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Introduction

It is well-known that the solutions of the Heat Equation ut = ∆u posed in the whole space
with nonnegative data at t = 0 become positive and smooth for all positive times and all points
of space. The same positivity property is true in many other settings, e.g., for nonnegative
solutions posed in a bounded space domain with zero boundary conditions. Such properties
of positivity and smoothness are shared by the Fast Diffusion Equation

ut = ∆um, 0 < m < 1,

but this happens under certain conditions on the exponent and data and with quite different
quantitative estimates. The aim of this paper is to show precise estimates for the positivity of
nonnegative solutions of the Fast Diffusion Equation in the ‘good’ exponent range mc < m <
1, mc = (d− 2)+/d. This exponent restriction is essential if we want to avoid the extinction
phenomenon for the solutions of the Cauchy problem posed in the whole space Rd, cf. [3, 6].
It also affects different a priori estimates that we use.

In a first step, we obtain sharp local bounds from below for the solutions at times t > 0
in terms of weighted mass estimates on the initial data. The estimates lose accuracy for
small times 0 < t ≤ tc, i.e., in an initial interval which is needed for the diffusion process
to transmit the information, but they are increasingly sharp as t grows. Such lower bound
estimates were first used in elliptic equations, cf. [23, 24, 22, 12, 19], and were called weak
Harnack inequalities. Our lower estimate takes the form

inf
x∈BR(x0)

u(t, x) ≥ MR(x0)H(t/tc) > 0,

where MR(x0) is the average initial mass in the ball BR(x0) and H and tc are precisely defined
in Theorem 1.1. This estimate is the equivalent for m < 1 of the famed Aronson-Caffarelli
estimates for the Porous Medium Equation [1]. Note that in parabolic equations the bound
on the local infimum of the solution must be taken at a later time than the Lp norm that
controls it. For the linear parabolic case in a general setting see e.g. [21].

We next notice that, contrary to the PME, the FDE does not suffer from the problem
of finite speed of propagation with its waiting times and free boundaries, and we are able to
translate the local estimate into a global lower bound: for every time t > 0 we can insert a
suitable Barenblatt solution below our solution,

u(t, x) ≥ B(t− τ1, x; Mc),

and the parameters τ1, Mc defining that Barenblatt solution can be calculated in terms of
the initial information, see Theorem 1.2.

As a consequence of the local lower bounds, combined with well-known upper bounds
(smoothing effects), we derive Elliptic-like Harnack inequalities for continuous nonnegative
solutions to the Fast Diffusion Equation in the same range mc < m < 1. The result says that
there exists a positive constant H, depending only on m and d, R and a ratio of initial local
and global masses such that: for any t ≥ tc(R):

sup
x∈BR

u(t, x) ≤ H inf
x∈BR

u(t, x).
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Elliptic-like Harnack inequalities compare the infimum and the supremum of the solution at
the same time level, roughly speaking with no need (of positivity) information on the values
of the solution at previous times. For this reason, Elliptic-like inequalities can be viewed as
an improvement of the Intrinsic Harnack estimates (see [13] or Section 2 for further details),
because they show that at a fixed time, the parabolic solution possesses an elliptic behavior.
This also suggests that somehow the parabolic problem inherits elliptic-regularity properties
from the associated stationary elliptic problems. This fact is suggested also by the celebrated
paper of Berryman and Holland [6] in which they show, in the bounded domain case, that the
solution of the FDE converges up to scaling to the solution of an associated elliptic problem
as time approaches the extinction time.

As a consequence of the global lower bounds, we derive a Global Harnack Principle for
continuous nonnegative solutions to the Fast Diffusion Equation in the same range mc <
m < 1. The result is nothing but a lower and upper estimate in terms of suitable Barenblatt
solutions. This result can be compared with the global principle introduced by DiBenedetto
and Kwong, [14], in the context of bounded Euclidean domains. We work in the whole space;
in comparison, the role played by the function distance to border is replaced in our result
by the decay rate at infinity of the Barenblatt solutions. These play a fundamental role in
the lower and upper estimates, as reflected in Theorem 1.5; it is to be compared to the role
played by Gaussian kernel in the Heat Equation.

In the limit of the upper and lower estimates for large times we arrive at the asymptotic
convergence in relative error introduced in [25]. We also show that the results do not extend
to other exponent ranges: on the lower side, uniform local estimates of our kind are not true
for m ≤ mc, as a counterexample based on [8] shows. On the other hand, similar results hold
for the Heat Equation, but they are not exactly as strong.

In Section 2 we consider the application of these techniques to the problem posed in a
bounded domain with zero Dirichlet boundary conditions and the same restrictions on m.
Here, the occurrence of extinction in a finite time T > 0 cannot be avoided and our positivity
estimates are valid for intermediate times t ∈ I = [tc, Tc] with 0 < tc < Tc < T (these times
are explicitly computed in terms of the data). Therefore, we lose accuracy in the initial time
as before, and we also lose the later times where the solution starts going down to zero because
of the influence of the boundary conditions.

The consequences in terms of Harnack inequalities are therefore less important, and they
have to be discussed in the context of the existing literature on Harnack inequalities for
this problem. As far as we know, [13, 14] are the two more important papers on Harnack
inequalities (and Harnack’s principles as well) for this kind of problem. We will make a more
detailed analysis of the issue and precedents in Section 2. The problem of stabilization as
t → T will be studied in a separate paper, cf. [7].

In the sequel, the letters ai, bi, Ci,K, ki, λi, µ are used to denote universal positive con-
stants that depend only on m and d. The constant ϑ is fixed to the value ϑ = 1/(2−d(1−m)) >
0.
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1 Positivity and Harnack estimate for Fast
Diffusion Equations on Rd

In this section we prove Positivity Estimates (=weak Harnack estimates) for the Cauchy
problem for the Fast Diffusion Equation posed in the whole Euclidean space Rd:

{
ut = ∆(um) in Q = (0,+∞)× Rd,
u(0, x) = u0(x) in Rd,

(1.1)

in the range (d− 2)+/d = mc < m < 1. We then derive Elliptic Harnack inequalities. In the
results, we fix a point x0 ∈ Rd and consider different balls BR = BR(x0) with R > 0. We
introduce the following measures of the local mass

MR(x0) =
∫

BR

u0(x) dx, MR(x0) = MR/Rd.

More precisely, we should write MR(u0, x0), MR(u0, x0), but we will even drop the variable
x0 when no confusion is feared.

1.1 Local Positivity estimate

This is the intrinsic positivity result that shows in a quantitative way that solutions are
positive for all (x, t) ∈ Q. This type of result is also called weak Harnack inequality, and
also half Harnack inequality or lower Harnack inequality, meaning that it is half of the full
pointwise comparison that Harnack inequalities imply.

Theorem 1.1 There exists a positive function H(t) such that for any t > 0 and R > 0 the
following bound holds true for all continuous nonnegative solutions u to (1.1) with mc < m <
1:

inf
x∈BR(x0)

u(t, x) ≥ MR(x0)H(t/tc), (1.2)

Function H(η) is positive and takes the precise form

H(η) =
{

Kη−dϑ for η ≥ 1,
Kη1/(1−m) for η ≤ 1.

(1.3)

The characteristic time is given by

tc = C M1−m
R R1/ϑ. (1.4)

Constants C, K > 0 depend only on m and d.

Proof. Without loss of generality we assume that x0 = 0. The proof is a combination of
several steps. Different positive constants that depend on m and d are denoted by Ci. The
value we get for the constants C and K in the above statement is given at the end of the
proof.
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Figure 1: Approximative graphic of the functions u(t, x) (dots) and H(t) (line)

• Reduction. By comparison we may assume supp(u0) ⊂ BR(0). Indeed, a general u0 ≥ 0
is greater than u0η, η being a suitable cutoff function compactly supported in BR and less
than one. If v is the solution of the fast diffusion equation with initial data u0η (existence
and uniqueness are well known in this case), we obtain:

∫

BR

u(0, x) dx ≥
∫

BR

u0(x)η(x) dx = MR

and if the statement holds true for v, then

inf
x∈BR

u(t, x) ≥ inf
x∈BR

v(t, x) ≥ H(t/tc)MR.

• A priori estimates. The second step is based on the well-known a priori upper estimates
(see e.g. [17], Theorem 2.2 or [28]) rewritten in an equivalent form:

u(t, x) ≤ C1‖u0‖2ϑ
1 t−dϑ. (1.5)

We remark that ‖u0‖1 = MR since u0 is nonnegative and supported in BR, so that we get

u(t, x) ≤ C1M
2ϑ
R t−dϑ

for any x ∈ Rd, while ϑ = 1/(2 + d(m− 1)).
Let b = 2− 1/d, an integration over B2bR gives then:

∫

B2bR

u(t, x) dx ≤ C2 M2ϑ
R Rd t−dϑ (1.6)
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where C2 = C12bdωd.

• Integral estimate. The third step uses Herrero-Pierre’s estimate (cf. Lemma 3.1 of [17]), a
property that can be labeled as weak conservation of mass and reads: for any R, r > 0 and
s, t ≥ 0 one has

∫

B2R

u(s, x) dx ≤ C3

[∫

B2R+r

u(t, x) dx +
|s− t|1/(1−m)

r(2−d(1−m))/(1−m)

]
.

We let s = 0 and rewrite it in a form more useful for our purposes:
∫

B2R+r

u(t, x) dx ≥ MR

C3
− t

1
1−m

r
2−d(1−m)

1−m

. (1.7)

We recall that M2R = MR since u0 is nonnegative and supported in BR.

• Aleksandrov Principle. The fourth step consists in using the well-known Reflection Principle
in a slightly different form. This principle reads:

∫

B2R+r\B2bR

u(t, x) dx ≤ Ad rdu(t, 0) (1.8)

where Ad and b = 2 − 1/d are chosen as in (3.4) in Appendix, and one has to remember of
the condition r ≥ (2(d−1)/d − 1)2R. We refer to Proposition (3.1) and formula (3.4) in the
Appendix for more details.

• We now put together all the previous calculations:
∫

B2R+r

u(t, x) dx =
∫

B2R

u(t, x) dx +
∫

B2R+r\B2bR

u(t, x) dx

≤ C2
M2ϑ

R Rd

tdϑ
+ Ad rdu(t, 0)

this follows by (1.6) and (1.8). Next, we use (1.7) to obtain:

MR

C3
− t

1
1−m

r
2−d(1−m)

1−m

≤
∫

B2R+r

u(t, x) dx ≤ C2
M2ϑ

R Rd

tdϑ
+ Ad rdu(t, 0)

And finally we obtain:

u(t, 0) ≥ 1
Ad

[(
MR

C3
− C2

M2ϑ
R Rd

tdϑ

)
1
rd
− t

1
1−m

r
2

1−m

]

=
1

Ad

[
B(t)
rd

− t
1

1−m

r
2

1−m

] (1.9)

• We now obtain the claimed estimate for t > t∗c . To this end, we check when B(t) is
positive:

B(t) =
MR

C3
− C2

M2ϑ
R Rd

tdϑ
> 0 ⇐⇒ t > (C3C2)

1/(dϑ)
M1−m

R R1/ϑ = t∗c (1.10)
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Now, assuming t ≥ tc = 2t∗c > t∗c we optimize the function

f(r) =
1

Ad

[
B(t)
rd

− t
1

1−m

r
2

1−m

]

with respect to r(t) = r > 0 and we obtain that it attains its maximum in r = rmax(t). Then
one has to check that rmax(t) >

(
2(d−1)/d − 1

)
2R, to this end one has to optimize the function

rmax(t) with respect to t ∈ (tc, +∞), then find the minimum attained at t = tmin and, after
straightforward calculations, one gets that the condition rmax(tmin) >

(
2(d−1)/d − 1

)
2R is

nothing more than a lower bound on the constants C2 and C3, but since they are constants
appearing in upper bound estimates, they can be chosen arbitrarily large. A detailed proof
of this fact is given in the domain case, using a different parametrization of the time interval,
since there the explicit value of rmax(tmin) is needed also for other purposes and gives rise to
conditions on the radius R. Here, it is sufficient to choose C2 and C3 sufficiently large.

After a few straightforward computations, we show that the maximum value is attained
for all t > tc as follows:

f(rmax) = Ad
[d(1−m)]2ϑ−1

22ϑϑ

[
1
C3

− C2
M2ϑ−1

R Rd

tdϑ

]2ϑ
M2ϑ

R

tdϑ
> 0

We get in this way the estimate:

u(t, 0) ≥ Ad
[d(1−m)]2ϑ−1

22ϑϑ

[
1
C3

− C2
M2ϑ−1

R Rd

tdϑ

]2ϑ
M2ϑ

R

tdϑ
= K1 H1(t)

M2ϑ
R

tdϑ
.

A straightforward calculation shows that the function

H1(t) =

[
1
C3

− C2
M2ϑ−1

R Rd

tdϑ

]2ϑ

is non-decreasing in time, thus if t ≥ tc:

H1(t) ≥ H1(tc) =
(

1
2C3

)2ϑ

and finally we obtain:

u(t, 0) ≥ K1 H1(t)
M2ϑ

R

tdϑ
≥ K1 H1(tc)

M2ϑ
R

tdϑ
=

K1

(2C3)2ϑ

M2ϑ
R

tdϑ

So we have proved that

u(t, 0) ≥ K1

(2C3)2ϑ

M2ϑ
R

tdϑ
(1.11)

for t > tc = 2 (C3C2)
1/(dϑ)

M1−m
R R1/ϑ = CM1−m

R R1/ϑ.

• From the center to the infimum.
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Now we want to obtain a positivity estimate for the infimum of the solution u in the ball BR =
BR(0). Suppose that the infimum is attained in some point xm ∈ BR, so that infx∈BR

u(t, x) =
u(t, xm), then one can apply (1.11) to this point and obtain:

u(t, xm) ≥ K1

(2C3)2ϑ

M2ϑ
2R(xm)
tdϑ

(1.12)

for t > tc(xm) = 2 (C3C2)
1/(dϑ)

M1−m
R (xm)R1/ϑ. Since the point xm ∈ BR(0) then it is clear

that BR(0) ⊂ B2R(xm) ⊂ B4R(x0), and this leads to the inequality:

M2R(xm) ≥ MR(0) and M2R(xm) ≤ M4R(0)

since M%(y) =
∫

B%(y)
u0(x) dx and u0 ≥ 0. Thus, we have found that:

inf
x∈BR(0)

u(t, x) = u(t, xm) ≥ K1

(2C3)2ϑ

M2ϑ
2R(xm)
tdϑ

≥ K1

(2C3)2ϑ

M2ϑ
2R(0)
tdϑ

=
K1

(2C3)2ϑ

M2ϑ
R (0)
tdϑ

(1.13)

for t > tc(0) = CM1−m
4R (0)R1/ϑ = CM1−m

R (0)R1/ϑ, noticing that M4R(0) = M2R(0) =
MR(0), since supp(u0) ⊂ BR(0). Finally we obtain the claimed estimate for t ≥ tc(0)

inf
x∈BR(0)

u(t, x) ≥ K1

(2C3)2ϑ

M2ϑ
R (0)
tdϑ

=
K1

(2C3)2ϑ

tdϑ
c

tdϑ

M2ϑ
R (0)
tdϑ
c

(1.14)

which is exactly (1.2).

• The last step consists in obtaining a lower estimate when 0 ≤ t ≤ tc.
To this end we consider the fundamental estimate of Bénilan-Crandall [4]:

ut(t, x) ≤ u(t, x)
(1−m)t

.

This easily implies that the function:

u(t, x)t−1/(1−m)

is non-increasing in time, thus for any t ∈ (0, tc) we have that

u(t, x) ≥ u(tc, x)
t1/(1−m)

t
1/(1−m)
c

in order to obtain inequality (1.2) for 0 < t < tc is now sufficient to apply the inequality valid
for t > tc to the r.h.s. in the above inequality. The proof of formula (1.2) is complete in all
cases. Constant C has the value C = 2 (C3C2)

1/(dϑ), while K is given by

K = 2−(d+4)ϑ+1 [d(1−m)]2ϑ−1

Ad C2 C2ϑ+1
3

(1.15)
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Remarks. (1) Scaling. We could have simplified the rather cumbersome writing of the
formulas by a convenient use of rescaling. Thus, the renormalized function

û(x, t) =
1

MR

u(Rx, T t) (1.16)

is again a solution of the equation precisely if T = tc, but it has initial mass M̂ = 1 in the ball
of radius R̂ = 1. In this way we can dispense with chasing M ′s and R′s in the proof. We have
not followed this idea since we fear that, but for the real expert, such kind of calculation is less
transparent. But the reader will notice that the result of Theorem 1.1 has been deliberately
written in this a-dimensional form.

(2) Characteristic time. Notice that tc is an increasing function of MR and R. This is in
contrast with the porous medium case m > 1 where tc decreases with MR. This difference
explains some of the different consequences of the lower estimate, which in this case does not
restrict the allowed growth of the initial data as |x| → ∞ in the existence theory, as it does
for m > 1 (cf. [1]).

(3) Minimax problem. Suppose that we want to obtain the best of the lower bounds when
t varies. This happens for t/tc ≈ 1 and the value is

u(tc, 0) ≥ C3 MRR−d,

which is just proportional to the average. At this time also the maximum is controlled by the
average (see the upper estimate).

(4) The proof we present of the weak Harnack inequality follows the general outline of the
proof done for the case m > 1 by Chasseigne and one of the authors in [11].

(5) We find in the literature on Harnack inequalities expressions of the form

Φp(u, r) =
∫

Br(0)

|u|p dx.

in that notation, our MR(u0) equals Φ1(u0, R).

(6) The behaviour of H is optimal in the limits t À 1 and t ≈ 0 as the Barenblatt solutions
show. If we perform the explicit computation for the Barenblatt solution in the worst case
where the mass is placed on the border of the ball BR0 , it gives (see (1.18) below)

B(0, t) =
M2ϑ

R t1/(1−m)

(b1t2ϑ + b2t2ϑ
c )1/(1−m)

. (1.17)

1.2 Global Positivity estimate

The consideration of the Barenblatt solutions as example leads us to examine what is the
form of the positivity estimate when we move far away from a ball in space. Indeed, we can
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get a global estimate by carefully inserting a Barenblatt solution with small mass below our
solution. Let us recall that the Barenblatt solution of mass M is given by the formula

B(t, x; M) =
t1/(1−m)

[
b1t

2ϑ

M2ϑ(1−m)
+ b2|x|2

]1/(1−m)
. (1.18)

and also that
tc = C M

(1−m)
R R1/ϑ.

The following Theorem can be viewed as a Weak Global Harnack Principle, since it leads to
the Global Harnack Principle, which will be derived in the next subsection. Notice that the
parameters of the Barenblatt subsolution have a different form in the two cases t ≥ tc and
0 < t < tc

Theorem 1.2 (I) There exist τ1 ∈ (0, tc) and Mc > 0 such that for all x ∈ Rd and t ≥ tc

u(t, x) ≥ B(t− τ1, x; Mc). (1.19)

where we can take τ1 = λ tc and Mc = k MR for some universal constants λ, k > 0 which
depend only on m and d.

(II) For any 0 < ε < tc we have the global lower bound valid for t ≥ ε

u(t, x) ≥ B(t− τ(ε), x;M(ε)), (1.20)

with τ(ε) = λ ε and

M(ε) = (ε/tc)1/(1−m)Mc = k1

(
ε/R1/ϑ

)1/(1−m)

. (1.21)

Proof. The main result is the first, the point of stating (II) is to have an estimate for small
times (with a smaller time shift), at the price of having a subsolution with smaller mass. Let
us point out that the last constant k1 = k C−1/(1−m).

We divide the proof in a number of steps; the proof of (I) consists of steps (i)–(iii).

(i) Let us first argue for x ∈ BR(0) at time t = tc. As a consequence of our local estimate
(1.1) at t = tc, one gets:

u(tc, x) ≥ K
MR

Rd

for all |x| ≤ R. Hence, (1.19) is implied in this region by the inequality

K
MR

Rd
≥ B(tc − τ1, x; Mc) =

(tc − τ1)1/(1−m)

[
b1(tc − τ1)2ϑ

M
2ϑ(1−m)
c

+ b2|x|2
]1/(1−m)

(1.22)

Now we choose τ1 = λtc with a certain λ ∈ (0, 1). We put µ = 1 − λ ∈ (0, 1) so that
tc − τ1 = µ tc. With this choice, (1.22) is equivalent to

b1(µ tc)2ϑ

M
2ϑ(1−m)
c

+ b2|x|2 ≥ Rd(1−m)µ tc

M1−m
R K1−m

10



putting x = 0 and using the value of tc, it is implied by the condition:

Mc = k MR, k ≤ b
1/(2ϑ(1−m))
1 K1/2ϑ (µC)d/2

. (1.23)

(ii) We now extend the comparison to the region |x| ≥ R, again at time t = tc. We take as
domain of comparison the exterior space-time domain

S = (τ1, tc)× {x ∈ Rd : |x| > R}.

Both functions in estimate (1.19) are solutions of the same equation, hence we need only
compare them on the parabolic boundary. Comparison at the initial time t = τ1 is clear
since B(tc − τ1, x;Mc) vanishes. The comparison on the lateral boundary where |x| = R and
τ1 ≤ t ≤ tc amounts to

K
MR

Rd

(
t

tc

)1/(1−m)

≥ (t− τ1)1/(1−m)

[
b1(t− τ1)2ϑ

M
2ϑ(1−m)
c

+ b2R2

]1/(1−m)
. (1.24)

Raising to the power (1−m) and using the value of tc, we get

K1−mt

R2C
≥ t− τ1

b1(t− τ1)2ϑ

M
2ϑ(1−m)
c

+ b2R2

,

or

K1−m b1(t− τ1)2ϑ

M
2ϑ(1−m)
c

+ K1−mb2R
2 ≥ (1− τ1

t
)R2C . (1.25)

If we have fixed τ1 as before and we define Mc = k MR with k = k(m, d) small enough, this
inequality is true for τ1 ≤ t ≤ tc.

(iii) Using now the Maximum Principle in S, the proof of (1.19) is thus complete for t = tc
in the exterior region. Since the comparison holds in the interior region by step (i), we get a
global estimate at t = tc.

(iv) We now prove part (II) of the Theorem. We only need to prove it at t = ε. We recall
that λ and Mc are as defined in part (I). We know that

tc − τ1 = µ tc, with µ ∈ (0, 1)

Using the Bénilan-Crandall estimate, we have for 0 < t < tc:

u(t, x) ≥ u(tc, x)
t1/(1−m)

t
1/(1−m)
c

,

11



together with the above estimate (1.19), we can see that:

u(t, x) ≥ u(tc, x)
t1/(1−m)

t
1/(1−m)
c

≥ t1/(1−m)

t
1/(1−m)
c

B(tc − τ1, x; Mc)

=
t

1
1−m

t
1

1−m
c

(µ tc)
1

1−m

[
b1(µ tc)2ϑ

M
2ϑ(1−m)
c

+ b2|x|2
] 1

1−m

=
(µ t)1/(1−m)

[
b1(µ t)2ϑ

M
2ϑ(1−m)
c t2ϑt−2ϑ

c

+ b2|x|2
] 1

1−m

= B
(

µ t, x ;
Mct

1/(1−m)

t
1/(1−m)
c

)
= B(t− τ, x ;Mc(t))

once one let t− τ = µ t and Mc as above. The proof of (1.20) is thus complete.

A consequence of this result is the following lower asymptotic behaviour that is peculiar
of the FDE evolution.

Corollary 1.3 We have

lim inf
|x|→∞

u(t, x) |x|2/(1−m) ≥ c(m, d) t1/(1−m). (1.26)

The constant c(m, d) = (2m/ϑ(1−m))1/(1−m) of the Barenblatt solution is sharp.

This result has been proved by Herrero and Pierre (see Thm. 2.4 of [17]) by similar methods.
Here, it easily follows from the estimates of Theorem 1.2 which provides an exact lower bound
for all times, not only for large times.

Remarks. (1) In order to complement the previous lower estimates, let us review what is
known about estimates from above. These depend on the behaviour of the initial data as
|x| → ∞. Recall only that constant data produce the constant solution, that does not decay.
Under the decay assumption on the initial datum u0 ∈ L1

loc(Rd):
∫

|y−x|≤|x|/2

|u0(y)|dy = O
(
|x|d− 2

1−m

)
as |x| → ∞, (1.27)

it has been proved by entirely different methods in [25] that

lim
|x|→∞

u(t, x) |x|2/(1−m) ≤ c(m, d) (t + S)1/(1−m).

where S > 0 depends on the constant in the bound (1.27) as |x| → ∞. The time shift S is
needed in the asymptotic behaviour of u as |x| → ∞. Actually, when the initial datum has
an exact decay at infinity, u0 ∼ a|x|−2/(1−m) we have more:

lim
|x|→∞

u(t, x) |x|2/(1−m) = C (t + S)1/(1−m)
.

with C = 2m/ϑ(1 − m) and S = a1−m/C, and this cannot be improved as the delayed
Barenblatt solutions show. Moreover, there exists a t0 such that u1−m is convex as a function
of x for t > t0, cf. [18].
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(2) In comparison with the upper bounds, we have shown that global lower estimates need a
time shift τ (in the other direction, explicitly calculated), but in the limit we can put τ = 0,
as one can see above. Moreover, the behaviour at infinity is independent of the mass (a fact
that is false for the heat equation), hence all Barenblatt solutions with different free constant
b1 behave in the same way in the limit as |x| → ∞, cf. [25].

(3) We can also get better results if we consider radially-symmetric initial data (always in
our range of parameters mc < m < 1), cf. [10].

(4) The last remark concerns the mass. The asymptotic behaviour is independent of the
mass, thus we can let the mass grow until we reach the total mass, that can be infinite since
we only assumed that the initial datum is locally integrable. In case the global mass of the
initial datum is finite we can prove local Elliptic Harnack inequality, and a Global Harnack
Principle (provided the initial data behaves ”well” at infinity), as we will see in the next
section.

1.3 Harnack Inequality for FDE on Rd

We now show that the positivity result implies a full local Harnack inequality and a global
Harnack principle on the whole Euclidean space.

In this section we will consider u0 ∈ L1(Rd), u0 ≥ 0 and we let

M∞ =
∫

Rd

u0(x) dx, MR =
∫

BR

u0(x) dx (1.28)

for some R > 0, x0 ∈ Rd.

Theorem 1.4 (Elliptic Harnack Inequality)

Let u(t, x) satisfy the same hypothesis as Theorem 1.1. If moreover u0 ∈ L1(Rd), there exists
a positive constant H, depending only on m and d on the ratio MR/M∞, such that for any
t ≥ tc(MR, R):

sup
x∈BR

u(t, x) ≤ H inf
x∈BR

u(t, x). (1.29)

If moreover u0 is supported in BR, then the constant H is universal and depends only on m
and d.

Proof. First we remark that the exact expression for tc is given in Theorem1.1. The well
known a priori estimates used above, see (1.5), can be rewritten in an equivalent form:

sup
x∈BR

u(t, x) ≤ C1M
2ϑ
∞ t−dϑ = C1

[
M∞
MR

]2ϑ

M2ϑ
R t−dϑ.

Now using (1.2) in a slightly different form (see (1.14)) when t > tc

inf
x∈BR

u(t, x) ≥ K M2ϑ
R t−dϑ ≥ K C−1

1

[
MR

M∞

]2ϑ

sup
x∈BR

u(t, x)
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that is (1.29) with H = K−1 C1 [M∞/MR]2ϑ. This concludes the proof.

Under a further control on the initial data, we can transform the local Harnack Principle
into a global version. We recall that bi, λ1, k1, and Ci are constants that depend only on m
and d, while rest of the parameters depend also on the data as expressed.

Theorem 1.5 (Global Harnack Principle)

Let u0 ∈ L1(Rd), u0 ≥ 0 and
u0(x) |x|2/(1−m) ≤ A. (1.30)

for |x| ≥ R0. Then, for any time ε > 0 there exist constants τ1, τ2, M1 and M2, such that
for any (t, x) ∈ (ε,∞)× Rd we have the following upper and lower bounds:

B(t− τ1, x;M1) ≤ u(t, x) ≤ B(t + τ2, x; M2) (1.31)

where τ1 = λ1ε, τ2 = τ(ε,A, ts), M1 = M(ε) as given in Theorem 1.2 and M2 = k2(ε,A, τ2)M∞,
while

tc = C M1−m
R R1/ϑ, ts = C5 M1−m

∞ R
1/ϑ
0 .

Proof. In view of Theorem 1.2, we only have to prove the upper bound. Just recall that in
order to adapt the notation we set

M1 =

{
k1(ε tc)1/(1−m)MR = k1

(
λ1εR

−1/ϑ
)1/(1−m)

, if ε ∈ (0, tc)
k1 MR , if ε > tc

Let us fix ε > 0. We have to find suitable M2 and τ2 such that

u(t, x) ≤ B(t + τ2, x; M2)

for any (t, x) ∈ (ε,∞) × Rd. Using the Comparison Principle, we only need to prove that
estimate for t = ε. It will be done in three steps: first, we show that given ε,R1 > 0, we can
find M2 and τ2 such that

u(ε, x) ≤ B(ε + τ2, x;M2) (1.32)

for any |x| ≤ R1 by using the uniform boundedness of the solutions due to the smoothing
effect; then, we estimate the solution at t = ε by using a suitable barrier which is valid
for |x| ≥ R1; finally, we calculate the parameters M2 and τ2 such that the corresponding
Barenblatt lies on top of the barriers at t = ε in the whole space. Once this plan is clear, the
computations are long and tedious, but the result easy to foresee.

• Upper Estimates in a Ball

First we show that one can choose M2 and τ2 such that (1.32) holds for any |x| ≤ R1. In view
of the well known L1−L∞ estimates for the solutions of the FDE, u(t, x) ≤ C1 M2ϑ

∞ t−dϑ, we
can impose the condition

C1
M2ϑ
∞

εdϑ
≤ B(ε + τ2, x; M2) (1.33)
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Here, M∞ = ‖u0‖1 is the total mass and C1 is the best constant in the smoothing effect, cf.
[28]. By the explicit form of the Barenblatt solution B, we are reduced to prove that

C1−m
1

M
2ϑ(1−m)
∞

εdϑ(1−m)
≤ ε + τ2

b1(ε + τ2)2ϑM
−2(1−m)ϑ
2 + b2x2

for |x|2 ≤ R1, that can be written as

b1(ε + τ2)2ϑ

M
2(1−m)ϑ
2

+ b2R
2
1 ≤ Cm−1

1

(ε + τ2) εdϑ(1−m)

M
2ϑ(1−m)
∞

.

This is implied by the following two conditions

M2 ≥
(
2 b1C

1−m
1

)1/(2(1−m)ϑ)
(

ε + τ2

ε

)d/2

M∞ (1.34)

R2
1 ≤

Cm−1
1

2 b2

(ε + τ2) εdϑ(1−m)

M
2ϑ(1−m)
∞

. (1.35)

• Upper Barrier outside a ball

We want to estimate the behaviour of the solution outside a ball, namely when |x| larger
than a certain R1, always at time t = ε. To this end we are going to consider the singular
variations of the Barenblatt solution. Suppose first that estimate (1.30) holds in the whole
space, i.e., with R0 = 0. Then, if we choose

S ≥ b2 A1/(1−m), (1.36)

then, it is easy to see that u0(x) ≤ U(x, 0), where U(t, x;S) is the singular solution obtained
as a limit of the when M →∞, namely:

U(t, x; S) =
(

t + S

b2|x|2
)1/(1−m)

Where S > 0 is not fixed a priori, it will be fixed by the asymptotic information on the initial
datum. It is known that U is a supersolution of the equation defined in the spatial region
|x| > 0. Since U takes the value U(t, 0) = +∞ for all t > 0, we conclude from the Maximum
Principle that under this condition on S, u(t, x) ≤ U(t, x) in the D = {(x, t) : |x| > 0}, hence
in Q. In this way, we have obtained an upper barrier away from x = 0 that decays in the
correct form at infinity.

In case R0 > 0, we have to use a further modification of the Barenblatt solution where
the free constant b1 becomes negative, and we write

U(t, x; B1, S) =
(

t + S

b2|x|2 −B1 (t + S)2ϑ

)1/(1−m)

This function has a singularity on the surface |x| = RU (t) where the denominator vanishes and
is a solution of the equation for |x| > RU (t). In order to compare u(t, x) and U(t, x; B1, S)
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in that exterior region, we only need to control that the inequality holds on the parabolic
boundary. We settle the inequality at t = 0 by putting RU (0) = R0, i.e.,

B1 S2ϑ = b2R
2
0, (1.37)

and S ≥ b2 A1/(1−m) as before. The comparison on the curved lateral boundary offers no
difficulty since U = +∞ there. We conclude that

u(x, t) ≤ U(t, x; B1, S)

for all t > 0 and |x| > RU (t). The free constants B1, τ2,M2 and S are subject to some further
relations in the next step. We will use U(ε, x; B1, S) as an upper barrier for u(ε, t) in the
exterior domain |x| ≥ RU (ε).

• Upper Estimates in the whole space

Since we have two different upper barriers at t = ε, we only have to choose a Barenblatt with
parameters M2 and τ2 that stays on top of the lower of the barriers at every point. We first
determine the point R1 where the barriers meet at time ε. We get

b2 R2
1 =

(ε + S)εdϑ(1−m)

C1−m
1 M

2ϑ(1−m)
∞

+ B1 (ε + S)2ϑ. (1.38)

This is the value of R1 that we have to use in the first step, and the calculation done in the
first step takes care of the interior region. For |x| > R1, we have u(ε, x) ≤ U(ε + S, x), and
we still have to impose the condition

U(ε + S, x) ≤ B(ε + τ2, x;M2).

This is true if

b1(ε + τ2)2ϑ

M
2ϑ(1−m)
2

+
b2R

2
0(ε + S)dϑ(1−m)(ε + τ2)

S2ϑ
≤ b2R

2
1

τ2 − S

ε + S
.

which can be further calculated using the value of R1 as

b1(ε + τ2)2ϑ

M
2ϑ(1−m)
2

+
b2R

2
0(ε + S)2ϑ

S2ϑ
≤ (τ2 − S)

(ε + τ2)2ϑ−1

C1−m
1 M

2ϑ(1−m)
∞

. (1.39)

We still have to check the compatibility of conditions (1.34), (1.35), (1.36), and (1.39) to
finish the computation of the upper Barenblatt for t ≥ ε. We proceed as follows:

(i) We fix S = b2 A1/(1−m).

(ii) Using (1.38) to define R1, condition (1.35) is equivalent to

τ2 ≥ ε + 2S + Kε

(
1
S

+
1
ε

)2ϑ

,

where K = 2b2C
1−m
1 M

2ϑ(1−m)
∞ R2

0, which has dimensions of a power of a second characteristic
time, K = t2ϑ

s .
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(iii) Estimate (1.39) is implied by the two conditions

b1(ε + τ2)2ϑ

M
2ϑ(1−m)
2

≤ 1
2
(τ2 − S)

(ε + τ2)2ϑ−1

C1−m
1 M

2ϑ(1−m)
∞

b2R
2
0(ε + S)2ϑ

S2ϑ
≤ 1

2
(τ2 − S)

(ε + τ2)2ϑ−1

C1−m
1 M

2ϑ(1−m)
∞

The second gives

(τ2 − S)(ε + τ2)2ϑ−1 ≥ t2ϑ
s

(
ε + S

S

)2ϑ

,

while the first gives
τ2 − S

τ2 + ε
≥ 2b1C

1−m
1 (M∞/M2)2ϑ(1−m),

(iv) We have to add (1.34) which is very similar:

(
τ2 + ε

ε

)2ϑ−1

≥ 2b1C
1−m
1 (M∞/M2)2ϑ(1−m),

This allows to find τ2 = f(ε, S, ts) and then M2/M∞ as a function of τ2, ε, S.

1.4 Asymptotic behaviour. Relative Error Estimates

The second author has proved in [25] the so-called Relative Error Estimates (REE) for the
FDE in the same range of parameters, namely

lim
t→∞

∥∥∥∥
u(t, ·)− B(t, · ;M)

B(t, · ; M)

∥∥∥∥
∞

= 0 ,

where B is the Barenblatt solution with the same mass (the result is independent of a possible
shift in time or space). This is related to our Theorem 1.5 as follows: for every ε > 0 we can
find a Barenblatt solution with mass M1(ε) < M∞ and another one with mass M2(ε) > M∞
that serve as lower bound, resp. upper bound for the solution for all times t ≥ ε. It is clear
from the maximum principle that M1(ε) increases with time while M2(ε) decreases. The
asymptotic result says that

lim
ε→∞

M1(ε) = lim
ε→∞

M2(ε) = M∞.

Theorem 1.5 adds to this asymptotic statement a more precise quantitative information that
is valid not only for large times, but also for arbitrary small times. The solution thus inherits
positivity and boundedness properties directly from the Barenblatt solutions that serve as
upper and lower bounds from the very beginning.

Usually, it is said that the Barenblatt solution of the nonlinear equations is a ‘poor cousin’
of the fundamental solution of the Heat Equation since there is no representation formula as
in the linear case. The above results show that in the good fast diffusion range mc < m < 1
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it is a stronger model in some respects. Thus, a consequence of this powerful Global Harnack
Principle, obviously valid for the Barenblatt solutions, is that the behaviour at infinity (i.e.
for |x| → ∞ and/or t → ∞) of the Barenblatt solution is always the same, independent of
the mass. This uniformity property is not shared by the Heat Equation nor by the Porous
Medium Equation and shows how much more the fast diffusion process regularizes data.

1.5 Different behaviour in the cases m 6∈ (mc, 1)

In the above considerations, it is essential that the range of parameters is mc < m < 1, since
when m 6∈ (mc, 1) different phenomena hold. We refer to [28] for a detailed and exhaustive
exposition and as a source for more complete bibliography. Let us discuss here the question
of possible uniform lower bounds.

Concerning the basic problem of optimal space for existence, H. Brezis and A. Friedman
proved in [8] that there can be no solution of the equation if m ≤ mc when the initial
data is a Dirac mass, so that we lose our main model. But at least solutions exist1 for all
initial data u0 ∈ L1

loc(Rd), when 0 < m < mc, and moreover they are global in time, u ∈
C([0,∞) : L1

loc(Rd)). Moreover, as Brezis and Friedman proved, the limit of any reasonable
approximation is u(x, t) = M δ(x), so that no diffusion takes place at all. This can be viewed
by a quite simple example, which is a ‘lite-version’ of the result of Brezis and Friedman:

Let ϕ ≥ 0 be a bounded and continuous function with M =
∫
Rd ϕ(x) dx > 0, and consider it

as the initial data for a solution of the FDE with 0 < m < mc. Let T > 0 be the extinction
time of that solution. Put ϑ = 2− d(1−m) < 0, and use the scaling transformation

uk(x, t) = knu(kx, k−|ϑ|t)

to construct solutions uk with the same initial mass and with extinction times Tk = k|ϑ|T →
∞. It is easy to show that for every t > 0 we have u(x, t) → M δ(x) as k →∞ (in the weak
sense).

Here is a related result

Consider the Barenblatt solutions Bm with m > mc and let m → mc. We have that

lim
m→mc

Bm(x, t; M) = M δ(x)

in Q = Rd × (0,∞).

These facts show that the Dirac mass is not diffused by the FDE with critical or subcritical
exponent, so that a Dirac delta at x = 0 that does not change in time.

As a consequence of this example, controlling the initial mass of a solution in a given
ball BR(0) does not allow us to get any kind of locally uniform lower estimate (take the
approximations to a Dirac delta placed at x0 ∈ BR(0) and estimate the value of u(0, t)). It
follows that

Proposition 1.6 Locally uniform positivity estimates, and a posteriori any kind of Harnack
inequalities, are false for general initial data.

1Such an existence result is not guaranteed when moreover m ≤ 0.
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This quite simple example shows that the range of parameters we consider in this paper
is optimal from below, if we want the initial datum u0 to be as general as possible.

Let us now comment that the results discussed above have been motivated by similar
properties of the heat equation flow. It has to be noted that there are slight differences in
favor of the fast diffusion case. Indeed, if one considers as initial datum u0 = δy, then it is
easy to see that the shifted fundamental solution

Ey(t, x) = (4π t)−d/2e−|x−y|2/t

does not satisfy the condition

c1 E0(t, x) ≤ Ey(t, x) ≤ c2E0(t, x)

for some universal constants ci > 0, which is however satisfied by the Barenblatt solutions if
mc < m < 1.

2 Positivity and Harnack estimates for Fast
Diffusion Equations on a domain

In this section we will prove local Positivity Estimates (Weak Harnack) and Elliptic Harnack
inequalities for the Fast Diffusion Equation in the range (d − 2)+/d = mc < m < 1 in an
Euclidean domain Ω ⊂ Rd.





ut = ∆(um) in Q = (0, +∞)× Ω
u(0, x) = u0(x) in Ω
u(t, x) = 0 for t > 0 and x ∈ ∂Ω

(2.1)

where Ω ⊂ Rd is an open connected domain with sufficiently smooth boundary. Since we are
interested in lower estimates, by comparison we may assume that Ω is bounded without loss
of generality.

As a precedent, E. DiBenedetto and Y. C. Kwong prove an Intrinsic Harnack inequality
(see [13], Thm. 2.1):

There exist constants 0 < δ < 1 and C > 1 depending on d and m such that for every point
P0 = (t0, x0) ∈ QT , QT = (0, T )× Ω, we have

inf
x∈BR

u(t0 + θ, x) ≥ C u(t0, x0) (2.2)

provided u(t0, x0) is strictly positive and

(t0 − τ, t0 + τ)×BR(x0) ⊂ QT , τ = u(t0, x0)1−mR2.

The constant θ = δ τ depends on the positive value of u at P0. It is a local property and thus
it holds both for the case of the whole space and for the domain case.
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Our main result takes the form of a precise lower estimate for the values in question, and
will thus ensure that such intrinsic Harnack inequality will hold for all positive times not too
close to the extinction time.

We also prove an Elliptic Harnack inequality for intermediate times, i.e. for t ∈ I = [tc, Tc]
with 0 < tc < Tc < T , where tc and Tc are computed in terms of the initial datum, which
follows from our sharp result on positivity. There is a difference between the above estimate
and our elliptic Harnack inequality: we calculate explicitly all the constants. As before, we
can say that our results somehow ”support” the results of [14], in the sense that we ensure
positivity in a quantitative way, and thus a posteriori their result holds true for times not too
close to the extinction time.

We can use Theorem 2.1 to give a quantitative improvement to the global Harnack principle
of E. DiBenedetto, Y. C. Kwong and V. Vespri, [14].

2.1 Weak Harnack Inequality

This is the intrinsic positivity result that shows in a quantitative way that solutions are
positive for all (x, t) ∈ Q. In the result we fix a point x0 ∈ Ω and consider different balls
BR = BR(x0) with R > 0, included in Ω.

Theorem 2.1 Let u be a continuous nonnegative solution to (2.1), with mc < m < 1. There
exists times 0 < t∗c < T ∗c ≤ T ∗, where T ∗ is the finite extinction time, and a positive function
H(t) such that for any t ∈ (0, T ∗c ) and R > 0 such that

R ≤ Λ dist (x0, ∂Ω) (2.3)

the following bound holds true:

inf
x∈BR

u(t, x) ≥ MR H(t/t∗c), (2.4)

where MR = MR/Rd, MR =
∫

BR
u0(x) dx. Function H(t) is positive and takes the precise

form

H(η) =
{

Kη−dϑ for 1 ≤ η ≤ T ∗c /t∗c ,
Kη1/(1−m) for η ≤ 1

(2.5)

The times 0 < t∗c ≤ T ∗c ≤ T ∗ are given by

t∗c = τc(2R)1/dϑM1−m
R ,

T ∗c = τ ′c [ dist(x0, ∂Ω)− 2R ] M1−m
R .

(2.6)

Constants C, K, τc, τ ′c, Λ > 0 depend only on d and m.

Proof. The proof is a combination of several steps. Without loss of generality we assume
that x0 = 0. Different positive constants that depend on m and d are denoted by Ci.The
precise values we get for C, K, τc, τ ′c and Λ are given at the end of the proof.
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Figure 2: Approximative graphic of the functions u(t, x) (dots) and H(t) (line)

• Reduction. By comparison we may assume supp(u0) ⊂ BR0(0), since the same argument
made in the proof of Theorem 1.1 works also in this case.

• Lower bounds on the extinction time. In order to get a lower bound for the extinction time
in terms of local mass information, we use property which can be labeled as weak conservation
of mass, and has been proved in lemma (3.1) of [17]. It reads: for any R, r > 0 and s, t ≥ 0
one has ∫

B2R

u(s, x) dx ≤ C3

[∫

B2R+r

u(t, x) dx +
|s− t|1/(1−m)

r(2−d(1−m))/(1−m)

]
. (2.7)

Now letting t = T ∗, so that u(T ∗, x) = 0, and s = 0 so that
∫

B2R
u(0, x) dx = MR, we get

T ∗ ≥ M1−m
R r1/ϑ

C1−m
3

≥ M1−m
R [dist (0, ∂Ω)− 2R]1/ϑ

C1−m
3

(2.8)

since r ∈ (0, dist (0, ∂Ω)− 2R).

• A priori estimates. The second step again is similar to the analogous step in proof of
Theorem 1.1, so we will omit details. We rewrite the well known a priori estimates (see e.g.
[20], Proposition 6.5, or [28]), after an integration over B2bR, in the form

∫

B2bR

u(t, x) dx ≤ C2 M2ϑ
R Rd t−dϑ (2.9)

since u0 is nonnegative and supported in BR. Here C2 = C12bdωd.
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• Integral estimate. Again in this step we are going to use the estimate (2.7). We let s = 0
and we rewrite it in a form more useful to our purposes (remember that M2R = MR since u0

is supported in BR): ∫

B2R+r

u(t, x) dx ≥ MR

C3
− t

1
1−m

r
1

θ(1−m)
. (2.10)

we now remark that r and R are such that B2R+r ⊂ Ω.

• Aleksandrov Principle. The fourth step consists in using the well-known Reflection Principle
in a slightly different form (see proposition (3.1) and formula (3.4) in the Appendix for more
details). This principle reads:

∫

B2R+r\B2bR

u(t, x) dx ≤ Ad rdu(t, 0) (2.11)

where Ad and b = 2 − 1/d are chosen as in (3.4) in Appendix, and one has to remember of
the condition r ≥ (2(d−1)/d − 1)2R.

• We now put together all the previous calculations:
∫

B2R+r

u(t, x) dx =
∫

B2bR

u(t, x) dx +
∫

B2R+r\B2bR

u(t, x) dx

≤ C2 M2ϑ
R Rd t−dϑ + Adr

du(t, 0)

this follows by (1.6) and (2.11). Now we are going to use the (1.7) to obtain:

MR

C3
− t

1
1−m

r
1

θ(1−m)
≤

∫

B2R+r

u(t, x) dx ≤ C2 M2ϑ
R Rd

tdϑ
+ Adr

du(t, 0)

And finally we obtain:

u(t, 0) ≥ 1
Ad

[(
MR

C3
− C2 M2ϑ

R Rd

tdϑ

)
1
rd
− t

1
1−m

r
2

1−m

]
=

1
Ad

[
A(t)
rd

− B(t)
r2/(1−m)

]
(2.12)

• Now we would like to obtain the claimed estimate for t > t∗c . To this end we seek whether
A(t) is positive:

A(t) =
MR

C3
− C2

M2ϑ
R Rd

tdϑ
> 0 ⇐⇒ t > (C3C2)

1/(dϑ)
M1−m

R R1/ϑ = t∗c (2.13)

Now we have to check if t∗c ≤ T ∗. By (2.8) one knows that a sufficient condition is that
t∗c ≤ T ∗c = Cm−1

3 M1−m
R [dist (0, ∂Ω)− 2R]1/ϑ ≤ T ∗, that is:

R ≤ dist (0, ∂Ω)

2 + C
1−m+1/dϑ
3 C

1/dϑ
2

(2.14)

Now, assuming t ∈ (t∗c , T
∗
c ) temporarily fixed, we optimize the function

f(r) =
1

Ad

[
A(t)
rd

− B(t)
r2/(1−m)

]
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with respect to r = r(t) ∈ (0, dist(0, ∂Ω)− 2R) and we obtain that it attains its maximum in
r = rmax(t):

rmax(t) =
[

2
d(1−m)

]ϑ(1−m)

tϑ
[
MR

C3
− C2M

2ϑ
R Rd

tdϑ

]−ϑ(1−m)

(2.15)

At this point is necessary to check the conditions

(2(d−1)/d − 1)2R < rmax(t) < dist(0, ∂Ω)− 2R

To this end is useful to get a simpler parametrization of the time interval (t∗c , T
∗
c ), indeed

tα = αt∗c = α (C3C2)
1/(dϑ)

M1−m
R R1/ϑ

maps the time interval (t∗c , T
∗
c ) into (1, αc), where

αc =
T ∗c
t∗c

= C
1−m+1/dϑ
3 C

1/dϑ
2

(
dist(0, ∂Ω)

R
− 2

)

And

rmax(tα) =
(

2
d(1−m)

)ϑ(1−m)

C
1−m+1/dϑ
3 C

1/dϑ
2

αϑ

(1− α−dϑ)ϑ(1−m)
R

Optimizing now this function w.r.t. α ∈ (1, αc) will lead to the value

αmin = 1 + ϑd(1−m)

and in order to guarantee the fact that αmin ≤ αc we impose the condition

R ≤ dist (0, ∂Ω)

2 +
(
(1 + ϑd(1−m))C1−m+1/dϑ

3 C
1/dϑ
2

)ϑ

Moreover, it is tedious but straightforward to verify that:

(2(d−1)/d − 1)2R < rmax(tαc) ≤ dist (x0, ∂Ω)− 2R

the first inequality becomes nothing else but a lower bound on the constants C2 and C3, but
since they are constants used in upper estimates, they can be chosen arbitrarily large. The
second inequality is guaranteed by the hypothesis R ≤ Λ dist(0, ∂Ω). Now going back to the
standard time parametrization we proved that:

f(rmax(t)) = Ad
[d(1−m)]2ϑ−1

22ϑϑ

[
1
C3

− C2
M2ϑ−1

R Rd

tdϑ

]2ϑ
M2ϑ

R

tdϑ
> 0

for all t ∈ (tαmin , T ∗c ) ⊂ (t∗c , T
∗). We thus found the estimate:

u(t, 0) ≥ Ad
[d(1−m)]2ϑ−1

22ϑϑ

[
1
C3

− C2
M2ϑ−1

R Rd

tdϑ

]2ϑ
M2ϑ

R

tdϑ
= K1 A(t)

M2ϑ
R

tdϑ
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a straightforward calculation shows that the function

A(t) =

[
1
C3

− C2
M2ϑ−1

R Rd

tdϑ

]2ϑ

is non-decreasing in time, thus if t ≥ tαmin :

A(t) ≥ A(tαmin) =
(

1− (1 + ϑd(1−m))−dϑ

2C3

)2ϑ

and finally we obtain:

u(t, 0) ≥ K1 A(t)
M2ϑ

R

tdϑ
≥ K1 A(tαmin

)
M2ϑ

R

tdϑ

So we proved that

u(t, 0) ≥ K
M2ϑ

R

tdϑ
(2.16)

for t ∈ (tαmin
, T ∗c ), with

K =
Ad

(2C3)2ϑ

[d(1−m)]2ϑ−1

22ϑϑ

[
1− (1 + ϑd(1−m))−dϑ

]2ϑ
.

• From the center to the infimum.
Now we want to obtain positivity estimate for the infimum of the solution u in the ball BR =
BR(0). Suppose that the infimum is attained in some point xm ∈ BR, so that infx∈BR u(t, x) =
u(t, xm), then one can apply (2.16) to this point and obtain:

u(t, xm) ≥ K
M2ϑ

2R(xm)
tdϑ

(2.17)

for tαmin(xm) < t < T ∗c (xm) < T ∗. Since the point xm ∈ BR(0) then it is clear that
BR(0) ⊂ B2R(xm) ⊂ B4R(0) and this leads to the equality:

M2R(xm) = MR(0) = M4R(0)

since M%(y) =
∫

B%(y)
u0(x) dx, supp(u0) ⊂ BR(0) and u0 ≥ 0.

This equalities will imply then that the times:

tαmin(xm) = (1 + ϑd(1−m))(C3C2)1/dϑ(2R)1/ϑM2R(xm)

= (1 + ϑd(1−m))(C3C2)1/dϑ(2R)1/ϑMR(0) = t∗min(0) ≥ tαmin(0)

and

T ∗c (xm) = Cm−1
3 [dist (0, ∂Ω)− 4R]1/ϑ

M1−m
2R (xm)

= Cm−1
3 [dist (0, ∂Ω)− 4R]1/ϑ

M1−m
R (0) ≤ T ∗c (0)
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Thus, we have found that:

inf
x∈BR(0)

u(t, x) = u(t, xm) ≥ K
M2ϑ

R (xm)
tdϑ

= K
M2ϑ

R (0)
tdϑ

= K
t∗ dϑ
min(0)
tdϑ

M2ϑ
R (0)

t∗ dϑ
min(0)

(2.18)

for t∗c = t∗min(0) < t < T ∗c (0) < T ∗ which is exactly (2.4).

• The last step consists in obtaining a lower estimate when 0 ≤ t ≤ t∗c .
The same argument used in the proof of Theorem 1.1, based on Bénilan-Crandall estimate
(cf. [4]) will thus give

u(t, x) ≥ t1/(1−m)

t
∗ 1/(1−m)
c

u(t∗c , x)

in order to obtain inequality (2.4) for 0 < t < t∗c is now sufficient to apply the inequality valid
for t > t∗c to the r.h.s. in the above inequality.

• The values of the constants K and C are given by:

K =
Ad

(2C3)2ϑ

[d(1−m)]2ϑ−1

22ϑϑ

[
1− (1 + ϑd(1−m))−dϑ

]2ϑ

2dC3C2(1 + ϑd(1−m))
.

C = C
1−m+1/dϑ
3 C

1/dϑ
2

τc = (1 + ϑd(1−m))(C3C2)1/dϑ

τ ′c = 1/C1−m
3

Λ = min

(
1

(2 + C)
,

1

2 + ((1 + ϑd(1−m))C)ϑ

)

The proof is complete.

2.2 Elliptic Harnack Inequality

In this section we want to obtain local Elliptic Harnack inequalities for intermediate times, in
analogy to what has been done in the whole space. As already mentioned above, this result
somehow ”supports” quantitatively the results of [13, 14]. We can conclude that for small
times (0 < t < tc) a weaker Intrinsic Harnack inequality is valid (see [13] or equivalently
(2.2)), for intermediate times (tc < t < Tc) there holds an Elliptic Harnack Inequality (see
below). We point out that for times close to the extinction time an Elliptic Harnack inequality
is still valid, as is proved by the authors via accurate asymptotic estimates in a forthcoming
paper [7].

Theorem 2.2 Let u(t, x) satisfy the same hypothesis as theorem (2.1). If moreover u0 ∈
L1(Ω), then there exists a positive constant H, depending only on m, d and on the ratio:

MΩ

MR0

=

∫
Ω

u0(x) dx∫
BR0

u0(x) dx
,
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such that for any t∗c < t < T ∗c < T ∗:

sup
x∈BR0

u(t, x) ≤ H inf
x∈BR0

u(t, x).

If moreover u0 is supported in BR0 , then the constant H is universal and depends only on m,
d.

Proof. The proof is formally the same as in Theorem 1.4 , since the upper bounds are the
same, (once one replace M∞ with MΩ) and use (2.4) when t∗c < t < T ∗c .

2.3 Global Harnack Principle

Passing now from the local to the global point of view, we should mention that the Global
Harnack Principle in the case of bounded domains, has been proved in [14].

E. DiBenedetto, Y. C. Kwong and V. Vespri investigate some regularity properties of the
FDE problem posed on bounded domains. They prove a global Harnack principle (Theorem
1.1, [14]):

For any ε ∈ (0, T ) there exist constants c, C depending only upon d, m, ‖u0‖1+m, diam(Ω),
∂Ω and ε, such that for all (t, x) ∈ (0, T )× Ω, t > ε

c dist(x, ∂Ω)1/m(T − t)1−m ≤ u(t, x) ≤ C dist(x, ∂Ω)1/m(T − t)1−m (2.19)

This global Harnack principle will give further regularity of the solutions (namely space an-
alyticity and time Holder continuity), and holds on bounded domains depending on some
further global regularity of the initial datum. As a consequence of this global Harnack prin-
ciple, they also prove a rather peculiar property of such solutions, namely:

u(t0, x0) ≥ γ0 sup
|x−x0|<R

u(t0, x)

valid for a R > 0 so small that the box

(t0 − τ, t0 + τ)×BR(x0) ⊂ QT , τ = u(t0, x0)1−mR2,

but again the box depends on the positivity value of u in the point (t0, x0).

The difference between the Rd case and the bounded domain case is that in the case of
whole space Rd the general solution u(x, t) is estimated from above and from below in terms
of the Barenblatt solution, while in the case of a bounded domain it is bounded between
d(x)1/m(T − t)1/(1−m), which is essentially the solution obtained by separation of variables.

We should conclude by saying that the global version of the Elliptic Harnack inequality is
the Global Harnack Principle, that is nothing more than an accurate lower and upper bound
with the same “comparison function”, both in the case of the whole space and in the case of
bounded domain.

As far as we know, it is an interesting open problem to find such global principle in
unbounded domains.
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3 Appendix

Here we prove the Reflection Principle of Aleksandrov in a slightly different form, more useful
to our purposes. Other forms of the same principle, in different settings can be found, for
example in [15]), Proposition 2.24 (pg. 51) or in [2], Lemma 2.2.

We also notice that it is sufficient to consider the Dirichlet problem on a suitable ball in
order to achieve the stated positivity results, namely consider:





ut = ∆(um) in (0, T ∗)×B4R(0)
u(0, x) = u0(x) in B4R(0)
u(t, x) = 0 for 0 < t < T ∗ and x ∈ ∂B4R(0)

(3.1)

with supp(u0) ⊂ BR(0) ⊂ B4R(0) ⊂ Ω, where T ∗ > 0 is the finite extinction time. Let
uB denote the solution to the above problem (3.1), while let uΩ denote the solution to the
problem (2.1). It is clear then that uB is a subsolution to the problem (2.1) so that uB ≤ uΩ

and thus local positivity result for uB will imply local positivity result for uΩ. Note however
that since the solutions have extinction in finite time and uB disappears before uΩ, we are
renouncing to obtain estimates near the extinction time of uΩ.

Proposition 3.1 (Local Aleksandrov’s Reflection Principle)

Let BλR(x0) ⊂ Rd be an open ball with center in x0 ∈ Rd of radius λR with R > 0 and λ > 2.
Let u be a solution to problem





ut = ∆(um) in (0, +∞)×BλR(x0)
u(0, x) = u0(x) in BλR(x0)
u(t, x) = 0 for t > 0 and x ∈ ∂BλR(x0)

(3.2)

with supp(u0) ⊂ BR(x0). Then, for any t > 0 one has:

u(t, x0) ≥ u(t, x2)

for any t > 0 and for any x2 ∈ Dλ,R(x0) = BλR(x0) \B2R(x0). Hence,

u(t, x0) ≥ |Dλ,R(x0)|−1
∫

Dλ,R(x0)

u(t, x) dx =
∮

Dλ,R(x0)

u(t, x) dx (3.3)

Remark. Formula (3.3) can be viewed as a local mean value inequality, it has been derived
here from the Aleksandrov principle, but it is interesting by itself and moreover is independent
of the range of m: one can apply the same argument to any m > 0. Formula (3.3) states
indeed that the mean value of the solution of evolution equations of diffusive type, over an
annulus is less than the value in the center of that ball where mass was concentrated at the
beginning. This property is crucial in the proof of the positivity estimates and, a posteriori,
of the Harnack inequality. It will be very useful to obtain it also for other kinds of diffusion
equation, since one could prove Harnack inequalities at least for the variable coefficient case,
or for the FDE or PME on a Riemannian manifold, provided some other a priori estimate
holds, but such estimates are more common in literature.
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However, we will use the mean value inequality (3.3) in a slightly different form:
∫

BR+r(x0)\BR(x0)

u(t, x) dx ≤ Adr
du(t, x0) (3.4)

with r ≥ µR, µ > 1, and a suitable positive constant Ad,µ. This inequality can easily be
obtained from (3.3), noticing that for r ≥ µR one has

(R + r)d ≤ c1

(
Rd + rd

)

for a constant c1 that depends on d and µ > 1. Then, we get (R+r)d−Rd ≤ (c1−1) Rd+rd ≤
c2 rd, so that

|B2R+r(x0) \B2bR(x0)| = ωd

[
(R + r)d −Rd

] ≤ Ad rd

with Ad = ωdc2 where ωd is the volume of the unit ball in Rd.

Proof. Now we are going to prove the Local Aleksandrov’s Reflection Principle. This proof
borrows some ideas from the proof of the Aleksandrov’s Reflection Principle found in [15].

We can assume without loss of generality that x0 = 0 and we will write BR instead of
BR(0). The support of the initial datum thus is supp(u0) ⊂ BR ⊂ BλR. To this end consider
the sets

Ω+ = BλR ∩H+, Ω− = BλR ∩H−,

where H is the hyperplane tangent to the sphere of radius a ≥ R > 0. By a change of
variables we can assume for sake of simplicity, that the equation of the such hyperplane is
H = {x ∈ Rd | x1 = a} and it splits the whole space into two parts H+ = {x ∈ Rd | x1 >
a} and H− = {x ∈ Rd | x1 < a}. Associated to this one also has the reflection π(z) =
π(z1, z2, . . . , zn) = (2a− z1, z2, . . . , zn).
Moreover, it is easy to see that π(Ω+) ⊂ Ω−, since a > 0, that x0 ∈ Ω∗ if a < λR/2.
Now consider two solutions to the problem on Ω∗ = π(Ω+): u1(t, x) is the restriction to
the set Ω∗ of the solution u(t, x) to the Dirichlet problem in the whole Ω = BλR(0), while
u2(t, x) = u(t, π(x)) in the ”reflected solution”, i.e., the reflection by π of u restricted to Ω+.
This is function is still a solution of the FDE.
Now we compare both functions in the parabolic domain Q1 = Ω∗ × (0, T ). It is clear that
both are solutions in that domain. As for the initial data, we have u1(0, x) ≥ u2(0, x) in
π(Ω+) since u2(0, x) = 0 while u1(0, x) = u0(x) ≥ 0. As for the boundary conditions, we have
u1(0, x) = u2(0, x) on the piece of the boundary H ∩ Ω∗. On the rest of the boundary, the
part that has been reflected from ∂Ω+ we have u1(t, x) ≥ 0 = u2(t, x). This implies that for
any t > 0

u(t, x1) ≥ u(t, x2)

provided x1 ∈ Ω∗, x2 ∈ Ω+ and x1 = π(x2). Now letting a moving in the range (R, λR/2)
will complete the proof of the first statement. We have that u(t, 0) ≥ u(t, x2) for any x2 in
the ray 2R < |x2| < λR and this implies that u(t, 0) ≥ u(t, x2) for any x2 ∈ Dλ,R and lead to

∫

Dλ,R

u(t, x) dx =
∫ λR

R

∫

∂B%

u(t, % σ)dσd% ≤
∫ λR

R

∫

∂B%

u(t, 0)dσd%

=
∫

Dλ,R

u(t, 0) dx = |Dλ,R|u(t, 0)
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which proves the last statement. The proof is complete
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