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Abstract

The purpose of this paper is to prove local upper and lower bounds for weak solutions of
semilinear elliptic equations of the form —Au = cu?, with 0 < p < ps = (d + 2)/(d — 2), defined on
bounded domains of R?, d > 3, without reference to the boundary behaviour. We give an explicit
expression for all the involved constants. As a consequence, we obtain local Harnack inequalities
with explicit constant, as well as gradient bounds.
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1 Introduction

In this paper we obtain local upper and lower estimates for the weak solutions of semilinear elliptic
equations of the form

(1.1) — Au= f(u)

posed in a bounded domain © C R?. The choice of right-hand side we have in mind is f(u) = Au?
with A,p > 0. The range of exponents of interest will be 1 < p < ps := (d+2)/(d—2) if d > 3, or
p > 1if d = 1,2. This problem is one of the most popular problems in nonlinear elliptic theory and
enjoys a large bibliography [2] [8, @, 12} [T6] 17, A8, 19, 20), 2] 23| 24, 29| [30, BT, B2] for 0 < p < ps
and [7, 1] for p = ps. We refrain from attempting to give a complete bibliography for this nowadays
classical problem.

We focus our attention on obtaining local estimates for solutions that are defined inside the domain
without reference to their boundary behaviour. This is the notion of solution we use.

Definition 1.1 A local weak solution to equation —Au = f(u) in Q is defined as a function u € Wﬁ)g ()
with f(u) € L}, () which satisfies

(1.2) / [Vu-Vo — f(u)p] de =0
K
for any subdomain with compact closure K C Q and all bounded p € C}(K).

Our aim is to contribute quantitative estimates in the form of upper bounds for solutions of any
sign, lower bounds for positive solutions, and also local Harnack inequalities and gradient bounds. By
quantitative estimates we mean keeping track of all the constants during the proofs. As far as we
know, there does not exist in literature a systematic set of quantitative estimates of local upper and
lower bounds, and neither of the Harnack constant, in the form we explicitly provide here. We recall
that the quantitative control of the constants of such inequalities may have an important role in the
applications; it is needed for instance in the results of [3] on the asymptotic properties of solutions of
the fast diffusion equation in bounded domains.

Contents and main results. We start with a section devoted to basic energy estimates. We then
consider in Section [3] the upper estimates for nonnegative solutions of the equation —Awu = AuP. The
exponent range is 0 < p < p,, a main restriction of the theory, as it is already well known. See also
[10] for L>°-bounds of different type for Equation with more general nonlinearities. Our first main
result, Theorem can be considered as a smoothing effect with very precise constants; it is much
simpler for p < 1, but we also obtain the more complicated and novel estimates for 1 < p < ps;. Next
we obtain local upper estimates for —Awu = b(z)u with unbounded coefficients in Theorem and we
apply them to the case b(x) = uP~! in Theorem [3.9

In Section [ we prove quantitative lower estimates, Theorems We prove Harnack inequalities
in Theorems and All of these results appear to be well known from a qualitative point
of view. Let us mention that, as far as we know, the Harnack inequality for solutions to when
p > 1 is not stated explicitly in the literature. The fact that the “constant” involved has to depend on
u when p. < p < p; is confirmed by the results of [6], [I4] applied to separation of variable solutions
of parabolic problems, see also the very recent monograph [15]. This is also related to the fact that, in
the range p. < p < ps, there exist (very weak) singular solutions. Notice also that in such a range the
notion of weak and very weak solution is really different, cf. [13| 22, 25| 26| 27, 28].

In Section |§| we derive quantitative absolute upper (for 1 < p < p.) and lower bounds (for 0 < p < 1)
which are new as far as we know, cf. Theorem The last section is devoted to quantitative gradient
estimates, cf. Theorem and absolute upper bounds for the gradient when 1 < p < p., cf. Theorem
.2



As a consequence of the above theory, we conclude that functions in the so-called De Giorgi class
(satisfying Sobolev and local reverse Sobolev inequalities, at least at the level of truncates) are indeed
locally bounded functions.

Much of the known theory takes into account boundary conditions of different types: Dirichlet, Neu-
mann, Robin, or other. Our results apply to all those cases. We will study the precise estimates for the
Dirichlet problem in an upcoming paper [4].

2 Preliminaries. Local energy estimate

We shall pursue in the sequel the well-known idea that local weak solutions satisfy reverse Sobolev
or Poincaré inequalities. Such local reverse inequalities are the key to prove local upper and lower
estimates of next sections, and indeed imply that such functions are Holder continuous. We comment
that a similar line of reasoning could be adapted to deal with function belonging to suitably defined De
Giorgi classes.

Lemma 2.1 (Energy Estimates) Let Q C R? be a bounded domain, and let p >0 and A > 0. Let u
be a local nonnegative weak solution in Q to —Au = AuP. Then the following energy equality holds true
for any § >0, a # —1 and any positive test function p € C?(Q) and compactly supported in §):

(2.1) 4a/|V u+6 )|<pdx—A(a+1)2/

up(u—i-é)atpdx—F(a—i—l)/(u—l—(s)o‘“A(pda:.
Q

Q

Moreover, for any d > 0 we have the Caccioppoli estimates

P 2
(2.2) )\/ u—gadx—i—/ ’Vlog(u+5)’2<p dxg/&d
Qu+d Q Q ¢

Local subsolutions u of —Au < A\uP satisfy, for a« # —1 and § > 0:

wP(u+6)%de+ (a+1) / (u+0)*Apda
Q

(2.3) 4a/\v u+0)° )‘gpdx<)\(a+1)/

Q

while local supersolution —Au > NuP satisfy, for any a # —1 and § > 0:

(2.4) a+1 /|V u+5 )| Lpdx>)\/u”u+6) <pdx+7/ @+ 6)* " Apda,

(a+1)

and the Caccioppoli estimates also work.

Remark. Notice that when o > —1, we can let § = 0 in the energy identity (2.1) to get

(2.5) 4o / A% (uaTH) |2<p dz = Mo+ 1)2/ uPTpdz + (o + 1)/ u* T Apde.
Q Q Q
The same remark applies to subsolutions:
(2.6) 4&/ |V | pdz < Ma+1)2 / uPt*odr + (o + 1)/ u* M Apde
Q Q

Proof. Let ¢ € C?(2) N C3(Q) and § > 0. Multiply —Au by (u + §)%p, with a # —1 and integrate by
parts to get

—/Q(p(u—!—5)°‘Audz:/QV<p~ (Vu)(u—i—5)°‘dx—|—oz/930(u+5)a71|Vu|2dz
(2.7)

[ wtsrtapde+
Q

atl 2
Y /Q|V(u+§) > [Tpda.

4o
(a+1)?



For local weak solutions of —Au = AuP, the above equality immediately gives the energy identity (2.1))
for a # —1. Similar considerations hold, in the stated range of «, for sub and supersolutions. To derive
the Cacciopoli estimate we use the test function ¢/(u + ) to get

uP _ %) _ % 2 V- Vuf
u+5<pdx— /Qu+5 B /(U leu’ dot o u+o \fd

< — / |Vlogu+5’ dz + |V<p| dz + - /|Vlog +5)| pdx
2Ja ¢

1/ [Ve|?
<—— [ ¢|Viog(u+46 dx—i—f/ dz,
2 Ja ’ ( )‘ 2Ja v

where we have used the inequality a - b < (|a|? + |b]?)/2. [

0<A
Q

We shall also need the following particular computation.

Lemma 2.2 Fiz two balls Br, C Br, CC 2. Then there exists a test function p € CY(Bgr,), with
Vo =0 on 99, which is radially symmetric and piecewise C? as a function of r, satisfies supp(¢) = B,
and ¢ =1 on Bg,, and moreover satisfies the bounds

4 4d
2.8 Voo £ 5—— d Aplloe £ 5—5-
(28) Vel € g and 186l € s
Proof. Consider the radial test function defined on Bg,
1 if0<|z| <Ry
z|— 2 . 1
1- FER if Ry < |z < fotfa
(2.9) p(lz]) = —la)? :
Ml s <pisn,
0 if |£L'| > Ry
for any 0 < Ry < Ryg. We have
0 it 0 <|z| < Ry orif |z| > Ro
A(z|=R1) = i Ro+R
Vo(le) = { ~Te-myerer R < o] < g
ey < o] < Ry

and, recalling that Ap(|z() = " (|x]) + (d = 1)¢'(lz])/]x],

’ if 0 < [x| < Ry or if |z > Ro
4 d—1 4(Jz|—R1) . RotR
Ap(lz)) =9 — Ro—R1)? |7|(7Rl;2 if Ry < |z| < fodf
4 d—1 4(Ro—|z|) e RotR
e m? T Tl (o R if £t < 2| < Ry

As a consequence we easily obtain the bounds (2.8). ]

Corollary 2.3 (Quantitative Caccioppoli Estimates) Let § > 0. Let Q C R? be a bounded do-
main, and let p > 0 and A > 0. Let u be a local positive weak solution in Q0 to —Au = AuP. For any
Br C Br, CC Q we have

80.}ng
(Ro — R)?

p
(2.10) )\/ - d:v+/ |V log(u + 6)|* da <
BRU+6

where wq denotes the volume of the unit ball in R?.



Proof. We use (12.2)), using the test function ¢ of Lemma with R replacing Rj:

uP 9 uP )
1 < — 1
)\/BRUJr(sdJH_/BRW og(u + 0)| dx_A/52u+5@dx+/gz<p‘v og(u +0)|” dz

2 . d
< / IVel® 4, < 8Ibupp(s0)2| __8walj O
Q ¢ (Ro — R) (Ro — R)
Note that the case § > 0 follows immediately from the case § = 0 since u > 0.
Remark. Letting 6 = 0 in the Caccioppoli estimates (2.10]) shows that

_ Swde
2.11 )\/ wP Tl de < —20
@11) Br (Ro — R)?

When p > 1 this yields a local absolute upper bound for the local LP~!-norm, a fact that will allow to
conclude an absolute local L>-bound in the range 1 < p < p, := d/(d — 2), as we shall see in Section [
This absolute upper bound represents a novelty both because it is quantitative and because it is local:
to our knowledge this is the first absolute local bound for elliptic equations. When p = 1 such absolute
bound is easily seen to be impossible, while in the case 0 < p < 1 we get an absolute lower bound for
the local LP~-integral, which is new, at least as far as we know. It will be used below.

2.1 More general nonlinearities

As long as we deal with local estimates, we can apply the method to a larger class of operators and
nonlinearities. (i) First of all, namely we can treat local solutions of:

(2.12) — V- A(z,u, Vu) = Au? |
where A is a Carathéodory function such that
Vg2 < A, €) € S wmle and  [Ale,u, &) < valél?
for suitable constants 0 < v; < v5. The proofs of the inequalities are the same, and the results contain

v1 (resp. v4) depending on whether you consider subsolutions (resp. supersolutions).

(ii) Second we can consider supersolutions of the problem

(2.13) -V - A(z,u,Vu) = f(z,u),

as long as f(u) > aguP with ag > 0, since they are supersolutions of —V - A(x, u, Vu) = ag u?.

(iii) We can consider subsolutions of with f(u) < ai(u+ b1)P, and ay,b; > 0. Then we can
obtain an estimate for v = u + b;.

The only thing that changes a bit are the energy estimates, and it is not so difficult to keep track of
the new constants throughout the proof. We have decided here to consider the model case, to simplify
the presentation and to focus on the main ideas.

(iv) Other semilinear problems of this type are treated in the literature. Thus, Ambrosetti and Prodi’s
book [2] discusses right-hand sides of the form f(z,u) = Au + c(u) + h(z), with a € R, ¢(-) € C°(R) N
L*(R) and h € C%*(Q), for some a € (0,1). Such nonlinearities can be treated with the methods
presented here as well. We refrain from dealing with it in this work.

3 Local Upper Bounds

This section is devoted to the proof of the upper bounds and we will provide two kinds of estimates. We
prove local upper bounds for nonnegative subsolutions, then by Kato’s inequality it is easy to extend
such results to solutions with any sign.



3.1 Local upper bounds I. The upper Moser iteration

The local upper bounds follow from the local Sobolev imbedding theorem on balls B C R?

1
(3.) 1oy < 53 (19 B+ sl R

where S; = S3(B1) is the best constant and 2* = 2d/(d — 2). We are requiring hereafter without any
further comment that d > 3. The Sobolev inequality combines with the energy inequalities of Lemma
which can be considered as local reverse Sobolev (or Poincaré) inequalities. The proof of the local
upper bounds goes though the celebrated Moser iteration. We adopt the notation || fl|re(B,) = I fll¢,r
we recall that |Bg| = wgR? and that fy f(z)dz = [, f(z)dz/|X|. Throughout this section we are
considering nonnegative subsolutions u to —Au = AuP, unless otherwise explicitly stated.

Theorem 3.1 (Local Upper Estimates) Let Q C R? and let A > 0. (i) Let u > 0 be a local weak
subsolution to —Au = P in Q, with 1 < p < ps = 2*—1 = (d+2)/(d —2). Then, for any
q>7q:=d(p—1);+/2 and for any Br., C Bgr, C Q, the following bound holds true

1+(p—p

- —p
(3.2) ||U||Loo(BRoo) <Ixg ][ u?dx ][ wP~tde
BRO BRoo

where ;1 = d/(2¢ — d(p — 1)) = d/2(q — §) , and the constant I, ; > 0 depends on d,p,q, Ry, Reo, but
not on \.

(if) For 0 < p <1 the estimate simplifies into

1/q
(3:3) [ullLee (Br) < Toog (7[ uqu> .
BRO

valid for all ¢ > 0. I 4 > 0 has the same dependence as before, and it also depends on A\ when p =1,
but not otherwise.

34 y
A
>
q -
Smoothing Zone y Mo Smoothing Zone
i dip—1) y dlp—1)
1 9> ——5—— p sy
o
o — ¥
0,5 1 15 2 Fs 25
P Ezxponents of the

local upper estimates.

Remarks on the result. (i) Inequality (3.2) is a kind of reverse Holder inequality, indeed we can
rewrite it as:

1 1+ 1
(3.4) lally 2 b ullee (s < C llullaisi !



Written in this form, it is clear from Holder’s inequality that a constant which makes (3.4) true for a
q > G, make the same inequality true also for all ¢’ > ¢. The same applies to (3.3)) .

(ii) The linear case p = 1 is well known, cf. [16] [19] 20].

Remarks on the constant. (i) The proof below allows to find the following expression for the
constant:

2(p—1)4 24*d(i*1)+ d
182w, d 2(d — 2)
Ig=|—"F"—— 5 X
(1—p) d=2/ (Vd—+/d=-2)

d
d—2 d—2 1)1 # a7
X [Ap+—+(1— 2nmx{d (12,}]}

(3.5)

where p = Roo/Ro < 1 and we have used the convention x4 /z = 0 when z = 0 and, moreover, we have
set Ay =2ifp#1, Ay =X/4if p=1, with

(d—2)q
(d—2)g—d »
(3.6) ¢ i= (a%)" a5 -1, 452
max ; -
=01 [(345) "7 [o- T (- 1)1 4521

ifq>(;i2

if 0<q< 7%

(iii) When ¢ also satisfies 0 < g < d/(d — 2), we will require in the proof the additional condition

2*—d(p—1)4 2" —d(p—1)4

log =01 log Z=d(z=D
M is not an integer, and we let ko = i.p. L()

(3.7) 1 5
Ogm Ogﬁ

(i.p. is the integer part of a real number). Notice that taking ¢ = p+ 1 > d(p — 1)/2 is possible if and
only if p < ps = (d+2)/(d — 2).

(iv) Of course, condition is not essential, in view of the remark after formula (3.4). In fact, let
q> % be such that that A(q) := log Miibi/log -7 is an integer. Take ¢ € (d(p —-1)4/2,9)
such that A(g) is not an integer. Then is valid with ¢ instead of gq.

Proof. We are going to use the energy identity (2.1) for any o > —1, a # 0, in the form (2.3)) valid for
subsolution, to prove LY — > local estimates via Moser iteration, keeping track of all the constants.
We divide the proof in several steps.

e STEP 1. Let u as in Lemma 2.1 and ¢ the test function of Lemma [2.2] which is supported in Bg, and
such that ¢ = 1 on Bg,. The local Sobolev inequality (3.1) on the ball Bg, applied to f = ulet)/2)
together with the energy inequality (2.3) (we can take § = O as in (2.6)), gives

2

(3.8)

[/ uo (et dx] <82 (/ ’Vui‘ dx + o / uott dx)
BR] BRl 1 BRl

)\(Oé + 1)2 / ubto a+l / a—HAQD dz + 1 / a+1 dz
4o Br, 4o Brg RQ
< 822 )\(Ck + 1)2 / up+o¢ dz + |:(Ck + 1)||A90H00 + 1:| / ua+1 dz
B 4lal B, 4lal RY| /gy,

)\(a+1)2/ ot { dla+1) 1]/ L
r— u @ dl’ + |t = uo‘Jr d.’E
Al gy, lal(Ro — R1)* R3] /gy,



in the last step we have used the inequality |Ap|s < 4d/(Ro — R1)? of Lemma [2.2) .

e STEP 2. Caccioppoli estimates and the first iteration step. Now we need to split two cases, namely
0<p<land1l<p< ps and in both cases we will use the Caccioppoli estimate (2.10) with 6 = 0
which holds for any p > 0 and reads

||UH 1 Roo 8
A—E= < .
| Br, | (Ro — Roo)?

(3.9)

Superlinear case: 1 < p < ps. We continue estimate (3.8) as follows:

2%
/ uT (@t qg
BRl

g Am+n2+{ d(a+1) 4_1]&%““““ [ v
2 4o lal(Ro — R1)? " RY] [y, wrtedz | Jp,,

Ma+1)? { dla+1) 1 ] |Br, |
<(a) S? + + o / uPt dz
(a) 2( 4o o (Ro — B1)? R3] [, wrtdx ) Jp,,

2|B 1)? |lu 1 1
82| R0| A(Ol + ) || Hp 1,Ro + l: d(O( + ) > + 2:| / up+a dz
TP\ el [Bayl [l (Ro — R0 B2 ) [,

Ss|B 2 1)2 d 1 1
< i1 ROI ( (a+1) 2+[ (a+1) 2+2D/ PO dy
[l =" o \Jal(Ro — B2 ' [Jal(Bo — B2 " B2)) [y,
— 82|BR0|
(Ro — Ry)?[[ul"} s,

where in (a) we have used the convexity in the variable > 0 of the function N(r) = log||ul|}, the
incremental quotient is increasing, hence choosing o + 1 > @ > 0, we obtain

(3.10)

L (e +1)? + dla (Bo — 1) w e da
{Ia| (2(a+1)*+d(a+1)) + I ]/BRO d

_ _ —lta
Np-1+3)-N@ _ Na+p) -Na+1) . Jelp_iis e
p—1 = p—1 lullg = Jlullgti
Then we have
IIUllgiﬁ [0 = Y 1 ||u||1’j
= = LIS |l |P=L, o > [Bry |71 By | T u [ .
HUIiﬂ [ull$ [ullg p-ism 2 B, ’ ~ |Bg,|

since by Holder inequality:

—(p—1) 1 1
atp—1 and llullp—14a > |BrlaF»=1 2= [[ul[p—1.

In (b) we have used the Caccioppoli estimate (3.9).

Sublinear case: 0 < p < 1. We first assume 0 < p < 1, we discuss the case p = 1 separately. We
continue estimate (3.8]) as follows:

(3.11)

* f uPT dx
2" (a41) 2 o+ 1 Br d(a—i—l) 1 / atl
u2 dx <8 + + = u*ttde
VB ] ? ( 4af fBRU wettde * la|(Ro — R1)? Rt ) g,

2(a+1)? dla+1) 1
<S; < + + — / u*t dz
> \lal(Ro = Rw)? * [al(Ro— R1)?  RY) /g,

= (ROLS‘QROO)Q [|o¢1| (2(04 + 1)2 +d(a+ 1)) + mr]%zfﬂ] /BRO w1 e




which follows by the convexity in the variable r > 0 of the function N(r) = log ||u||", which implies that
the incremental quotient is increasing, hence choosing o + 1 > @ := [y > 0, we obtain

—14+a
Np-1+a)-N@ _ Na+p) =Na+1) . Jelpoids e
p—1 - p—1 lullg ~ [lullg:
hence
+ (1-p) 1_p
S u " da _ llullaty - lulg=tiZh)  1Br'® _ I3l m, 8
Jpp, wettde Jullgi T Hull% T llullz T Brel T AR — Re)?
again by Holder inequalities, we just stress on the last step in which we have used that
1-p
— o u
L S SN/l L =V SO B
|Bl’30|ﬁ |BRO|g Hu”a P IBRol )‘(RO - Roo)

which is true since p — 1 < 0 < @, and in the last step we have used the Caccioppoli estimate (3.9)).
Notice that when p = 1, we obtain directly that

2

2% . AMa+1)2 dla+1) 1
(et g < 83 ( + TR / "
u z| < u x
[/BR1 ] 2 4al lal(Ro — R1)? i Br,

= (Rong) L; <A( +1)° +d(a+1)> B Ro) ];%RI)T /BRO ut da

The first iteration step. We can write the first iteration step for all p > 0 in the following way: let
B =a+12> fy >0 and recall that we are requiring 5 # 1 as well, then inequalities (3.10) and (3.11)
can be written as

(3.12)

2
=

(3.13) V uTh dx] < I(p,B,Rl,RO)/ wPHr=D+ dg
Br, Brg
where
S3 |Br,| ApB?+dB | (Ro — Ri)®
3.14 I(p, B, Ry, Ro) = 2 ° 5
(3.14) (p, B, R1, Ro) (Ro — R1)? [, w10+ da [ 18— 1] R?

where Ay, =2ifp#land A, =N/4ifp=1.
e STEP 3. The Moser iteration. Let us define the sequence of exponents /3,, > 0 so that

2% 2%

Bnt+(p—1)4 = ?Bn_l that is 3, = Eﬂn—l —(p—1)+

it turns out that, for any given Sy and all n > 1:

(3.15)
2”[%— - ,; )] e ()
[ d

[T 52 - G- oo 52

since Z§=1 57 = (1 —s*)s/(1 — s). Moreover we have that for all p > 1,




Requiring that 8y > (p—1)4+(d—2)/2, which will be assumed from now on, then implies that 3, — 400
as n — +o0o. We shall also require that 3,, # 1 for all n.

We will explicitly choose a decreasing sequence of radii 0 < Reo < ... < R, < R,,_1 < ... < Ry in the
next step, in order to estimate explicitly the constants. The first iteration step then reads:

2% Bn
26 R, = l / uzhn dz] < I(p, By Ry Ro1) l /
(3.16) Br B

[
Bn+(p—1)4 2% Bpn—1

1
Bn
u(p71)++ﬂn dl“|

n Rp_1

— I lullg, s (p1)y Ry = 17 ||U||2*ﬁn R,
where the constants I(p, 8, R1, Rp) are defined in (3.14]). Hence
82 |BR | 2/32 + dﬂn (Rn—l - Rn)2
3.17) Iy =I(p,Bn, Ry, Ru1) = 5 o
( ) ( 1) (Rnfl . Rn>2 fBRn,l w@=D+ dz ‘Ign _ 1‘ R%

Iterating the above inequality yields

2* Bn—1

B B R R (%) 752
2* Bn,Rn < I ||un||2* nl R, S Inn I n—1 Huﬂz||27 o ;2
(318) 1 2% 1 2*\n—1 1 2* "5 ki 2* n=Jj 1 25 \n B
Bn 7 Bu (7) Pn ()" 5 B (7) B
S In I’n—l T Il Hun”g Bo,Ro U | BO,RO
with d—2 2 d(p— 1)
- _ ) p—1)+
>——(p—1 = —f > ————
Bo s P=1D+ or  7:=—h 5
Taking the limit as n — oo we obtain
n w\n—k —
— | 3 (27) Ei (P 1y
lulloo,ro = M Jlullzp g < nlggokﬂfk ull 2
=1
(3.19) vy s -
. 5 o 7—( Dy 2q—d(p—1)
< Jim TL5™" Sl = Ll
k=1
2% n—ki
notice that the penultimate passage follows because we shall see below that [];_, I, ,g =) has a

limit I, as n — +oo.

As a consequence of the above estimates u € L, so that the above bounds holds for any § > d(p—1) /2
as stated, provided we show that the constant I, is finite and can be estimated as in (3.5)).

e STEP 4. Estimating all the constants. Now it remains to estimate I,,. We will prove later that
%72k

(3.20) I < Io(p) {2]

where Iy(p) will have the explicit form given in formula (3.25)). Using such bound we show that

o TT )T (2)_k(%)"ﬁ
I = ”1320,91:[1116 nl;rr;o exp Zlog

k=1
r 2* n 1 n 9 k
= nlin;oexp (2> 3. z:: (2*> log (Ik)]
i n n k 2k
_ 2\" 1 2 2"
< Jim e | () ;Q) log (10 5] )1
. 2\" 1 A 2\ = (2 )"
= nlgrgoexp (2> ﬂ—n <log(Io)k§_:1 <2*) + 2log (2) 2 <2*> k)]




—o lﬂo = d;21<p —1)+ <10g(10) : (22>k 2los (22> : (22)k k)]
d(d - 2)

= exp [250 — 722)@ . <log(10)d = 2 4 2log (22 d4_ 2 )}
o {250 - (dd—_;(P - 1), log(o) + 280 — ((51(61_2)2(39 -y o8 <22*> ]

d—2 * o dd=2) x\ d 2ﬂo*(dig)2(P*1)+
_ @ ey (27 PR hy 2
=1 2 EAE)

We shall now obtain an explicit estimate for Iy in order to finally obtain (3.5)).

Estimating I,. We want to obtain estimates (3.20)), and to this end we choose a decreasing sequence of
radii 0 < Roo < ... < Rp < Rp_1 < ... < Ry such that

2 0 -1
(Rr_1 — Ri)? = (Ro — Rso)? % with  ¢g = (kz_l \/g>

> (Rk-1— Ri) = Ry — R
k=1

so that

We now estimate Ij:

I, — 822 |BRk—1| Apﬁ]% + dﬁk (Rk—l - Rk)2
* 7 (Rio1— Ri)? Jpp,  wtr Ve de [ [P =1 Ry
_ 822/8]% |BR1€71| A + i + (kal - Rk)2 ‘Bk - 1|
1Be — 1/(Rr—1 — Rg)? fBRk_l ulr~D+dz [P By R? B2
S35, | Br, | d  (Ry— Rx)? |Bo—1| 1
_(a) CO|51€ _ 1|(R0 — Re )2 fBR v@=D+ dz p + Bo + Rgo max 53 '
015225k | BR, | d (Ro— Rx)? |Bo—1] 1
< Ap+ — —
_(b) Ro — fB 201 da p+ By + Rio max 53 >

20,53 [507( 71)+%2] | Br,| d | (Ro— Ro)? Bo—1] 1] [2°]™
I 7 oy v el L R R | )
_ 2 _ %7 2n
2d - z>clsg|BRo| e g Bon Pl flB 1 ) (2]
(\f Vd=2)*(Ro— R o) [, uPV+ dz Bo R, By 4 2

in (a) we have used that

(3.21) /Bkﬁg 1 Smax{ﬁoﬁg 1|7 le}
In (b) we have also used the inequality
7 if By > 1 )
= (p-1), 42
(8.22) &f)k TS max 2t 550 < By < 1 with ko = ko = ip. 8 oy BT

1207 Bro+i—11 log 795

12



which we state in the general case p # 1 for later use and we now prove. First notice that the numerical
inequality

S a b
< _— for all 1 11
|s_1|_max{1_a,b_1} orall0<a<1<b< +oco and all s € [0,a] U [b, c0)

holds true. When Gy > 1 follows applying such numerical inequality to s = [; and noticing
that B > Bo = b > 1 and that the function z/|x — 1| is decreasing when = > 1. Suppose instead that
0 < Bo < 1. Notice that, since we are also requiring that Sy > (p — 1)4(d — 2)/2, this is possible only
when 0 < p < p. = d/(d —2) < ps. We define ko to be the greatest integer for which 8 < 1, so that
Bro+1 > 1, so that

IOg —(p— 1)+
Bro <1< Bry+1 with ko = i.p. Po—(p dl) 2
log a—3
and we shall take Sy € (0,1) such that
1—(p—1)4 452
og —— 2~
(3.23) el 1)+ is not an integer.
log )

The elementary properties of the function x/|x — 1| then show that, for all k:

d ko+i . »
ﬁ Bko"r’t a—2 [/60 - (p - 1)+T] —+ (p — ]‘)"FT
‘Bk - 1‘ i= %)% m B g%ﬁ g \Foti S, ~
(ﬁ> [Bo— (P =112 + (- D452 — 1
ko—1+1 - Al -
- (%) [7— 5] + (p— 1), 452
- ZIE%?% d ko—1+1i B (r—1)4
(m) [q } +p-1)4+452 -1

as claimed, where we have put Gy = 2%5 = dT and g has to be chosen such that - holds.
In (c) we have used that B = 50(2*/2)% > B

z _2}+(P—1)+d;2<2[22*]n [50—(P—1)+d§2}

(3.24) Bn = {] ’ [50 - (- 1)+d

2

Finally in (d) we estimate 1/c3 as follows:

(57 Caotimm ()

since the explicit expression of §; shows that

vl

)2_ 1 d—2
(B -1+ (V- Vi—2)?

and

13



We conclude that we can take Iy(p) as follows for any p > 0:

(3.25)
- o ~ R’ -
() — —24=2) s |Br,| BB (ool 1]

Ap+ —+ -
(Vd— vad—2)% (Ro— Reo)? [, u=Dedz 7 fo R2, g 4

and c¢; given by (3.22)) and we recall that A, =2 if p # 1 and A, = A\/4if p = 1. The proof is concluded
once we let By = 2¢/2* as in the previous step. []J

3.2 Local upper bounds II. The linear case with unbounded coefficients

The local upper bounds for nonnegative subsolutions to
—Au="b(z)u
with b € L"(Bpg) eventually unbounded, follow from the local Sobolev imbedding theorem on balls
Bgr C R4
1
(3.20) 1o < 3 (197 R0y + 72 o)

where Sy = Sy(By) is the best constant and 2* = 2d/(d — 2). In the case f € Wy'*(Bg), we have
(3.27) 1112 3y < S3UVFIE2(50)-

We are requiring hereafter without any further comment that d > 3. We adopt the notation || f||r«(p,) =
I £lg. and |Br| = waR?.

3.2.1 Energy Estimates and Reverse Poincaré inequalities

Lemma 3.2 Let v € L? (Bg) and b € L"(Bg) for some v > d/2. Then for any § > 0 the following
inequality holds

2 (1)

. K > zr—d
(3.28) b(z)v?(x)dz < § {/ v? da:] + %W}ﬂf" [ b () dﬂi] / v*(x) dz
B 5 2r—d Br Br

Br R
where
% —d d S
3.29 K .=~ r
( ) m.d rd d+r(d-2)
Proof. Let us estimate for any 0 < & < 2:
e 2
by(2—)+e qyp <(a) [/ 0(29% dm] {/ b%v‘f% dx}
Br R Br
227*5 %
<w) |Br > {/ v dx] {/ bEyss dx}
Br Br

2 4
5o(2 — Rk i
<(e) 82— ¢) {/ v? dx] + i,a |Br A [/ b2yt dx]
2 Br 260° Br

—2 1T 20— . na
<002 T 2D | [ vad T [ ae
rd Br Br Br

2rds, >
3 [/ b" dx} o / v2dz
Br Br

2 d+r(d—2)
PR T 2r—d

. ¥ 1 2r —d rd
< 2 B
S0 [/BR ! dx} " sUEE2 rd [d +r(d— 2)] IBr
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where in the step (a) we have used Holder inequality with the conjugate exponents s = 2*/2 = d/(d—2)
and s’ = s/(s—1) =d/2. In (b) we have used the inequality

2% 22—*5
[/ v(2_8)% dx} < 2% {/ v? dx]
BR BR

In (¢) we have applied the Young inequality, valid for every o > 1, g > 0, a,b > 0:

500_ 0'—].bﬁ
—a’ +

ab < T
g g 5ﬁ

with 0 = 2/(2 —¢), so that o/(c — 1) = 2/e. In (d) we have used the estimate
d
27

4 4 2r—d 4 _d
4 de T de a4 on 3 de Sr—d
{/ b2v°2 dx} < {/ b" dx} [/ v¥23r—d dx] = {/ b" dm] / v2dx
BR BR BR BR BR

where in the first step we have used Holder inequality with the conjugate exponents s = 2r/d and
s’ =s/(s—1) =2r/(2r — d) (notice that we are assuming r > d/2, hence s > 1), while in the second
step we have chosen 0 < ¢ = 2(2r — d)/(rd) < 2. In (e) we have put

d+r(d—2)

9= rd

notice that § > 0 is in fact arbitrary since for every fixed r we can choose appropriately dg to get any
given value of § by the above definition of §. []

Theorem 3.3 (Reverse Poincaré inequality for subsolutions) Consider a weak subsolution u to
—Au = b(z)u on Br with b € L"(Bg) with r > d/2. Suppose that u € L*TY(Bg). Then for any
positive test function p € C3(Br) with V| =0 on dBr we have that for any R > 0 and o > 0:

(3.30) / Va2 [*0* dz < K@) / uetl dg
BR BR

with
K® ] = K@ (b, R, o, 0,7, )
(3.31) a+1

rd
2[d+:(:j—2) (a + 1)2 Sr—d
2MﬂaMAwmm+Hszo+szﬁZd(:ky Krallol

Remark. The requirement u € L'T%(Bg) will be dispensed with later, without further comment by
using a Moser iteration technique.

Proof. It will divided into several steps.

e STEP 1. Energy estimates. Proceeding as in (2.3)), one shows that subsolutions to —Au < b(x)u,
satisfy, even for any a # —1:

da / 1
3.32 — \Va dx < utIA 2dx+/ but Tl de.
( ) (a+1)2 Jp, | a+1 /g, 14 Br ¥

e STEP 2. Sobolev inequality in Wy'>(Bg). We apply inequality (3.28) of Lemmato v=uletD/2p ¢
1,2
Wy (Br) so that for any 6 > 0:

(3.33)
at1 2" K, 4 mia
butp?de < 4§ {/ (u%cp) dx} + W|BR|2* [/ b" dx] / u*tp? do
Br Br (57 Br Br

15



where K, 4 is given in (3.29). We notice that v = u(®+1)/2p € T/Vol’2 (BR), so that the Sobolev inequality
(13.27) reads

2
2%

{/ <ua$lgp)2*dx} <S8 /|Vu2 |d:c
Br

(] 1
=83 [/ |vu%}2<p2dx+/ V| *ut? dx+§/ V? - Vuttt dx]
BR BR

=Sz [/ ’VuaT‘ <p2dx—/ Lp(Agp)uo‘H dx]
Br Br

since Ap? = 2pAp + 2|Vp|2. We combine the above Sobolev inequality with (3.33)) to get

bu® T p? de < 5852 {/ |VUQT+1|2<,02 dx —/ @(Agp)uo‘ﬂ dm]
Br Br

d
K 2r—d
+ = * [/ b" dx} / w1 p? dz
5 Br Br
where K, 4 is given in (3.29)).

e STEP 3. Putting the pieces together, i.e. combining inequalities (3.34]) and ( we obtain

(3.34) br

da a1 2 o 1
— Vu ™2 de < —— u® A 2dm+/ bu®tp? dx
<a+1>2/BR’ e v PR
1
< — uo‘+1Ag02 dx
O[-'—l Br
+ 682 [/ \Vuaff@?dx—/ o(Ap)ut! dx}
Br Br
Ko e
e [/ brdx} / uTlp? dx
0 2r—a Br Br
which thus implies
40& atl 2
— — 52 / Vu 2 2dx
<<a+1>2 ) s
1 atl A, 2 2 a1 Krq 2 r 7 a+tl, 2
< — u* T Ap®dr — 685 o(Ap)u diC—i—m b" dx e dx
a+1 Br Br “or—d Br Br
< (225 4583) lellellAgllo + — IV + (v . [ wria
= —— i x u x
< a1 2 Plloo || APl o+l Plloo By B
Letting 655 = @ +1)2 gives the following reverse Poincaré inequality:

/ ’VUQTH‘Qade:EgAO/ u* Tl dr
Br Br
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with the constant that we can estimate as follows
(a+1)2 [2(2a+ 1)

Ao =
2« (a+1)2

rd
2[(d+r(d—2)] 20 (a+1)2 2r—d
S 2r—d K
T (a+1)2 < 2a

2
[elloll Aplle + —— 1901,

2*

%|Br

b|| 2r— d]

rd
2dird=2)] /(o 4 1)2\ 74
el Sl + [Vl + 57 7 (O Kralloll

a+1

IN

-

In fact, the last bound in the above formula for K)[b] could be avoided, but will make the following
calculations somewhat easier.

- (a+ 1)1+%

rd
d+:(d 2)] a+1 2r—d
2ellsollAplloo + 1Vpl% +8y ( . ) KrallelZ

7 ] = K® ). O

Lemma 3.4 (Numerical Iteration) Let Y, > 0 be a sequence of numbers such that
(3.35) Y, <I% 'Yy with I, < I,C"

for some o,1y,C >0, 0 € (0,1). Then {Y,} is a bounded sequence and one has

< o0
(3.36) Yoo :=limsupY, < [, ’ CG-6? Y.

n—-+oo

Proof. We iterate inequality (3.35) to get

n— ocon 1 n— n— nt j -nJ
Yo <170 Y < (00 Yoy = g7 Crm 0y, < TT a5 ¢
Jj=0

IJ Y50 0 C° Sy 307 Yo

o oo -nJ g _ fe’)
We thus get, as n — 400, Yoo < I, 25%0 C"Za‘=039 Yo =1, Ca-9%Y,. ]

Now we are ready to perform the Moser iteration, by combining a local Sobolev inequality with the
reverse Poincaré inequality of Theorem and then using the above numerical Lemma.

Theorem 3.5 (Moser Iteration) Let u > 0 be a weak subsolution to —Au = bu on Br with b €
L"(Bg) withr > d/2, and let ¢ > 1, Rs < Ry < R.

3
K5 [b)

rlll
q

(3.37) [ufloo, e <

Ullq,Ro
0 — oo)

with constant

2

rd
d\ 2(@r—d)q
3 _(ad
K§>[b]_(2d>

x(Ro = Roo)| Br, |7

rd

8q(d+ 2) n ‘SE = 2r —d qrd =g
qg—1 2 rd (¢g—1)[d+r(d—2)]

d
R*Roo 2] 2
Prr: +<0 )
Roo

(3.38)
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Notice that in the case of bounded coefficients b(x) € L°°(Bpg,) we can pass to the limit as r — oo in
the above expression of Ké?’) [b] to get

x(Ro = Roo)’| Bry |7

(3.39)

Proof. The proof is divided in several steps.

e STEP 1. Sobolev and Reverse Poincaré inequalities. We start choosing radii rq, 79 with Ry, < 11 <
ro < Ro and use the test function of Lemma on the balls B,,, B,,. We use the Reverse Poincaré
inequality (3.30) on the ball B,, and the fact that ¢ =1 on B,, to get

/ ’Vuajlfdxg/ |Vu 2 |2<,02dx§K(2)[b]/ utl dx
B

1 70 BTO

so that the local Sobolev inequality in W12(B,.,) applied to f = v for any o > 0 yields

(1

2
*

2
¥ o 1
u%(a“)dx) < S l/ ‘Vu +1| dx + 2/
B, 1 JB

1

1
<83 (K(z)[b] + 7“2> /B ut dx
1 .

0

uott dx]

T1 71

(3.40)

where the constant K (2 [b] is given by (3.30), and we can estimate it as follows:

(a + 1)1+#§d
«

E®b] = 2 elloo,ro | A¢lloo,r + 1V lZ0 g

_ rd 14 52d rd
2[d+r(d—2)] a+1\Z4 2 —( rd 2r—d _rd
S 2r—d B’r‘ b 2:—11
+5, () 2 (=) Wl Bl FIIEG,

rd

a+1 rda_ | 8(d+2) 2Addrdo2)] S+ 1\24 2r —d
< 1 2r—d S 2r—d
=) 7y (a + ) (ro —r1)? t o 20 rd

rd I N
g <d+r(d—2)> B #0153, >]
rd 2[d+r(d—2)]

(a+1)>1 a+1l S z—a 2r—d
<p) ————— |8(d+2
=0 Tl — 1) [ (d+2) a 95+%7 rd

(a+1)rd =3 2 E

g <a[d+r(d— 2)] (Ro ~ Foc 1B #1015

where in (a) we have used the fact that the test function of Lemma2.2]satisfies [|¢]loo,ry = 1 |V@loo,re <
4/(ro —r1) and ||A@|loo,ry < 4d/(ro —71)?, and in (b) the fact that 0 < Ry < r1 < 19 < Ro. Finally
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we get:

2(d+r(d—2)]

rd
1 (+1)21 a+1 827— 2r —d
SI(K@p+ = ) <82——2  |8(d+2
2( H+r% =2 (ro—ry)? (d+2) e 274a rd
(a+1)rd to—a e 1 (0—7"1)2
_ Ry — B b|| 7 _
(ainsa) | (o RPBRIFIE, +
(3.41) )
_rd 2[d+r(d—2)]
a+1)77 a+l S -7 2r—d
< 52(7 8(d + 2
=2 (rg—1)2 [( +2) ! + DE=r rd
rd 2
(a+1)rd \'T7e sl Ry — Reo
e Ry — B b % 0 e
() o RPBRIF BTG, + (o

we have also used the fact that a > 0.
e STEP 2. The Moser iteration. We now fix fg = a+ 1 > 1, and we define the sequence

fu= L Bucr = (22) By

Next we pick a sequence of radii Ry = Too < ... < Ty < Tp_1 < ... <79 = Rp, such that

rdn

2\ 2r—d
(Tn—l - Tn)2 - C% (RO - Roo)2 <2*>

with

0 ) 2(2:‘d—d,)k -1 9% 2(2:’1_,1) 9% 2(2:‘i—d) ) 2(+d_d>
. = D = —_ — > _— = = _—
o o= (32(5) (5) =G ()

where the inequality in the above formula is easily shown to hold when d > 3 and r > d/2 as assumed,
so that

oo

> (rk-1—7k) = Ry — Roo,

k=1

the above series being convergent. With these choices, inequality ([3.40) in which o 4 1 is replaced by
Brn—1, this being allowable since £, > 1 for all n, and 71,7y replaced by r,,7,-1 reads, noticing in
addition that 8,/(8, — 1) < Bo/(Bo — 1) for all n,

2

27
. 1
(/ w7 on dz> < 82 ( K@)+ 2> / uPnt dz
B, Tn B

Tn—1

2[d+r(d—2)]

By Sy T 2r—d

S387Y Bord -
S+ 25T+ =g ((60—1>[d+r<d—2)]>

n—1

(rn—l - Tn)2

Ro — Rs
<(o = R B F T Gy + () | [ st [ wra
o0 B"nfl BT'nfl
Letting Y;, := ||lul/g,,r,, we have obtained
5n 1 ﬁn 1 %(2%)”_1 0'9"71
Yo = llullg,,rn < L2300 ullpy s Ry = L0 Yooa = 1,2 Vo1 =132 Yoo
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where we have set 0 = 1/ and 0 = 2/2* € (0,1). We shall prove that I,, < I,C™. Indeed:

(3.43)

2[d+r(d—2)]

Bo S T 2r—d Bord e
S+ 25T+ = <(ﬂol)[d+7’(d2)}>

% + Ry — Roo ?
LT(BR()) R

(o0}

rd

82 2r d
I, = 2=l
(Tn—l - Tn)

x(Ro — Roo)?|Br, |7 ||b

rd 2[d+r (d 2)] rd

2r—d _ 1+
Bo S 2r —d Bord 2r
<50 |8(d+2 +
c§(Ro — Rc)? 8 )BO -1 PEre rd (Bo—1)[d+r(d—2)]
2rdn
2r—d RO - ROO ? 2" 2r=d
- epman (] (2

2[d+r(d—2)]

ﬁ 82 2r—d ( ﬁo?"d )1+2r a
ﬂo*l 2% (50* D[d+r(d—2)]

9% e
— Cn—l
1G) =

where in the last inequality we estimated cy as in (3.42)). Finally we use Lemma with the above
choices of o and 6, thus proving that

8(d+2)

rd _rd
_(d-2\FT 5T
- 2 (RQ*R )

2r —d 2 2 2rd Ro—ROO
x rd (RO_ROO) 2 (BR)+ T

(oo}

o -0 _d_ d(d—2)
Yoo I3 OO Yy whichis  fulleo,re S Ig7° C 0 |fullgg,ry = K§V ] |[ullso,ro

which is exactly (3.37]) with

rd2
yp _ (d=2\ T g b ST Bord e
K@) = (222 0 18(d+2) e+ STy B
2 (Ro — Roo) Bo—1 27 -a (Bo = D[d+r(d —2)]
o — d I Ro—R\?]™0 [ d \"wm [ 4 \Feh
< S B0 = R By 01 3, >+( Ree > <d—2> (d—Q)
rd3 S - 2[d4r(d—2)] 1+
< (d) T BT gy S T ( e ) B
=\2 (Ro — Ro)70 Bo—1 97 (Bo = D[d+r(d - 2)]
b

2r —d 9 2 Ry — Ry ?
% rd (RO_ROO) ‘BROZ (BR)+ T

as in (3.38]). The proof is concluded once we let Sy = ¢ > 1. [

3.2.2 Extending local upper bounds. A lemma by E. De Giorgi

In this section extend the local upper bound of the previous section. More precisely we show that a

bound of the type
.
PE—

Ullg,R

o < —"—
(1)}

which is valid for any ¢ > 1 and any a < r < R < b indeed implies that

[elloc,a < ———— llullgo,p



for all go > 0 and and any a < r < R < b maybe with a different constant A. The proof relies on the
following lemma, originally due to E. De Giorgi, whose proof is contained in several books and papers,
see for example [20], Lemma 6.1.

Lemma 3.6 (De Giorgi) Let Z(t) be a bounded non-negative function in the interval [tg,t1]. Assume
that for tg <t < s <t; we have

(3.44) 2() <02+ (s

with A>0,a>0and 0<0<1. Then

Ac(a, A, 0)
(3.45) 2lt) = G 5
where 1
clay A, 0) = TES\E (1_%) for any A€ (93,1).

Proof. Consider the sequence {s;} defined by
to =S50, Si+1 = Si + (1 - )\))\Z(tl - to)

so that s, = to + (1 — A\)(t1 — to) Zi:ol A" and in particular s 1 t; as kK — +oo. From (3.44)), by
induction we get

A [
Z(to) < 0" Z(sk) + (1= N2 (ts — to)™ ;) {Aa}

Since /A\* < 1 by assumption, the series on the right-hand side converges and therefore taking the
limit as k¥ — oo and using the boundedness of Z we get (3.45)). ]

The above Lemma has important consequences, indeed it allows to prove that if a reverse Holder
inequality holds for some 0 < ¢ < @, then it holds for any 0 < ¢¢ < §.

Lemma 3.7 (Extending Local Upper Bounds) Assume that the following bounds holds true:
K
(3.46) [ullg,r < R—ry lullg,r

for some 0 < q <G,y >0 and for any Roc <1 < R < Ry. Then we have that for all 0 < qo < ¢ <@

a(@—qop)

La_a0) (7 —q0)\’ K 0D
3.47 Ul < 3-20@-9 4y = u .
(3.47) Julg 5. < [( wig) Foms| e
Proof. Define, for t < Ry, the bounded nonnegative function
Z(t) = |lullLacs,) = llullge

then (3.46|) reads, for s > ¢,

K K _
(3.48) Z(t) = |lullg: < G0 llullg,s < G0 [l g T llullZ s,
where in the last step we have used that for all 0 < ¢p < ¢ <gq < 400

0(@—4q) q(a—a0) =

1— _ a(@—a0) 9(a—a0) . . q(g - QO)
lullg,s < llullgy s llullgs = llullg:s ™ lJullgs ™, witho = @) [0,1)
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Inequality (3.48]) gives then

K 1 (29 K) T
Z(t) = HUHE,t < (s _ t)7 Hu| éo,s Z(S) < §Z(S) + (S _ t)ﬁ Hu”qmé
(3.49) .
1 (29K)T7
< -Z -_—
<3260+ e Il

where we have used Young’s inequality valid for any v > 1, a,b > 0, ¢ > 0O:

e —1 buzl bt/zl
abgfa”—ky — <ed” + —
1% V. ev-1 ev—1
with the choices
1 K 1—0o
521/2 a:Z(S)U, 1/:;>1 and b:m”'l” q0,Ro"

Inequality (3.49) is of the form appearing in Lemma with @« = v/(1 —0) > 0, § = 1/2 and
A= (2°K)™7 |ullgy,r,- Thus we get

1 il 1
c(a, A\, 0)(29K)T—7 y \T7 (27K) T
IMlane = Z(o) < SR ELN fuly <5 (72) 7 i,

2(5(:510;
S q(q _ q0)>’Y K rGED)
=3.2%0@-9 dy=—— "
[( VCIO(Q _g) (Ro — Roo)? l[ullgo, Ro
noticing that
7 U Y q(q — qo)
= — P and o= =7

T l-0  q@—9)
which is the desired bound, once we notice that whenever § < A* < 1,
1 2(1+6) 12 4

VI (s 22—+ -0 - 45 —32]" =P

since we can choose 1/2=0 < A\* = (1+6)/2 <1, and since a =v/(1 —0) > 1,

(41/“ —»31/a)(1:> 4

T 4a e

since we know that a'/® — bY/® > a'/%(a — b)/(aa), for all a > b > 0 and a > 1. []
The above lemma can be used to extend the local upper bounds (3.50|) of Theorem (3.5

Theorem 3.8 (Local Upper bounds, unbounded coefficient) Consider a weak subsolution u to
—Au =bu on Br with b € L"(Bgr) with r > d/2 Let 0 < Roo < Rg < R. Then for any qo > 0, the
following bound holds true

_d_

AW Sl 240
(3.50) lulloor. < __QOyiL4g)+aAg)W)ﬁquw} llullgo. 7
with
(qodd ﬁ if go > 1
. od ) ’ 0 )
(3.51) AQO T 2d41 ¢ o a (q0+1)d? ﬁ ;
3270 (,70) (T) v f0<q <=1,
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2
q0(d+2) R—Reo .
(3.52) A2 . 8 1 T ( Roo ) ) ifqo>1,

q 2
° 8(’10+1q)0(d+2) + ( ioo) , if0<qo<1,

rd rd
S3\2=4 2r—4 ord I+575 ‘
(3) . (72) 2”1 ((qo 1)([1d+r(d 2)]) (R— Rw)? , ifgo > 1,
(353) Aqo S2 Frd (ot 1)rd 1452
T —d +1)r T— )
(72) i <q0[§ir(d,2)]) (R — Roo)? f0<qy<1.

Proof. The upper bounds ([3.50) of Theorem can be rewritten as

KP[b)
(3.54) lulloo,r < ——5 l[ullg,r
(")}
for any ¢ > 1 and R, <r < R < Ry, where K§3) [b] is given by (3.38)). It is clear that inequality (3.54)

guarantees that we can use Lemma with0 <¢g=¢<+oo=7q,y=d/¢g>1,K = K(ES) [b] and for
any Ro, <r < R < Ry. Then we have that for all 0 < gg <g=g¢

1q\ KPm | s (d\E KB
45170 m lullgo.ro =3-2 0 | — — - lullgo, R0
0 — {teo) 1

do (RO - Roo)%
since we can always choose ¢ = qp + 1 > 1. Finally we notice that we can rewrite the upper bound for
all gg > 0 in the following form:

lulloop <3-270°

_d_

_rd 2qq9
- (40 + AP, | Toln

)

(1)
T —
0 — 1o%)

where Agj) are as in (3.51)), (3.52)) and (3.53)) respectively. []

The above Theorem has the following important consequence, when applied to the equation —Au = AuP.

Theorem 3.9 (Local Upper bounds, second form) Consider a weak subsolution u to —Au = AuP
on Br, with A\ > 0,1 <p<ps=2"—1=(d+2)/(d—2). Let 0 < Roo < Ry < R. Ifu € L"(Bg,) with
7> d(p—1)/2:=7 then the following bound holds true for any qo > 0

A(l) d(p—1) %lipfll? %
(3.55) ulloo,r < q]; z AD 4+ ADNTTD |u| T | ullgo,r
0 — o0 ) 10

where Agj) are as in (3.51)), (3.52) and (3.53)) respectively.

Proof. Since u is a subsolution to —Au = \u? = bu with b = AuP~!, we need to assume that u?~1 € L"
with 7 > d/2, which amounts to require v € L” with 7 =r(p — 1) > d(p — 1)/2, so that

d
2r—d -
z-a = r(p—1) _ el %
IIbHLT(B A u dr = AT ||| T,
BRO

Finally, we can apply the bounds of Theorem to get the bounds (3.55) with the constants written
above. []
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4 Lower bounds

The lower bounds can be obtained in two steps: first we perform a Moser iteration, then we need reverse
Holder inequalities, which are a consequence of the celebrated John-Nirenberg Lemma.

4.1 A short reminder about the spaces MP((2).

We recall here some basic definitions and properties of suitable functional spaces, that will be used in
the sequel. We omit the proofs, but we give appropriate references.

We say that a measurable function on  C R? belong to the space MP? () if and only if there exists a
constant K > 0 such that

d(p—1)

/ |flde < KR™ 7 for all Bg(xo),
QNBr(zo)

and we define the norm on MP?(Q) as follows

d(p—1)

I fllare () =inf S K >0 : / |flde < KR for all Bg(xo) ¢ -

QNBR(zo)
One can easily check the strict inclusion LP(Q2) € MP(Q) for all 1 < p < oo, and when 2 is bounded,
the equalities L1(Q) = M1(Q2) and L*°(2) = M>°(Q). Moreover it is easy to check that when € is

bounded one has:
d(p—1)

(4.1) Il < diam(@) ™5 | Fllasm(-
We now proceed with a series of results that relate the Marcinckievitz norm with the Riesz potential
_ fy) :

We collect hereafter some well known results, whose proof can be found for instance in [19].

Lemma 4.1 Let V, be defined as above. Then the following holds.
(1) The operator V,, maps continuously L*(Q) into L"(Q) for any 1 <r < oo satisfying

1 1
0<=--<p.
s T
Moreover, for any f € LP(Q),
( +1) s(r+1)—r
s(r —r ST - s(urtl)—r
[V fllr < (s(,ur—l—l)—r) wg Q= (I f s
(i1) Let f € MP(Q), withp > 1/u > 1. Then
p—1 . 4
Vulf](@)] < P 1d1am(9)p(p‘ D11 £l aze -

(iii) A “potential” version of the Morrey inequality. Let Q be a convex bounded subset of R%. Then for
all f € WHH(Q) the following inequality holds

diam ()4
(13) (@) — forl < Ly (19 1))
€] a
for any measurable Q' C Q with
For = / Fac
T o1

Proof. Part (i) is exactly Lemma 7.12 of [I9], part (ii) is exactly Lemma 7.18 of [I9] and part (iii) is
exactly Lemma 7.16 of [I9]. (J
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4.2 The John-Nirenberg Lemma and reverse Holder inequalities.

The Caccioppoli estimates proved in Corollary show that the gradient of the logarithm of the
solution belongs to the Marcinckievitz space M?(§2), see Proposition below. Such M?—regularity
then guarantees the validity of the celebrated John-Nirenberg lemma which as a consequence give a
reverse Holder inequality of the form

lullg.ro 274

lull-gro =

for some 0 < ¢ < 1 and some constant x;.

We need a lemma concerning estimates on the Riesz potential V,, defined in (4.2]). It is a quantified
version of Lemma 7.20 of [19].

Lemma 4.2 (A “potential” version of the Moser-Trudinger imbedding.) Let f € MP(Q) with
p > 1 and suppose || f||pr ) < K. Then there exist two constants ko and k3 such that

(4.4) /Qexp W dz < k3.

One can take
diam(Q)?  pewy

V2r ke —(p—1)e

ke >(p—1)e and kg = Q| +

Proof. Let ¢ >1, p=1/p and g =V,[f]. Then
|£E B y|d(u71) = |$ - y|%(%_1)|x — y|d(1_%)(%+u—1)

and by Holder inequality we obtain

1 1—1
q q

(4.5) Valfll < [Valf

Vars ]
Applying now estimates (i) of Lemma with s=r =1, to V% [f], we obtain,

1— b
q
qwd d(p—1)

m 1-LX 1
Q| fllh <pguw, P [Qrediam(Q)™ 7 || fllarr (0

Ve fll <

(4.6)

1

< pqwddiam(Q)d(l’%+pq) I fllare o) < pqwddiam(Q)d(k%Jrﬁ)K

where we have used inequality (4.1)) together with the fact that |Q| < wgdiam(Q)?. Next we apply
estimates (ii) of Lemma to VWF%[ f] (the operator V, is well-defined on L', if Q is bounded, for

v > 1 as well) and we obtain
p—1

— e diam(@)F 0D o) < alp = 1) diam(@)F K
p(u+§)—1

41 Puelfle)] <

for all x € Q, hence the same bound is valid for the L>°(2)-norm, provided p(u+ 11/q) > 1 which indeed
holds true since g = 1/p. Joining now inequalities (4.5]), (4.6) and (4.7, we obtain

< pPWa
L@~ p—1

IVl < Ve[ [V 16| (p— 1) K g diam(©)"

q
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Letting now 1 < g = k € N we get, for ky as in the statement,

=gl S~ 10— D KK ey Qs [2t kk
de < d <
/QZ H{mp i) 47 <~ iam(@ DI HsaK)F ~ p— Z Ko
k=1 k=1 =1
Iy oo k 1
< d1am Q)¢ [ } —
p_ k=1 27Tk
pwg diam(Q)?  (p— 1)e _diam(Q)?  pewy

p—1 V2r rma—(p—De  2r kr2—(p—1e
we have used Stirling’s formula:

(4.8) nl = 2m[ﬁrean with
e

< < —.
nrl %=1, U

We prove hereafter a simplified but quantitative version of the celebrated John-Nirenberg Lemma,
which holds in convex domains. Indeed we will use it only on balls and in such case the constants
simplify a bit.

Lemma 4.3 (John-Nirenberg) Let f € WH1(Q) where Q is convez, and suppose there exists a con-
stant K such that

/ |Vf|de < KR for all balls By
BrNQ

Then the following inequality holds true

(4.9) /Q meoljgﬂ] dz < K
where for any ke > (d—1)e
49|  wgdiam(Q)? (ky + €)
T diam(Q)4? YT T L —(d-1e / f|Q|

Proof. The proof relies on the previous Lemma in the special case p = d. Indeed inequality (4.4) in
that case takes the form

‘V;HVfH(x)‘ diam(Q)d dew
1 e = 7 < d <
(4.10) /Qexp oK dz < Ner @—(dfl)e—i_m'_m
where
. de wq diam(Q)d(@ + e)
J— fr— d . =
ko > (d—1)e and K3 = wq diam(Q2) {Iig —(d-1)e +1 ke —(d—1)e

We combine this latter inequality with inequality (4.3) (which requires convexity of the domain) with
Q' =Qand |[Vf] € MYQ). [

The John-Nirenberg Lemma has an important consequence when applied to f = log(u + 9):

Proposition 4.4 (Reverse Holder inequalities) Let § > 0 and u be a positive measurable function
such that log(u + §) € WHH(Q), where ) is convex, and suppose there exists a constant K such that

(4.11) / |Vlog(u+d)|de < KR for all balls Bp.
BrNQ
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Then the following inequality

[u+6llq.0

< 2/q
[+ 6] -q.0

< K] holds true for any 0<g<

(4.12) o

where the constants k; are given in Lemma [[.3

Proof. Let § > 0. The validity of (4.11)) for u entails the validity of the same inequality for u + J.
Notice now that

wgn = (/(u+5)qu> (/(u+5)_qu></{q
[+ 6]l g0 0 0

Then, letting f = log(u + 9):

</Q(u+ 0)? dx) </Q(u +0)71 dx) = </Q elalog(utd)] d:c) </Q el—alog(u+d)] dx)
_ (/Q otf da:) (/Q o1/ dx) _ (/Q eq(f—fsz)dx> (/Q e—q(f—fmdx)
< (/Qeqlffn dx>2 < ,1%

where we used (4.9) for f = log(u + §), and have assumed ¢ < 1/(koK) in order to ensure its validity.
The case § = 0 is also true, just by taking the limit § — 0. [

We conclude this section by showing that reverse Holder inequalities holds for local supersolutions to
our problem, as a consequence of Caccioppoli estimates.

Proposition 4.5 (Reverse Holder inequalities for supersolutions) Let Q C R? and let A > 0.
Let u be a local weak supersolution to —Au = AP, with 1 <p <ps=2*—1=(d+2)/(d—2). Then
for any € > 0 the following inequality holds true for any § > 0

2/q da-3

. o+ Sllmo _ 1w+ ., 2"
— < ; for all 0<qg< .
{2”1 (ed+€)} |Br, |7 |Bp, | dwjle(d — 1) + €]

Proof. The Caccioppoli estimates ([2.2)) with Rg replaced by 2r and R replaced by r imply the hypothesis
of the above Lemma, in fact:

/ |V10g(u+5)’dx§/ |Vlog(u+6)|da
BrNBg, B,
(4.13)

2
< \Br|% [/ }Vlog(u+6)|2dx <277 werdt = K il
B,

Therefore putting K = Q#wd, taking an € > 0 and choosing ko = e(d — 1) + £, we obtain that
1 29"
kol dw?le(d—1) +¢€]

d
and K1 = denge —|—€e = |Bg,|2

de—i—ed. =
€

4.3 Lower Moser iteration

Now we are ready to run the Moser iteration to obtain quantitative local lower bounds in the form:
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Theorem 4.6 (Local Lower Estimates) Let O C RY and let A > 0. Let u be a nonnegative local
weak supersolution in Br, C Q to —Au = P, with 0 <p<ps=2"—1=(d+2)/(d—2). Then for
any € > 0 and for any

d—3
273
4.14 0<qg< =
(4.14) 9= 42le(d—1)+¢ P
the following bound holds true
Uflq,R
(4.15) i (@) = o > oogh 2R
TEBR - |BR0 | q
where
L 2
dR2 R2\] 2 € a
4.16 Iog=|2¢82 —2 _— + -0 —_ | .
(4.16) o4 [ 2 ((RO—ROOPJFRgO 24 (ed +¢€) \/wq
Remark. One can see that when the dimension d is sufficiently low one has gy < 1 whereas gg > 1 in
higher dimensions. Notice also that the equality iélf u(z) = ||ul|—00,r., holds since u is nonnegative.
rEBR

0,020

154
0,015+

da 19
4 0,010

=
2z
05 2

’ L B T (ela=1) +01)
o

T T T T T T T T 07 T T T T T T T T 1
4 4 6 3 10 12 14 16 3 4 5 6 7 8 9 10 11 12

3
a-z
0,005+

Left figure: Plot of qo(d) defined in (4.14)), for 1 < d < 16, with ¢ = 0.1.

Right figure: Zoom for the plot of the same qo(x) near its minimum that lies in (5, 6).

Proof. The proof is divided in two steps. We always consider a local supersolution v of —Awu > AuP.
e STEP 1. In this step we consider a@ < 0, and we want to prove L% — L™ local estimates via Moser

iteration. The the energy inequality (2.4]) for « < —1 and § > 0 gives the estimate

at1\ |2 AMa+1)? onrl/
P < N 7 b2 a - - a+1
/Q|V ((u+6) )| pdx < ia /Qu (u+96)%pda + 1o Q(u—|—5) Apdx

<a+1
- o

(4.17)

/ (u+0)* ! Ap| da
Q
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Applying now the Sobolev inequality (3.1)) on the ball Bg, and the properties of the test function ¢
defined in Lemma [2.2] one gets

2
%

2* 1
[/ (u+0) 7@+ dz] <S; </ |V (u+0) 7| dz + RQ/ (u+ 6)> ! dx)
Br, Br,
SS%( |V (u+0)" | gpdx+R2/ (u+5)°‘+1dx>
1 1
(4.18) <82 o+ /(u+6)o‘+1‘Ag0’dx+ 72/ (u+8)*H do
4a Q Rl BRl

a+1 1
< 2 - a+1
<S; ( o Ag&HOOJrR%)/BRO(u+5) dz

d 1
< 82 (Jr)/ w4+ 6t dx
*\(Ro—R1)*> " R} BRO( )
o

n *
Let, for a given vg < 0, v, := [—} Yo so that v, = 277”_1. Notice that 7, — —oco monotonically.

2
Consider the above inequality for & = o, and let a,, + 1 = 7y,,—1 so that

(4.19) > |s2 d R / §)-14d e
S\ mo—rE T R BR”_l(u+ ) x

1

lu+0lly, 7, = llut6lle,, | g,

(u+ 5)%7"‘1 dx]

d 1 \]7 =t
= |:822 (M + RQ)] ”’LL + 5||’Yn—17Rn—1 =1In ' ||'LL + 6H’Yn—1,Rn—1

n
Hence, iterating the above inequality:

1 1 1 n 1
(4.20) w4 6l r = T L I Jut Ol = [ 205 N+ 0.k,
k=1

where have chosen 0 < Ry < ... < R,11 < R, < ... < Ry such that

> (Ri1—Rp) =Ry~ Ro  and Rk,l—RkZ%
k=1
so that J . J .
=82 (— 4+ ) <82 — 4F = [y4*
¢ 2((Rn1—Rn)2+R%>‘ 2((R0—Rm>2+R§o)
and

= exp
2% =
e

> IO2'YO k=1|[2% 4470
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Taking limits we obtain
d=2

o 1 2% 2 _d_
HIk';fk—l > Iozwo T giv — (2d Io) v
k=1

We can now take the limit in (4.20)) to get for any v < O:

1

O d
o+ 0 —oo.r > [T 20" N+ 8lln0, 0 = (22 20) ™ [l + 6|, o
(4.21) =1
d

4
= [2d322 ((ROR)Q + 1)} [ + 01, o -

Now we need some Reverse Holder inequalities, which is the subject of the next step.

e STEP 2. Reverse Hélder inequalities. The John-Nirenberg lemma implies reverse Holder inequalities
for super-solutions, in the form of Proposition for any € > 0 the following inequality holds true
2 d—3
€ o [lu+6llq.R, 27
= < dl|— for all 0<qg< .
{2d (ed+5)} 7 <lutdl-gn  fora 4= dZle(d—1) ]

‘ R0|2

(4.22)

Joining inequality (4.21) and (4.22)) and letting 7o = —q with g as in (4.22) we obtain

d
I d 1 \] 2
d o2
w46l —c0,Roe > _2 53 <(Ro—Roo)2 + REO) llw+ 6ll—g,Ro
> [2ts2 <d + 1)_ % { £ r a9l
7P \(Ro— Rw)?  RZ)] 24 (ed +¢) EE
(4.23) ] ., , o
— |2d52 ( Ry R%) . { € r [[u+ dllg,ro
" P \(Ro—Rx)? ' R%) | 24 (ed +¢) \/wgq |Br, |2
[u+6llg,r
= —00,q T o
|BR0|2

Finally we observe that we can let § — 0T, and obtain the desired result. []

4.4 Reverse Holder inequalities and additional local lower bounds when
1 <p<pe

In this section we will first prove more quantitative reverse Holder inequalities, when p > 1. We have
obtained a reverse smoothing effect from L% to L™°°, for a suitable explicit ¢ which may be close to
zero, if we seek for a bound valid for any dimension. In order to be able to join local upper and lower
estimates to get a clean form of Harnack inequality, we need to reach those values of ¢ which are above
d(p —1)/2, and this is possible only when 1 < p < p. =d/(d — 2).

Proposition 4.7 (Reverse Hoélder inequalities for 1 < p < p.) Let Q@ C R? and let A > 0. Let u
be a nonnegative local weak supersolution in  to —Au = P, with 1 < p < p. = d/(d — 2). Let
Bg C Br, C Q. Then we have that

ulle =
(4.24) |||B||q7? < I@qom forany qo € (0,q] and d(p —1)/2 < g < d/(d—2)
E aq
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where

(4.25)
2dq S2 2 (Ro—R)? 5 wr4R % % d—2_ _
L, : GRS } [E} if 557 < q <7,
9,90 *—
O 3.2 4 [Mi8 T s ™ o'® Aoy T=t0 Wi [R|W 0 d2
e [(2* 2‘1)(1%()71“3)2 + 2} ( “a qoﬁ) {?0} , o if0<qo < %57q

Proof. Consider the energy identity for supersolutions with —1 < o < 0 (we can take § = 0 in such a
range of «), which gives the following estimate for any positive test function ¢ € C3(Q) with Vo =0
on 0N

4
(4.26) aJ‘ral /‘V | god:v+)\/up+a(pdx§

/ u* Al dz
Q

|o + 1]
that implies, using the test function ¢ of Lemma [2.2] with R < Ry

at1 dla +1] 1
(4.27) / Vur | de —/ u*tdz
Broo | | laf (Ro — Rec)? Br,

Applying now the Sobolev inequality (3.26)) on the ball Bg_ we arrive at

Z (a+1) 2 [ dor + 1] 1 } / at1
U2 dx <S8 + u dx
VBROO ] (ol (Ro — Bl " B2 Ji,

Letting now 0 < o+ 1= < 1 we get

5 2 1 %
5B S2 r [ alp| (o - Roo)z] ’ 8
(4.28) [/BRW u dx] < [Ro | liopt m /BRO Wdz| .

Choosing 5 > (d — 2)(p — 1)/2 is compatible with 8 < 1, if and only if p < d/(d — 2) = p. and this is
the point where the well known Serrin’s exponent p. enters. We now let d(p—1)/2 < g =2*5/2 < 2*/2
and we see that (4.28)) implies

(4.29)

2
o5F

+ 82 + 82

— o2
< {(quSQ

-
(R—r)?]==
[[ullg P 3
2 2q)

ZiaR < [ 2dqS3
(R—r)7 ~ L(2*—29)
for any Re <7 < R < Rp. Let ¢ = 2q/2* < g. We consider beparately the case ¢ < go < ¢ and the
case 0 < gg < ¢ < q. In the first case we can use Holder inequality in

(RO—ROO)T;* lull 2.7
RZ (R—1)%

»m\‘“

,
2dqS Ry — Rxo)?1 % llullzqr
llr < [ LR+ s o) ] i
2dq S2 (Ro — R)?] % [w!/'R ¥ |Bg|7
g{“wg“ w} 2 L g0,
(2* —27) R2, R—r |Bg| o

which is (4.24) when ¢ < go < g, once we let R = Ry and r = R. On the other hand, when 0 < ¢y <
q <@, we can use inequality (4.29) rewritten as

For K

(4.30)

(R-17  (R-n7

24753 ~ R’ F

2% — 27) R2, 0 R
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so that Lemma with v = 2* /g gives that for all 0 < go < ¢ < @ (recall that ¢ = 2g/2*)

ila—a0) q(fl—t]o))7 K
Ullg R, <3-200@9 4y=—07ro
Jul [( wi-a) TR

a(a—q0)
a0(@—q)

”quIo,Ro

a(@—aqg)
(d-27 _ [(4 2d d—2(q—qo))"’ K }MH |
u

@-27g d " @2 ) (Bo- Ry oo

=3-2 290

vl

=32 S (W p ) T
97 RO_Roo qo,fvo
(d=2)7 _d _ d—da9 d—2 q—qo UJl/dRO o _d |Bp |%
=3-2 200 2 K aw 2 (44 — —d = a3 2 T ||U||qo-,Ro
q0q¢ Ro— Reo | B, |®

(4.31)

2

9—4qQ d
(@-23_a [ 2dGS2 Ry — Ro,)?] @a0 2 7—q0 w/°R 4 _d
—3.9 %7 "2 { 402 +322( 0 . )] 44— 90 a0 ) 5-F
(2* —29) RZ, q0q Ro— Reo
. 1
ROO 90 ‘BR(JlE
X R — [[ullgo, Ro
0 |Br., |

EPRNC™ - [ 2dq S? R2,
(2* — 2@) (Ro — Roo)

g 1

X |:Roo:|q0 ‘BRO 9

R o
ol M

2+S§]

whence the statement follows upon relabeling Ro, as R. []

As a first consequence of the above inequalities, we can improve the local lower bounds of Theorem
in this good supercritical range.

Theorem 4.8 (Local Lower Estimates when 1 < p < p.) Let Q C R? and let A > 0. Let u be a
nonnegative local weak supersolution in Br, C Q to —Au = P, with 1 <p < p. =d/(d — 2).

—ooq [ullgm

I
(4.32) 6inf u(x) = [Jul|—so,roe =

T with dp—1)/2<g<d/(d—2)
Bro Iaq |Bgl7

for any 0 < Roo < R < Ry, where qE€ (0,90 NG, qo and I,Oo,g are given in (4.34) and Iq,g s given by
(14.36)).

Proof. We use the local lower bounds of Theorem for g € (0, qo], € = e, with the definition of go to
be recalled below, so that

(4.33) inf  w(z) = |Ju|—co,Ree = I-0oq
xr R -

where

Wk
YIS

272 dR3 RZ\1™ e
4.34 <qoi= d I .= 2982 (- 0 0
IR I e (e =8 e e

Recall the reverse Holder inequalities of Proposition [4.7]

ullg, ull. & _
Il , > | ”q’Rl for any 0 < R < Rp g € (0,q] and d(p —1)/2 <g < d/(d —2)

(4.35) T = T
‘BRO|g IE»Q‘B§|H
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(4.36)
[225% + spRr] 5 [wi”Ro] v [Rj}’ £ d=20 < o<
L (2*—29) 2R Ro-R| LR T 1=4=1
B 3.2((1;32)67% 2dgS;  R® S2 q@g% 4 744 id Ro i if 0 d—2-
{<2*f2ﬁ> (Ro—T02 T 2} ( “d j) [R}  MU<4<779

with go as in (4.34). Combining inequalities (4.33)) and (4.35)) we obtain (4.32).

Remark. The above lower bounds turn our to be important when applied to solutions, since they will
imply directly a clean form of Harnack inequality when 1 < p < p. and then local absolute bounds,
which is a novelty and a typical feature of the “good” superlinear case 1 < p < p.. We stress the fact
that in the upper range p. < p < ps such absolute bounds can not be true, as explicit counter-examples
show. We will give more details on these counterexamples in the next section.

5 Harnack inequalities

In this section we will show in a quantitative way how upper and lower bounds can be joined to form
Harnack inequalities for solutions, and to obtain as a consequence absolute local upper (1 < p < p.)
and absolute local lower bounds (0 < p < 1), which are new, as far as we know. We first join local
bounds of Theorems (upper) and (lower), to obtain a general form for Harnack inequalities,
which at a first sight appear to be weaker than what expected, because its constant depends on local
L%-norms of the solution itself. This is the only form of Harnack inequality that can hold for all
0<p<ps=(d+2)/(d—2). To eliminate this quotient and to obtain Harnack inequalities in a more
classical form one has to assume that 0 < p < p. = d/(d — 2).

This fact might seem puzzling, but there are very weak (distributional) solutions in the range p. <
p < ps that are not bounded, cf. [22] 25| 26] 27| 28], even when one prescribes zero Dirichlet boundary
conditions. According to Mazzeo and Pacard [22], in this range there are solutions with a singularity of
the type |z — x| 72/(P~1) at a point z¢ € Q. Such solutions are not locally in L with ¢ > d(p — 1) /2 if
P > pe¢, hence the local upper estimate fails for them when applied to a ball that contains the singularity.
In this range there appears in a clear form the difference between weak and very weak solutions, which
helps understanding these critical exponents. Regarding boundary behaviour, the range to consider is
p1 < p < ps, where p; = (d+1)/(d — 1) is the exponent introduced by Brezis and Turner [§]. In this
range there exist very weak solutions which are not weak (energy) solutions and can have a singularity
at some points of the boundary and satisfy elsewhere on the boundary the prescribed condition in a
suitable trace sense, not necessarily in a continuous fashion, cf. del Pino et al. [I3].

Theorem 5.1 (Harnack inequality for 0 < p < p,) Let Q CR? and let A > 0. Let u be a nonnega-
tive local weak solution in Br, C Q to —Au = AP, with0 < p < ps = (d+2)/(d—2). Given R, < Ry
and € > 0 we assume

d—3
2% __dp—1)4

1 < qo = —_—.
(5-1) 0<g=a aled—1)+e 177 2

If0<g<d/(d—2) we also assume

log 2i:d(p:1)+
— 2o Dy d(5 D+ | ot integer.
log )
Then the following bound holds true
(5.2) sup u(z) < Hyu] inf w(x)
xeBROO ZEEBROO
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where Hyu] depends on u through some local norms as follows

d
(p—1)4 2q—d(p—1) 4

I3z o, uidz) fg. uldx
(5:3)  Hylu] = Hy[u)(d,7. 4,2, Ro, Roc) = =2 (%°<l (fon, 7d2)"
—00,q fBRoo u\P + de (f ,ugdx)
Br,

Q=

I =

with Icq given by (3.5), I—oc 4 is given by (4.16).
Proof. We recall the local upper bounds of Theorem for any B, C Br, € Q

d
(p—1) 4 2q—d(p—1)4

q q
(firg, e dx) lellae

fBRoo W@+ dg Bg, |%

dip—1)4
2

(54)  Nulloo,Re < Ioog for any q>

where I 7 is given by (3.5)) and when 0 < g < d/(d — 2) we require the additional condition (3.7)) on g.
We also recall the lower bounds of Theorem for any € > 0 and for any g as in (5.1f), the following
bound holds true

iIlfggeBROC u(w) |BR0|§

Ifoog ”U”g,Ro

where I_ 4 is given by (4.16)). Joining (5.4) and (5.5) gives (5.2). J

> 1.

(5.5)

Theorem 5.2 (Harnack inequality, 0 <p < 1) Let Q C R? and let A > 0. Let u be a nonnegative
local weak solution in Br, C Q to —Au = AP, with 0 < p < 1. For all Ry, < Ry the following bound
holds true

sup u(z) <Hp, inf wu(z)

TEBR ZEBRo

where H,, does not depend on u, and is given by

(5.6)

no—+ _d=3 %
d d_ 22732
b _ [ 2'SiR} dR2 R2\]% | <(d—2> a3 +e> VWi
P (R0 — Rx)? \(Ro — Rx)?  R%

{(dd2>d (\/221(61_ Qd)—fi)g |:Ap+ dq_02 + (Ro ;;00)2 max{((fl(;);ldqo —(d —2)|, i}] }2%

X

with

d_92\"0% log (e(d—l) d;;%)
(5.7) qo = () and  ng=1i.p. z2

Proof. The goal of the proof is to simplify the quotient of L¢-norms in the expression of the constant
Hp[u] of the Harnack inequality (5.2)). Since we are dealing with the range 0 < p < 1, we can choose

log %
log %2

and ¢ >0 with [ ] not integer.
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In fact, we shall arrive, with a suitable choice of the parameter ¢, to a value of gy smaller than d/(d—2),

so that the requirement [log 3—; /log d;iQ

qo(e) # [(d = 2)/d]"

d

not being integer is necessary.

d—3

’I’Lof% 2

d—

O<E=<

5 22 —e(d—1) so that qo = (

dwy

)

where ng is the first integer n such that e(n) > 0, which is

log (e(d 1) du ) 1
ng = 1.p. = + - +1.
log -4 P 2
The constants become in this case
;[ asiR ]d < d >d 20-2)
oo | (Ro — Ro)? d—2 (\/3 JVd — 2)
[ d—2 Ry — d—2
X |Ap + (o { d 51dgo — (d = 2)],
(5.8) I 0 (dqo)
_ S3R2 ] < d > 2(d —2)Vd y
(Ro — Roo)? d=2) (Vd—yd=2)°
[ d—2 (Ry— Ry)? {d—2
x |A, + ——|dgo — (d — 2)|,
7 o RZ, e (deo)2| A )

d—

The latter condition means

for all n € N, and this is possible since we can always choose ¢

2
d

1
)nOQ

S|

1
4

e

where A, =2ifp#1, A, =)/4if p=1 and, since gy < d/(d — 2),

d ko—1+1 d i+%
(5.9) B 9o (m) (ﬁ) B Vd
) €1 = max g \Fo I . i NGE ) T Vd—Vd—2
9 \ 97— -2 -
since kg is given by:
log 2 L 1
ko = i.p. 20 | = ip |1+ —L | =ip [14ng—=| =ng+1
log 755 log 355 2

and the last step in (5.9)) follows by an explicit calculation. Moreover I_ 4 given by formula (4.16)
takes the form N

d
dR2 R2\1 7w [ e W
I = 12482 ——0 4 -0 e
a0 [ 2((RO—ROO)2+RgO 2 (cd+ o) Jog
_ 2
’ no—% d—3 a0
_ [zdsz( dry RS ﬂ_ﬁ(’ (d%) wr —eld-1)
pu— 2 ———————— _—
Ro— Rw)? | R2 -3 iz
i ) - 21 <(dd2) o deg +e) VW

Hence we get the expression of H, = o qo/I—00,q, given in (5.6]) .

When p > 1 we can not join the upper and the lower bound so easily, we need the improved lower
bounds of Theorem valid only when p < p..
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Theorem 5.3 (Harnack Inequalities when 1 < p < p.) Let Q@ C R? and let A\ > 0. Let u be a
nonnegative local weak solution to —Au = MuP in Br, C Q, with 1 < p < p. =d/(d—2). Then for any
0 < R < R < Ry there exists an explicit constant H, > 0 such that

(5.10) sup u(z) <M, inf wu(z)

TEBR ZEBRo

where H,, does not depend on u, and is given by

2q
I 2g—d(p—1) dip—1 d
24 ) , with 7(]92 ) 2 73

(5.11) Hy=Ioog <

where the constants ¢ € (0,q0 Aql, qo and I_c 4 are given in (.34), Ig, is given by (4.36), I q is
given by (3.5)); moreover, since § < d/(d — 2) we require the additional condition ([3.7)).

Proof. We first consider the lower bounds of Theorem Let © C R? and let A > 0. Let u be a
nonnegative local weak supersolution in Br, C Q to —Au = AuP, with 1 < p < p. = d/(d — 2). Then

I@g

x|
IN

ull=
Il inf wu(z)

(5.12)
|Bg|7 I_o,q 2€Bro

Q=

for any 0 < R, < R < Ry, where d(p —1)/2 < g < d/(d —2), q € (0,90 \ql, g0 and I_ 4 are given in
({4.34) and I3 4 is given by (4.36). Then we recall the upper bounds of Theorem which we rewrite as

d
(p—1)+ TT—d(p—1)}
Jtlloo,ree < Tooig vl |Br..| Iella 7
00, floo — 700,49 |B§| (P*El)+ fBRQO u(p*1)+ dl’ |B§‘%
_d(p—1)
5.13 lullz % 1 2 ully &
< Ilwg
= Loo,q |B§|% inf:r:EBRoo ’U,(il?) |B§‘%

d(p—1)
Iﬁq 2§—d(p—1)+1
<Iwg = inf wu(zx)

I,oo72 TEBR

for any g > d(p51)+’ where I 7 is given by (3.5) and since 0 < § < d/(d — 2) we require the additional
condition (3.7)). In the third step we have used the lower bound (5.12). ]

Remark. Notice that the constant H, does not depend on u in the range 0 < p < p., and it does
not depend on A > 0 when moreover p # 1.

6 Local Absolute bounds

In this section we will prove local absolute lower bounds when 0 < p < 1 and local absolute upper
bounds when 1 < p < p. as a consequence of the Harnack inequalities of the previous section together
with the Caccioppoli estimates (2.11}).

Theorem 6.1 (Local Absolute bounds) Let 2 C R? and let A > 0. Let u be a local nonnegative

weak solution to —Au = \uP in Br, C Q, with0 < p < p. = d/(d—2). Then for any0 < R, < R < Ry
there exists a constant H, > 0 that does not depend on u, such that

(6.1) sup  u(z) <H S—Rg . when 1 <p <p.= _a
. xeBRI()xU) =P )\(RO_R)QRd p pc—d_27
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and, if u# 0 on Bpr,

AR — R)2R¢

1
i—>p
SR ) when 0 <p < 1.

. -1
(6.2) Ieégf&xo)u(x) >H, (

The constant H,, is given by (5.6)) when 0 <p <1 and by (5.11) when 1 < p < p..

Proof. We combine the quantitative Harnack inequalities of Theorems and together with the
quantitative Caccioppoli estimates ([2.11)

_ 80.)de
)\/ wPldr < _ a0
Br (Ro — R)?

which implies, when p > 1,

(6.3) inf u(z) < 1 uP~tdz ﬁ< 8—Rg o
’ zEBR - ‘BR| Br - )\(Ro — R)sz

and when 0 < p <1 as

1 1 =
AR — R)?R*\ ™ B 1"’ 1
(6.4) (W) < ‘7?'1 < | — = sup u(x)
SR fBR uP~tdx Seul-‘g) u(x)P z€BR
zEBR

The above inequalities can be now combined with the corresponding Harnack inequalities of Theorems
and which have the form

sup u(z) < H, inf wu(z)

z€BR z€BR
to obtain the desired bounds in both cases. The constant H, is given by when 0 < p < 1 and by
1<p<pe [

Remark. These bounds are new as far as we know. Notice that they depend explicitly on A.

7 Regularity. Local bounds for the gradients

In this section we will prove L° bounds for the gradients, to conclude that solutions to —Au = AuP
are indeed local Lipschitz functions. The strategy to prove such results is to show that the incremental
quotients uy, ; satisfy the equation —Awuy, ; < b(x)up,; for a suitable b(z), so that we can apply the local
L bounds of Theorem [3.8].

Short reminder about incremental quotients in W4, Here we follow Giusti [20]. It is well known
that if u € W19(Q) then its incremental quotients is defined as
u(z + he;) — u(x)

h

Up,i =

where e; denotes the unit vector in the direction ;, cf. [I6 20]. Let us recall some properties of the
incremental quotients:
(i) If w € WH9(Q), then its incremental quotient wy, ; is defined in the set

Qp ={zeQ ‘ dist(z,09Q) > |h|} , moreover un,i € WHi(Qp) -
(ii) If uw € WH4(Q) for 1 < ¢ < 0o and ¥ CC 2, then for any |h| < dist(%,Q)/(10v/d) we have

d
(7.1) lun,illLas) < 59 [|0ullLacq) -
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for a proof of the latter fact we refer to Lemma 8.1 of [20] .

(iii) Let uw € L1(Q2), 1 < ¢ < oo, and assume that there is a constant K such that for every h small
enough we have [[up,illLa(q),) < K. Then d;u € LI(Q) and [[0;ullLa(q) < K. Moreover up; — d;u in
LL .(Q) as h — 0. For a proof of this fact we refer to Lemma 8.2 of [20] .

We can now state and prove the following theorem.
Theorem 7.1 (Local upper bounds for the gradient) Let Q C R? and let A > 0. Let u be a local
nonnegative weak solution to —Au = AuP in Br, C Q, with 0 < p < p. = d/(d —2). Then for any
0 < Ry < Ry we have

(7.2) IVulloo, roe < KTul [[ull2,r,

where

2

(7.3) | P
Ro—Rs)?  [dS2(pv1)\? 4(Ry — Rao)? ass al’
xbad+®+( el (A ) T R 15 (3, )

with

1’ ifp:1,

8R4 ‘

(7.4) oo 0 < § Ny~ RoPRT fO<p<pe.andp#1,

ul®5 R, » if pe < p <ps,

where the constant H, is given by (5.6)) when 0 <p <1 and by (5.11) when 1 < p < pe.

Proof. The proof is divided into several steps. We start fixing hy > 0 small enough.

e STEP 1. The equation satisfied by the incremental quotients. First we deduce formally the equation
for the positive and negative part, then we justify it rigorously at the end of this step, using Kato’s
inequality. If u is a solution to —Awu = AuP, then the equation satisfied by uzz is

(7.5) — Au;i =bt(z,h) “Zz <X(pVv1)b, UL , for all |h| < hg,
where

sup uP~1 if 1 <p<ps
(7.6) by = by ] =

-1
{inf ulp} ifo<p<1

Bry
and we observe that by, g[u] < b, g,[u] for any 0 < R < Ry. Indeed, when uy,; > 0:
uP(x + he;) — uP(x) uP(z + he;) — uP(z) u(z + he;) — u(x)
=A
h u(x + he;) — u(x) h
< A(p V1) max {u”~"(z + he;), up_l(x)}uzl

—Au,':i =

==b"(z,h) u;z

by using the numerical inequality (9.2), namely (a —c)(a? —c?) < (pV1) max {a?~!, P!} (a—c)? valid

for any p > 0 and all a,c > 0 to estimate

uP(z + he;) — uP(x)
u(z + he;) — u(x)

bt (z,h) = A < A(pV 1) max {uf~"(z + he;),u? " (2)}
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we have used the fact that u?(x + he;) — uP(x) and u(z + he;) — u(x) have the same sign.
When p > 1 we have

—Auf ;=0 (@, h)uf, < ApV1) sup (uP7h)

71’ ’
Br+hy

while when 0 < p < 1 we have

Apv1) 4

inf yl-p i
BRr+hy

—Auii =bt(z,h) u;z <

On the other hand, if u is a solution to —Awu = AuP, then the equation satisfied by uy, ; is
(7.7) —Auy, =0 (2, h)w, ; <A(pV1)byu,,, foralllh] <h,
where b, is given by (7.6). Indeed when u, ; < 0 we have that

_uP(z A4 hey) —uP(x) uP(x+ hey) —uP(x) u(n + he;) —ul(x) _
Auh,i =-A h - A ’U,(J} + hel) — u(x) n =b (xy h) uh,i

< A(pV 1) max {u’~"(z + he;), upfl(aj)}u}:’i

for the same arguments as above. Now it remains to justify the formal calculations made above. First
we recall Kato’s inequality: if j : R — R is a convex function such that j(0) = 0, j/(v) > 0 if v > 0, then

Aj(v) > j'(v)Av, in the weak sense, whenever Av € L (). Consider a sequence of convex function

Je that approximate j(uyp ;) = “Z,i and such that j.(0) = 0, jL(up,;) > 0 if up,; > 0. Then by Kato’s
inequality, we have that indeed u™' satisfy the weak formulation

/ Vi - Vije(un,) do = —/ PAje (up,;) dz < */ @ je(un,i) Aup ; dx:/ o ()b (@)un dz
K K % X«
< / 2 (js(uh,i) + €)b+(x) dzx
K

for any subdomain with compact closure K C €2, and all bounded 0 < ¢ € C3(K). Passing to the limit

as € — 0 proves that uzi is a weak subsolution to fAu,fi < bt (z) u;fl A similar procedure can be

applied to u, ,, therefore all the formal calculations made above are justified.

e STEP 2. L*-bounds for the gradients. Since |uy, ;| = UL + u,, ; is a weak nonnegative subsolution to
—A‘uh,i’ < ApV1)by|up| == b(z) |un,|, we can apply the upper bounds of Theorem that read

Kb
(7.9 funilloo < 25 il

0

with ¢ = 2 and the expression of the constant obtained by letting r — oo, since b(z) € L°(Bgryh, ):

d 4
, 944\ F h2 dS3\? 4h3 d=2, 4
K] = <2d 16(d + 2) + ng + d—22 d—02 |BRrthol T B2, ryho
(7.9)
20\ ng (A4S 4nd -
< () |62+ (2 T Bring| T (Aby)
since

vl

a
||b||§o,R+ho = ()\(p\/ 1) bp) :
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Next we observe that by inequality (7.1)) it follows that for any § > 0 and any |h| < §/(10v/d) we have

da
2. Rtho < 52 [|0iull2, Rihots-

l|wn,i

Finally, since
| Br|*
holds for any |h| < hy with K that do not depend on s, then by remark (iii) above we have that

< |lun,illoo,r < K

||3z’UI|s1,R <K
|Br|*

Letting now s — oo in the above expression gives ||0;ullco, g < K. Therefore we have proven that

K&
(7.10) 10t < 2L
h§

0

d
52 |0;ull2, R+ no+6 5

with Kés) [b] as in (7.9) which implies

3)

Kb

(7.11) [Vlloo,r < QdHF)%HVu
hf

0

2, R+ho+6 >

e STEP 3. Energy inequalities. We now need the energy inequalities ([2.3) to estimate the L? norm of
the gradient of u in terms of u itself. We choose av = 1 there so that the choice § = 0 is admissible.

1
/ ’Vu’%pdxg/ ‘Vu}2<pdx§)\/up“(pdsc—i—f/uzA(pdx
BR+hg+s Q Q 2 Q

2d
§)\/ up+1dx+5—2/ w?dz
BR+hg+26 BR+hg+26

2d
<</\bp+2>/ u?® da
g Brihg+26
2d
< (Ao + 53 ) TulB o

since we have used the fact that u?~! < b, for any 0 < p < ps and the test function ¢ of Lemma
with the choice of balls Brino+s C Briho+26-

(7.12)

e STEP 4. Putting all the pieces together, we have obtained

K] KW o 2d) ?
(7.13) [Vullook < 25”53 IVl s < 2 st (A by + 5) T
0 0

We finally choose hg = ¢ > 0 and we let Roo = R, Ry = R+ ho+25 = R+ 30, so that § = (Ryp — Rw)/3
and we have obtained

d 1
(3) 15 2 18d 2 .

(7.14) [Vulloo,roe < K57 (8] (Ro—Roo> ()\ by + (Ro— R)? [ull2,ry = KT[u]||ull2,r,
where we recall that, with the above choices of hg,d we have (see (7.9)))

(7.15)

a2 d 4
d\ s 2 2 2 2
(3) < 2d' (RO — Roo) d82 (p \Y 1) 4(R() — Roo) d—2 %
K57 < (2d> 16(d+2) + R + 1—2 9d—2) |Bro| & (A bp)
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Finally we observe that b, can be bounded depending on the values of p as follows:
(i) If 0 < p < 1 we can use the absolute bounds (6.2) to get

1 8R{

1 by = —— < HLP 0

(7.16) P inf yl-p = 4 ARy — R )?2R4’
Bry
the constant #, being given in this case by (5.6]).
(ii) If p=1then b, =1.
(iii) If 1 < p < p. we can use the absolute bounds (6.1])
(7.17) b,= sup wuPl(z) < HET! 813
b zE€BR(xzo) - r A(RO - Roc)2Rgo7

the constant #, being given in this case by ((.11]).
(iv) If p. < p < ps, we just leave b, = |ul|’S . . O

0o, Ro *

When 1 < p < p. we have local absolute bounds for the gradients, which seem to be new.

Theorem 7.2 (Local absolute bounds for the gradient when 1 < p < p.) Let Q@ C R? and let
A > 0. Let u be a local nonnegative weak solution to —Au = AP in Br, C Q, with 1 < p < p, =
d/(d—2). Then for any 0 < Ro, < Ry we have

(7.18) IVl < K

where

& 4 3 e dqyp—1 3 i1
K:( pr )8 (15)% Hyw? R3S, | 8RGHE +18d] (gRg>p1

2971 ) (Ry — Roo) et 7T R, AR,
(719) d 3 (d—2) a2 +(d 2) %
Ry —Ry)? | (dS3p\* 222dw, T R A=)
X 16(d+2)+( O9R200) +(d 2]2)) 4 0 = Hyp
o0 N 9(d — 2)(Ro — Roo)24-VRZ
where the constant H, is given by (5.11)) and depends on Ry, Reo as well.
8 Table of results
Let us resume the main results of this paper: recall that d > 3 and
d—3
d d+2 dip—1)+ 27z
= -0, = 3 g = — 5 = P VE > O .
Pe=g—g P=qg—o 1 2 O~ dle(d—1) + <]
Upper I Upper II Lower Harnack | Absolute | Gradient
0<p<1 0<qg— o @ >0,r>0 0<g<qo Hp lower upper
Thm. I3_1| Thm. Iﬁl Thm. IR' Thm. Iﬁl Thm. I6_1| Thm. I7_1|
p=1 0<qg— o0 qo>0,beLT,r>g 0<g<qo Ha No upper
Thm. Thm. E Thm. Thm. Thm.
1<p<pe | G<qg—o00 | >0, b= P T€L”, r>q| g<q<pe Hyp upper absolute
Thm. Thm. [3.9 Thm. Thm. [5.3] | Thm. Thm.
Pe<p<pPs | G<qg—00 | q>0, b= P TeLl”, r>q | 0<qg<qo Hplu No upper
Thm. Thm. [3.9 Thm. Thm. Thm.
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Recall the bounds:

( ) Hu”1+u(p*1)+

—1 L4(BR) .

Upper 1 HUHLOC(BROO) ||U||€p]il(13;m) <oy B 1\?; with — p = 72q—d(6117—1)+
Ro

Upper 11 S T

pper [l o, R < o [ @l HLT Brg) ]| 0.2
. HUHL‘I(BRO)

Lower  infoep,  u() = |ullL-=(Br,) = [-coq——T
|BR0|q

Harnack Sup,ep, u(x) < Hplulinfrep,  u(x)

where H,[u] depends on u only when p. < p < p, through some local norms as follows

d
(p—1)4 2q—d(p—1)4

Hp[u] = Hp[u](d, @,g’g7RO,ROO) _ Iljoj <fBRO u? ii)l) q M
00,q fBROO u +dx <fBR0 uldz>

whereas H,[u] can be taken to be independent of v if p € [0, p.), see (5.6), (5.11).

Q=

[ [

Gradient Voo, r. < K[u]

9 Appendix. Numerical Identities and Inequalities
Sum of some series.

S-S5 S

j=1 J J ( 4
izj_éz’““ izj_uz’“
_ 2% ) 2\ 2% / 2 ) 9 2%
j=k+1 j=1

since for any 0 < s < 1 we have, for any 0 < N € N

>rv-eg g (n (7)) -] () o
— ds | ds \'""Tds\1—s/" " ds 1—s)°

N-times

Stirling’s formula:

(9.1) nl = 27rn[ﬁ} e with
&

We recall that

/2 (2ey/m)" , 1 1
o~ with —.
F(14+4%) dlevadr 6d+1 6d

wWq =

Lemma 9.1 The following inequality holds for any a,b > 0

(9.2) (a—=Db)(a? = b7) < (pV 1) max {apfl,bpfl}(afb)Q, and for any p > 0.
Moreover the following inequality holds for any a,b >0 and p > 1:

(9.3) a? — b > pbP~ (a —b).
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Proof. If a > b the validity of is equivalent, setting 2 = 2, to the validity of (1 — z)(1 — 2P) <
p(1 — x)? for all x € [0,1], that is to 1 — 2P < p(1 — z) for all z € [0,1], which does in fact hold if
p > 1 by the concavity of g(z) := 1 — aP, since the line h(z) := p(1 — x) is the tangent to g at x = 1.
The case a < b follows as well by interchanging the role of ¢ and b. The case 0 < p < 1 can be proven
analogously: if fact the stated inequality is equivalent to 1 — 2P < 1 — z for any « € [0, 1], which holds
true by the convexity of h(z) = 1 — 2P for any p € (0,1).

The second inequality (9.3) follows by the inequality a? — 1 > p(x — 1) for all z > 0 which is valid
since P — 1 is convex so that its graph lies above its tangent at x = 1. []
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