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Abstract. We consider the equation u̇ = 4p(u) with 2 ≤ p < d on a compact
Riemannian manifold. We prove that any solution u(t) approaches its (time
independent) mean u with quantitative bounds on the rate of convergence
‖u(t) − u‖∞ ≤ C‖u0 − u‖γ

r /tβ for any q ∈ [2, +∞] and t > 0. The proof
is based upon the connection between logarithmic Sobolev inequalities and
decay propertiesof nonlinear semigroups.

Mathematics Sucject Classification (2000). Primary 47H20; Secondary 35K55,
58D07, 35K65.

Keywords. Contractivity properties, asymptotics of nonlinear evolutions, p–
Laplacian on manifolds.

1. Introduction

Let (M, g) be a smooth, connected and compact Riemannian manifold without
boundary, whose dimension is denoted by d with d ≥ 3 . Let ∇ be the Rieman-
nian gradient and dx the Riemannian measure and consider, for 2 ≤ p < d (the
subcritical case), the following functional:

(1.1) Ep(u) =
∫

M

|∇u|p dx

for any u ∈L2(M), where we adopt the convention that Ep(u) equals +∞ if the
distributional gradient of u does not belong to Lp(M). It is well–known that Ep

is a convex, lower semicontinuous functional. The subgradient of the functional
Ep/p, denoted by 4p, generates a (nonlinear) strongly continuous nonexpansive
semigroup {Tt : t ≥ 0} on L2(M). On smooth functions, the operator 4p reads

4pu = div
(
|∇u|p−2∇u

)
,

| · | = | · |x indicating the norm in the tangent space at x. We refer to [16] as
a complete general reference for parabolic equations driven by operators of p–
Laplace type in the Euclidean setting, there can be found also existence results
(for weak solutions) in Euclidean setting as well as other properties of the solution.
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It should be remarked here that the function u(t, x) := (Ttu)(x) is also a weak
solution in the sense of [16] of the equation u̇ = 4pu, so we will speak equivalently
of weak solution or time evolution associated to the semigroup at hand. To be
more precise, by weak solution to equation

(1.2)
{

u̇ = 4p(u), on (0,+∞)×M
u(0, ·) = u0 ∈ L2(M)

corresponding to the initial datum u0 ∈ L2(M) we mean that

u ∈ Lp((0, T );W 1,p(M)) ∩ C([0, T ]; L2(M))

for any T > 0 and that, for any positive and bounded test function

ϕ ∈ W 1,2(0, T ; L2(M)) ∩ Lp((0, T );W 1,p(M)), ϕ(T ) = 0,

one has:∫
M

u0(x)ϕ(0, x) dx =−
∫ T

0

∫
M

u(t)ϕ′(t, x) dxdt

+
∫ T

0

∫
M

|∇u(t, x)|p−2∇u(t, x) · ∇ϕ(t, x) dxdt.

Let us denote by u the mean of an integrable function u:

u =
1

vol(M)

∫
M

u dx.

Let finally u(t) := Ttu be the time evolution associated to the semigroup at hand
and to the initial datum u(0) = u ∈L1(M) (or the weak solution to problem (1.2),
as well). Then u(t) does not depend upon time, so that it equals u: we prove this
fact by means of abstract semigroup theory in Lemma 3.1.

Theorem 1.1. Let (M, g) be a smooth, connected and compact Riemannian ma-
nifold without boundary and with dimension d > 2. Consider, for any t > 0,
the solution u(t) to the problem (1.2) with u(0) ∈ Lq (M) with q ≥ 1. Then the
following ultracontractive bound holds true for all t ∈ (0, 1]:

(1.3) ‖u (t)− u‖∞ ≤ C(p, q, d, A,Vol(M))
tβ

‖u(0)− u‖γ
q

with:

(1.4) β =
d

pq + d(p− 2)
, γ =

pq

pq + d(p− 2)

where A are the constants appearing in the Sobolev inequality

‖u− u‖pd/(d−p) ≤ A ‖∇u‖p
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If t > 1 one has instead, for all data belonging to L2(M):

(1.5) ‖u(t)− u‖∞ ≤ C(p, 2, d, A,Vol(M))(
Bt + ‖u(0)− u‖2−p

2

) 2p
(2p+d(p−2))(p−2)

and in particular, for any ε ∈ [0, 1]:

(1.6) ‖u(t)− u‖∞ ≤ C(p, 2, d, A,Vol(M))‖u(0)− u‖
2p(1−ε)

(2p+d(p−2))
2

(Bt)
2pε

(2p+d(p−2))(p−2)

where

B =
(p− 2)

A
p
Vol(M)p

2p+d(p−2)
2(p−d)

.

The proof will show that identical conclusions hold for the solutions to the
equation u̇ = 4pu in bounded Euclidean domains, or in compact manifolds with
smooth boundary, with homogeneous Neumann boundary conditions.

Corollary 1.2 (absolute bound). For all t > 2, all ε ∈ (0, 1) and all initial data u0

in L1(M) there exists cε > 0 such that

(1.7) ‖u(t)− u‖∞ ≤ cεt
−(1−ε)/(p−2).

independently of the initial datum u0. Moreover, if the initial datum belongs to
Lr(M) with ‖u(0)‖r < 1 then

‖u(t)− u‖∞ ≤ cε‖u(0)− u‖ε
rt
−(1−ε)/(p−2)

for all t ≥ 2‖u(0)− u‖2−p
r .

The proof of this corollary is identical to the proof of the corollary (1.2) of
[5] since the proof presented there is independent on the range of p.

A few comments on the sharpness of the bound are now given:

• (compact manifold or Neumann cases). It is known from the results of [1]
that a lower bound of the form

‖u(t)− u‖2 ≥
C

t1/(p−2)

holds for any L2 data and all t sufficiently large. A similar bound for the L∞ norm
thus holds as well. Hence the bounds in Corollary 1.2 are close to the optimal ones
for large time. For small times a comparison with the Barenblatt solutions ([16])
shows that the power of time is the correct one for data belonging to L1, while for
data in Lq with q > 1 the L∞ our result is better in the sense that norm diverges
at a slower rate depending on q, a property which is familiar in the theory of linear
ultracontractive semigroups but which seems to have not been explicitly stated so
far in the nonlinear context.

• (Dirichlet case). A similar result can be shown on compact manifolds with
smooth boundary, homogeneous Dirichlet boundary conditions being assumed.
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The main difference is in the fact that the solutions approach zero when t tends to
infinity. The proof stems from the appropriate Sobolev inequality for functions in
W 1,p

0 (M) and is easier than in the previous case. For short time remarks similar
to the Neumann case hold. By using the optimal logarithmic Sobolev inequality of
[14] for the p–energy functional, bounds which are sharp also for general L1 data
and small times can be proved easily by the present methods in the Euclidean
case.

A comparison with some previous results is now given. While a discussion
of similar problems in the whole Rn has been given long ago in [19] by entirely
different methods, and recently improved in [12], nothing seem to have appeared,
apart of some estimates of a somewhat similar nature given in [16] (in any case the
Neumann case and the compact manifold case are not discussed there) concerning
asymptotics of evolution equations driven by the p–Laplacian in bounded domains
before the recent work [8]. In this paper a similar discussion is given for the Eu-
clidean p–Laplacian with Dirichlet boundary conditions on a bounded Euclidean
domain: the solution approaches zero, instead of u, in the course of time. In [10]
a generalization of such results to a much larger class of operators is given, but
Dirichlet boundary conditions are still assumed. The Dirichlet boundary condi-
tions determine the form of the Sobolev inequalities on which our work relies and
thus the situation is different from the very beginning. We shall also comment later
on the case of Dirichlet boundary conditions is much easier and can be dealt with
in the present case as well, and that the case of Neumann boundary conditions
displays exactly the same properties discussed in Theorem (1.1). In the case of the
present type of evolutions it seems that even the fact that u(t) approaches u in
the course of time is new. Similar results have been proved in [5] in the case p > d.

2. Entropy and Logarithmic Sobolev Inequalities

In this section we will prove a family of logarithmic Sobolev inequalities, which
will be an essential tool in the rest of the paper. They involve the entropy or Young
functional below:

(2.1) J(r, u) =
∫

M

log
(
|u|
‖u‖r

)
|u|r

‖u‖r
r

dx

well defined for any r ≥ 1 and u ∈ X =
⋂+∞

p=1 Lp(M).

Proposition 2.1. The logartithmic Sobolev inequality

(2.2) pJ(p, u) ≤ d

p

[
εA

‖∇f‖p
p

‖f‖p
p

+ εVol(M)p/p∗

∣∣f ∣∣p
‖f‖p

p
− log ε

]
holds true for any ε > 0, for all f ∈ W 1,p(M), 1 ≤ p < d, d ≥ 2. Here

A = 2pA
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and A is the constant appearing in the classical Sobolev inequality:

(2.3) ‖u− u‖p∗ ≤ A ‖∇u‖p , p∗ =
p d

d− p

Proof. First we notice that

‖u‖p∗ − |u|Vol(M)1/p∗ = ‖u‖p∗ − ‖u‖p∗

≤ ‖u− u‖p∗ ≤ A‖∇u‖p.

Thus

‖u‖p
p∗ ≤

(
A‖∇u‖p + |u|Vol(M)1/p∗

)p

≤ 2p−1
(
A‖∇u‖p

p + |u|pVol(M)p/p∗
)(2.4)

where we have used the numerical Young inequality (a + b)p ≤ 2p−1(ap + bp).
Now we prove the LSI (2.2):

pJ(p, u) =
∫

M

log
(
|u(x)|p

‖u‖p
p

)
|u(x)|p

‖u‖p
p

dx =
d− p

p

∫
M

log

 |u(x)|
p2

d−p

‖u‖
p2

d−p
p

 |u(x)|p

‖u‖p
p

dx

≤ d− p

p
log

∫
M

|u(x)|
p2

d−p +p

‖u‖
p2

d−p +p
p

dx



=
d− p

p
log

‖u‖
pd

d−p
pd

d−p

‖u‖
pd

d−p
p

 =
d

p
log

‖u‖p
p∗

‖u‖p
p

≤ d

p
log

(
2p−1A‖∇u‖p

p + 2p−1Vol(M)p/p∗ |u|p

‖u‖p
p

)

≤ d

p
ε2p−1A

‖∇u‖p
p

‖u‖p
p

+
d

p
ε2p−1Vol(M)p/p∗ |u|p

‖u‖p
p
− log ε.

Indeed, we first used Jensen inequality for the probability measure |u(x)|p
‖u‖p

p
dx, then

the inequality (2.4) and finally the numerical inequality log(t) ≤ εt− log ε, which
holds for any ε, t > 0.
The proof is thus complete.

3. Preliminary Results

We first recall two facts proved in [5] for the case p > d remarking that their proof
do not depend upon the range of p.

Lemma 3.1. The semigroup {Tt}t≥0 associated with the functional Ep satisfies the
properties:
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• Ttu = u for any u ∈L1(M) and any t ≥ 0;
• Ttu = Tt(u− u) + u for all u ∈L1(M).

In view of the above lemma it is clear that it suffices to prove theorem (1.1)
for data with zero mean.

Lemma 3.2. Let u be a weak solution to the equation (1.2) corresponding to an
essentially bounded initial datum u0 ∈ L∞(M) with zero mean. Let also r : [0, t) →
[2,+∞) be a monotonically non-decreasing C1 function. Then

d
ds

log ‖u(s)‖r(s) =
ṙ(s)
r(s)

J (r(s), u(s))

−
(

p

r(s) + p− 2

)p (r(s)− 1)

‖u(s)‖r(s)
r(s)

∥∥∥∇(|u(s)|
r(s)+p−2

p

)∥∥∥p

p

(3.1)

Lemma 3.3. Let u be a weak solution to the equation (1.2) corresponding to an
essentially bounded initial datum u0 ∈ L∞(M) with zero mean.
Let also r : [0, t) → [2,+∞) be a monotonically non-decreasing C1 function. Then

d
ds

log ‖u(s)‖r(s) ≤ − ṙ(s)
r(s)

d(p− 2)
pr(s) + d(p− 2)

log ‖u(s)‖r(s)+

− ṙ(s)
r(s)

d

pr(s) + d(p− 2)
log
(

pp+2

dA

r(s)3(r(s)− 1)
ṙ(s)(r(s) + p− 2)p(pr(s) + d(p− 2))

)
+ K‖u(0)‖p−2

2

(3.2)

where K = Vol(M)(3/2)p/A.

Proof. We can rewrite the LSI (2.2) in the following form:

‖∇f‖p
p ≥

p‖f‖p
p

εAd

[
J(1, fp) +

d

p
log(ε)

]
− |f |p

A
.

Then we apply it to the function f = |u(s, x)|(r(s)+p−2)/p and obtain:∥∥∥∇|u(s)|(r(s)+p−2)/p
∥∥∥p

p
≥

p‖u(s)‖r(s)+p−2
r(s)+p−2

εAd

[
J(1, u(s)r(s)+p−2) +

d

p
log(ε)

]

−

∣∣∣|u(s)|(r(s)+p−2)/p)
∣∣∣p

A

(3.3)

since ‖|u(s)|(r(s)+p−2)/p‖p
p = ‖u(s)‖r(s)+p−2

r(s)+p−2. Then we apply this to the inequality
(3.1) of previous lemma and we obtain:

d
ds

log ‖u(s)‖r(s) =
ṙ(s)
r(s)

J (r(s), u(s))

−
(

p

r(s) + p− 2

)p
r(s)− 1

‖u(s)‖r(s)
r(s)

∥∥∥∇(|u(s)|
r(s)+p−2

p

)∥∥∥p

p

(3.4)
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so that

d
ds

log ‖u(s)‖r(s) ≤
ṙ(s)
r(s)2

J
(
1, u(s)r(s)

)
− pp+1(r(s)− 1)

εAd(r(s) + p− 2)p

‖u(s)‖r(s)+p−2
r(s)+p−2

‖u(s)‖r(s)
r(s)

×

×
[
J
(
1, u(s)r(s)+p−2

)
− d

p
log ε

]
+ R(p, r(s), u(s), A, d)

since J
(
1, u(s)r(s)

)
= r(s)J (r(s), u(s)), where

R =
pp(r(s)− 1)

A(r(s) + p− 2)p

∣∣∣|u(s)|(r(s)+p−2)/p
∣∣∣p

‖u(s)‖r(s)
r(s)

.

Now choose

ε = ε(s) =
r(s)3

ṙ(s)
pp+2(r(s)− 1)

Ad(r(s) + p− 2)p(p(r(s) + d(p− 2)))

‖u(s)‖r(s)+p−2
r(s)+p−2

‖u(s)‖r(s)
r(s)

= ε1

‖u(s)‖r(s)+p−2
r(s)+p−2

‖u(s)‖r(s)
r(s)

and obtain from (3.4):

d
ds

log ‖u(s)‖r(s) ≤
ṙ(s)
r(s)2

[
J
(
1, u(s)r(s)

)
− pr(s)

pr(s) + d(p− 2)
J
(
1, u(s)r(s)+p−2

)
− pdr(s)

p(pr(s) + d(p− 2))
log

‖u(s)‖r(s)+p−2
r(s)+p−2

‖u(s)‖r(s)
r(s)


− ṙ(s)

r(s)2
pdr(s)

p(pr(s) + d(p− 2))
log ε1 + R

≤ ṙ(s)
r(s)2

[
J
(
1, u(s)r(s)

)
− pr(s)

pr(s) + d(p− 2)
J
(
1, u(s)r(s)+p−2

)
− (p− 2)pdr(s)

p(pr(s) + d(p− 2))
J
(
1, u(s)r(s)

)
− (p− 2)pdr(s)

p(pr(s) + d(p− 2))
log ‖u(s)‖r(s)

r(s)

]
− ṙ(s)

r(s)2
pdr(s)

p(pr(s) + d(p− 2))
log ε1 + R

=
ṙ(s)
r(s)2

pr(s)
(pr(s) + d(p− 2))

[
J
(
1, u(s)r(s)

)
− J

(
1, u(s)r(s)+p−2

)]
− ṙ(s)

r(s)2
(p− 2)pdr(s)

p(pr(s) + d(p− 2))
log ‖u(s)‖r(s)

(3.5)
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− ṙ(s)
r(s)2

pdr(s)
p(pr(s) + d(p− 2))

log ε1 + R

≤ − ṙ(s)
r(s)

(p− 2)d
pr(s) + d(p− 2)

log ‖u(s)‖r(s) −
ṙ(s)
r(s)

d

pr(s) + d(p− 2)
log ε1 + R

We used first the fact that

(3.6) log
‖u(s)‖r(s)+p−2

r(s)+p−2

‖u(s)‖r(s)
r(s)

≥ (p− 2)
[
J (r(s), u(s)) + log ‖u(s)‖r(s)

]
which follows from two basic facts. First, the function N(r, u) = log ‖u‖r

r is convex
with respect to the variable r ≥ 1, so its derivative is an increasing function of
r ≥ 1. Moreover N

′
(r, u) = J(r, u) + log ‖u‖r, so the following inequality:

N(r + p− 2, u)−N(r, u) ≥ N
′
(r, u)(p− 2) = [J(r, u) + log ‖u‖r] (p− 2)

holds if p ≥ 2 and leads to (3.6).
The last estimate is obtained by the following monotonicity property of the Young
functional

J (1, ur)− J
(
1, ur+p−2

)
≤ 0, if p ≥ 2

the proof of the fact that J (1, ur) is a non-decreasing function of r ≥ 1 is a
consequence of the convexity (w.r.t. the variable r) of the function:

φ(r, u) = log ‖u‖1/r.

We refer to [3] for a proof of such fact, but comment that it is equivalent to the
well known interpolation inequality:

‖u‖1/r ≤ ‖u‖θ
1/p‖u‖

1−θ
1/q

valid when 1
r = θ

p + 1−θ
q . Now deriving φ respect to r gives us:

d
dr

φ(r, u) = −1
r
J

(
1
r
, u

)
thus, as derivative of a convex functions, − 1

r J
(

1
r , u
)

is non-decreasing.
Our next goal will be to give an estimate on the term R. To this end we use an
Hölder and an interpolation inequality to yield

‖u‖(r+p−2)/p ≤ Vol(M)1/(r+p−2)‖u‖(r+p−2)/(p−1)

≤ Vol(M)1/(r+p−2)‖u‖(p−2)/(r+p−2)
1 ‖u‖r/(r+p−2)

r .

Therefore ∣∣∣|u(s)|(r(s)+p−2)/p
∣∣∣p

‖u(s)‖r(s)
r(s)

=
‖u(s)‖r(s)+p−2

(r(s)+p−2)/p

‖u(s)‖r(s)
r(s)

≤ Vol(M)
‖u(s)‖(r(s)+p−2)

(r(s)+p−2)/(p−1)

‖u(s)‖r(s)
r(s)

≤ Vol(M)‖u(s)‖p−2
1 .
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The statement finally follows by the bounds

pp(r(s)− 1)
A(r(s) + p− 2)p

≤ pp

A(q + p− 2)p−1
≤ p

A

valid because r(s) ≥ q ≥ 1 and p ≥ 2 by assumption, together with the Hölder
inequality and the L2 contraction property of the evolution at hand:

‖u(s)‖1 ≤ Vol(M)(1/2)‖u(s)‖2 ≤ Vol(M)(1/2)‖u(0)‖2 = Vol(M)(1/2)‖u0‖2
which is well known to hold for any s > 0.

Lemma 3.4. Let u be a weak solution to the equation (1.2) corresponding to an
essentially bounded initial datum u0 ∈ L∞(M) with zero mean.
Let also r : [0, t) → [2,+∞) be a monotonically non-decreasing C1 function. Then
the following differential inequality holds true for any s ≥ 0:

(3.7)
d
ds

y(s) + p(s)y(s) + q(s) ≤ 0

With

y(s) = log ‖u(s)‖r(s)

p(s) =
ṙ(s)
r(s)

d(p− 2)
pr(s) + d(p− 2)

q(s) =
ṙ(s)
r(s)

d

pr(s) + d(p− 2)
log
(

pp+2r(s)3(r(s)− 1)
Adṙ(s)(pr(s) + d(p− 2))(r(s) + p− 2)p

)
−K‖u0‖p−2

2

(3.8)

In particular, choosing r(s) = qt
t−s , one gets the bound:

y(t) = lim
s→t−

y(s) ≤ lim
s→t−

yL(s) = yL(t)

with

yL(t) =
pq

pq + d(p− 2)
yL(0)

− d

pq + d(p− 2)
log(t) + c2(p, q, d,Vol(M))‖u0‖p−2

2 t + c1(p, q, d)
(3.9)

Proof. The fact that y(s) satisfies the differential inequality (3.7) follows imme-
diately by the inequality (3.2) of lemma (3.3), by our choice of p(s) and q(s).
Therefore y(s) ≤ yL(s) for any s ≥ 0 provided y(0) ≤ yL(0) where yL(s) is a
solution to:

d
ds

yL(s) + p(s)yL(s) + q(s) = 0

i.e.

yL(s) = e−P (s)

[
yL(0)−

∫ s

0

q(λ)eP (λ)dλ

]
= e−P (s) [yL(0)−Q(s)]
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where

P (s) =
∫ s

0

p(λ)dλ, Q(s) =
∫ s

0

q(λ)eP (λ)dλ.

Choosing r(s) as in the statement one gets, after straightforward calculations and
beside noticing that r(0) = q and r(s) → +∞ as s → t−:

e−P (t) = lim
s→t−

e−P (s) =
pq

pq + d(p− 2)

and
Q(t) = lim

s→t−
Q(s)

=
d

pq + d(p− 2)
pq + d(p− 2)

pq
log
(

pp+2qt

Ad

)
+ c0(p, q, d) + c2(p, q, d,Vol(M))‖u0‖p−2

2 t

for suitable numerical constants c0(p, q, d) and c2(p, q, d,Vol(M)).

End of proof of Theorem 1.1.
The following contractivity property holds true for all 0 ≤ s ≤ t :

‖u (t)‖r ≤ ‖u (s)‖r

Therefore by the previous results one has, for all such s and t :

‖u (t)‖r(s) ≤ ‖u (s)‖r(s) = exp
(
log ‖u (s)‖r(s)

)
= ey(s) ≤ eyL(s)

whence, letting s → t−, and recalling that r (s) → +∞ as s → t−, we deduce:

‖u (t)‖∞ = lim
s→t−

‖u (t)‖r(s) ≤ lim
s→t−

‖u (s)‖r(s)

= lim
s→t−

ey(s) ≤ lim
s→t−

eyL(s) = eyL(t).

By the explicit form for eyL(t) we can now prove the bound (1.3) for small times:
it is sufficient to let y(t) = log ‖u(t)‖∞, y(0) = yL(0) = log ‖u(0)‖q = log ‖u0‖q.
So we obtain:

‖u(t)‖∞ ≤ec1(p,q,d)+c2(p,q,d,Vol(M))‖u0‖p−2
2 t ‖u0‖

pq
pq+d(p−2)
q

t
d

pq+d(p−2)

To conclude the proof for small times, we prove an L2–L2 time decay estimate for
arbitrary time. We compute, for initial data with zero mean

d
dt
‖u(t)‖22 = −2‖∇u‖p

p

≤ −2A
−p‖u(t)‖p

p∗

≤ −2A
−p

Vol(M)−p
2p+d(p−2)

p−d ‖u(t)‖p
2
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where we have used the Sobolev inequality in the first step and the constant A
appearing in (2.3). Thus, setting f(t) = ‖u(t)‖22 we have proved that

ḟ(t) ≤ −2A
−p

Vol(M)−p
2p+d(p−2)

p−d f(t)p/2.

This yields the bound, valid for all positive t:

‖u(t)‖2 ≤
1(

Bt + ‖u(0)‖2−p
2

)1/(p−2)

where we have set

B =
(p− 2)

A
p
Vol(M)p

2p+d(p−2)
p−d

.

This last estimate also gives the so called absolute bound:

‖u(t)‖2 ≤
1

(Bt)1/(p−2)

The absolute bound, together with the Lq–L∞ smoothing property above and with
the semigroup property yields the bound:

‖u(t)‖∞ ≤ ec1(p,q,d)+c2(p,q,d,Vol(M))‖u(t/2)‖p−2
2 t/2 ‖u(t/2)‖

2p
2p+d(p−2)
q

(t/2)
d

pq+d(p−2)

≤ ec1(p,q,d)+c2(p,q,d,Vol(M))B ‖u(t/2)‖
2p

2p+d(p−2)
q

(t/2)
d

pq+d(p−2)

≤ C(p, q, d, A,Vol(M))
‖u(0)‖

2p
2p+d(p−2)
q

t
d

pq+d(p−2)

in the last step we used the Lq contraction property, which is well known to hold
for any q ≥ 1 and t ≥ 0 and we obtained the desired bound for small times, at
least for essentially bounded initial data.
To deal with the case of general Lq–data, it suffices to refer to the discussion
given in [8], which does not depend either upon the value of p or on the Euclidean
setting. This concludes the proof for small times.

To deal with the case of large times, we use again the above L2–L∞ decay, the
L2–L2 time decay, together with the above absolute bound and the semigroup
property to yield, for all positive t:

‖u(t)‖∞ ≤ ec1(p,q,d)+c2(p,q,d,Vol(M))‖u(t/2)‖p−2
q t/2‖u(t/2)‖

2p
2p+d(p−2)
2

≤ ec1(p,q,d)+c2(p,q,d,Vol(M))2/B(
B(t/2) + ‖u(0)‖2−p

2

) 2p
(2p+d(p−2))(p−2)

The latter statement is obtained from the numerical inequality

a + b ≥ aεb1−ε
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valid for all positive a, b and all ε ∈ (0, 1). Putting a = Bt and b = ‖u(0)‖2−p
2 we

thus get, for all t > 1

‖u(t)‖∞ ≤ C(p, 2, d, A,Vol(M))‖u(0)‖
2p(1−ε)

(2p+d(p−2))
2

(Bt)
2pε

(2p+d(p−2))(p−2)
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