additional local lower bounds when
1 < p < pc

In this section we will first prove more quantitative reverse Hölder inequalities, when p > 1. We have
obtained a reverse smoothing effect from Lq to L−∞, for a suitable explicit q which may be close to
zero, if we seek for a bound valid for any dimension. In order to be able to join local upper and lower
estimates to get a clean form of Harnack inequality, we need to reach those values of q which are above
d(p− 1)/2, and this is possible only when 1 < p < pc = d/(d− 2).

Proposition 4.7 (Reverse Hölder inequalities for 1 < p < pc) Let Ω ⊆ Rd and let λ > 0. Let u
be a nonnegative local weak supersolution in Ω to −∆u = λup, with 1 < p < pc = d/(d − 2). Let
BR ⊂ BR0

⊂ Ω. Then we have that

(4.24)
‖u‖q,R
|BR|

1
q

≤ Iq,q0
‖u‖q0,R0

|BR0
|

1
q0

for any q0 ∈ (0, q] and d(p− 1)/2 < q < d/(d− 2)
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where
(4.25)

Iq,q0 :=


[

2d q S2
2

(2∗−2q) + S2
2

(R0−R)2

R
2

] 2∗
2q

[
ω

1/d
d R0

R0−R

] 2∗
q [

R0

R

] d
q

if d−2
d q ≤ q0 ≤ q ,

3 · 2
(d−2)q

2q0
− d2

[
2d q S2

2

(2∗−2q)
R

2

(R0−R)2
+ S2

2

] q−q0
q q0

d
2
(

4ω
1
d

d
q−q0
q0q

) d
q0
− dq [ R

R0

] d
q0
, if 0 < q0 <

d−2
d q.

Proof. Consider the energy identity for supersolutions with −1 < α < 0 (we can take δ = 0 in such a
range of α), which gives the following estimate for any positive test function ϕ ∈ C2

0 (Ω) with ∇ϕ ≡ 0
on ∂Ω:

4|α|
(α+ 1)2

ˆ
Ω

∣∣∇uα+1
2

∣∣2ϕdx+ λ

ˆ
Ω

up+αϕdx ≤ 1

|α+ 1|

ˆ
Ω

uα+1|∆ϕ|dx(4.26)

that implies, using the test function ϕ of Lemma 2.2 with R∞ < R0

(4.27)

ˆ
BR∞

∣∣∇uα+1
2

∣∣2 dx ≤ d|α+ 1|
|α| (R0 −R∞)2

ˆ
BR0

uα+1 dx

Applying now the Sobolev inequality (3.26) on the ball BR∞ we arrive at[ˆ
BR∞

u
2∗
2 (α+1) dx

] 2
2∗

≤ S2
2

[
d|α+ 1|

|α| (R0 −R∞)2
+

1

R2
∞

]ˆ
BR0

uα+1 dx

Letting now 0 < α+ 1 = β < 1 we get

(4.28)

[ˆ
BR∞

u
2∗
2 β dx

] 2
2∗β

≤
[

S2

R0 −R∞

] 2
β
[
d |β|

(1− β)
+

(R0 −R∞)2

R2
∞

] 1
β

[ˆ
BR0

uβ dx

] 1
β

.

Choosing β > (d − 2)(p − 1)/2 is compatible with β < 1, if and only if p < d/(d − 2) = pc and this is
the point where the well known Serrin’s exponent pc enters. We now let d(p−1)/2 < q = 2∗β/2 < 2∗/2
and we see that (4.28) implies
(4.29)

‖u‖q,r ≤
[

2d q S2
2

(2∗ − 2q)
+ S2

2

(R− r)2

r2

] 2∗
2q ‖u‖ 2

2∗ q,R

(R− r)
2∗
q

≤
[

2d q S2
2

(2∗ − 2q)
+ S2

2

(R0 −R∞)2

R2
∞

] 2∗
2q ‖u‖ 2

2∗ q,R

(R− r)
2∗
q

for any R∞ ≤ r < R ≤ R0. Let q = 2q/2∗ < q. We consider separately the case q ≤ q0 ≤ q and the
case 0 < q0 < q < q. In the first case we can use Hölder inequality in (4.29):

‖u‖q,r ≤
[

2d q S2
2

(2∗ − 2q)
+ S2

2

(R0 −R∞)2

R2
∞

] 2∗
2q ‖u‖ 2

2∗ q,R

(R− r)
2∗
q

≤
[

2d q S2
2

(2∗ − 2q)
+ S2

2

(R0 −R∞)2

R2
∞

] 2∗
2q

[
ω

1/d
d R

R− r

] 2∗
q |BR|

1
q

|BR|
1
q0

‖u‖q0,R

which is (4.24) when q ≤ q0 ≤ q, once we let R = R0 and r = R. On the other hand, when 0 < q0 <
q < q , we can use inequality (4.29) rewritten as

(4.30) ‖u‖q,r ≤
[

2d q S2
2

(2∗ − 2q)
+ S2

2

(R0 −R∞)2

R2
∞

] 2∗
2q ‖u‖ 2

2∗ q,R

(R− r)
2∗
q

:=
K

(R− r)
2∗
q

‖u‖ 2
2∗ q,R
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so that Lemma 3.7 with γ = 2∗/q gives that for all 0 < q0 ≤ q < q (recall that q = 2q/2∗)

‖u‖q,R∞ ≤ 3 · 2
q(q−q0)

q0(q−q)

[(
4γ
q(q − q0)

q0(q − q)

)γ
K

(R0 −R∞)γ

] q(q−q0)

q0(q−q)

‖u‖q0,R0

= 3 · 2
(d−2)q

2q0
− d2

[(
4

2d

(d− 2)q

d− 2

d
q

(q − q0)

q0
2
dq

)γ
K

(R0 −R∞)γ

] q(q−q0)

q0(q−q)

‖u‖q0,R0

= 3 · 2
(d−2)q

2q0
− d2 K

q(q−q0)

q0(q−q)

(
4d
q − q0

q0q

1

R0 −R∞

)
γ
q(q−q0)

q0(q−q) ‖u‖q0,R0

= 3 · 2
(d−2)q

2q0
− d2 K

q−q0
q0

d−2
2

(
4d
q − q0

q0q

ω
1/d
d R0

R0 −R∞

)
d
q0
− dq |BR0 |

1
q

|BR0
|

1
q0

‖u‖q0,R0

= 3 · 2
(d−2)q

2q0
− d2

[
2d q S2

2

(2∗ − 2q)
+ S2

2

(R0 −R∞)2

R2
∞

] q−q0
q q0

d
2

(
4d
q − q0

q0q

ω
1/d
d R0

R0 −R∞

)
d
q0
− dq

×
[
R∞
R0

] d
q0 |BR0 |

1
q

|BR∞ |
1
q0

‖u‖q0,R0

= 3 · 2
(d−2)q

2q0
− d2

[
2d q S2

2

(2∗ − 2q)

R2
∞

(R0 −R∞)2
+ S2

2

] q−q0
q q0

d
2
(

4dω
1
d

d

q − q0

q0q

)
d
q0
− dq

×
[
R∞
R0

] d
q0 |BR0

|
1
q

|BR∞ |
1
q0

‖u‖q0,R0

(4.31)

whence the statement follows upon relabeling R∞ as R.

As a first consequence of the above inequalities, we can improve the local lower bounds of Theorem
4.6 in this good supercritical range.

Theorem 4.8 (Local Lower Estimates when 1 < p < pc) Let Ω ⊆ Rd and let λ > 0. Let u be a
nonnegative local weak supersolution in BR0

⊆ Ω to −∆u = λup, with 1 < p < pc = d/(d− 2).

(4.32) inf
x∈BR∞

u(x) = ‖u‖−∞,R∞ ≥
I−∞,q

Iq,q

‖u‖q,R
|BR|

1
q

with d(p− 1)/2 < q < d/(d− 2)

for any 0 < R∞ < R < R0, where q ∈ (0, q0 ∧ q], q0 and I−∞,q are given in (4.34) and Iq,q is given by

(4.36).

Proof. We use the local lower bounds of Theorem 4.6 for q ∈ (0, q0], ε = e, with the definition of q0 to
be recalled below, so that

(4.33) inf
x∈BR∞

u(x) = ‖u‖−∞,R∞ ≥ I−∞,q
‖u‖q,R0

|BR0 |
1
q

.

where

(4.34) q ≤ q0 :=
2
d−3

2

d2ω2
de

and I−∞,q =

[
2dS2

2

(
dR2

0

(R0 −R∞)2
+

R2
0

R2
∞

)]− d
2q
[

e

2d e (d+ 1)
√
ωd

] 2
q

.

Recall the reverse Hölder inequalities of Proposition 4.7

(4.35)
‖u‖q,R0

|BR0
|
1
q

≥
‖u‖q,R
Iq,q|BR|

1
q

for any 0 < R < R0 q ∈ (0, q] and d(p− 1)/2 < q < d/(d− 2)

32



where
(4.36)

Iq,q :=


[

2d q S2
2

(2∗−2q) + S2
2

(R0−R)2

R
2

] 2∗
2q

[
ω

1/d
d R0

R0−R

] 2∗
q [

R0

R

] d
q

if d−2
d q ≤ q ≤ q ,

3 · 2
(d−2)q

2q − d2
[

2d q S2
2

(2∗−2q)
R

2

(R0−R)2
+ S2

2

] q−q
q q

d
2
(

4ω
1
d

d

q−q
qq

) d
q−

d
q
[
R0

R

] d
q

, if 0 < q < d−2
d q

with q0 as in (4.34). Combining inequalities (4.33) and (4.35) we obtain (4.32).

Remark. The above lower bounds turn our to be important when applied to solutions, since they will
imply directly a clean form of Harnack inequality when 1 < p < pc and then local absolute bounds,
which is a novelty and a typical feature of the “good” superlinear case 1 < p < pc. We stress the fact
that in the upper range pc ≤ p < ps such absolute bounds can not be true, as explicit counter-examples
show. We will give more details on these counterexamples in the next section.

5 Harnack inequalities

In this section we will show in a quantitative way how upper and lower bounds can be joined to form
Harnack inequalities for solutions, and to obtain as a consequence absolute local upper (1 < p < pc)
and absolute local lower bounds (0 < p < 1), which are new, as far as we know. We first join local
bounds of Theorems 3.1, 3.9 (upper) and (4.6) (lower), to obtain a general form for Harnack inequalities,
which at a first sight appear to be weaker than what expected, because its constant depends on local
Lq-norms of the solution itself. This is the only form of Harnack inequality that can hold for all
0 ≤ p < ps = (d+ 2)/(d− 2). To eliminate this quotient and to obtain Harnack inequalities in a more
classical form one has to assume that 0 < p < pc = d/(d− 2).

This fact might seem puzzling, but there are very weak (distributional) solutions in the range pc ≤
p < ps that are not bounded, cf. [22, 25, 26, 27, 28], even when one prescribes zero Dirichlet boundary
conditions. According to Mazzeo and Pacard [22], in this range there are solutions with a singularity of
the type |x−x0|−2/(p−1) at a point x0 ∈ Ω. Such solutions are not locally in Lq with q > d(p− 1)+/2 if
p > pc, hence the local upper estimate fails for them when applied to a ball that contains the singularity.
In this range there appears in a clear form the difference between weak and very weak solutions, which
helps understanding these critical exponents. Regarding boundary behaviour, the range to consider is
p1 ≤ p < ps, where p1 = (d + 1)/(d − 1) is the exponent introduced by Brezis and Turner [8]. In this
range there exist very weak solutions which are not weak (energy) solutions and can have a singularity
at some points of the boundary and satisfy elsewhere on the boundary the prescribed condition in a
suitable trace sense, not necessarily in a continuous fashion, cf. del Pino et al. [13].

Theorem 5.1 (Harnack inequality for 0 ≤ p < ps) Let Ω ⊆ Rd and let λ > 0. Let u be a nonnega-
tive local weak solution in BR0

⊆ Ω to −∆u = λup, with 0 ≤ p < ps = (d+ 2)/(d− 2). Given R∞ < R0

and ε > 0 we assume

(5.1) 0 < q ≤ q0 :=
2
d−3

2

dω2
d[e(d− 1) + ε]

, q >
d(p− 1)+

2
.

If 0 < q < d/(d− 2) we also assume log 2∗−d(p−1)+

2q−d(p−1)+

log d
d−2

not integer.

Then the following bound holds true

(5.2) sup
x∈BR∞

u(x) ≤ Hp[u] inf
x∈BR∞

u(x)
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where Hp[u] depends on u through some local norms as follows

(5.3) Hp[u] = Hp[u](d, q, q, ε, R0, R∞) =
I∞,q
I−∞,q


(ffl

BR0
uq dx

) (p−1)+
q

ffl
BR∞

u(p−1)+ dx


d

2q−d(p−1)+ (ffl
BR0

uq dx
) 1
q

(ffl
BR0

uq dx
) 1
q

.

with I∞,q given by (3.5), I−∞,q is given by (4.16).

Proof. We recall the local upper bounds of Theorem 3.1: for any BR∞ ⊂ BR0 ⊆ Ω

(5.4) ‖u‖∞,R∞ ≤ I∞,q


(ffl

BR0
uq dx

) (p−1)+
q

ffl
BR∞

u(p−1)+ dx


d

2q−d(p−1)+

‖u‖q,R0

|BR0
|
1
q

for any q >
d(p− 1)+

2

where I∞,q is given by (3.5) and when 0 < q < d/(d− 2) we require the additional condition (3.7) on q.
We also recall the lower bounds of Theorem 4.6: for any ε > 0 and for any q as in (5.1), the following
bound holds true

(5.5)
infx∈BR∞ u(x)

I−∞,q

|BR0
|
1
q

‖u‖q,R0

≥ 1.

where I−∞,q is given by (4.16). Joining (5.4) and (5.5) gives (5.2) .

Theorem 5.2 (Harnack inequality, 0 ≤ p ≤ 1) Let Ω ⊆ Rd and let λ > 0. Let u be a nonnegative
local weak solution in BR0

⊆ Ω to −∆u = λup, with 0 ≤ p ≤ 1. For all R∞ < R0 the following bound
holds true

sup
x∈BR∞

u(x) ≤ Hp inf
x∈BR∞

u(x)

where Hp does not depend on u , and is given by

Hp =

[
2dS4

2R
2
0

(R0 −R∞)2

(
dR2

0

(R0 −R∞)2
+

R2
0

R2
∞

)] d
2q0

2d
((

d
d−2

)n0− 1
2 2

d−3
2

dω2
d

+ e

)
√
ωd(

d
d−2

)n0− 1
2 2

d−3
2

dω2
d
− e(d− 1)


2
q0

×

×

{(
d

d− 2

)d
2(d− 2)

√
d(√

d−
√
d− 2

)3 [Λp +
d− 2

q0
+

(R0 −R∞)2

R2
∞

max

{
d− 2

(dq0)2
|dq0 − (d− 2)|, 1

4

}]} d
2q0

(5.6)

with

(5.7) q0 =

(
d− 2

d

)n0− 1
2

and n0 = i.p.

 log
(

e(d− 1)
dω2
d

2
d−3

2

)
log d

d−2

+
3

2


Proof. The goal of the proof is to simplify the quotient of Lq-norms in the expression of the constant
Hp[u] of the Harnack inequality (5.2). Since we are dealing with the range 0 ≤ p ≤ 1, we can choose

0 < q = q = q0 = q0(ε) :=
2
d−3

2

dω2
d[e(d− 1) + ε]

and q > 0 with

[
log 2∗

2q

log d
d−2

]
not integer.
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In fact, we shall arrive, with a suitable choice of the parameter ε, to a value of q0 smaller than d/(d−2),

so that the requirement
[
log 2∗

2q /log d
d−2

]
not being integer is necessary. The latter condition means

q0(ε) 6= [(d− 2)/d]n for all n ∈ N, and this is possible since we can always choose ε

0 < ε =

(
d

d− 2

)n0− 1
2 2

d−3
2

dω2
d

− e(d− 1) so that q0 =

(
d− 2

d

)n0− 1
2

where n0 is the first integer n such that ε(n) > 0, which is

n0 = i.p.

 log
(

e(d− 1)
dω2
d

2
d−3

2

)
log d

d−2

+
1

2

+ 1.

The constants become in this case

I∞,q =

[
c1S2

2R
2
0

(R0 −R∞)2

] d
2q0

{(
d

d− 2

)d
2(d− 2)(√
d−
√
d− 2

)2 ×
×
[
Λp +

d− 2

q0
+

(R0 −R∞)2

R2
∞

max

{
d− 2

(dq0)2
|dq0 − (d− 2)|, 1

4

}]} d
2q0

=

[
S2

2R
2
0

(R0 −R∞)2

] d
2q0

{(
d

d− 2

)d
2(d− 2)

√
d(√

d−
√
d− 2

)3 ×
×
[
Λp +

d− 2

q0
+

(R0 −R∞)2

R2
∞

max

{
d− 2

(dq0)2
|dq0 − (d− 2)|, 1

4

}]} d
2q0

,

(5.8)

where Λp = 2 if p 6= 1, Λp = λ/4 if p = 1 and, since q0 < d/(d− 2),

(5.9) c1 := max
i=0,1

q0

(
d
d−2

)k0−1+i∣∣∣∣q0

(
d
d−2

)k0−1+i

− 1

∣∣∣∣ = max
i=0,1

(
d
d−2

)i+ 1
2

(
d
d−2

)i+ 1
2 − 1

=

√
d√

d−
√
d− 2

since k0 is given by:

k0 = i.p.

[
log 2∗

2q0

log d
d−2

]
= i.p.

[
1 +

log 1
q0

log d
d−2

]
= i.p.

[
1 + n0 −

1

2

]
= n0 + 1

and the last step in (5.9) follows by an explicit calculation. Moreover I−∞,q given by formula (4.16)
takes the form

I−∞,q0 =

[
2dS2

2

(
dR2

0

(R0 −R∞)2
+

R2
0

R2
∞

)]− d
2q0
[

ε

2d (e d+ ε)
√
ωd

] 2
q0

=

[
2dS2

2

(
dR2

0

(R0 −R∞)2
+

R2
0

R2
∞

)]− d
2q0


(

d
d−2

)n0− 1
2 2

d−3
2

dω2
d
− e(d− 1)

2d
((

d
d−2

)n0− 1
2 2

d−3
2

dω2
d

+ e

)
√
ωd


2
q0

.

Hence we get the expression of Hp = I∞,q0/I−∞,q0 given in (5.6) .

When p > 1 we can not join the upper and the lower bound so easily, we need the improved lower
bounds of Theorem 4.8, valid only when p < pc.
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Theorem 5.3 (Harnack Inequalities when 1 < p < pc) Let Ω ⊆ Rd and let λ > 0. Let u be a
nonnegative local weak solution to −∆u = λup in BR0

⊆ Ω, with 1 < p < pc = d/(d− 2). Then for any
0 < R∞ < R < R0 there exists an explicit constant Hp > 0 such that

(5.10) sup
x∈BR∞

u(x) ≤ Hp inf
x∈BR∞

u(x)

where Hp does not depend on u , and is given by

(5.11) Hp = I∞,q

(
Iq,q

I−∞,q

) 2q
2q−d(p−1)

, with
d(p− 1)

2
< q <

d

d− 2

where the constants q ∈ (0, q0 ∧ q], q0 and I−∞,q are given in (4.34), Iq,q is given by (4.36), I∞,q is

given by (3.5); moreover, since q < d/(d− 2) we require the additional condition (3.7).

Proof. We first consider the lower bounds of Theorem 4.8. Let Ω ⊆ Rd and let λ > 0. Let u be a
nonnegative local weak supersolution in BR0 ⊆ Ω to −∆u = λup, with 1 < p < pc = d/(d− 2). Then

(5.12)
‖u‖q,R
|BR|

1
q

≤
Iq,q

I−∞,q
inf

x∈BR∞
u(x)

for any 0 < R∞ < R < R0, where d(p− 1)/2 < q < d/(d− 2), q ∈ (0, q0 ∧ q], q0 and I−∞,q are given in

(4.34) and Iq,q is given by (4.36). Then we recall the upper bounds of Theorem 3.1 which we rewrite as

‖u‖∞,R∞ ≤ I∞,q

 ‖u‖(p−1)+

q,R

|BR|
(p−1)+

q

|BR∞ |´
BR∞

u(p−1)+ dx

 d
2q−d(p−1)+ ‖u‖q,R

|BR|
1
q

≤ I∞,q

(
‖u‖q,R
|BR|

1
q

1

infx∈BR∞ u(x)

) d(p−1)
2q−d(p−1) ‖u‖q,R

|BR|
1
q

≤ I∞,q

(
Iq,q

I−∞,q

) d(p−1)
2q−d(p−1)

+1

inf
x∈BR∞

u(x)

(5.13)

for any q > d(p−1)+

2 , where I∞,q is given by (3.5) and since 0 < q < d/(d− 2) we require the additional
condition (3.7). In the third step we have used the lower bound (5.12).

Remark. Notice that the constant Hp does not depend on u in the range 0 ≤ p < pc , and it does
not depend on λ > 0 when moreover p 6= 1.

6 Local Absolute bounds

In this section we will prove local absolute lower bounds when 0 < p < 1 and local absolute upper
bounds when 1 < p < pc as a consequence of the Harnack inequalities of the previous section together
with the Caccioppoli estimates (2.11).

Theorem 6.1 (Local Absolute bounds) Let Ω ⊆ Rd and let λ > 0. Let u be a local nonnegative
weak solution to −∆u = λup in BR0

⊆ Ω, with 0 < p < pc = d/(d−2). Then for any 0 < R∞ < R < R0

there exists a constant Hp > 0 that does not depend on u, such that

(6.1) sup
x∈BR(x0)

u(x) ≤ Hp
(

8Rd0
λ(R0 −R)2Rd

) 1
p−1

when 1 < p < pc =
d

d− 2
,
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and, if u 6≡ 0 on BR0

(6.2) inf
x∈BR(x0)

u(x) ≥ H−1
p

(
λ(R0 −R)2Rd

8Rd0

) 1
1−p

when 0 < p < 1 .

The constant Hp is given by (5.6) when 0 < p < 1 and by (5.11) when 1 < p < pc.

Proof. We combine the quantitative Harnack inequalities of Theorems 5.2 and 5.3 together with the
quantitative Caccioppoli estimates (2.11)

λ

ˆ
BR

up−1 dx ≤ 8ωdR
d
0

(R0 −R)2

which implies, when p > 1,

(6.3) inf
x∈BR

u(x) ≤
(

1

|BR|

ˆ
BR

up−1 dx

) 1
p−1

≤
(

8Rd0
λ(R0 −R)2Rd

) 1
p−1

and when 0 < p < 1 as

(6.4)

(
λ(R0 −R)2Rd

8Rd0

) 1
1−p

≤

(
|BR|´

BR
up−1 dx

) 1
1−p

≤

 1

sup
x∈BR

u(x)p−1

 1
1−p

= sup
x∈BR

u(x)

The above inequalities can be now combined with the corresponding Harnack inequalities of Theorems
5.2 and 5.3, which have the form

sup
x∈BR

u(x) ≤ Hp inf
x∈BR

u(x)

to obtain the desired bounds in both cases. The constant Hp is given by (5.6) when 0 < p < 1 and by
(5.11) 1 < p < pc.

Remark. These bounds are new as far as we know. Notice that they depend explicitly on λ.

7 Regularity. Local bounds for the gradients

In this section we will prove L∞ bounds for the gradients, to conclude that solutions to −∆u = λup

are indeed local Lipschitz functions. The strategy to prove such results is to show that the incremental
quotients uh,i satisfy the equation −∆uh,i ≤ b(x)uh,i for a suitable b(x), so that we can apply the local
L∞ bounds of Theorem 3.8 .

Short reminder about incremental quotients in W 1,q. Here we follow Giusti [20]. It is well known
that if u ∈W 1,q(Ω) then its incremental quotients is defined as

uh,i :=
u(x+ hei)− u(x)

h

where ei denotes the unit vector in the direction xi , cf. [16, 20] . Let us recall some properties of the
incremental quotients:
(i) If u ∈W 1,q(Ω) , then its incremental quotient uh,i is defined in the set

Ω|h| :=
{
x ∈ Ω

∣∣ dist(x, ∂Ω) > |h|
}
, moreover uh,i ∈W 1,q(Ω|h|) .

(ii) If u ∈W 1,q(Ω) for 1 ≤ q ≤ ∞ and Σ ⊂⊂ Ω , then for any |h| < dist(Σ,Ω)/(10
√
d) we have

(7.1) ‖uh,i‖Lq(Σ) ≤ 5
d
q ‖∂iu‖Lq(Ω) .
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for a proof of the latter fact we refer to Lemma 8.1 of [20] .

(iii) Let u ∈ Lq(Ω), 1 < q < ∞ , and assume that there is a constant K such that for every h small
enough we have ‖uh,i‖Lq(Ω|h|) ≤ K. Then ∂iu ∈ Lq(Ω) and ‖∂iu‖Lq(Ω) ≤ K . Moreover uh,i → ∂iu in

Lqloc(Ω) as h→ 0 . For a proof of this fact we refer to Lemma 8.2 of [20] .

We can now state and prove the following theorem.

Theorem 7.1 (Local upper bounds for the gradient) Let Ω ⊆ Rd and let λ > 0. Let u be a local
nonnegative weak solution to −∆u = λup in BR0

⊆ Ω, with 0 < p < pc = d/(d − 2). Then for any
0 < R∞ < R0 we have

(7.2) ‖∇u‖∞,R∞ ≤ K[u] ‖u‖2,R0

where

K[u] =

(
15

R0 −R∞

) d
2
[
λ bp,R0 [u] +

18d

(R0 −R∞)2

] 1
2
(

2dd

2d

) d2

8

×

[
16(d+ 2) +

(R0 −R∞)2

9R2
∞

+

(
dS2

2 (p ∨ 1)

d− 2

) d
2 4(R0 −R∞)2

9(d− 2)
|BR0

|
d−2
d (λbp,R0

[u])
d
2

] d
4

(7.3)

with

(7.4) bp,R0
[u] ≤


1 , if p = 1 ,

8Rd0H
|p−1|
p

λ(R0 −R∞)2Rd∞
, if 0 ≤ p < pc and p 6= 1 ,

‖u‖p−1
∞,R0

, if pc ≤ p < ps ,

where the constant Hp is given by (5.6) when 0 < p < 1 and by (5.11) when 1 < p < pc.

Proof. The proof is divided into several steps. We start fixing h0 > 0 small enough.

• Step 1. The equation satisfied by the incremental quotients. First we deduce formally the equation
for the positive and negative part, then we justify it rigorously at the end of this step, using Kato’s
inequality. If u is a solution to −∆u = λup, then the equation satisfied by u+

h,i is

(7.5) −∆u+
h,i = b+(x, h)u+

h,i ≤ λ (p ∨ 1) bp u
+
h,i , for all |h| ≤ h0 ,

where

(7.6) bp = bp,R0 [u] :=


sup
BR0

up−1 if 1 ≤ p < ps

[
inf
BR0

u1−p
]−1

if 0 ≤ p < 1

and we observe that bp,R[u] ≤ bp,R0
[u] for any 0 < R < R0. Indeed, when uh,i ≥ 0:

−∆u+
h,i = λ

up(x+ hei)− up(x)

h
= λ

up(x+ hei)− up(x)

u(x+ hei)− u(x)

u(x+ hei)− u(x)

h
:= b+(x, h)u+

h,i

≤ λ(p ∨ 1) max
{
up−1(x+ hei), u

p−1(x)
}
u+
h,i

by using the numerical inequality (9.2), namely (a−c)(ap−cp) ≤ (p∨1) max
{
ap−1, cp−1

}
(a−c)2 valid

for any p > 0 and all a, c ≥ 0 to estimate

b+(x, h) = λ
up(x+ hei)− up(x)

u(x+ hei)− u(x)
≤ λ(p ∨ 1) max

{
up−1(x+ hei), u

p−1(x)
}
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we have used the fact that up(x+ hei)− up(x) and u(x+ hei)− u(x) have the same sign.
When p ≥ 1 we have

−∆u+
h,i = b+(x, h)u+

h,i ≤ λ(p ∨ 1) sup
BR+h0

(
up−1

)
u+
h,i ,

while when 0 ≤ p < 1 we have

−∆u+
h,i = b+(x, h)u+

h,i ≤
λ(p ∨ 1)

inf
BR+h0

u1−p u
+
h,i

On the other hand, if u is a solution to −∆u = λup, then the equation satisfied by u−h,i is

(7.7) −∆u−h,i = b−(x, h)u−h,i ≤ λ (p ∨ 1) bp u
−
h,i , for all |h| ≤ h0 ,

where bp is given by (7.6). Indeed when uh,i ≤ 0 we have that

−∆u−h,i = −λu
p(x+ hei)− up(x)

h
= −λu

p(x+ hei)− up(x)

u(x+ hei)− u(x)

u(x+ hei)− u(x)

h
:= b−(x, h)u−h,i

≤ λ(p ∨ 1) max
{
up−1(x+ hei), u

p−1(x)
}
u−h,i

for the same arguments as above. Now it remains to justify the formal calculations made above. First
we recall Kato’s inequality: if j : R→ R is a convex function such that j(0) = 0, j′(v) > 0 if v > 0, then
∆j(v) ≥ j′(v)∆v, in the weak sense, whenever ∆v ∈ L1

loc(Ω) . Consider a sequence of convex function
jε that approximate j(uh,i) = u+

h,i and such that jε(0) = 0, j′ε(uh,i) > 0 if uh,i > 0. Then by Kato’s

inequality, we have that indeed u+ satisfy the weak formulation

ˆ
K

∇ϕ · ∇jε(uh,i) dx = −
ˆ
K

ϕ∆jε(uh,i) dx ≤ −
ˆ
K

ϕ j′ε(uh,i)∆uh,i dx =

ˆ
K

ϕ j′ε(uh,i)b
+(x)uh,i dx

≤
ˆ
K

ϕ
(
jε(uh,i) + ε

)
b+(x) dx

for any subdomain with compact closure K ⊂ Ω, and all bounded 0 ≤ ϕ ∈ C1
0 (K). Passing to the limit

as ε → 0 proves that u+
h,i is a weak subsolution to −∆u+

h,i ≤ b+(x)u+
h,i. A similar procedure can be

applied to u−h,i, therefore all the formal calculations made above are justified.

• Step 2. L∞-bounds for the gradients. Since |uh,i| = u+
h,i + u−h,i is a weak nonnegative subsolution to

−∆
∣∣uh,i∣∣ ≤ λ(p ∨ 1) bp |uh,i| := b(x) |uh,i| , we can apply the upper bounds of Theorem 3.5 that read

(7.8) ‖uh,i‖∞,R ≤
K

(3)
2 [b]

h
d
2
0

‖uh,i‖2,R+h0

with q = 2 and the expression of the constant obtained by letting r →∞, since b(x) ∈ L∞(BR+h0
):

K
(3)
2 [b] =

(
2dd

2d

) d2

8

[
16(d+ 2) +

h2
0

R2
+

(
dS2

2

d− 2

) d
2 4h2

0

d− 2
|BR+h0

|
d−2
d ‖b‖

d
2

∞,R+h0

] d
4

≤
(

2dd

2d

) d2

8

[
16(d+ 2) +

h2
0

R2
+

(
dS2

2 (p ∨ 1)

d− 2

) d
2 4h2

0

d− 2
|BR+h0 |

d−2
d

(
λ bp

) d
2

] d
4

(7.9)

since

‖b‖
d
2

∞,R+h0
=
(
λ(p ∨ 1) bp

) d
2 .
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Next we observe that by inequality (7.1) it follows that for any δ > 0 and any |h| < δ/(10
√
d) we have

‖uh,i‖2,R+h0
≤ 5

d
2 ‖∂iu‖2,R+h0+δ.

Finally, since
‖uh,i‖s,R
|BR|

1
s

≤ ‖uh,i‖∞,R ≤ K

holds for any |h| ≤ h0 with K that do not depend on s, then by remark (iii) above we have that

‖∂iu‖s,R
|BR|

1
s

≤ K .

Letting now s→∞ in the above expression gives ‖∂iu‖∞,R ≤ K. Therefore we have proven that

(7.10) ‖∂iu‖∞,R ≤
K

(3)
2 [b]

h
d
2
0

5
d
2 ‖∂iu‖2,R+h0+δ ,

with K
(3)
2 [b] as in (7.9) which implies

(7.11) ‖∇u‖∞,R ≤
K

(3)
2 [b]

h
d
2
0

5
d
2 ‖∇u‖2,R+h0+δ ,

• Step 3. Energy inequalities. We now need the energy inequalities (2.3) to estimate the L2 norm of
the gradient of u in terms of u itself. We choose α = 1 there so that the choice δ = 0 is admissible.

ˆ
BR+h0+δ

∣∣∇u∣∣2ϕdx ≤
ˆ

Ω

∣∣∇u∣∣2ϕdx ≤ λ
ˆ

Ω

up+1ϕdx+
1

2

ˆ
Ω

u2∆ϕdx

≤ λ
ˆ
BR+h0+2δ

up+1 dx+
2d

δ2

ˆ
BR+h0+2δ

u2 dx

≤
(
λ bp +

2d

δ2

)ˆ
BR+h0+2δ

u2 dx

≤
(
λ bp +

2d

δ2

)
‖u‖22,R+h0+2δ

(7.12)

since we have used the fact that up−1 ≤ bp for any 0 ≤ p < ps and the test function ϕ of Lemma 2.2
with the choice of balls BR+h0+δ ⊂ BR+h0+2δ.

• Step 4. Putting all the pieces together, we have obtained

(7.13) ‖∇u‖∞,R ≤
K

(3)
2 [b]

h
d
2
0

5
d
2 ‖∇u‖2,R+h0+δ ≤

K
(3)
2 [b]

h
d
2
0

5
d
2

(
λ bp +

2d

δ2

) 1
2

‖u‖2,R+h0+2δ.

We finally choose h0 = δ > 0 and we let R∞ = R , R0 = R+h0 +2δ = R+3δ, so that δ = (R0−R∞)/3
and we have obtained

(7.14) ‖∇u‖∞,R∞ ≤ K
(3)
2 [b]

(
15

R0 −R∞

) d
2
(
λ bp +

18d

(R0 −R∞)2

) 1
2

‖u‖2,R0 := K[u]‖u‖2,R0

where we recall that, with the above choices of h0, δ we have (see (7.9))

K
(3)
2 [b] ≤

(
2dd

2d

) d2

8

[
16(d+ 2) +

(R0 −R∞)2

9R2
∞

+

(
dS2

2 (p ∨ 1)

d− 2

) d
2 4(R0 −R∞)2

9(d− 2)
|BR0

|
d−2
d (λ bp)

d
2

] d
4

.

(7.15)
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Finally we observe that bp can be bounded depending on the values of p as follows:
(i) If 0 ≤ p < 1 we can use the absolute bounds (6.2) to get

(7.16) bp =
1

inf
BR0

u1−p ≤ H
1−p
p

8Rd0
λ(R0 −R∞)2Rd∞

,

the constant Hp being given in this case by (5.6).

(ii) If p = 1 then bp = 1 .

(iii) If 1 < p < pc we can use the absolute bounds (6.1)

(7.17) bp = sup
x∈BR(x0)

up−1(x) ≤ Hp−1
p

8Rd0
λ(R0 −R∞)2Rd∞

,

the constant Hp being given in this case by (5.11).

(iv) If pc ≤ p < ps, we just leave bp = ‖u‖p−1
∞,R0

.

When 1 < p < pc we have local absolute bounds for the gradients, which seem to be new.

Theorem 7.2 (Local absolute bounds for the gradient when 1 < p < pc) Let Ω ⊆ Rd and let
λ > 0. Let u be a local nonnegative weak solution to −∆u = λup in BR0

⊆ Ω, with 1 < p < pc =
d/(d− 2). Then for any 0 < R∞ < R0 we have

(7.18) ‖∇u‖∞,R∞ ≤ K

where

K =

(
dd

2d−1

) d2

8 (15)
d
2 Hpω

1
2

d R
d
2∞

(R0 −R∞)1+ d
2 + 2

p−1

[
8Rd0Hp−1

p

Rd∞
+ 18d

] 1
2 (

8Rd0
λRd∞

) 1
p−1

×

16(d+ 2) +
(R0 −R∞)2

9R2
∞

+

(
dS2

2p

d− 2

) d
2 22+ 3

2d ω
(d−2)
d

d R
d2

2 +(d−2)
0

9(d− 2)(R0 −R∞)2(d−1)R
d2

2∞

H
d(p−1)

2
p


d
4

(7.19)

where the constant Hp is given by (5.11) and depends on R0, R∞ as well.

8 Table of results

Let us resume the main results of this paper: recall that d ≥ 3 and

pc =
d

d− 2
, ps =

d+ 2

d− 2
, q =

d(p− 1)+

2
, q0 =

2
d−3

2

dω2
d[e(d− 1) + ε]

, ∀ε > 0 .

Upper I Upper II Lower Harnack Absolute Gradient

0 ≤ p < 1 0 < q →∞ q0 > 0 , r > 0 0 < q < q0 Hp lower upper
Thm. 3.1 Thm. 3.9 Thm. 4.6 Thm. 5.2 Thm. 6.1 Thm. 7.1

p = 1 0 < q →∞ q0 > 0 , b ∈ Lr , r > d
2

0 < q < q0 H1 No upper
Thm. 3.1 Thm. 3.8 Thm. 4.6 Thm. 5.2 Thm. 7.1

1 < p < pc q < q →∞ q0 > 0 , b = λup−1 ∈ Lr , r > q q < q < pc Hp upper absolute
Thm. 3.1 Thm. 3.9 Thm. 4.8 Thm. 5.3 Thm. 6.1 Thm. 7.2

pc < p < ps q < q →∞ q0 > 0 , b = λup−1 ∈ Lr , r > q 0 < q < q0 Hp[u] No upper
Thm. 3.1 Thm. 3.9 Thm. 4.6 Thm. 5.1 Thm. 7.1
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Recall the bounds:

Upper I ‖u‖L∞(BR∞ ) ‖u‖
µ(p−1)+

Lp−1(BR∞ ) ≤ I∞,q
‖u‖

1+µ(p−1)+
Lq(BR0

)

|BR0
|
1
q

with µ = d
2q−d(p−1)+

Upper II ‖u‖∞,R∞ ≤
A(1)
q0

(R−R∞)
d
q0

[
A

(2)
q0 +A

(3)
q0 ‖b‖

rd
2r−d
Lr(BR0

)

] d
2q0

‖u‖q0,R

Lower infx∈BR∞ u(x) = ‖u‖L−∞(BR∞ ) ≥ I−∞,q
‖u‖Lq(BR0

)

|BR0
|
1
q

.

Harnack supx∈BR∞ u(x) ≤ Hp[u] infx∈BR∞ u(x)

where Hp[u] depends on u only when pc ≤ p < ps through some local norms as follows

Hp[u] = Hp[u](d, q, q, ε, R0, R∞) =
I∞,q
I−∞,q


(ffl
BR0

uq dx

) (p−1)+
q

ffl
BR∞

u(p−1)+ dx


d

2q−d(p−1)+ (ffl
BR0

uq dx

) 1
q

(ffl
BR0

uq dx

) 1
q
.

whereas Hp[u] can be taken to be independent of u if p ∈ [0, pc), see (5.6), (5.11).

Gradient ‖∇u‖∞,R∞ ≤ K[u] ‖u‖2,R0 .

9 Appendix. Numerical Identities and Inequalities

Sum of some series.
∞∑
j=1

(
2

2∗

)j
=

∞∑
j=1

(
d− 2

d

)j
=
d− 2

2

∞∑
j=1

j

(
2

2∗

)j
=
d(d− 2)

4

∞∑
j=k+1

(
2

2∗

)j
=
d

2

(
2

2∗

)k+1 k∑
j=1

(
2

2∗

)j
=
d− 2

2

(
2

2∗

)k
since for any 0 < s < 1 we have, for any 0 ≤ N ∈ N

∞∑
j=0

jN sj = s
d

ds

[
s

d

ds

(
. . . s

d

ds

(
1

1− s

)
. . .

)]
︸ ︷︷ ︸

N-times

=

[
s

d

ds

](N)(
1

1− s

)
.

Stirling’s formula:

(9.1) n! =
√

2π n
[n
e

]n
eαn with

1

12n+ 1
≤ αn ≤

1

12n
.

We recall that

ωd =
πd/2

Γ
(
1 + d

2

) ∼ (
2 e
√
π
)d

dd eαd
√
d π

with
1

6d+ 1
≤ αd ≤

1

6d
.

Lemma 9.1 The following inequality holds for any a, b ≥ 0

(9.2) (a− b)(ap − bp) ≤ (p ∨ 1) max
{
ap−1, bp−1

}
(a− b)2 , and for any p ≥ 0 .

Moreover the following inequality holds for any a, b ≥ 0 and p ≥ 1:

(9.3) ap − bp ≥ p bp−1(a− b).
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Proof. If a ≥ b the validity of (9.2) is equivalent, setting x = b
a , to the validity of (1 − x)(1 − xp) ≤

p(1 − x)2 for all x ∈ [0, 1], that is to 1 − xp ≤ p(1 − x) for all x ∈ [0, 1], which does in fact hold if
p ≥ 1 by the concavity of g(x) := 1 − xp, since the line h(x) := p(1 − x) is the tangent to g at x = 1.
The case a < b follows as well by interchanging the role of a and b. The case 0 < p < 1 can be proven
analogously: if fact the stated inequality is equivalent to 1− xp ≤ 1− x for any x ∈ [0, 1], which holds
true by the convexity of h(x) = 1− xp for any p ∈ (0, 1).

The second inequality (9.3) follows by the inequality xp − 1 ≥ p(x − 1) for all x ≥ 0 which is valid
since xp − 1 is convex so that its graph lies above its tangent at x = 1.
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