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(a) Departamento de Matemáticas, Universidad Autónoma de Madrid, Campus de Canto-
blanco, 28049 Madrid, Spain
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1 Introduction

We are interested in this paper in the questions of boundedness, positivity and regularity of
the solutions of fast diffusion equations. Though the arguments have a more general scope,
two settings will be considered in order to obtain sharp results: in one of them, the Cauchy
problem is considered in the whole space{

ut = ∆(um) in Q = (0,+∞)× Rd,
u(0, x) = u0(x) in Rd,

(1.1)

and in the range (d−2)+/d = mc < m < 1. In the second option, the mixed Cauchy-Dirichlet
problem is considered in bounded domains with smooth boundary ut = ∆(um) in Q = (0,+∞)× Ω,

u(0, x) = u0(x) in Ω,
u(t, x) = 0 for t > 0 and x ∈ ∂Ω

(1.2)

and in the range (d − 2)+/(d + 2) = ms < m < 1. In both cases nonnegative solutions are
considered. The restrictions on the exponent range are not a matter of convenience.

It is well-known that the solutions of the Heat Equation ut = ∆u posed in the whole
space with nonnegative data at t = 0 become positive and smooth for all positive times and
all points of space. The same positivity property is true in many other settings, e.g., for
nonnegative solutions posed in a bounded space domain with zero boundary conditions. Such
properties of positivity and smoothness are shared by the Fast Diffusion Equation

ut = ∆um, 0 < m < 1,

but this happens under certain conditions on the exponent and data and with quite different
quantitative estimates.

The question of boundedness is closely related to existence theory and has been much
investigated in the whole exponent range m ∈ R. A comprehensive account can be found in
works of one of the authors, see [24, 21, 23]. The Smoothing Effect explained there is usually
expressed in the form

‖u(t)‖∞ ≤ C ‖u0‖σ
1/tα,

where t > 0 and all the Lp are taken over the whole domain Ω or Rd. The positive constants
C, σ and α depends only on m, d. The analysis shows that the FDE maps initial data, possibly
unbounded, to bounded solutions if m is larger than a first critical exponent mc = (d−2)+/d.
The situation becomes quite involved, and interesting, for subcritical m.

A natural problem arises next that we will address here: starting from nonnegative initial
data, do we obtain strictly positive solutions, at least locally? This positivity property is
strictly related to Harnack Inequalities, as we will see. If we express the positivity result in
terms of Lp norms, we are led to the case of negative exponents and of course the quantities

‖f‖−p =
[∫

Ω

f(x)−p dx

]−1/p
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are no more norms in the usual sense. But there is a nice well known result, which helps us
to understand better the nature of such lower bounds

inf
x∈Ω

|f(x)| = ‖f‖−∞ = lim
p→∞

‖f‖−p.

The aim of this paper is to present from a unified point of view some results and techniques
recently discovered by the authors and described in whole detail in the papers [7, 8], and also
to discuss some new ideas to attack some open problems related to Harnack Inequalities. Let
us present the lower bounds that we obtain. We take the case of the Cauchy Problem posed
in the whole space: in Theorem 2.1 we prove that

inf
x∈BR(x0)

u(t, x) ≥ MR(x0) H(t/tc) > 0.

Here, MR(x0) is the average initial mass in the ball BR(x0), H is an explicit function of time
relative to the characteristic time tc, which is loosely speaking a time that we have to wait
in order to let the regularization to take place, and is calculated in terms of the initial data.
For t ≥ tc the above lower bound can be rewritten as:

‖u(t)‖L−∞(BR(x0)) ≥ Km,d ‖u0‖2ϑ
L1(BR(x0))

t−dϑ,

that is exactly the reverse of the standard smoothing effect above, thought as L1-L∞ regu-
larization, and expressed as a local L1-L−∞ smoothing effect (over balls); for this reason we
call it Reverse Smoothing Effect.

Putting together the direct and reverse smoothing effect, we obtain the Intrinsic and
Elliptic Harnack inequalities and thus as a consequence we have a quite simple proof of the
Hölder continuity of the solution, which has been first proved by DiBenedetto et al., see e.g.
[12, 14], by entirely different techniques.

When dealing with elliptic problems, our positivity result, or Reverse Smoothing Effect,
is also known as Weak Harnack inequality or Half Harnack, indeed nothing is more natural
than this terminology since this easily implies Intrinsic Harnack Inequality as a corollary,
cf. Theorems 6.2 and 6.3; moreover the combination of direct and reverse Smoothing Effect
implies an Harnack inequality of Elliptic type, cf. Theorems 6.1 and 6.4, namely we compare
the supremum and infimum of the solution at the same time.

Another issue that we address is the extension to the whole space (or domain) of local
positivity properties. This leads to the Global Harnack Principle, GHP, i.e., to accurate upper
and lower bounds in terms of some special (sub/super) solutions. In the case of the whole
space the super- and subsolutions are Barenblatt functions. In the case of bounded domains
the Global Harnack Principle was first proved in [14], and the super- and subsolutions were
related to the solution obtained by separation of variables.

We also investigate the connection between the Global Harnack Principle and the fine
asymptotic behaviour, first introduced by one of the authors in [21], in terms of uniform
convergence in relative error, shortly CRE. We show that the GHP implies CRE both in the
case of Rd and in the case of bounded domain.

Finally, we show in the case of bounded domains that the convergence in relative error
implies Elliptic Harnack Inequalities for times near the extinction time, thus completing the
panorama of the validity of Harnack Inequalities in the case of bounded domains.
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Open Problems. These ideas lead to further possible interesting generalizations which are
actually under investigation. For example we can consider the case in which the problem is
posed on a Riemannian Manifold, and the operator is the Laplace Beltrami Operator, or when
it is replaced by a more general Elliptic operator, possibly with measurable coefficients. The
methods we present here may open new directions to solve the problem of Harnack Inequalities
for more general nonlinear diffusion equations for a larger range of exponents m.

Notation. In the sequel, the letters ai, bi, Ci,K, ki, λi, µ are used to denote universal positive
constants that depend only on m and d. The constant ϑ is fixed to the value ϑ = 1/(2−d(1−
m)) > 0.

2 Positivity results for the Fast Diffusion Equation

We start our analysis by considering the problem of estimating the positivity of solutions of
the FDE, both in the case of the Cauchy problem posed in the whole Rd space and in the case
of the mixed Cauchy-Dirichlet problem posed in a domain of Rd. In both cases we analyze
local and global positivity estimates. In view of the remarks of the Introduction, the local
positivity estimates can be considered as a Reverse Smoothing Effect and are independent
of the choice of some explicit (sub-/super-) solutions. Vice versa, when we deal with global
positivity, we make use of some special (sub-/super-) solution. For a complete discussion of
these results we refer to our paper [7].

2.1 Local and global positivity estimates in Rd

Let us prove quantitative positivity estimates for the Cauchy problem posed in the whole
Euclidean space Rd: {

ut = ∆(um) in Q = (0,+∞)× Rd,
u(0, x) = u0(x) in Rd,

(2.1)

in the range (d− 2)+/d = mc < m < 1. We then derive Elliptic Harnack inequalities. In the
results, we fix a point x0 ∈ Rd and consider different balls BR = BR(x0) with R > 0. We
introduce the following measures of the local mass

MR(x0) =
∫

BR

u0(x) dx, MR(x0) = MR/Rd.

More precisely, we should write MR(u0, x0),MR(u0, x0), but we will even drop the variable x0

when no confusion is feared. This is the intrinsic positivity result that shows in a quantitative
way that solutions are positive for all (x, t) ∈ Q. This type of result is also called weak
Harnack inequality, and also half Harnack inequality or lower Harnack inequality, meaning
that it is half of the full pointwise comparison that Harnack inequalities imply.

Theorem 2.1 (Local Positivity on Rd) There exists a positive function H(t) such that for
any t > 0 and R > 0 the following bound holds true for all continuous nonnegative solutions
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u to (2.1) with mc < m < 1:

inf
x∈BR(x0)

u(t, x) ≥ MR(x0) H(t/tc), (2.2)

Function H(η) is positive and takes the precise form

H(η) =
{

Kη−dϑ for η ≥ 1,
Kη1/(1−m) for η ≤ 1.

(2.3)

The characteristic time is given by

tc = C M1−m
R R1/ϑ. (2.4)

Constants C,K > 0 depend only on m and d.

Figure 1: Approximative graphic of the functions u(t, x) (dots) and H(t) (line)

Proof. We skip the proof of this result, given in [7], since it is similar to the proof of the
problem posed in a bounded domain, that we will present in Theorem 2.4; that case which
presents the extra difficulty caused by the phenomenon of extinction in finite time. Instead
we concentrate on a number of observations.

(1) Characteristic time. Notice that tc is an increasing function of MR and R. This is in
contrast with the porous medium case m > 1 where it can be shown that tc decreases with
MR, see e.g. [2] or [24], Chapter 4.

(2) Minimax problem. Suppose that we want to obtain the best of the lower bounds when
t varies. This happens for t/tc ≈ 1 and the value is

u(tc, 0) ≥ C3 MRR−d,

which is just proportional to the average. At this time also the maximum is controlled by the
average (see the upper estimate).

(3) The behaviour of H is optimal in the limits t � 1 and t ≈ 0 as the Barenblatt solutions
show. If we perform the explicit computation for the Barenblatt solution in the worst case
where the mass is placed on the border of the ball BR0 , it gives (see (2.6) below)

B(0, t) =
M2ϑ

R t1/(1−m)

(b1t2ϑ + b2t2ϑ
c )1/(1−m)

. (2.5)

The consideration of the Barenblatt solutions as example leads us to examine what is the
form of the positivity estimate when we move far away from a ball in space. Indeed, we can
get a global estimate by carefully inserting a Barenblatt solution with small mass below our
solution. Let us recall that the Barenblatt solution of mass M is given by the formula

B(t, x;M) =
t1/(1−m)[

b1t
2ϑ

M2ϑ(1−m)
+ b2|x|2

]1/(1−m)
. (2.6)
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and also that
tc = C M

(1−m)
R R1/ϑ.

The following Theorem can be viewed as a Weak Global Harnack Principle, since it leads to
the Global Harnack Principle, which will be derived in the next subsection. Notice that the
parameters of the Barenblatt subsolution have a different form in the two cases t ≥ tc and
0 < t < tc.

Theorem 2.2 (Global Positivity in Rd) (I) There exist τ1 ∈ (0, tc) and Mc > 0 such that
for all x ∈ Rd and t ≥ tc

u(t, x) ≥ B(t− τ1, x;Mc). (2.7)

where we can take τ1 = λ tc and Mc = k MR for some universal constants λ, k > 0 which
depend only on m and d. (II) For any 0 < ε < tc we have the global lower bound valid for
t ≥ ε

u(t, x) ≥ B(t− τ(ε), x;M(ε)), (2.8)

with τ(ε) = λ ε and

M(ε) = (ε/tc)1/(1−m)Mc = k1

(
ε/R1/ϑ

)1/(1−m)

. (2.9)

Proof. The proof presented here has been taken from [7]. The main result is the first, the
point of stating (II) is to have an estimate for small times (with a smaller time shift), at
the price of having a subsolution with smaller mass. Let us point out that the last constant
k1 = k C−1/(1−m). We divide the proof in a number of steps; the proof of (I) consists of steps
(i)–(iii). (i) Let us first argue for x ∈ BR(0) at time t = tc. As a consequence of our local
estimate (2.1) at t = tc, one gets:

u(tc, x) ≥ K
MR

Rd

for all |x| ≤ R. Hence, (2.7) is implied in this region by the inequality

K
MR

Rd
≥ B(tc − τ1, x;Mc) =

(tc − τ1)1/(1−m)[
b1(tc − τ1)2ϑ

M
2ϑ(1−m)
c

+ b2|x|2
]1/(1−m)

(2.10)

Now we choose τ1 = λtc with a certain λ ∈ (0, 1). We put µ = 1 − λ ∈ (0, 1) so that
tc − τ1 = µ tc. With this choice, (2.10) is equivalent to

b1(µ tc)2ϑ

M
2ϑ(1−m)
c

+ b2|x|2 ≥
Rd(1−m)µ tc

M1−m
R K1−m

putting x = 0 and using the value of tc, it is implied by the condition:

Mc = k MR, k ≤ b
1/(2ϑ(1−m))
1 K1/2ϑ (µC)d/2

. (2.11)

(ii) We now extend the comparison to the region |x| ≥ R, again at time t = tc. We take as
domain of comparison the exterior space-time domain

S = (τ1, tc)× {x ∈ Rd : |x| > R}.
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Both functions in estimate (2.7) are solutions of the same equation, hence we need only
compare them on the parabolic boundary. Comparison at the initial time t = τ1 is clear
since B(tc − τ1, x;Mc) vanishes. The comparison on the lateral boundary where |x| = R and
τ1 ≤ t ≤ tc amounts to

K
MR

Rd

(
t

tc

)1/(1−m)

≥ (t− τ1)1/(1−m)[
b1(t− τ1)2ϑ

M
2ϑ(1−m)
c

+ b2R2

]1/(1−m)
. (2.12)

Raising to the power (1−m) and using the value of tc, we get

K1−mt

R2C
≥ t− τ1

b1(t− τ1)2ϑ

M
2ϑ(1−m)
c

+ b2R2

,

or

K1−m b1(t− τ1)2ϑ

M
2ϑ(1−m)
c

+ K1−mb2R
2 ≥ (1− τ1

t
)R2C . (2.13)

If we have fixed τ1 as before and we define Mc = k MR with k = k(m, d) small enough, this
inequality is true for τ1 ≤ t ≤ tc. (iii) Using now the Maximum Principle in S, the proof of
(2.7) is thus complete for t = tc in the exterior region. Since the comparison holds in the
interior region by step (i), we get a global estimate at t = tc. (iv) We now prove part (II) of

the Theorem. We only need to prove it at t = ε. We recall that λ and Mc are as defined in
part (I). We know that

tc − τ1 = µ tc,with µ ∈ (0, 1)

Using the Bénilan-Crandall estimate, we have for 0 < t < tc:

u(t, x) ≥ u(tc, x)
t1/(1−m)

t
1/(1−m)
c

,

together with the above estimate (2.7), we can see that:

u(t, x) ≥ u(tc, x)
t1/(1−m)

t
1/(1−m)
c

≥ t1/(1−m)

t
1/(1−m)
c

B(tc − τ1, x;Mc)

=
t

1
1−m

t
1

1−m
c

(µ tc)
1

1−m[
b1(µ tc)2ϑ

M
2ϑ(1−m)
c

+ b2|x|2
] 1

1−m

=
(µ t)1/(1−m)[

b1(µ t)2ϑ

M
2ϑ(1−m)
c t2ϑt−2ϑ

c

+ b2|x|2
] 1

1−m

= B
(

µ t, x ;
Mct

1/(1−m)

t
1/(1−m)
c

)
= B(t− τ, x ;Mc(t))

once one let t− τ = µ t and Mc as above. The proof of (2.8) is thus complete.

A consequence of this result is the following lower asymptotic behaviour that is peculiar
of the FDE evolution.
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Corollary 2.3 We have

lim inf
|x|→∞

u(t, x) |x|2/(1−m) ≥ c(m, d) t1/(1−m). (2.14)

The constant c(m, d) = (2m/ϑ(1−m))1/(1−m) of the Barenblatt solution is sharp.

This result has been proved by Herrero and Pierre (see Thm. 2.4 of [18]) by similar methods.
Here, it easily follows from the estimates of Theorem 2.2 which provides an exact lower bound
for all times, not only for large times.

Remarks. (1) In order to complement the previous lower estimates, let us review what is
known about estimates from above. These depend on the behaviour of the initial data as
|x| → ∞. Recall only that constant data produce the constant solution, that does not decay.
Under the decay assumption on the initial datum u0 ∈ L1

loc(Rd):∫
|y−x|≤|x|/2

|u0(y)|dy = O
(
|x|d−

2
1−m

)
as |x| → ∞, (2.15)

it has been proved by entirely different methods in [21] that

lim
|x|→∞

u(t, x) |x|2/(1−m) ≤ c(m, d) (t + S)1/(1−m).

where S > 0 depends on the constant in the bound (2.15) as |x| → ∞. The time shift S is
needed in the asymptotic behaviour of u as |x| → ∞. Actually, when the initial datum has
an exact decay at infinity, u0 ∼ a|x|−2/(1−m) we have more:

lim
|x|→∞

u(t, x) |x|2/(1−m) = C (t + S)1/(1−m)
.

with C = 2m/ϑ(1 − m) and S = a1−m/C, and this cannot be improved as the delayed
Barenblatt solutions show. Moreover, there exists a t0 such that u1−m is convex as a function
of x for t > t0, cf. [19].

(2) In comparison with the upper bounds, we have shown that global lower estimates need a
time shift τ (in the other direction, explicitly calculated), but in the limit we can put τ = 0,
as one can see above. Moreover, the behaviour at infinity is independent of the mass (a fact
that is false for the heat equation), hence all Barenblatt solutions with different free constant
b1 behave in the same way in the limit as |x| → ∞, cf. [21].

(3) We can also get better results if we consider radially-symmetric initial data (always in
our range of parameters mc < m < 1), cf. [10].

2.2 Local and global positivity estimates on domains

In this section we will prove local Positivity Estimates (Weak Harnack) and Elliptic Harnack
inequalities for the Fast Diffusion Equation in the range (d − 2)+/d = mc < m < 1 in an
Euclidean domain Ω ⊂ Rd. ut = ∆(um) in Q = (0,+∞)× Ω

u(0, x) = u0(x) in Ω
u(t, x) = 0 for t > 0 and x ∈ ∂Ω

(2.16)
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where Ω ⊂ Rd is an open connected domain with sufficiently smooth boundary. Since we are
interested in lower estimates, by comparison we may assume that Ω is bounded without loss of
generality. In the case of bounded domains an extra difficulty appears: the extinction in finite
time, e.g. there exists a time T > 0 such that u(t, x) ≡ 0 for any t ≥ T and x ∈ Ω. In the
proof of Theorem 2.4 we prove lower bound for such extinction time in terms of the volume
of the domain. This will in particular show that in the case of the whole Rd solutions do not
extinguish in finite time. This is the intrinsic positivity result that shows in a quantitative
way that solutions are positive for all (x, t) ∈ Q. In the result we fix a point x0 ∈ Ω and
consider different balls BR = BR(x0) with R > 0, included in Ω. It is a version of Theorem
2.1 in the case of the mixed Cauchy-Dirichlet problem on domains.

Theorem 2.4 (Local Positivity on Domains) Let u be a continuous nonnegative solution
to (2.16), with mc < m < 1. There exists times 0 < t∗c < Tc ≤ T , where T is the finite
extinction time, and a positive function H(t) such that for any t ∈ (0, Tc) and R > 0 such
that

R ≤ Λ dist (x0, ∂Ω) (2.17)

the following bound holds true:

inf
x∈BR

u(t, x) ≥ MR H(t/t∗c), (2.18)

where MR = MR/Rd, MR =
∫

BR
u0(x) dx. Function H(t) is positive and takes the precise

form

H(η) =
{

Kη−dϑ for 1 ≤ η ≤ Tc/t∗c ,
Kη1/(1−m) for η ≤ 1

(2.19)

The times 0 < t∗c ≤ Tc ≤ T are given by

t∗c = τc(2R)1/dϑM1−m
R ,

Tc = τ ′c [ dist(x0, ∂Ω)− 2R ]M1−m
R ..

(2.20)

Constants C, K, τc, τ ′c, Λ > 0 depend only on d and m.

Figure 2: Approximative graphic of the functions u(t, x) (dots) and H(t) (line)

Proof. The proof presented here has been taken from [7]. It is a combination of several steps.
Without loss of generality we assume that x0 = 0. Different positive constants that depend
on m and d are denoted by Ci.The precise values we get for C, K, τc, τ ′c and Λ are given at
the end of the proof.

• Reduction. By comparison we may assume supp(u0) ⊂ BR(0). Indeed, a general u0 ≥ 0
is greater than u0η, η being a suitable cutoff function compactly supported in BR and less
than one. If v is the solution of the fast diffusion equation with initial data u0η (existence
and uniqueness are well known in this case), we obtain:∫

BR

u(0, x) dx ≥
∫

BR

u0(x)η(x) dx = MR
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and if the statement holds true for v, then

inf
x∈BR

u(t, x) ≥ inf
x∈BR

v(t, x) ≥ H(t/tc)MR.

• Lower bounds on the extinction time. In order to get a lower bound for the extinction time
in terms of local mass information, we use property which can be labeled as weak conservation
of mass, and has been proved in lemma (3.1) of [18]. It reads: for any R, r > 0 and s, t ≥ 0
one has ∫

B2R

u(s, x) dx ≤ C3

[∫
B2R+r

u(t, x) dx +
|s− t|1/(1−m)

r(2−d(1−m))/(1−m)

]
. (2.21)

Now letting t = T , so that u(T, x) = 0, and s = 0 so that
∫

B2R
u(0, x) dx = MR, we get

T ≥
M1−m

R r1/ϑ

C1−m
3

≥
M1−m

R [dist (0, ∂Ω)− 2R]1/ϑ

C1−m
3

(2.22)

since r ∈ (0, dist (0, ∂Ω)− 2R).
• A priori estimates. The second step again is similar to the analogous step in proof of
Theorem 2.1, so we will omit details. We rewrite the well known smoothing effect (see e.g.
[24]), after an integration over B2bR, in the form∫

B2bR

u(t, x) dx ≤ C2 M2ϑ
R Rd t−dϑ (2.23)

since u0 is nonnegative and supported in BR. Here C2 = C12bdωd.
• Integral estimate. Again in this step we are going to use the estimate (2.21). We let s = 0
and we rewrite it in a form more useful to our purposes (remember that M2R = MR since u0

is supported in BR): ∫
B2R+r

u(t, x) dx ≥ MR

C3
− t

1
1−m

r
1

θ(1−m)
. (2.24)

we now remark that r and R are such that B2R+r ⊂ Ω.
• Aleksandrov Principle. The fourth step consists in using the well-known Reflection Principle
in a slightly different form (see proposition (7.1) and formula (7.4) in the Appendix for more
details). This principle reads:∫

B2R+r\B2bR

u(t, x) dx ≤ Ad rdu(t, 0) (2.25)

where Ad and b = 2 − 1/d are chosen as in (7.4) in Appendix, and one has to remember of
the condition r ≥ (2(d−1)/d − 1)2R.

• We now put together all the previous calculations:∫
B2R+r

u(t, x) dx =
∫

B2bR

u(t, x) dx +
∫

B2R+r\B2bR

u(t, x) dx

≤ C2 M2ϑ
R Rd t−dϑ + Adr

du(t, 0)
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this follows by (2.23) and (2.25). Now we are going to use the (2.24) to obtain:

MR

C3
− t

1
1−m

r
1

θ(1−m)
≤
∫

B2R+r

u(t, x) dx ≤ C2 M2ϑ
R Rd

tdϑ
+ Adr

du(t, 0)

And finally we obtain:

u(t, 0) ≥ 1
Ad

[(
MR

C3
− C2 M2ϑ

R Rd

tdϑ

)
1
rd
− t

1
1−m

r
2

1−m

]
=

1
Ad

[
A(t)
rd

− B(t)
r2/(1−m)

]
(2.26)

• Now we would like to obtain the claimed estimate for t > t∗c . To this end we seek whether
A(t) is positive:

A(t) =
MR

C3
− C2

M2ϑ
R Rd

tdϑ
> 0 ⇐⇒ t > (C3C2)

1/(dϑ)
M1−m

R R1/ϑ = t∗c (2.27)

Now we have to check if t∗c ≤ T . By (2.22) one knows that a sufficient condition is that
t∗c ≤ Tc = Cm−1

3 M1−m
R [dist (0, ∂Ω)− 2R]1/ϑ ≤ T , that is:

R ≤ dist (0, ∂Ω)

2 + C
1−m+1/dϑ
3 C

1/dϑ
2

(2.28)

Now, assuming t ∈ (t∗c , Tc) temporarily fixed, we optimize the function

f(r) =
1

Ad

[
A(t)
rd

− B(t)
r2/(1−m)

]
with respect to r = r(t) ∈ (0, dist(0, ∂Ω)− 2R) and we obtain that it attains its maximum in
r = rmax(t):

rmax(t) =
[

2
d(1−m)

]ϑ(1−m)

tϑ
[
MR

C3
− C2M

2ϑ
R Rd

tdϑ

]−ϑ(1−m)

(2.29)

At this point is necessary to check the conditions

(2(d−1)/d − 1)2R < rmax(t) < dist(0, ∂Ω)− 2R

To this end is useful to get a simpler parametrization of the time interval (t∗c , Tc), indeed

tα = αt∗c = α (C3C2)
1/(dϑ)

M1−m
R R1/ϑ

maps the time interval (t∗c , Tc) into (1, αc), where

αc =
Tc

t∗c
= C

1−m+1/dϑ
3 C

1/dϑ
2

(
dist(0, ∂Ω)

R
− 2
)

And

rmax(tα) =
(

2
d(1−m)

)ϑ(1−m)

C
1−m+1/dϑ
3 C

1/dϑ
2

αϑ

(1− α−dϑ)ϑ(1−m)
R

11



Optimizing now this function w.r.t. α ∈ (1, αc) will lead to the value

αmin = 1 + ϑd(1−m)

and in order to guarantee the fact that αmin ≤ αc we impose the condition

R ≤ dist (0, ∂Ω)

2 +
(
(1 + ϑd(1−m))C1−m+1/dϑ

3 C
1/dϑ
2

)ϑ

Moreover, it is tedious but straightforward to verify that:

(2(d−1)/d − 1)2R < rmax(tαc) ≤ dist (x0, ∂Ω)− 2R

the first inequality becomes nothing else but a lower bound on the constants C2 and C3, but
since they are constants used in upper estimates, they can be chosen arbitrarily large. The
second inequality is guaranteed by the hypothesis R ≤ Λ dist(0, ∂Ω). Now going back to the
standard time parametrization we proved that:

f(rmax(t)) = Ad
[d(1−m)]2ϑ−1

22ϑϑ

[
1
C3

− C2
M2ϑ−1

R Rd

tdϑ

]2ϑ
M2ϑ

R

tdϑ
> 0

for all t ∈ (tαmin , Tc) ⊂ (t∗c , T ). We thus found the estimate:

u(t, 0) ≥ Ad
[d(1−m)]2ϑ−1

22ϑϑ

[
1
C3

− C2
M2ϑ−1

R Rd

tdϑ

]2ϑ
M2ϑ

R

tdϑ
= K1 A(t)

M2ϑ
R

tdϑ

a straightforward calculation shows that the function

A(t) =

[
1
C3

− C2
M2ϑ−1

R Rd

tdϑ

]2ϑ

is non-decreasing in time, thus if t ≥ tαmin
:

A(t) ≥ A(tαmin
) =

(
1− (1 + ϑd(1−m))−dϑ

2C3

)2ϑ

and finally we obtain:

u(t, 0) ≥ K1 A(t)
M2ϑ

R

tdϑ
≥ K1 A(tαmin

)
M2ϑ

R

tdϑ

So we proved that

u(t, 0) ≥ K
M2ϑ

R

tdϑ
(2.30)

for t ∈ (tαmin
, Tc), with

K =
Ad

(2C3)2ϑ

[d(1−m)]2ϑ−1

22ϑϑ

[
1− (1 + ϑd(1−m))−dϑ

]2ϑ
.

12



• From the center to the infimum.
Now we want to obtain positivity estimate for the infimum of the solution u in the ball BR =
BR(0). Suppose that the infimum is attained in some point xm ∈ BR, so that infx∈BR

u(t, x) =
u(t, xm), then one can apply (2.30) to this point and obtain:

u(t, xm) ≥ K
M2ϑ

2R(xm)
tdϑ

(2.31)

for tαmin(xm) < t < Tc(xm) < T . Since the point xm ∈ BR(0) then it is clear that BR(0) ⊂
B2R(xm) ⊂ B4R(0) and this leads to the equality:

M2R(xm) = MR(0) = M4R(0)

since M%(y) =
∫

B%(y)
u0(x) dx, supp(u0) ⊂ BR(0) and u0 ≥ 0.

This equalities will imply then that the times:

tαmin
(xm) = (1 + ϑd(1−m))(C3C2)1/dϑ(2R)1/ϑM2R(xm)

= (1 + ϑd(1−m))(C3C2)1/dϑ(2R)1/ϑMR(0) = t∗min(0) ≥ tαmin
(0)

and

Tc(xm) = Cm−1
3 [dist (0, ∂Ω)− 4R]1/ϑ

M1−m
2R (xm)

= Cm−1
3 [dist (0, ∂Ω)− 4R]1/ϑ

M1−m
R (0) ≤ Tc(0)

Thus, we have found that:

inf
x∈BR(0)

u(t, x) = u(t, xm) ≥ K
M2ϑ

R (xm)
tdϑ

= K
M2ϑ

R (0)
tdϑ

= K
t∗ dϑ
min(0)
tdϑ

M2ϑ
R (0)

t∗ dϑ
min(0)

(2.32)

for t∗c = t∗min(0) < t < Tc(0) < T which is exactly (2.18).
• The last step consists in obtaining a lower estimate when 0 ≤ t ≤ t∗c .
To this end we consider the fundamental estimate of Bénilan-Crandall [4]:

ut(t, x) ≤ u(t, x)
(1−m)t

.

This easily implies that the function:

u(t, x)t−1/(1−m)

is non-increasing in time, thus for any t ∈ (0, tc) we have that

u(t, x) ≥ u(t∗c , x)
t1/(1−m)

t
∗ 1/(1−m)
c

in order to obtain inequality (2.18) for 0 < t < t∗c is now sufficient to apply the inequality
valid for t ≥ t∗c to the r.h.s. in the above inequality. The proof of formula (2.18) is complete

13



in all cases.
• The values of the constants K and C are given by:

K =
Ad

(2C3)2ϑ

[d(1−m)]2ϑ−1

22ϑϑ

[
1− (1 + ϑd(1−m))−dϑ

]2ϑ

2dC3C2(1 + ϑd(1−m))
.

C = C
1−m+1/dϑ
3 C

1/dϑ
2

τc = (1 + ϑd(1−m))(C3C2)1/dϑ

τ ′c = 1/C1−m
3

Λ = min

(
1

(2 + C)
,

1

2 + ((1 + ϑd(1−m))C)ϑ

)
The proof is complete.

Global Positivity on Domains. The global positivity in this setup has been proved first
by E. Dibenedetto, Y. C. Kwong and V. Vespri, [14] in the form of the Global Harnack
Principle that we will discuss in the following section.

3 Global Harnack Principle on the whole space
and relative error estimates

Under a further control on the initial data, we can transform the local Harnack Principle into
a global version. The Global Harnack Principle which is the natural extension of Harnack
inequalities to a global point of view, indeed it is nothing else than a global sharp upper and
lower bound in terms of a Barenblatt solution shifted in time and possibly with different mass.
The range of the parameter m is always mc < m < 1. We recall that bi, λ1, k1, and Ci are
constants that depend only on m and d, while rest of the parameters depend also on the data
as expressed.

Theorem 3.1 (Global Harnack Principle) Let u0 ∈ L1(Rd), u0 ≥ 0 and

u0(x) |x|2/(1−m) ≤ A. (3.1)

for |x| ≥ R0. Then, for any time ε > 0 there exist constants τ1, τ2, M1 and M2, such that
for any (t, x) ∈ (ε,∞)× Rd we have the following upper and lower bounds:

B(t− τ1, x;M1) ≤ u(t, x) ≤ B(t + τ2, x;M2) (3.2)

where τ1 = λ1ε, τ2 = τ(ε, A, ts), M1 = M(ε) as given in Theorem 2.2 and M2 = k2(ε, A, τ2) M∞,
while

tc = C M1−m
R R1/ϑ, ts = C5 M1−m

∞ R
1/ϑ
0 .

Proof. The detailed proof can be found in [7]. It is based on a quite delicate analysis of
the properties of the solution and the size of the Barenblatt solutions in different parts of the
space-time domain. Convenient parabolic comparisons are then used to arrive at the result.
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Asymptotic behaviour and relative error estimates in Rd

The second author has proved in [21] the so-called Relative Error Estimates (REE) for the
FDE in the same range of parameters, namely

lim
t→∞

∥∥∥∥u(t, ·)− B(t, · ;M)
B(t, · ;M)

∥∥∥∥
∞

= 0 ,

where B is the Barenblatt solution with the same mass (the result is independent of a possible
shift in time or space). This is related to our Theorem 3.1 as follows: for every ε > 0 we can
find a Barenblatt solution with mass M1(ε) < M∞ and another one with mass M2(ε) > M∞
that serve as lower bound, resp. upper bound for the solution for all times t ≥ ε. It is clear
from the maximum principle that M1(ε) increases with time while M2(ε) decreases. The
asymptotic result says that

lim
ε→∞

M1(ε) = lim
ε→∞

M2(ε) = M∞.

Theorem 3.1 adds to this asymptotic statement a more precise quantitative information that
is valid not only for large times, but also for arbitrary small times. The solution thus inherits
positivity and boundedness properties directly from the Barenblatt solutions that serve as
upper and lower bounds from the very beginning. Usually, it is said that the Barenblatt
solution of the nonlinear equations is a ‘poor cousin’ of the fundamental solution of the Heat
Equation since there is no representation formula as in the linear case. The above results
show that in the good fast diffusion range mc < m < 1 it is a stronger model in some
respects. Thus, a consequence of this powerful Global Harnack Principle, obviously valid for
the Barenblatt solutions, is that the behaviour at infinity (i.e. for |x| → ∞ and/or t → ∞)
of the Barenblatt solution is always the same, independent of the mass. This uniformity
property is not shared by the Heat Equation nor by the Porous Medium Equation and shows
how much more effectively the fast diffusion process regularizes the initial data.

Different behaviour in the cases m 6∈ (mc, 1).

In the above considerations, it is essential that the range of parameters is mc < m < 1, since
when m 6∈ (mc, 1) different phenomena hold. We refer to [24] for a detailed and exhaustive
exposition and as a source for more complete bibliography. Let us discuss here the question
of possible uniform lower bounds. The following result is proved in [7]:

Proposition 3.2 Locally uniform positivity estimates, and a posteriori any kind of Harnack
inequalities, are false for general initial data.

This quite simple example shows that the range of parameters we consider in this paper
is optimal from below, if we want the initial datum u0 to be as general as possible.

Let us now comment that the results discussed above have been motivated by similar
properties of the heat equation flow. It has to be noted that there are slight differences in
favor of the fast diffusion case. Indeed, if one considers as initial datum u0 = δy, then it is
easy to see that the shifted fundamental solution of the linear heat equation

Ey(t, x) = (4π t)−d/2e−|x−y|2/t
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does not satisfy the condition

c1 E0(t, x) ≤ Ey(t, x) ≤ c2E0(t, x)

for some universal constants ci > 0, which is however satisfied by the Barenblatt solutions if
mc < m < 1.

4 Global Harnack Principle on bounded domains

In this section we will enlarge a bit the range of the parameter m, namely we will consider

(d− 2)+
d + 2

= ms < m < 1.

with ms ≤ mc (note that ms is the inverse of the usual Sobolev exponent). Passing now from
the local to the global point of view, we should mention that the Global Harnack Principle
in the case of bounded domains, has been proved by E. DiBenedetto, Y. C. Kwong and V.
Vespri in [14]. They investigate some regularity properties of the FDE problem posed on
bounded domains. We quote hereafter their Theorem 1.1,[14] for convenience of the reader
and since it will be used in the sequel, for its relation with the fine asymptotic behaviour,
near the extinction time.

Theorem 4.1 (Global Harnack Principle on Bounded Domains) [14].
For any ε ∈ (0, T ) there exist constants λ, Λ depending only upon d, m, ‖u0‖1+m, ‖∇um

0 ‖2 ,
diam(Ω), ∂Ω and ε, such that for all (t, x) ∈ (0, T )× Ω, t > ε

λ dist(x, ∂Ω)1/m(T − t)1/(1−m) ≤ u(t, x) ≤ Λ dist(x, ∂Ω)1/m(T − t)1/(1−m) (4.1)

This global Harnack principle also gives further regularity of the solutions (namely space
analyticity and time Hölder continuity), and holds on bounded domains depending on some
further global regularity of the initial datum. The difference between the Rd case and the
bounded domain case is that in the case of whole space Rd the general solution u(x, t) is
estimated from above and from below in terms of the Barenblatt solution, while in the case
of a bounded domain it is bounded between d(x)1/m(T − t)1/(1−m), which is essentially the
solution obtained by separation of variables.

We conclude this topic section by saying that the global version of the Elliptic Harnack
inequality is the Global Harnack Principle, that is nothing more than an accurate lower and
upper bound with the same “comparison function”, both in the case of the whole space and
in the case of bounded domain. As far as we know, it is an interesting open problem to find
such global principle in unbounded domains.

5 Convergence in relative error on a domain

Our next interest is the asymptotic behaviour of nonnegative solutions of the Fast Diffusion
Equation (FDE) near the extinction time. More precisely, we consider the initial and boundary
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value problem  ut = ∆(um) in (0,+∞)× Ω
u(0, x) = u0(x) in Ω
u(t, x) = 0 for t > 0 and x ∈ ∂Ω

(5.1)

posed in a bounded connected domain Ω ⊂ Rd with sufficiently smooth boundary; as we have
said ms < m < 1. We assume that the initial data u0 is bounded and nonnegative. We recall
that the above problem possesses a unique weak solution u ≥ 0 that is defined and positive
for some time interval 0 < t < T and vanishes at a time T = T (m, d, u0) > 0, which is called
the (finite) extinction time, cf. [6, 14]. Note that the conditions on the initial data can be
relaxed into u0 ∈ Lp(Ω) for some p > pc where pc = max{1, d(1−m)/2} in view of the Lp-L∞

smoothing effect
‖u(t)‖∞ ≤ Cm,d ‖u0‖γ

p t−α, for any t > 0,

valid for p > pc with γ, α > 0 depending only on m, d, p; see [24] for further details on this
issue.

The asymptotic profiles and the associated Elliptic Problem. We want to in-
vestigate the precise behaviour of the solution near the extinction time. For this purpose,
it is convenient to transform the above problem by the known method of rescaling and time
transformation. If we put

u(t, x) = (T − t)1/(1−m)
w(τ, x), τ = log(T/(T − t)), (5.2)

then, Problem (5.1) is mapped into:
wτ = ∆(wm) +

w

1−m
in (0,+∞)× Ω,

w(0, x) = T−1/(1−m)u0(x) in Ω,

w(τ, x) = 0 for τ > 0 and x ∈ ∂Ω.

(5.3)

The transformation can also be expressed as

w(τ, x) =
u (T − T e−τ , x)

(T e−τ )1/(1−m)
, (5.4)

and the time interval 0 < t < T becomes 0 < τ < ∞. In a celebrated paper, Berryman and
Holland [6] reduced the study of the behaviour near T of the solutions of Problem (5.1) to
the study of the possible stabilization of the solutions of the transformed evolution problem
(5.3). In fact, it can be proved (see below) that the solutions of the latter problem stabilize
towards the solutions of the associated stationary problem, which is the elliptic problem{

−∆(Sm) = 1
1−mS in Ω

S(x) = 0 for x ∈ ∂Ω ,
(5.5)

where ms < m < 1 and Ω are as before.

We will prove that the solutions of Problem (5.3) have as ω-limits nontrivial solutions of
Problem (5.5), and also that the convergence takes place in the weighted uniform sense that
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we explain next. Every solution S to the elliptic problem produces a separable solution U of
the original FDE of the form

U(t, x) = S(x)(T − t)1/(1−m) (5.6)

which corresponds to the initial datum U(0, x) = T 1/(1−m)S(x). In this context, we can fix
T at will, and we will write U T for definiteness.

The Elliptic Problem. The question of existence, regularity and uniqueness for the Dirich-
let Elliptic problem is well understood in its basic features, in the range of parameters under
consideration.
• Existence of positive classical solutions. If 0 < m < 1 for d ≤ 2 or if d−2

d+2 = ms < m < 1
for d ≥ 3, then there exist positive classical solutions to equation (see e.g. [6] and references
quoted therein, and also [14]).
• Uniqueness. In the supercritical case m > ms that we consider, the geometry of Ω plays a
role in the uniqueness problem. Indeed, if d = 1 or if d ≥ 2 and Ω is a ball, then the solution
is unique (see [1]). Moreover if d ≥ 2 and Ω is an annulus, then the solution is unique in the
class of positive radial solutions (see [20]). However, there are cases in which the solution is
not unique, see for example [20] and [9].
• Regularity and boundary behaviour. Since the solutions of Problem (5.5) are stationary
solutions of Problem (5.1), estimates (4.1) give us the following estimates for the behavior of
S:

λ d(x)1/m ≤ S(x) ≤ Λ d(x)1/m (5.7)

Dynamical System Approach. ω-Limits. For convenience of the reader we introduce
now some basic ideas from the Dynamical System Approach. Basically this approach consists
of viewing the solution as an orbit in a functional space and considering the points to which
it accumulates as time go to infinity. We suggest to the interested reader the books [17] and
[15] for this approach. Note that the approach is applied to the rescaled solutions, that have
nontrivial asymptotics.

Definition 5.1 The positive semi-orbit of a solution w(τ, x) starting at time t0 if the family:

γ(w; τ0) = {w(τ) : τ ≥ τ0}

where w(τ) = w(τ, ·) is viewed as an element of a suitable space X of functions in Ω..

Hopefully, X will be a Banach space or a closed convex subset thereof. With the previous
estimates the semi-orbit is a relatively compact subset of Lp, with 1 ≤ p ≤ ∞, which can be
taken as X, since the semi-orbit is uniformly bounded in L∞. In any case, for every sequence
τj there is a subsequence along which

w(τjk
) → f in Lp strong, with p ∈ [1,∞].

Definition 5.2 The set of all possible limits of a semi-orbit along sequences τj →∞ is called
ω-limit of the orbit,

L(w) = {f ∈ Lp : ∃τj →∞ and w(τj) → f in Lp strong}
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An alternative way of writing this definition is

L(w) =
⋂
τ>0

⋃
τ≥τ0

γ(w; τ),

where overline denotes the closure.

It is well known that the ω-limit is a closed and connected set in X. We now revisit the well-
known result by Berryman-Holland [6] who proved convergence in W 1,2 by similar methods,
based on Lyapunov functional techniques. Our first result is a little improvement in the sense
that they do not prove uniform convergence for dimension higher than 1.

Theorem 5.3 (Uniform Convergence to the ω-limit)[8]. The ω-limit set L(u) of a
rescaled solution of the parabolic problem (5.1) is contained in the set S of solution of the
elliptic problem (5.5) and the convergence takes place uniformly in Ω as t → T−.

Remark. In case the solution of the elliptic problem is unique, the ω-limit consists of a single
point L(w) = S given by such unique solution. In this case the convergence is unconditioned
(i.e. as t → T ), since along any sequence tj → T (i.e., τj → ∞) we have convergence to the
same point L(w) = S, in all Lp(Ω) spaces with p ∈ [1,∞].

Relative Error Convergence. We are now ready to address the main issue of this section,
i.e., the Relative Error Convergence estimates (REC) which are nothing else but uniform
estimates as t → T− of the quotient of the solution to the FDE u divided by a separable
solution UT to the same problem, T being the finite extinction time. The formulation of the
result depends on whether the Elliptic Problem has multiple solutions so that the ω-limit set
L(w) of Theorem 5.3 may consist of many points, or the solution to this problem is unique.
The general result is

Theorem 5.4 Let u be the solution to the Problem (5.1). Then, we have

lim
t→T−

inf
S∈L

∥∥∥∥ u(t, ·)
S(·)(T − t)1/(1−m)

− 1
∥∥∥∥

L∞(Ω)

= 0, (5.8)

where S is a point of the ω−limit set L, included in the set S of positive classical solution to
the Dirichlet Elliptic Problem (5.5).

This type of convergence is what we call uniform relative-error convergence (REC for short),
and it is our main contribution to the subject of fine asymptotics. To understand better the
meaning of this terminology, it will be convenient to introduce the weighted distance to the
set S:

d∞(f,S) = inf
S∈S

∥∥∥∥ f(·)
S(·)

− 1
∥∥∥∥

L∞(Ω)

. (5.9)

This peculiar distance (which gives a topology strictly finer than the standard L∞ norm) is
zero if and only if f is a point of S. Theorem 5.4 says that the Relative distance between the
trajectory f(t) = u(t)(T − t)−1/(1−m) and the ω-limit set S

d∞

(
u(t)

(T − t)1/(1−m)
,S
)
→ 0 , as t → T
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is going to zero uniformly in space variables as t → T . Loosely speaking, taking into account
the behaviour of both u and S near the boundary, what we say is that, if d(x) denotes distance
to the boundary, then

u(t, x)− S(x)(T − t)1/(1−m)

d(x)(T − t)1/(1−m)
→ 0 (5.10)

converges to zero uniformly in x ∈ Ω as t → T . We also state a particular case of the above

Theorem, the case where the Dirichlet Elliptic problem (5.5) has a unique positive classical
solution S(x). In that case, the result takes the simpler form

Theorem 5.5 Let u be the solution to Problem (5.1). Then, we have that

lim
t→T−

∥∥∥∥ u(t, ·)
U(t, ·)

− 1
∥∥∥∥

L∞(Ω)

= 0 (5.11)

where U is the separable solution (5.6) of the form

U(t, x) = S(x)(T − t)1/(1−m)

Let us now choose a parametrization of the set S of solutions to the elliptic problem (5.5),
S = {Sα}α∈A. Then, L(u) ⊂ S, and both sets are possibly not equal. L inherits the
parametrization of S, thus for any u solution to the Problem (5.1) there exists an A′ =
A′(u) ⊂ A such that

L(u) = {Sα}α∈A′

It is worth noticing that when the ω-limit consists of one point, i.e. when the Elliptic Problem
(5.5) possesses a unique solution, things are simpler and the parametrization below is trivial,
i.e. the set A = A′ = {α1}, thus we will omit the subindexes α when no confusion is feared.

We now state a different version of the REC Theorem in the general case in which the
Elliptic Problem has multiple solutions, so that the ω-limit set L(w) of Theorem 5.3 may
consist of many points.

Corollary 5.6 With the same hypothesis as in Theorem 5.4, for any ε > 0 there exist tε > 0
and a function α(t) ∈ A′, defined for any tε < t < T such that∥∥∥∥ u(t)

Sα(t)
− 1
∥∥∥∥
∞
≤ ε, for any tε < t < T.

This corollary is important since it allows to prove Elliptic Harnack Inequality near the
Extinction time, also in the case when the ω−limit set consists of many points, as we will see
in a subsequent section. This will show also that the regularity properties of the solution are
somehow independent of the exact profile of the solution close to the extinction time.

Comments. The above results improve on the celebrated result of Berryman and Holland
[6], where it was shown that the asymptotic profile for the solution to (5.1) is given by the
separable solution U , but convergence was proved only for some special classes of initial data
and in some Sobolev spaces; that convergence in general does not imply uniform convergence
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up to the boundary. Our result of convergence in relative error is stronger than uniform
convergence because of the fine behaviour near the boundary; moreover, it easily implies
Elliptic Harnack inequalities near finite extinction time T .

It is also worth noticing that the convergence result can be viewed as a concrete S-Theorem,
in the spirit of [15], applied to the problem under consideration. The proof borrows the main
lines of the proofs of the same result for the PME as done e.g. in [23].

Let us also note the convergence in relative error cannot be true for obvious reasons when
the profiles have moving free boundaries, like in the porous medium case or its rescaled version
(nonlinear Fokker-Planck equation), and the problem is posed in free space. This is due to
the fact that the interfaces do not match exactly, so that the quotient u/U may be infinite.
As a final note on this issue, let us point out that our REC result shows convergence in time
to the ω-limit, but the question of establishing precise rates is not investigated. This is a
natural further question that deserves attention.

6 Harnack Inequalities

We finally come to one of the most important aims of this paper. We want to show how
an intelligent combination direct and reverse smoothing effects, implies easily an optimal
Harnack inequality, whose form changes in time.

As a precedent, E. DiBenedetto and Y. C. Kwong prove an Intrinsic Harnack inequality
(see [13], Thm. 2.1): There exist constants 0 < δ < 1 and C > 1 depending on d and m such
that for every point P0 = (t0, x0) ∈ QT , QT = (0, T )× Ω, we have

inf
x∈BR

u(t0 + θ, x) ≥ C u(t0, x0) (6.1)

provided u(t0, x0) is strictly positive and

(t0 − τ, t0 + τ)×BR(x0) ⊂ QT , τ = u(t0, x0)1−mR2.

The constant θ = δ τ depends on the positive value of u at P0. It is a local property and thus
it holds both for the case of the whole space and for the domain case. Our local positivity
results, Theorems 2.1 and 2.4, support quantitatively the above Intrinsic Harnack Inequality,
proving its validity in another aspect.

We will present intrinsic and elliptic forms of the Harnack Inequality. We can say that
the intrinsic Harnack Inequality, which compares values of the solution in different times, is
the only Harnack possible for small times, while for intermediate times, the Elliptic Harnack
Inequality seems to be the best one: it is stronger, since it easily implies the Intrinsic.

6.1 Harnack Inequalities for the FDE on Rd

We now show that the positivity result implies a full local Harnack inequality on the whole
Euclidean space. We will see that once again the critical time

tc = Cm,d M
(1−m)
R R1/ϑ
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plays a role, indeed the form of the Harnack inequality changes when dealing with times
smaller or larger than tc. First we deal with the case of large times, namely t > tc: we will
consider u0 ∈ L1(Rd), u0 ≥ 0 and we let

M∞ =
∫

Rd

u0(x) dx, MR =
∫

BR

u0(x) dx (6.2)

for some R > 0, x0 ∈ Rd.

Theorem 6.1 (Elliptic Harnack Inequality) Let u(t, x) satisfy the same hypothesis as
Theorem 2.1. If moreover u0 ∈ L1(Rd), there exists a positive constant H, depending only on
m and d on the ratio MR/M∞, such that for any t ≥ tc(MR, R):

sup
x∈BR

u(t, x) ≤ H inf
x∈BR

u(t, x). (6.3)

If moreover u0 is supported in BR, then the constant H is universal and depends only on m
and d.

Proof. First we remark that the exact expression for tc is given in Theorem2.1. The well
known smoothing effect, can be rewritten in an equivalent form:

sup
x∈BR

u(t, x) ≤ C1M
2ϑ
∞ t−dϑ = C1

[
M∞

MR

]2ϑ

M2ϑ
R t−dϑ.

Using now the reverse smoothing effect when t > tc, we get

inf
x∈BR

u(t, x) ≥ K M2ϑ
R t−dϑ ≥ K C−1

1

[
MR

M∞

]2ϑ

sup
x∈BR

u(t, x)

that is (6.3) with H = K−1 C1 [M∞/MR]2ϑ. This concludes the proof.

The above elliptic Harnack Inequality holds for times larger than the critical time tc and
it strongly depends on the sharp lower bounds of Theorem 2.1, for t > tc. In the case of small
times, the lower bound changes its shape and we recover the Intrinsic Harnack Inequality of
[13], by different methods and with a little improvement: the Intrinsic Harnack inequality
(6.6) holds for any positive time, namely we have

Theorem 6.2 (Intrinsic Harnack Inequality) Let u(t, x) satisfy the same hypothesis as
Theorem 2.1. and let R > 0. There exist constants 0 < δ < 1 and C > 1 depending on m and
d such that for every 0 < t0 ≤ tc, we have

inf
x∈BR

u(t0 + θ, x) ≥ C u(t0, x0) (6.4)

where
θ = δτ, τ = u(t0, x0)1−mR2 > 0.
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Proof. Let us consider the lower bound of Theorem 2.1 in the case 0 < t < tc:

u(t, x) ≥ t1/(1−m)

t
∗ 1/(1−m)
c

u(t∗c , x) ≥ t1/(1−m)

t
∗ 1/(1−m)
c

M2ϑ
R

t∗,dϑ
c

= (C3C2)
2/d(1−m) t1/(1−m)

R2/(1−m)

since
t∗c = (C3C2)

1/(dϑ)
M1−m

R R1/ϑ, ϑ = 1/(2− d(1−m))

We remark that we can take C3C2 > 1, as remarked in the proof of theorem 2.2 and such
intrinsic lower bound is independent of MR, and thus of u0. Indeed the choices

t = t0 + θ, θ = δτ, τ = u(t0, x0)1−mR2 > 0

where δ ∈ (0, 1) can be chosen in such a way that t0 + δτ ≤ t∗c and the positivity of τ is
guaranteed by the positivity estimates. We then get

u(t0 + θ, x) ≥ (C3C2)
2/d(1−m) (t0 + θ)1/(1−m)

R2/(1−m)
> (C3C2)

2/d(1−m) θ1/(1−m)

R2/(1−m)

= (C3C2)
2/d(1−m)

δ1/(1−m)u(t0, x0)

This concludes the proof.

Remark. We now show how the elliptic Harnack inequality implies the intrinsic Harnack
inequality when t > tc. From the above proofs one can prove a stronger version of the elliptic
Harnack inequality. Indeed,

sup
x∈BR

u(t− ω, x) ≤ sup
x∈Ω

u(t− ω, x) ≤ C1
M2ϑ
∞

(t− ω)dϑ

=
C1

K

[
M∞

MR

]2ϑ [
t

t− ω

]dϑ

M2ϑ
R t−dϑ

≤ C1

K

[
M∞

MR

]2ϑ [
t

t− ω

]dϑ

inf
x∈BR

u(t, x)

=
C1

K

[
1

1− σ

]dϑ [
M∞

MR

]2ϑ

inf
x∈BR

u(t, x)

since we took ω = σ t, with σ ∈ [0, 1). Thus, it can be rewritten as:

inf
x∈BR

u(t + ω, x) ≥ H sup
x∈BR

u(t, x) (6.5)

and in particular we can chose σ ∈ [0, 1) such that ω = σ t = δu(t0, x0)1−mR2 = θ, as in the
above Intrinsic Harnack inequality 6.6.

Finally, we remark that the Harnack Inequality (6.5) holds for any σ ∈ [0, 1), thus compares
the infimum and supremum of u at different times, and by the monotonicity of the L∞ norm,
we can compare the supremum and infimum of u at any two different times t1, t2 ∈ (0,∞).
This inequality is sometimes called backward Harnack inequality, in the case of the Heat
equation.
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Panorama. At this point it is convenient to make a summary for the Cauchy problem in
Rd. The role of the critical time tc is to split in two parts the time axis, showing the range of
validity of different Harnack inequalities and behaviors of the solutions.

• Small Times, 0 < t < tc: Intrinsic Harnack inequalities, [13] and Theorem 6.2. The validity
for all positive times is guaranteed by our local positivity result. The constant do not depend
on u0. There is Hölder continuity, implied by Harnack inequalities.

• Large Times, t > tc: Elliptic Harnack inequalities. The constant may depend on the initial
datum. Elliptic Harnack imply Intrinsic Harnack Inequalities and Hölder continuity.

• All Positive Times, for any ε > 0 and for all t > ε: Global Harnack Principle, that implies
the Convergence in Relative Error.

• Asymptotics, t →∞, Uniform Convergence in Relative Error.

6.2 Harnack Inequalities for FDE on a domain

In this section we analyze the case of the mixed Cauchy-Dirichlet problem on a bounded
domain. We find an extra difficulty, due to the presence of the Finite Extinction Time. We
start by recalling the result of paper [14], where the following rather peculiar property of
the solutions of Problem (2.16) is found as a consequence of the Global Harnack principle on
domains:

u(t0, x0) ≥ γ0 sup
|x−x0|<R

u(t0, x)

valid for a R > 0 so small that the box

(t0 − τ, t0 + τ)×BR(x0) ⊂ QT , τ = u(t0, x0)1−mR2,

but again the box depends on the positivity value of u in the point (t0, x0). It resembles our
elliptic Harnack inequality, but again it has to be supported by a positivity result to hold in
full generality.

Analogously to what we did before, we can prove the Elliptic Harnack Inequality for interme-
diate times in the case of bounded domains. Our main result takes the form of a precise lower
estimate for the values in question, and will thus ensure that such intrinsic Harnack inequality
will hold for all positive times not too close to the extinction time. We also prove an elliptic
Harnack inequality for intermediate times, i.e. for t ∈ I = [tc, Tc] with 0 < tc < Tc < T ,
where tc and Tc are computed in terms of the initial datum, which follows from our sharp
result on positivity. Note that this allows to calculate explicitly all the constants. As before,
we can say that our positivity results somehow “support” the results of [14], in the sense that
we ensure positivity in a quantitative way, and a posteriori their result holds true for times
not too close to the extinction time.

In this section we prove Intrinsic and Elliptic Harnack inequalities, in the whole interval (0, T ),
in analogy to what has been done in the whole space. We point out that for times close to the
extinction time an Elliptic Harnack inequality is still valid, thanks to the accurate asymptotic
information given by the relative error estimates, cf. Theorem 5.4 and 5.5.
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Theorem 6.3 (Intrinsic Harnack Inequality) Let u(t, x) and R > 0 satisfy the same
hypothesis as Theorem 2.1. There exist constants 0 < δ < 1 and C > 1 depending on m and
d such that for every 0 < t0 ≤ tc, we have

inf
x∈BR

u(t0 + θ, x) ≥ C u(t0, x0) (6.6)

where
θ = δτ, τ = u(t0, x0)1−mR2 > 0.

Proof. The proof is formally the same as in Theorem 6.2.

Theorem 6.4 (Elliptic Harnack Inequality for intermediate times) Let u(t, x) and
R > 0 satisfy the same hypothesis as theorem (2.4). If moreover u0 ∈ L1(Ω), then there exists
a positive constant H, depending only on m, d and on the ratio:

MΩ

MR0

=

∫
Ω

u0(x) dx∫
BR0

u0(x) dx
,

such that for any t∗c < t < Tc < T :

sup
x∈BR0

u(t, x) ≤ H inf
x∈BR0

u(t, x).

If moreover u0 is supported in BR0 , then the constant H is universal and depends only on m
and d.

Proof. The proof is formally the same as in Theorem 6.1 , since the upper bounds are the
same, (once one replace M∞ with MΩ) and use (2.18) when t∗c < t < Tc.

At this point it is natural to ask if there holds a Harnack inequality for times close to
the extinction time, and of which kind.The answer is that there holds an elliptic Harnack
inequality, but the proof is different from the above ones, since it relies on the fine asymptotic
behavior close to the extinction time. We already discussed the question of the asymptotic
profile near the extinction time, and we showed the convergence in Relative Error. This
very strong convergence to the solution obtained by separation of variables, also transports
some other regularity properties, from the elliptic problem to the parabolic one, namely the
validity of the following Harnack Inequality for the elliptic problem 5.5 implies the validity of
an elliptic Harnack inequality for the solution to the parabolic problem 5.1:

Theorem 6.5 (Harnack Inequalities for the Elliptic Problem (5.5)) Let 0 ≤ S ∈
W 1,2

0 (Ω) be a solution to the elliptic Dirichlet Problem 5.5. Then, if the ball B4R(x0) ⊂ Ω we
have:

sup
BR(x0)

S ≤ H inf
BR(x0)

S (6.7)

where H is a positive constant depending on m, d and R.

25



Proof. See e.g. [16].

Also the range of the parameter m can be enlarged a bit, namely we will consider

d− 2
d + 2

= ms < m < 1.

Harnack Inequality via Relative Error Estimates. The last part of the paper is
devoted to derive an Elliptic Harnack inequality for the evolution trajectories near the ex-
tinction time, showing that regularity properties of the solution to the parabolic problem are
somehow inherited from the elliptic problem, via the strong convergence in relative error and
are independent from the exact profile near the extinction time. The relative error estimate
in the form of Corollary 5.6 implies the Elliptic Harnack inequality as an easy corollary.

Theorem 6.6 (Elliptic Harnack Inequality near Extinction Time) Let u be a solution
to the problem (5.1). Then for any ε ∈ (0, 1) there exists a time tε ∈ (0, T ) such that the
following Elliptic Harnack inequality holds for any ball B4R = B4R(x0) ⊂ Ω and for any
t ∈ [tε, T ):

sup
x∈BR

u(t, x) ≤ 1 + ε

1− ε
H inf

x∈BR

u(t, x), (6.8)

where H is the positive constant in the Harnack inequality for problem (5.5).

Proof. By the relative error estimate of Theorem 5.4 we easily obtain that for any ε ∈ (0, 1)
there exists a time tε ∈ (0, T ) such that for any t ≥ tε

(1− ε)S(x)(T − t)1/(1−m) = U(t, x)(1− ε) ≤ u(t, x)

≤ (1 + ε)U(t, x) = (1 + ε)S(x)(T − t)1/(1−m),

where S = Sα(t) ∈ S, i.e. is a suitable solution to the Elliptic Problem (5.5). Thus we have

sup
x∈BR

u(t, x) ≤ (1 + ε)(T − t)1/(1−m) sup
x∈BR

S(x)

≤ (1 + ε)(T − t)1/(1−m) H inf
x∈BR

S(x) ≤ 1 + ε

1− ε
H inf

x∈BR

u(t, x)

where in the second step we used the Harnack inequality (6.7), valid for any solution S(x) to
the elliptic problem (5.5), with constant H which depends only on m, d and R. The proof is
now complete.

Panorama. At this point it is convenient to make a panorama for the mixed Cauchy-Dirichlet
problem on a domain Ω ⊂ Rd. The rule of the critical time tc is again to split the time axis,
showing the range of validity of different Harnack inequalities and behaviors of the solutions.
Another critical time Tc appears, with tc ≤ Tc < T , between tc and the extinction time T ,
thus the time interval (0, T ) is split in three parts.

• Small Times, 0 < t < tc: Intrinsic Harnack inequalities, [13] and Theorem 6.3. The validity
for all positive times is guaranteed by our local positivity result. The constant do not depend
on u0. There is Hölder continuity, implied by Harnack inequalities.
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• Intermediate Times, tc < t < Tc: Elliptic Harnack inequalities. The constant may depend on
the initial datum. Elliptic Harnack imply Intrinsic Harnack Inequalities and Hölder continuity.

• Near Extinction Time, Tc < t < T : Elliptic Harnack inequalities, as consequence of the
Convergence in Relative Error. The constant do not depend on the initial datum. Elliptic
Harnack imply Intrinsic Harnack Inequalities and Hölder continuity.

• All Positive Times, for any ε > 0 and for all t > ε: Global Harnack Principle, Theorem 4.1
of [14]

• Asymptotics, t →∞, Uniform Convergence in Relative Error, Theorems 5.4 and 5.5.

7 Appendix

Here we prove the Reflection Principle of Aleksandrov in a slightly different form, more useful
to our purposes. Other forms of the same principle, in different settings can be found, for
example in [15]), Proposition 2.24 (pg. 51) or in [3], Lemma 2.2. We also notice that it is
sufficient to consider the Dirichlet problem on a suitable ball in order to achieve the stated
positivity results, namely consider: ut = ∆(um) in (0, T )×B4R(0)

u(0, x) = u0(x) in B4R(0)
u(t, x) = 0 for 0 < t < T and x ∈ ∂B4R(0)

(7.1)

with supp(u0) ⊂ BR(0) ⊂ B4R(0) ⊂ Ω, where T > 0 is the finite extinction time. Let
uB denote the solution to the above problem (7.1), while let uΩ denote the solution to the
problem (2.16). It is clear then that uB is a subsolution to the problem (2.16) so that uB ≤ uΩ

and thus local positivity result for uB will imply local positivity result for uΩ. Note however
that since the solutions have extinction in finite time and uB disappears before uΩ, we are
renouncing to obtain estimates near the extinction time of uΩ.

Proposition 7.1 (Local Aleksandrov’s Reflection Principle) Let BλR(x0) ⊂ Rd be an
open ball with center in x0 ∈ Rd of radius λ R with R > 0 and λ > 2. Let u be a solution to
problem  ut = ∆(um) in (0,+∞)×BλR(x0)

u(0, x) = u0(x) in BλR(x0)
u(t, x) = 0 for t > 0 and x ∈ ∂BλR(x0)

(7.2)

with supp(u0) ⊂ BR(x0). Then, for any t > 0 one has:

u(t, x0) ≥ u(t, x2)

for any t > 0 and for any x2 ∈ Dλ,R(x0) = BλR(x0) \B2R(x0). Hence,

u(t, x0) ≥ |Dλ,R(x0)|−1
∫

Dλ,R(x0)

u(t, x) dx =
∮

Dλ,R(x0)

u(t, x) dx (7.3)
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Proof. A detailed proof can be found in the Appendix of [7].

Remark. Formula (7.3) can be viewed as a local mean value inequality, it has been derived
here from the Aleksandrov principle, but it is interesting by itself and moreover is independent
of the range of m: one can apply the same argument to any m > 0. Loosely speaking, formula
(7.3) states that for solutions of diffusion equations, their average on an annulus at a time
t > 0 is smaller than their value taken at the same time and in the center of the ball where
mass was concentrated at the beginning. This property is crucial in the proof of the positivity
estimates and, a posteriori, of the Harnack inequality. We used this mean value inequality
(7.3) in a slightly different form:∫

BR+r(x0)\BR(x0)

u(t, x) dx ≤ Adr
du(t, x0) (7.4)

with r ≥ µR, µ > 1, and a suitable positive constant Ad,µ. This inequality can easily be
obtained from (7.3), noticing that for r ≥ µR one has

(R + r)d ≤ c1

(
Rd + rd

)
for a constant c1 that depends on d and µ > 1. Then, we get (R+r)d−Rd ≤ (c1−1) Rd+rd ≤
c2 rd, so that

|B2R+r(x0) \B2bR(x0)| = ωd

[
(R + r)d −Rd

]
≤ Ad rd

with Ad = ωdc2 where ωd is the volume of the unit ball in Rd.

Final Remarks. Open Problems

If we consider solutions to other more general diffusion equations, To prove inequality (7.3),
will automatically prove positivity and Harnack inequalities, provided that there is a direct
smoothing effect. We point out some directions which are actually under investigation by
the authors and collaborators. The Subcritical case: we consider the same problems of this
paper, i.e. local and global positivity and Harnack inequalities, but in the bad range, namely
0 ≤ m < mc. This range includes also the cases of logarithmic diffusion, e.g. m → 0. The
coefficient case: we want to prove positivity and Harnack inequalities for solution to the FDE
both on Rd, Problem 2.1 and on Domains, Problem 2.16, in the more general case, when
we replace the Laplacian with an elliptic operator with measurable coefficient. Riemannian
Manifolds: we consider the above mentioned problems on a Riemannian manifold, in which
case the Laplacian is meant as the Laplace-Beltrami operator. The strategy to prove the
problem would be the same: from (7.3) we get the local positivity result, or reverse smoothing
effect, that we combine with the well known (direct) smoothing effects.
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