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Abstract. The evolution equation u̇ = 4pu, posed on a Riemannian mani-
fold, is studied in the singular range p ∈ (1, 2). It is shown that if the man-
ifold supports a suitable Sobolev inequality, the smoothing effect ‖u(t)‖∞ ≤
C‖u(0)‖γ

q /tα holds true for suitable α, γ and that the converse holds if p is
sufficiently close to 2, or in the degenerate range p > 2. In such ranges, the
Sobolev inequality and the smoothing effect are then equivalent.

1. Introduction

Let (M, g) be a smooth, connected, complete d–dimensional (d ≥ 3) Riemannian
manifold of infinite volume. Let ∇ be the Riemannian gradient, ∇· the Riemannian
divergence, | · | the Riemannian length, dx the Riemannian measure. Lebesgue
spaces w.r.t. such measure are indicated by Lq(M) and the Sobolev spaces W 1,q(M)
are then defined as the spaces of those Lq(M) functions with first order derivatives
belonging to the same space. The p–Laplacian ∆p is the operator formally given
by ∆pu = ∇ · (|∇u|p−2∇u). For a considerable part of the paper p will be taken
in the singular range p ∈ (1, 2), but in one of our main results we shall also discuss
the degenerate range p > 2. To define ∆p properly, we notice that it is defined as
the subgradient of the convex, lower semicontinuous functional defined as

Ep(u) =
1
p

∫

M

|∇u|p dx

on W 1,p(M), and as +∞ elsewhere on L2(M) (see [10] for an excellent discussion
of Sobolev spaces on manifolds). Such operator is hence (see [8]) the generator of
a well defined semigroup on L2(M), which we denote by u(t), and we notice that
u(t) is a solution to the equation u̇ = 4pu in the semigroup sense.
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In addition the evolution considered is a nonlinear Markov semigroup in the
sense of [8]. In particular:

• the evolution is well–defined in each Lq(M) for any q ∈ [1, +∞];
• it preserves order in the sense that two initial data are ordered, say u(0) ≤

v(0), the corresponding solutions are ordered as well, namely u(t) ≤ v(t)
for all t;
• it is nonexpansive in each Lq space so that ‖u(t)− v(t)‖q ≤ ‖u(0)− v(0)‖q

for all initial data and all q ∈ [1, +∞]. The special choice v(0) ≡ 0 then
gives the contraction property ‖u(t)‖q ≤ ‖u(0)‖q for all q ∈ [1, +∞].

Notice that existence and uniqueness of solutions and the above mentioned prop-
erties do not depend upon further assumptions on the manifold, but only on the
form of the generating functional Ep.

Our main result is the following

Theorem 1. Suppose that M supports the Euclidean–type Sobolev inequality, so
that

(1) ‖f‖2d/(d−2) ≤ Cs‖∇f‖2
for any f in the Sobolev space H1(M). Consider any solution u(t) to the evolution
equation u̇ = ∆pu, where p lies in the singular range p ∈ (1, 2), and take any q0

satisfying q0 ≥ 1, q0 > qc with qc := d(2−p)
p . Then for any initial data u(0) ∈

Lq0(M) and all t > 0 the smoothing effect

(2) ‖u(t)‖∞ ≤ C
‖u(0)‖pq0/[pq0+d(p−2)]

q0

td/[pq0+d(p−2)]

holds true.

An elementary consequence of (2) and of the contraction property ‖u(t)‖q0 ≤
‖u(0)‖q0 is the following.

Corollary 1. Let r > q0 with q0 ≥ 1, q0 > qc. Then, with the notations and under
the assumptions of the above Theorem, one has:

(3) ‖u(t)‖r ≤ ‖u(0)‖γ(r,q0)
q0

tα(r,q0)

where
γ(r, q0) :=

pq0

pq0 + d(p− 2)

(
1− q0

r

)
+

q0

r
;

α(r, q0) =
d

pq0 + d(p− 2)

(
1− q0

r

)
.

The above results have been proved in the Euclidean setting with scaling methods
(see e.g. the monographs [9], [11] and reference quoted). In the present setting they
seem to be new, and they need new methods of proof. Our contribution lies then
in the fact that such bounds are related to the validity of a Sobolev inequality only.
Such point of view has been adopted in [7], [2] for similar evolution equations in
the degenerate range p > 2, but the use of the Sobolev inequality given there seems
to be not adaptable to the singular range: the present note therefore closes the
gap and allows to cover the whole range of parameters in the class of equations
considered. Similar problems where considered for evolutions of porous media type
in [3], [5].
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We just remind the reader that the validity of the Sobolev inequality we are
requiring is related to several geometric and analytic properties. For example it is
equivalent to the Faber–Krahn inequality [10]. Moreover, we recall that M is said to
be nonparabolic if it admits a (minimal) positive Green function G for ∆. Conditions
for parabolicity and nonparabolicity can be found in [10], pg. 230, and references
quoted. It may be interesting to notice that the validity of (1) is equivalent to the
following facts: M is nonparabolic and vol (y : G(x, y) > t) ≤ Ct−d/(d−2)), where
“vol” is the Riemannian volume. This result is due to Carron, see [10]. It is also
known ([10], pg. 232) that the Sobolev inequality (1) is valid on any smooth,
complete, simply connected manifold of nonpositive sectional curvature.

Our second main result is the following converse.

Theorem 2. Assume that p > ps := 2d/(d + 2). Suppose that for any initial data
u(0) ∈ Lq0(M) and all t > 0 the smoothing effect (3) relative to q0 ∈ [1, 2), q0 > qc,
and to r = 2 holds true for any solution u(t) of the equation u̇ = ∆pu. Then the
Sobolev inequality (1) holds. Therefore, in such range, the smoothing effect (2) is
equivalent to the Sobolev inequality (1).

Notice that the above Theorem covers also the degenerate range p > 2, since the
smoothing effect (2) holds in this range as well, as can be proved by means of the
techniques of [4] which, although stated in the Euclidean case, work in the present
setting as well. This equivalence is new in the degenerate case p > 2 as well.

The Carron’s result mentioned before then proves the following claim.

Corollary 2. If p > ps and the smoothing effect (2) holds in the range stated
in Theorem 2, then M is nonparabolic and the bound vol (y : G(x, y) > t) ≤
Ct−d/(d−2)) holds true for all positive t and all x ∈ M .

2. Proof of Theorem 1

We shall divide the proof into several steps.

Step 1: logarithmic Sobolev inequalities. We shall prove that a suitable
family of logarithmic Sobolev inequalities holds true. In fact, let p∗ := pd/(d − p)
(recall that d ≥ 3 and p ∈ (1, 2). Define the functional

(4) J(r, f) :=
∫

M

|f |r
‖f‖r

r

log
( |f |
‖f‖r

)
dx

in the range r ∈ (0, p∗), for all functions for which it is finite. Then we compute,
defining α := p∗ − r > 0:

rJ(r, f) =
r

α

∫

M

log
( |f |α
‖f‖α

r

) |f |
‖f‖r

dx

≤ r

α
log

(
‖f‖r+α

r+α

‖f‖r+α
r

)
=

r(r + α)
α

log
(‖f‖r+α

‖f‖r

)

≤ p∗r
p∗ − r

log
(

Cs
‖∇f‖p

‖f‖r

)
,

where we have used Jensen inequality w.r.t. the probability measure (fr/‖f‖r
r) dx

in the first step and the Sobolev inequality and the definition of α in the last step,
where Cs denotes the Sobolev constant in (1).
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Define cp,r,d := pr/(p∗ − r) =
(

1
r − 1

p∗

)−1

. Use then the numerical inequality
log x ≤ εx− log ε (x, ε > 0) to deduce that

rJ(r, f) ≤ εCp
s cr,p,d

p

‖∇f‖p
p

‖dp
r‖ − cr,p,d

p
log ε.

Noticing that rJ(r, f) = J(1, |f |r) we can equivalently conclude the present step
by writing the following family of logarithmic Sobolev inequalities:

(5) ‖∇f‖p
p ≥

p‖f‖p
r

cr,p,dC
p
s ε

[
J(1, fr) +

cp,r,d

p
log ε

]

for any ε > 0, r ∈
(
0, pd

d−p

)
.

Step 2: inequalities for time–dependent Lq norms. We choose from now on
data in L∞(M). This assumption is technical and will be removed later on.

We can adopt the strategy of [7] first to compute, given a smooth, increasing,
real valued function of time, say q : [0, t) → [1,+∞), where t > 0 is fixed:

d
ds

log ‖u‖q =
q̇

q
J(q, u)

−
(

p

q + p− 2

)p (q − 1)
‖u‖q

q
‖∇(|u|(q+p−2)/p)‖p

p

where we omit to indicate the s–dependence. This can be proved as in [7], whose
proof works in the present setting and in the present range of the parameter p as
well. Having at our disposal the new family of logarithmic Sobolev inequalities just
proved we can therefore write:

d
ds

log ‖u‖q ≤ q̇

q2
J(1, |u|q)

−
(

p

q + p− 2

)p (q − 1)
‖u‖q

q

p‖u‖q+p−2
(q+p−2)r/p

cr,p,dC
p
s ε

×

×
[
J

(
1, |u|(q+p−2)r/p

)
+

cp,r,d

p
log ε

]
.

Choose then

(6) ε =
q2

q̇

(
p

q + p− 2

)p (q − 1)p
cr,p,dC

p
s

‖u‖q+p−2
(q+p−2)r/p

‖u‖q
q

:= ε1

‖u‖q+p−2
(q+p−2)r/p

‖u‖q
q

where this is also meant to be the definition of ε1, to be used later, so that

d
ds

log ‖u‖q ≤ q̇

q2

[
J(1, |u|q)− J(q, |u|(q+p−2)r/p)

]
− q̇cr,p,d

q2p
log ε.

We choose now r so that the content of the square bracket in the last formula
vanishes identically. This happens precisely when

r =
pq

q + p− 2

but we have to check that such choice be compatible with the requested bound
r ∈ (0, p∗). This is where the range of p, q enters, first because the condition r > 0
holds since p > 1 and q ≥ 1, and then because the condition r < p∗ is easily seen



SINGULAR EVOLUTION EQUATIONS ON MANIFOLDS 5

to be equivalent to q > d(2− p)/p := qc, as assumed in the statement. Notice that,
with this choice of r, one has:

(7) cp,r,d =
pqd

pq + d(p− 2)
,

a fact which will be used later on.
One thus have, recalling the definition of ε1 given in (6) and the choice of r, that

d
ds

log ‖u‖q ≤ − q̇cr,p,d

q2p

[
log ε1 + log

(‖u‖q+p−2
(q+p−2)r/p

‖u‖q
q

)]

= − q̇cr,p,d

q2p
log ε1 − q̇cr,p,d(p− 2)

q2p
log ‖u‖q.

Since ε1 does not depend on u but only on q, p, d and on the Sobolev constant,
this is a closed differential inequality for log ‖u‖q in which we still have a degree of
freedom, namely the choice of q. We write down explicitly what we have found:

d
ds

log ‖u‖q ≤− q̇(p− 2)d
q[pq + d(p− 2)]

log ‖u‖q

− q̇d

q[pq + d(p− 2)]
log

(
pp[pq + d(p− 2)]q(q − 1)

Cp
s q̇d(q + p− 2)p

)
.

Step 3: integration. We make now use of the freedom of choice of q, setting
q(s) := q0t/(t− s) for all s ∈ [0, t), with q0 as in the statement. Then q(s) → +∞
as s ↑ t. Integration of the resulting differential inequality is of course easy but
quite tedious and we only sketch the main points. First we rewrite it as

ẏ(s) + a(s)y + b(s) ≤ 0,

where

y(s) := log ‖u(s)‖q(s), a(s) :=
q̇(s)(p− 2)d

q(s)[pq(s) + d(p− 2)]

b(s) :=
q̇(s)d

q(s)[pq(s) + d(p− 2)]
log

(
pp[pq(s) + d(p− 2)]q(s)(q(s)− 1)

Cp
s q̇(s)d(q(s) + p− 2)p

)
.

Therefore

y(s) ≤ e−A(s)

(
y(0)−

∫ s

0

b(λeA(λ) dλ

)
:= e−A(s)[y(0)−B(s)].

We first compute A(s). We have:

A(s) =
∫ s

0

a(λ) dλ =
∫ s

0

q̇(λ(p− 2)d
q(λ)[pq(λ) + d(p− 2)

dλ

=
∫ q(s)

q0

d(p− 2)
ξ[pξ + d(p− 2)]

dξ = log
(

ξ

pξ + d(p− 2)

) ∣∣∣q(s)q0

= log
(

q(s)([pq0 + d(p− 2)]
q0[pq(s) + d(p− 2)]

)
,

where we have used the change of variable ξ = q(λ). Notice that

A(s) −→s↑t log
(

pq0 + d(p− 2)
pq0

)
:= A(t)



6 M. BONFORTE AND G. GRILLO

and that this depends only on the fact that q(s) → +∞ as s ↑ t.
Inserting the explicit expression of A(s) into the definition of B(s) gives, after

elementary algebraic manipulations:

B(s) =
d[pq0 + d(p− 2)]

q0
log

(
ppq0t

Cp
s d

) ∫ s

0

q̇(λ)
[pq(λ) + d(p− 2)]2

dλ

+
d[pq0 + d(p− 2)]

q0

×
∫ s

0

q̇(λ)
[pq(λ) + d(p− 2)]2

log
[
(q(λ)− 1)(pq(λ) + d(p− 2))

q(λ)(q(λ) + p− 2)p)

]
dλ.

It will suffice for our purposes to notice that the last integral is convergent and
remains bounded, and independent of t, as s ↑ t. In fact it coincides with

∫ q(s)

q0

1
[pξ + d(p− 2)]2

log
(

(ξ − 1)(pξ + d(p− 2))
ξ(ξ + p− 2)p

)
dλ.

The integral has no poles in the interval of integration because of the assumptions
on q0 and its convergence as s ↑ t, so that q(s) → +∞, is obvious. We conclude
that

B(s) =
d(pq0 + d(p− 2)

q0p

(
1

pq0 + d(p− 2))
− 1

pq(s) + d(p− 2)

)
log t + G(s),

where G(s) is independent of t and remains bounded as s ↑ t, say G(s) → Ĝ as
s ↑ t. We then have

y(s) ≤q0[pq(s) + d(p− 2)]
q(s)[pq0 + d(p− 2)]

[y(0) + G(s)

−d(pq0 + d(p− 2)))
q0p

(
1

pq0 + d(p− 2)
− 1

pq(s) + d(p− 2)

)
log t

]
.

Letting s ↑ t we get, with the notation y(t) := lims↑t y(s):

y(t) =
pq0

pq0 + d(p− 2)

(
y(0) + Ĝ− d

pq0 log t

)
.

Recalling that y(s) = log ‖u(s)‖q(s) we recognize, exponentiation both sides and
proceeding as in [7], that this is an equivalent form of our statement, at least for
essentially bounded data. Such assumption can then be removed exactly as in [7].

To prove the Corollary, just use the elementary inequality

‖u(t)‖r ≤ ‖u(t)‖1−(q/r)
∞ ‖u(t)‖q/r

q

the smoothing effect, and the contraction property. ¤

3. Proof of Theorem 2

Take an initial datum u(0) ∈ W 1,p(M). We consider the equality

1
2

d
dt
‖u(t)‖22 = −‖∇u(t)‖p

p.

Integrating it over time we get

1
2

(‖u(t)‖22 − ‖u(0)‖22
)

= −
∫ t

0

‖∇u(s)‖p
p ds.
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It is known (cf. [6]) that ‖∇u(s)‖p
p decreases in time, so that

1
2

(‖u(t)‖22 − ‖u(0)22‖
) ≥ −t‖∇u(0)‖p

p.

The assumption on the range of p is easily shown to be equivalent to the condition
qc < 2, where qc is the quantity defined in Theorem 1. We can therefore use
inequality (3), which is a consequence of the smoothing effect (2) only, to write

‖u(t)‖2 ≤ C
‖u(0)‖γ(2,q0)

q0

tα(2,q0)

provided q0 ∈ (qc, 2). Combining the latter inequalities we get

C
‖u(0)‖2γ(2,q0)

q0

t2α(2,q0)
+ 2t‖∇u(0)‖p

p ≥ ‖u(0)‖22.
The above inequality is of the form

(8) f(t) := At−2α(2,q0) + B t ≥ D

where
A = C ‖u0‖2γ(2,q0)

q0
, B = 2‖∇(u(0))‖p

p , D = ‖u(0)‖22 .

The real function f has a unique minimum for positive t, namely

t = t̂ :=
(

2α(2, q)A
B

)1/[1+2α(2,q0)]

and one has
f

(
t̂
)

= KA1/[1+2α(2,q)]B2α(2,q0)/[1+2α(2,q0)],

K being a positive numerical constant.
Insert the value t = t̂ into (8), and notice that this gives, once substituting the

values of A, B and D:

‖u(0)‖22 ≤ K ‖u(0)‖2γ(2,q0)/[1+2α(2,q0)]
q0

‖∇(u(0))‖2pα(2,q0)/[1+2α(2,q0)]
p

where again K is a numerical constant. This Gagliardo–Nirenberg inequality is in
turn known to be equivalent to the Sobolev inequality (1), see [1]. ¤

Summary of the results

We conclude our paper by giving a graphic description of our results:

the plane (p, q) is split in various parts described below, p lying on the horizontal
axis and q on the vertical axis.

The Critical Line: the critical line q = d(2− p)/p = qc defines the critical value
pc = 2d/(d+1) when it intersects the horizontal line q = 1. The critical line charac-
terizes the two regions (I) and (II), separating the fast and the degenerate diffusion
zones from the very fast diffusion zone. We remark that the same curve explains
the case of the Euclidean setting for the p-Laplacian without coefficients, and has
first appeared in the monograph [11], where it is obtained by scaling techniques
and with the help of explicit source-type or self-similar solutions; in the Riemann-
ian setup, scaling techniques are useless, and, as far as we know, no explicit source
type solution is known.

(I) The supercritical case : pc < p < 2. In this zone the smoothing effect
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(2) holds, for any initial data belonging to Lq0 , for any q0 ≥ 1: this is the result
of Theorem 1. Moreover in this zone the smoothing effect (2) is equivalent to the
Sobolev inequality (1), and this is part of the result of Theorem 2. This equivalence
holds in the degenerate range p > 2 as well, by Theorem 2 and the results of [4]
adapted to the present case. The equivalence is well–known to hold in the linear
case p = 2 also.

(II) The subcritical case (or Very Fast Diffusion): 1 < p < pc. In this zone the
Lq0 − L∞ smoothing effect (2) holds for any initial data belonging to Lq0 , for any
q0 ≥ qc = d(2− p)/p : this is the result of Theorem 1. Theorem 2 moreover shows
that a certain converse does hold in the interval p ∈ (ps, pc].
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