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Abstract. Let (M, g) be a compact Riemannian manifold without
boundary and dimension d ≥ 3. Let u(t) be a solution to the prob-
lem u̇ = 4pu, u(0) = u0, 4p being the Riemannian p–Laplacian with
p > d. Let also u be the (time–independent) mean of u(t). We will prove
ultracontractive estimates of the type ‖u(t)− u‖∞ ≤ C‖u(0)− u‖γq/tβ .
The constant C depends only on p and q, on geometric quantities of
M and on the dimension of the manifold, while the exponents β and
γ depend only on p and q and differ according to the regimes t → 0
and t → +∞. Similar bounds hold when 4p is replaced by the subel-
liptic p–Laplacian associated to a collection of Hörmander vector fields.
We also prove the Lq–L∞ Hölder continuity of the solutions, and apply
similar methods to study the same questions for evolution equations on
manifolds with boundary. The bounds are sharp in several of the above
cases. The method relies on the theory of nonlinear Markov semigroups
([9]) and on the connection between nonlinear ultracontractivity and
logarithmic Sobolev inequality for the p–energy functional.

1. Introduction

Let (M, g) be a smooth, connected and compact Riemannian manifold
without boundary, whose dimension is denoted by d and satisfies the con-
dition d ≥ 3. Let ∇ be the Riemannian gradient and mg the Riemannian
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measure and consider, for p > d (the supercritical case), the following func-
tional:

Ep(u) =
∫
M
|∇u|p dmg (1.1)

for any u ∈L2(M, mg), where we adopt the convention that Ep(u) equals
+∞ if the distributional gradient of u does not belong to Lp(M, mg). It
is well–known that Ep is a convex, lower–semicontinuous functional. The
subgradient of the functional Ep/p, denoted by 4p, generates a (nonlinear)
strongly continuous nonexpansive semigroup {Tt : t ≥ 0} on L2(M, mg). On
smooth functions, the operator 4p reads

4pu = div
(
|∇u|p−2∇u

)
,

| · | = | · |x indicating the norm in the tangent space at x. We refer to [15] as
a complete general reference for parabolic equations driven by operators of
p–Laplace type in the Euclidean setting. It should be commented that the
function u(t, x) := (Ttu)(x) is also a weak solution in the sense of [15] of the
equation u̇ = 4pu.

Let us denote by u the mean of an integrable function u:

u =
1

vol(M)

∫
M

u dmg.

Let finally u(t) := Ttu be the time evolution associated to the semigroup
at hand and to the initial datum u(0) = u ∈L1(M, mg). Then u(t) does
not depend upon time, so that it equals u: we prove this fact by means of
abstract semigroup theory in Lemma 3.1.

Our goal is to prove that the evolution enjoys an instantaneous Lq–L∞

smoothing property, in the sense that the time–evolved u(t) of an initial
datum u0 ∈Lq (q ≥ 1) is an essentially bounded function at each time t > 0.
Moreover, u(t) approaches u as time tends to infinity, and the quantitative
estimate

||u(t)− u||∞ ≤
C

tβ
||u(0)− u||γq (1.2)

holds true at all times, where ‖ ·‖q denotes the norm in the space Lq(M, mg)
(q ∈ [1,+∞]), β, γ are numerical constants depending only on p, q and d,
and C is a constant depending on geometrical quantities like the injectivity
radius of M , the sectional curvature of M , the volume of M and the diameter
of M (or more precisely on the quantity

D(M) := sup
x∈M

1
VolM

∫
M

%(x, ·)dmg,
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% being the Riemannian distance on M). By similar methods it is also
possible to prove the following Lq–L∞ Hölder continuity for the solutions to
the evolution considered: if u(t) and v(t) are the solutions corresponding to
the initial data u(0), v(0) with common mean value, then

‖u(t)− v(t)‖∞ ≤
C

tβ
‖u(0)− v(0)‖γq

with β, γ as above.
Our approach in proving (1.2) is functional analytic in character and relies

essentially only on the classical Sobolev inequality, valid for p > d:∥∥u− u
∥∥
∞ ≤ C

∥∥∇u
∥∥
p
. (1.3)

A closer inspection of the proof reveals that, besides the Sobolev inequal-
ity, the property of Ep which makes the method work is the fact that such
functional is constructed from a derivation, the gradient operator ∇. Our
results can thus be generalized to a much wider setting involving functionals
constructed from more general derivations (see [10] for such generalizations
in the case p < d). We choose here to single out, in the final section, the
particularly relevant case of subelliptic p–Laplacian operators associated to
Hörmander vector fields on manifolds. This means that we consider the
functional

Ep,X(u) :=
∫
M
|Xu|p dmg,

where {Xi}mi=1 is a collection of Hörmander vector fields on M and

|Xu|2 :=
m∑
i=1

|Xiu|2.

Then Ep,X is again a convex lower–semicontinuous functional on L2(M, mg).
The subdifferential of Ep,X/p is denoted by 4p,X and generates a nonex-
pansive semigroup {Tt : t ≥ 0} on L2(M, mg). Formally one can write, on
smooth functions,

4p,X =
m∑
i=1

X∗i
(
|Xiu|p−2Xiu

)
,

X∗i denoting the formal adjoint of Xi. Such an operator is usually referred
to as the subelliptic p–Laplacian. An estimate of the same form given in
(1.2) holds true, but the Euclidean dimension is replaced by the so–called
homogeneous dimension associated to the vector fields. Even more general
classes of vector fields can be considered, if a suitable Sobolev inequality
holds.
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The first step in proving the estimate (1.2) is the Markov property for
the semigroups at hand. This is a property closely related to the maximum
principle for the generator of the semigroup {Tt} considered (see e.g. [4]),
and amounts to requiring that {Tt} is order preserving and can be extended
to a nonexpansive semigroup on every Lp(M, mg) space for p ∈ [1,+∞]. We
refer to [5] and [30] as complete general references for nonlinear semigroup
theory.

It has been proven in [9] that the Markov property holds for the nonlinear
evolutions considered here (even if the requirement p > d does not hold),
this being based upon the fact that Ep and Ep,X are nonlinear Dirichlet
forms in the sense of [10] (see also [4]). The second step will consist in
proving a new family of Gross’ logarithmic Sobolev inequalities (in the spirit
of [22]) involving the functionals Ep and Ep,X , respectively. The proof of
such an inequality will rely only upon the classical Sobolev inequality for
the case p > d (or upon its subelliptic generalization), and this is the point
in which the geometrical objects appearing in the final inequalities appear.
Finally, we shall derive a first–order differential inequality for the quantity
y(s) := log(||u(s, ·)||r(s)) whenever r : [0, t) : [1,+∞) is any C1 function.
The coefficients of such an inequality depend only on time t, on geometrical
quantities, on d and on p. Such an inequality will be afterwards integrated
to yield the stated bounds. In fact, one obtains the required bounds first for
a solution corresponding to essentially bounded data, and then for general
Lq data by using the Markov property.

A comparison with some previous results is now given. While a discussion
of similar problems in the whole of Rn has been given long ago in [17] by
entirely different methods, and recently improved in [13], nothing seems to
have appeared, apart from some estimates of a somewhat similar nature
given in [15] (in any case the Neumann case and the compact manifold
case are not discussed there) concerning asymptotics of evolution equations
driven by the p–Laplacian in bounded domains before the recent work [8].
In this paper a similar discussion is given for the Euclidean p–Laplacian
with Dirichlet boundary conditions on a bounded Euclidean domain: the
solution approaches zero, instead of u, in the course of time. In [10] a
generalization of such results to a much larger class of operators is given,
but Dirichlet boundary conditions are still assumed. Moreover, in both
papers the assumption p < d (subcritical case) is assumed throughout: such
an assumption and the Dirichlet boundary conditions determine the form of
the Sobolev inequalities on which our work relies, and thus the situation is
different from the very beginning. We shall also comment later on the fact
that the case of Dirichlet boundary conditions is much easier and can be dealt
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with in the present case as well, and that the case of Neumann boundary
conditions displays exactly the same convergence properties discussed in
Theorem 1.1. In the case of the present type of evolutions it seems that even
the fact that u(t) approaches u in the course of time is new. Nevertheless if
Ω is a sufficiently regular Euclidean domain, considering the inhomogeneous
Dirichlet problem, the t→ +∞ limit of the solution of the corresponding p–
Laplacian evolution equation has been characterized in terms of the elliptic
problem with the same boundary values in [24].

Theorem 1.1. Let (M, g) be a smooth, connected and compact Riemannian
manifold without boundary and with dimension d > 2. Consider, for any
t > 0, the function u(t) := Ttu(0), where {Tt : t ≥ 0} is the semigroup
generated by the subdifferential of the functional Ep and u(0) ∈ Lq(M) with
q ≥ 1. Then the following ultracontractive bound holds true for all t ∈ (0, 1]:∥∥u(t)− u

∥∥
∞ ≤

A(p, q, d, M)
tβ

∥∥u(0)− u
∥∥γ
q

(1.4)

with

β =
1

q + p− 2
, γ =

q

q + p− 2
(1.5)

and

A(p, q, d, M) =eE(2p−1Cppq)1/(q+p−2)
(q + p− 2

q + 1
)1/[(p−2)(p−3)]

× bα
( q

q + p− 2
)q/[(p−2)2(q+p−2)]

,
(1.6)

where b and C are the constants appearing in the Sobolev inequality∥∥u− u
∥∥
∞ ≤ Cb[1−(d/p)]

∥∥∇u
∥∥
p
,

α = (p − d)/(q + p − 2) and E = pp/[22p−1Cpbp−dVolM ]. If t > 2 one has
instead, for all data belonging to L2(M),

‖u(t)− u‖∞ ≤
A(p, 2, d, M)(

B(t− 1) + ‖u(0)− u‖2−p2

)2/[p(p−2)]
(1.7)

and in particular, for any ε ∈ [0, 1]

‖u(t)− u‖∞ ≤ A(p, 2, d, M)
‖u(0)− u‖2(1−ε)/p

2

[B(t− 1)]2ε/[p(p−2)]
, (1.8)

where

B =
(p− 2)bd−p

Cp(VolM)p/2
.
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The proof will show that identical conclusions hold for the solutions to the
equation u̇ = 4pu in bounded Euclidean domains, or in compact manifolds
with smooth boundary, with homogeneous Neumann boundary conditions.

Corollary 1.2 (absolute bound). For all t > 2, all ε ∈ (0, 1) and all initial
data u0 in L1 there exists cε > 0 such that

‖u(t)− u‖∞ ≤ cεt
−(1−ε)/(p−2) (1.9)

independently of the initial datum u0. Moreover, if the initial datum belongs
to Lr(M) with ‖u(0)− u‖r < 1, then

‖u(t)− u‖∞ ≤ cε‖u(0)− u‖εrt−(1−ε)/(p−2)

for all t ≥ 2‖u(0)− u‖2−pr .

Remark 1.3 (sharpness of the bound). 1) (compact manifold or Neumann
cases). It is known from the results of [3] that a lower bound of the form

‖u(t)‖2 ≥
C

t1/(p−2)

holds for any L2 data and all t sufficiently large. A similar bound for the
L∞ norm thus holds as well. Hence, the bounds in Corollary 1.2 are close
to the optimal ones for large time. For small times a comparison with the
Baremblatt solutions ([15]) shows that the power of time is the correct one for
data belonging to Lp/d, while for data in Lq with q > p/d the L∞ our result
is better in the sense that the norm diverges at a slower rate depending
on q, a property which is familiar in the theory of linear ultracontractive
semigroups but which seems not to have been explicitly stated so far in the
nonlinear context.

2) (Dirichlet case). A similar result is shown on compact manifolds with
smooth boundary, homogeneous Dirichlet boundary conditions being as-
sumed. The main difference is in the fact that the solutions approach zero
when t tends to infinity. The proof stems from the appropriate Sobolev in-
equality for functions in W 1,p

0 (M) and is easier than in the previous case.
We shall deal with this situation in Section 5, but notice here that the time
decay for t → +∞ proved there is sharp by comparison with the result of
[28]. For short time remarks similar to the Neumann case hold. However,
after completing the first draft of the present paper, we were acquainted
with the preprints [14], [19]. By using their optimal logarithmic Sobolev in-
equality for the p–energy functional, bounds which are sharp also for general
L1 data and small times can be proved easily by the present methods in the
Euclidean case.
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Some words should now be said on the limit as p → ∞ of our estimates.
It is known that, in Euclidean domains, the solutions of the evolution equa-
tion associated u̇p = 4pup, corresponding to a common initial datum u0,
converge in a suitable sense, in such limit, to the solution of the problem
u̇∞ ∈ Lu∞, u(0) = u0, where L is the subdifferential of the functional which
equals zero on the set of those W 1,∞

0 –functions such that |∇u| ≤ 1 almost
everywhere, and +∞ otherwise. We refer to [2] for these results. Having
at our disposal the above–mentioned bounds for general compact manifolds
with boundary, one can gauge the sharpness of our bounds by taking limits
as p→ +∞. Our bounds will imply that u∞(t) is bounded (for almost all t)
by a geometrical constant, independently of the initial datum, as expected
from the nature of the problem. To derive such a property we shall need
the detailed expression of all constants appearing in (1.4); this is in fact the
main reason for which we kept track of their value.

The paper is structured as follows: in Section 2, we prove some new
logarithmic Sobolev inequalities which are of fundamental importance for the
sequel. Section 3 contains several intermediate technical results preparatory
to proving Theorem 1.1. The proof is completed in Section 4 by using
the Markov property and a well–known scaling property for the evolution at
hand. In Section 5, we deal with the case of homogeneous Dirichlet boundary
conditions in manifolds with boundary and consider the limit as p → ∞ in
the Euclidean setting. In Section 6, we prove Lq –L∞ Hölder continuity of
the solutions and, in Section 7, we generalize the discussion to the case of
subelliptic p–Laplacians.

It is a pleasure to thank M. Bramanti for some interesting discussion. We
also thank the referees for their careful reading of the manuscript and in
particular for their indication of some useful references.

2. Sobolev and logarithmic Sobolev inequalities

Let us denote by δ0 the injectivity radius of M . It may be useful to recall
that, since M is compact, its injectivity radius is strictly positive (see [1]).
Suppose that the sectional curvature K of M satisfies the bounds

−A2 ≤ K ≤ B2

for some A, B. Let also δ be a constant such that δ < δ0 ∧ (π/2B). We first
recall the following well–known Sobolev inequality, valid in the case p > d
(see [1], p. 47):

‖u− u‖∞ ≤ Cb1−(d/p)‖∇u‖p, (2.1)
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where the constants C and b are the following, ωd being the measure of the
d–dimensional unit sphere:

C =
2p

p− d

( 2dd
ωd−1

)1/p sinh(Aδ)
Aδ

(π
2
)(d−1)/p; (2.2)

b = sup
x∈M

[ 1
VolM

∫
M

d(x, ·)1− d
pdmg

]p/(p−d)
. (2.3)

It is then clear than the constant b is always not larger than the diameter of
M . Now we are ready to state and prove the following:

Proposition 2.1. The logarithmic Sobolev inequality,∫
M
|f |p log

( |f |
‖f‖p

)p dx ≤ εKbp−dEp(f) + ‖f‖pp
(
ε

2p−1

VolM
− log ε

)
, (2.4)

holds true for any ε > 0, for all f ∈W 1,p(M), p > d > 2. Here, K = 2p−1Cp

and b, C are the constants appearing in the Sobolev inequality (2.1).

Proof. We shall prove the assertion, with no loss of generality, in the case
in which f is such that ‖f‖p = 1, so that µ(x) = |f(x)|p dx is a probability
measure. Then we compute∫

M
|f |p log(|f |p) dx =

p

q

∫
M

log(|f |q)|f |p dx ≤ p

q
log
∫
M
|f |q|f |p dx

=
p

q
log
∥∥f∥∥(p+q)p/p

p+q
=

p

q

p + q

p
log ‖f‖pp+q =

(
1 +

p

q

)
log ‖f‖pp+q (2.5)

for any q > 0, where we have used in the first line Jensen’s inequality for the
probability measure µ. By letting q → +∞, we thus get∫

M
|f |p log(|f |p) dmg ≤ log ‖f‖p∞.

Using now the numerical inequality

log t ≤ − log ε + εt ∀ε, t > 0

it thus follows that∫
D
|f |p log(|f |p) dx ≤ − log ε + ε‖f‖p∞. (2.6)

By the Sobolev inequality we have

‖f‖∞ − ‖f‖∞ ≤ ‖f − f‖∞ ≤ Cb1−d/p‖∇f‖p (2.7)

or

‖f‖p∞ ≤ (Cb1−d/p‖∇f‖p + |f |)p ≤ 2p−1Cpbp−d‖∇f‖pp + 2p−1|f |p. (2.8)
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Here we used the numerical Young inequality (a + b)p ≤ 2p−1(ap + bp).
Combining the above inequality one gets∫

D
|f |p log(|f |p) dx ≤ − log ε + ε2p−1

(
Cpbp−d‖∇f‖pp + |f |p

)
(2.9)

≤ − log ε + εKbp−d‖∇f‖pp + ε
2p−1

Vol M
‖f‖pp

since |f |p ≤ ‖f‖pp/Vol M. This concludes the proof. ¤

3. Preliminary results

In this section we state and prove some preliminary results which prepare
the ground for the proof of the main theorem. Clearly, the first two lemmas
can be also proved directly, when thinking about weak solutions of the par-
abolic p–Laplacian, by a direct integration by parts. However, the following
approach has a wider generality.

Lemma 3.1. The formula Ttu = u holds for any u ∈L1(M, mg) and any
t ≥ 0.

Proof. We recall a result of [9]: a closed and convex set K ⊂L2(M, mg) is
left invariant by a semigroup {Tt}t≥0 on L2(M, mg), associated to a convex
lower–semicontinuous functional E , if and only if

E(PKu) ≤ E(u) ∀u ∈ L2(M, mg),

where PK is the Hilbert projection onto K. Take here K = Kc the set of
functions whose mean value is a fixed c ∈ R. The Hilbert projection onto
Kc is PKc(u) = u− u + c. Clearly,

Ep(PKc(u)) = Ep(u)

for all L2 functions, so that each Kc is left invariant by the semigroup con-
sidered. This yields the assertion for L2 data, and the same property follows
by continuity and by the Markov property for all L1 data. ¤
Lemma 3.2. The semigroup {Tt}t≥0 associated with the functional Ep sat-
isfies the property Ttu = Tt(u− u) + u for all u ∈L1(M, mg).

Proof. As above it suffices to deal with L2 data. Define

Stu = Tt(u− u) + u.

We prove that {St}t≥0 is a semigroup. Indeed, first notice that Tt preserves
the space of functions with zero mean value (this follows from the previous
lemma). Moreover,

St1St2(u) = Tt1(St2(u)− St2(u)) + St2(u) = Tt1(St2(u)− u) + u
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= Tt1(Tt2(u− u) + u− u) = Tt1+t2(u− u) + u = St1+t2(u).

Such a semigroup has clearly the same generator as Tt. ¤
In view of the above lemma it suffices to prove the statement of our main

theorem for functions with zero mean. Indeed, if for all functions v with zero
mean one has

‖Ttv‖∞ ≤ const. ‖v‖q,
then, for all functions u,

‖Ttu− u‖∞ = ‖Tt(u− u)‖∞ ≤ const. ‖u− u‖q.
The following result stems from the chain rule for the derivation ∇ and by
the form of Ep, by proceeding as in [10], since the proofs there did not depend
upon the value of p. Below we shall use a crucial property for the semigroup
considered here, proved in [9]: its Markov property, a property closely related
to the maximum principle. It implies in particular that, if u is an essentially
bounded function, then

‖Ttu‖∞ ≤ ‖u‖∞
for all t ≥ 0. In particular, Ttu ∈L∞ whenever u ∈L∞, so that all quantities
below make sense because D has finite measure.

Lemma 3.3. Let Ttu be the semigroup associated to the convex lower–
semicontinuous functional Ep/p and corresponding to an essentially bounded
initial datum u0 with zero mean. Let also r : [0,+∞)→ [2,+∞) be a mono-
tonically nondecreasing C1 function. Then

d
ds

log ||u(s)||r(s) =
ṙ(s)
r(s)

∫
M

|u(s, x)|r(s)

||u(s)||r(s)r(s)

log
|u(s, x)|
||u(s)||r(s)

dmg

−
( p

r + p− 2

)p (r(s)− 1)

||u(s)||r(s)r(s)

Ep
(
|u(s)|(r(s)+p−2)/p

)
.

(3.1)

We now use our logarithmic Sobolev inequalities to estimate the p–energy
functional Ep in terms of an entropic integral. In fact, let us define X :=
∩p≥1Lp and consider the Young functional J : [1,+∞)×X → [0,+∞] defined
as follows:

J(q, u) :=
∫
M

|u(x)|q
‖u‖qq

log
( |u(x)|
‖u‖q

)
dmg.

Lemma 3.4. If u is an essentially bounded initial datum with zero mean
and r : [0,+∞] → [1,+∞] is a monotonically nondecreasing C1 function,
then the following inequality holds true for any ε > 0 :

d
ds

log ‖u(s)‖r(s) ≤
ṙ(s)
r(s)

J(r(s), u(s)) (3.2)
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− p(r(s)− 1)
( p

r(s) + p− 2

)p−1 ‖u(s)‖r(s)+p−2
r(s)+p−2

‖u(s)‖r(s)r(s)

×

×
[ 1
εKbp−d

J(r(s) + p− 2, u(s))

+
1

(r(s) + p− 2)Kbp−d

( log ε

ε
− 2p−1

VolM

)]
,

where K and b are as in Proposition 2.1.

Proof. We can rewrite the family of logarithmic Sobolev inequalities of
Section 2 as follows:

p

∫
M

|f(x)|p
‖f‖pp

log
( |f(x)|
‖f‖p

)
dmg ≤ − log ε + Ep(f)

εKbp−d

‖f‖pp
+

ε2p−1

VolM
or

pJ(p, f) ≤ − log ε + Ep(f)
εKbp−d

‖f‖pp
+

ε2p−1

VolM
,

where J(p, u) is the Young functional defined as above. Then the p–energy
functional satisfies the following bound:

Ep(f) ≥ ‖f‖pp
εKbp−d

(
log ε + p J(p, f)

)
− 2p−1

Kbp−dVolM
‖f‖pp. (3.3)

Choose now f = |u(s)|r(s)+p−2/p, so that

‖f‖pp = ‖u(s)‖r(s)+p−2
r(s)+p−2

and

pJ
(
p, |u(s )|r(s)+p−2/p

)
= (r(s) + p− 2)J

(
r(s) + p− 2, u(s)

)
.

Then the above inequality becomes

Ep
(
|u(s)|

r(s)+p−2
p

)
≥
‖u(s)‖r(s)+p−2

r(s)+p−2

εKbp−d
(log ε + pJ(p, |u(s)|r(s)+p−2/p))

− 2p−1(r(s)− 1)
Kbp−dVolM(r(s) + p− 2)

∥∥u(s)
∥∥r(s)+p−2

r(s)+p−2

=
‖u(s)‖r(s)+p−2

r(s)+p−2

εKbp−d
(log ε + (r(s) + p− 2) J(r(s) + p− 2, u(s)))

−
2p−1(r(s)− 1)‖u(s)‖r(s)+p−2

r(s)+p−2

Kbp−dVolM(r(s) + p− 2)
.
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Now we use this latter estimate in (3.1) above, which we can write as

d
ds

log ‖u(s)‖r(s) =
ṙ(s)
r(s)

J(r(s), u(s))

− (
p

r(s) + p− 2
)p

r(s)− 1

‖u(s)‖r(s)r(s)

Ep(u(s)
r(s)+p−2

p )

to get

d
ds

log ‖u(s)‖r(s) ≤
ṙ(s)
r(s)

J(r(s), u(s))− (
p

r(s) + p− 2
)p

r(s)− 1

‖u(s)‖r(s)r(s)

×
‖u(s)‖r(s)+p−2

r(s)+p−2

εKbp−d
(log ε + (r(s) + p− 2) J(r(s) + p− 2, u(s)))

− (
p

r(s) + p− 2
)p

(r(s)− 1)2p−1

‖u(s)‖r(s)r(s)

‖u(s)‖r(s)+p−2
r(s)+p−2

Kbp−dVolM

≤ ṙ(s)
r(s)

J(r(s), u(s))− (r(s)− 1)(
p

r(s) + p− 2
)p
‖u(s)‖r(s)+p−2

r(s)+p−2

‖u(s)‖r(s)r(s)

× (
(r(s) + p− 2)

εKbp−d
J(r(s) + p− 2, u(s)) +

log ε

εKbp−d
)

− (r(s)− 1)
(r(s) + p− 2)p

2p−1pp

Kbp−dVolM

‖u(s)‖r(s)+p−2
r(s)+p−2

‖u(s)‖r(s)r(s)

=
ṙ(s)
r(s)

J(r(s), u(s))− p(r(s)− 1)(
p

r(s) + p− 2
)p−1×

×
‖u(s)‖r(s)+p−2

r(s)+p−2

‖u(s)‖r(s)r(s)

(
1

εKbp−d
J(r(s) + p− 2, u(s)) +

1
r(s) + p− 2

log ε

εKbp−d
)

− (r(s)− 1)
(r(s) + p− 2)p

2p−1pp

Kbp−dVolM

‖u(s)‖r(s)+p−2
r(s)+p−2

‖u(s)‖r(s)r(s)

. ¤

Now we state and prove the crucial lemma:

Lemma 3.5. Suppose that, besides the assumptions of the previous lemma,
one also has ‖u0‖∞ ≤ 1. Then for every s ≥ 0 the following inequality holds
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true:
d
ds

log ‖u(s)‖r(s) ≤ −
ṙ(s)
r(s)

p− 2
r(s) + p− 2

log ‖u(s)‖r(s)

− ṙ(s)
r(s)

1
r(s) + p− 2

log(
r(s)
ṙ(s)

p(r(s)− 1)
Kbp−d

(
p

r(s) + p− 2
)p−1)

+
pp(r(s)− 1)

Kbp−dVolM(r(s) + p− 2)p

(3.4)

Proof. Choose, in (3.2), ε as follows:

ε = ε(s) =
r(s)
ṙ(s)

p(r(s)− 1)
Kbp−d

(
p

r(s) + p− 2
)p−1
‖u(s)‖r(s)+p−2

r(s)+p−2

‖u(s)‖r(s)r(s)

,

so that inequality (3.2) becomes
d
ds

log ‖u(s)‖r(s)

≤ ṙ(s)
r(s)

(J(r(s), u(s))− J(r(s) + p− 2, u(s)))− ṙ(s)
r(s)

1
r(s) + p− 2

× log(
r(s)
ṙ(s)

p(r(s)− 1)
Kbp−d

(
p

r(s) + p− 2
)p−1
‖u(s)‖r(s)+p−2

r(s)+p−2

‖u(s)‖r(s)r(s)

)

+
pp(r(s)− 1)

Kbp−dVolM(r(s) + p− 2)p
‖u(s)‖r(s)+p−2

r(s)+p−2

‖u(s)‖r(s)r(s)

. (3.5)

By the assumption ‖u0‖∞ ≤ 1 we can deduce, by the Markov property
satisfied by the evolution we are dealing with, that ‖u(t)‖∞ ≤ 1 for all
positive t. Then for such data we have

‖u(s)‖r(s)+p−2
r(s)+p−2

‖u(s)‖r(s)r(s)

≤ 1

so that
d
ds

log ‖u(s)‖r(s)

≤ ṙ(s)
r(s)

(J(r(s), u(s))− J(r(s) + p− 2, u(s)))− ṙ(s)
r(s)

1
r(s) + p− 2

× log(
r(s)
ṙ(s)

p(r(s)− 1)
Kbp−d

(
p

r(s) + p− 2
)p−1
‖u(s)‖r(s)+p−2

r(s)+p−2

‖u(s)‖r(s)r(s)

)
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+
pp(r(s)− 1)

Kbp−dVolM(r(s) + p− 2)p
. (3.6)

Define the function N : [1,+∞) × X → R by N(q, u) = log ‖u(s)‖qq. For
every fixed u ∈ X, N is a convex function of q, so that its derivative exists
almost everywhere and

d
dq

N(q, u) =
∫
D

|u|q
‖u‖qq

log |u| = J(q, u) + log ‖u‖q for a.e. q.

Moreover, the convexity implies that the above derivative is a monotonically
nondecreasing function, thus,

q1 ≤ q2 → J(q1, u)− J(q2, u) ≤ log ‖u‖q2 − log ‖u‖q1 .
Recall that p > d ≥ 3, so that p− 2 > 0 and

J(r(s), u)− J(r(s) + p− 2, u) ≤ log ‖u(s)‖r(s)+p−2 − log ‖u(s)‖r(s).
Now we use the latter inequality in (3.6) above to yield

d
ds

log ‖u(s)‖r(s) ≤
ṙ(s)
r(s)

(J(r(s), u(s))− J(r(s) + p− 2, u(s)))

− ṙ(s)
r(s)

1
r(s) + p− 2

log(
r(s)
ṙ(s)

p(r(s)− 1)
Kbp−d

(
p

r(s) + p− 2
)p−1)

− ṙ(s)
r(s)

1
r(s) + p− 2

log(
‖u(s)‖r(s)+p−2

r(s)+p−2

‖u(s)‖r(s)r(s)

) +
pp(r(s)− 1)

Kbp−dVolM(r(s) + p− 2)p

≤ ṙ(s)
r(s)

[log ‖u(s)‖r(s)+p−2 − log ‖u(s)‖r(s)

− 1
r(s) + p− 2

(log ‖u(s)‖r(s)+p−2
r(s)+p−2 − log ‖u(s)‖r(s)r(s))]

− ṙ(s)
r(s)

1
r(s) + p− 2

log(
r(s)
ṙ(s)

p(r(s)− 1)
Kbp−d

(
p

r(s) + p− 2
)p−1)

+
pp(r(s)− 1)

Kbp−dVolM(r(s) + p− 2)p

= − ṙ(s)
r(s)

p− 2
r(s) + p− 2

log ‖u(s)‖r(s)

− ṙ(s)
r(s)

1
r(s) + p− 2

log(
r(s)
ṙ(s)

p(r(s)− 1)
Kbp−d

(
p

r(s) + p− 2
)p−1)

+
pp(r(s)− 1)

Kbp−dVolM(r(s) + p− 2)p
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which is the stated inequality. ¤
Lemma 3.6. Define the following functions of s ≥ 0 :

y(s) = log ‖u(s)‖r(s), p(s) =
ṙ(s)
r(s)

p− 2
r(s) + p− 2

q(s) =
ṙ(s)
r(s)

1
r(s) + p− 2

log(
r(s)
ṙ(s)

p(r(s)− 1)
Kbp−d

(
p

r(s) + p− 2
)p−1)

− pp(r(s)− 1)
Kbp−dVolM(r(s) + p− 2)p

. (3.7)

Then the following differential inequality holds true ∀s ≥ 0 :
dy(s)
ds

+ p(s)y(s) + q(s) ≤ 0.

Thus, y(s) ≤ yL(s), provided y(0) ≤ yL(0), where

yL(s) = exp
(
−
∫ s

0
p(λ)dλ

)[
yL(0)−

∫ s

0
q(λ) exp

(∫ λ

0
p(η)dη

)
dλ
]

is a solution of the following ordinary differential equation, ∀s ≥ 0 :
dy(s)
ds

+ p(s)y(s) + q(s) = 0.

Lemma 3.7. Let us fix t > 0. Then the solution yL to the linear equation
of the previous lemma, with the choice r(s) = qt/(t− s) (q ≥ 1) satisfies

ω(t) = lim
s→t−

yL(s) =
q

q + p− 2
[yL(0)− 1

q
log(t)− 1

q
log(

p

Kbp−d
) + Mp,q]

+ (
p

q
)p−1 t

Kbp−dVolM
(3.8)

with K, b as above and Mp,q > 0 given by

Mp,q =
1
q

log(pq)− q + p− 2
q(p− 2)(p− 3)

log(
q + 1

q + p− 2
)

+
1

(p− 2)2
log(

q

q + p− 2
).

(3.9)

Proof. With the present choice of r(s) we have
ṙ(s)
r(s)

=
1

t− s

so we get

p(s) =
p− 2

qt + (p− 2)(t− s)
(3.10)
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q(s) =
1

qt + (p− 2)(t− s)
log(

p

Kbp−d
(qt− (t− s))(

p(t− s)
qt + p− 2

)p−1)

− pp(r(s)− 1)
Kbp−dVolM(r(s) + p− 2)p

=
1

qt + (p− 2)(t− s)
log(

p

Kbp−d
) +

1
qt + (p− 2)(t− s)

log(qt− (t− s))

+
p− 1

qt + (p− 2)(t− s)
log(

p(t− s)
qt + p− 2

)− pp(r(s)− 1)
Kbp−dVolM(r(s) + p− 2)p

.

Then we have

P (s) :=
∫ s

0
p(λ)dλ =

∫ s

0

p− 2
qt + (p− 2)(t− λ)

dλ = log
qt + (p− 2)t

qt + (p− 2)(t− s)
so that

eP (s) =
qt + (p− 2)t

qt + (p− 2)(t− s)
.

It shall also be useful to notice that

eP (s) =
q + p− 2

q

r(s)
r(s) + p− 2

.

Moreover, we compute

Q(s) :=
∫ s

0
q(λ)eP (λ)dλ =

∫ s

0
q(λ)eP (λ)dλ = Q1(s) + Q2(s) + Q3(s) + Q4(s)

where

Q1(s) =
∫ s

0

1
qt + (p− 2)(t− λ)

log(
p

Kbp−d
)

qt + (p− 2)t
qt + (p− 2)(t− λ)

dλ

Q2(s) =
∫ s

0

1
qt + (p− 2)(t− λ)

log(qt− (t− λ))
qt + (p− 2)t

qt + (p− 2)(t− λ)
dλ

Q3(s) =
∫ s

0

p− 1
qt + (p− 2)(t− λ)

log(
p(t− λ)

qt + (p− 2)(t− λ)
)×

× qt + (p− 2)t
qt + (p− 2)(t− λ)

dλ

Q4(s) = − pp

Kbp−dVolM

∫ s

0

r(λ)(r(λ)− 1)
[r(λ) + p− 2]p+1

dλ.

Explicit calculations yield, in the limit as s→ t−:

Q1(s)→
1
q

log(
p

Kbp−d
) =

1
q

log(
1

Kbp−d
) +

1
q

log(p)

Q2(s)→
1
q

log(qt)− q + p− 2
q(p− 2)(p− 3)

log(
q + 1

q + p− 2
) +

1
(p− 2)2

log(
q

(q + 1)
)
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Q3(s)→
(p− 1)

q
(log(

q + p− 2
p

) + 1), Q4(s)→ Q4(t) ≤ Et

with E = (q+p−2)pp−1

qpKbp−dVolM
, where we have used the bound

r(λ)(r(λ)− 1)
[r(λ) + p− 2]p+1

≤ 1
r(λ)p−1

.

Finally, we get

ω(t) = lim
s→t−

yL(s) = lim
s→t−

eP (s)[yL(0) + Q(s)]

=
q

q + p− 2
[yL(0)− 1

q
log(t)− 1

q
log(

1
Kbp−d

) + Mp,q + Et],

where

Mp,q =
1
q

log(pq)− q + p− 2
q(p− 2)(p− 3)

log(
q + 1

q + p− 2
) +

1
(p− 2)2

log(
q

q + p− 2
).

4. The main theorem

If u is a solution corresponding to an essentially bounded initial datum
with ‖u0‖∞ ≤ 1 and zero mean we notice that, by the Markov property, the
following contractivity property holds true for all 0 ≤ s ≤ t :

‖u(t)‖r ≤ ‖u(s)‖r.
Therefore, by the previous results one has, for all such s and t ,

‖u(t)‖r(s) ≤ ‖u(s)‖r(s) = exp(log ‖u(s)‖r(s)) = ey(s) ≤ eyL(s),

whence, letting s→ t−, and recalling that r(s)→ +∞ as s→ t−, we deduce

‖u(t)‖∞ = lim
s→t−

‖u(t)‖r(s) ≤ lim
s→t−

‖u(s)‖r(s)

= lim
s→t−

ey(s) ≤ lim
s→t−

eyL(s) = eω(t).

By the explicit form for eω(t) we have

eω(t) = exp(
q

q + p− 2
[yL(0)− 1

q
log(t)− 1

q
log(

1
Kbp−d

) + Mp,q + Et])

= (eyL(0))q/(q+p−2)t−1/(q+p−2)b(p−d)/(q+p−2)

×K1/(q+p−2) exp(
q

q + p− 2
Mp,q)eEt

= (eyL(0))γ
bα

tβ
K1/(q+p−2) exp(

q

q + p− 2
Mp,q)eEt

(4.1)
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with

α =
p− d

q + p− 2
, β =

1
q + p− 2

, γ =
q

q + p− 2
. (4.2)

Since yL(0) = log ‖u(0)‖r(0) = log ‖u(0)‖q, recalling that r(0) = q by hy-
pothesis: (eyL(0))γ = ‖u(0)‖γq . Moreover, the explicit form for Mp,q allows us
to write

exp(
q

q + p− 2
Mp,q)

= exp{ q

q + p− 2
[
1
q

log(pq)− q + p− 2
q(p− 2)(p− 3)

log(
q + 1

q + p− 2
)

+
1

(p− 2)2
log(

q

q + p− 2
)]}.

Finally, we get

‖u(t)‖∞ ≤ eω(t) =
bα

tβ
‖u(0)‖γq (Kpq)1/(q+p−2)

× (
q + p− 2

q + 1
)1/[(p−2)(p−3)](

q

q + p− 2
)q/[(p−2)2(q+p−2)]eEt

≤ 1
tβ
‖u(0)‖γqA(p, q, d, M),

with A(p, q, d, M) as in the statement, at least for essentially bounded initial
data.

The assumption that the initial datum u satisfies ‖u‖∞ ≤ 1 can be re-
moved by virtue of the fact that u is a solution to the equation u̇ = 4pu
with initial datum u0 if and only if vλ(t, x) = λu(λp−2t, x) is a solution to
v̇λ = 4pvλ with initial datum vλ(0, x) = λu0(x), for arbitrary λ > 0. It thus
suffices to choose λ = ‖u‖−1

∞ .
To deal with the case of general Lq–data, it suffices to refer to the discus-

sion given in [8], which does not depend either upon the value of p or on the
Euclidean setting but uses the Markov property. This concludes the proof
for small times.

To deal with the case of large times we first prove an L2–L2 time decay
estimate for arbitrary time. We compute, for initial data with zero mean

d
dt
‖u(t)‖22 = −2‖∇u‖pp ≤ −2C−pbd−p‖u(t)‖p∞

≤ −2C−pbd−p(VolM)−p/2‖u(t)‖p2,
where we have used the Sobolev inequality in the first step and the constants
C, b are those appearing in (2.1). Thus, setting f(t) = ‖u(t)‖22 we have
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proved that
ḟ(t) ≤ −2C−pbd−p(VolM)−p/2f(t)p/2.

This yields the bound, valid for all positive t,

‖u(t)‖2 ≤
1

(Bt + ‖u(0)‖2−p2 )1/(p−2)
,

where we have set

B =
(p− 2)bd−p

Cp(VolM)p/2
.

The L2–L∞ smoothing property for small time and the above L2–L2 time
decay can be used, together with the semigroup property to yield, for all
positive t,

‖u(t)‖∞ ≤ A(p, 2, d, M)‖u(t− 1)‖2/p2

≤ A(p, 2, d, M)
(B(t− 1) + ‖u(0)‖2−p2 )2/[p(p−2)]

.

The latter statement is obtained from the numerical inequality

a + b ≥ aεb1−ε

valid for all positive a, b and all ε ∈ (0, 1). Putting a = B(t − 1) and
b = ‖u(0)‖2−p2 we thus get, for all t > 2,

‖u(t)‖∞ ≤ A(p, 2, d, M)
‖u(0)‖(p−2)(1−ε)

2

[B(t− 1)]2ε/[p(p−2)]
.

Proof of Corollary 1.2. We shall start from the bound

‖u(t)‖2 ≤ At−1/(p−2)

proved above. Now we prove a similar statement for any r > 1, and for r = 1
by a limiting argument. First notice that, proceeding as before,

d
dt
‖u(t)‖rr = −c

∫
M
|∇|u|(r+p−2)/p|pdmg.

Hereafter we adopt the convention that numerical constants may change
from line to line. Using the Poincaré and the triangle inequality we have

d
dt
‖u(t)‖rr ≤ −c|‖|u(t)|(r+p−2)/p‖p − ‖|u(t)|(r+p−2)/p‖p|p

= −c|‖u(t)‖(r+p−2)/p
r+p−2 − (VolM)(1−p)/p‖u(t)‖(r+p−2)/p

(r+p−2)/p|
p.
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Hölder’s inequality implies that the difference in the right-hand side of the
latter formula is positive. Using again the numerical inequality (a + b)p ≤
c(ap + bp) for positive a, b we have

d
dt
‖u(t)‖rr ≤ −c1‖u(t)‖r+p−2

r+p−2 + c2‖u(t)‖r+p−2
(r+p−2)/p.

Choosing now r = p+2 so that (r +p− 2)/p = 2 and using now the optimal
decay estimate for the L2 norm stated in the proof of the previous theorem
and Hölder’s inequality we have

d
dt
‖u(t)‖p+2

p+2 ≤ −c1‖u(t)‖2pp+2 +
c2

t2p/(p−2)
.

It is immediate to check that the ordinary differential equation

ȧ = −c1a
2p/(p+2) + c2t

−2p/(p−2)

has a solution of the form a∗(t) = At−(p+2)/(p−2) for a suitable A > 0. This
implies a similar decay property for ‖u(t)‖p+2

p+2 and hence that ‖u(t)‖p+2 ≤
At−1/(p−2) for data in Lp+2. We now iterate the procedure using the latter
result, thus proving first an identical estimate for the Lr norm with r = 2 +
p+p2, and then for a sequence of Lrn norms with rn = 2+p+ · · ·+pn → +∞
with an n–dependent proportionality constant. Finally, first for L∞ data,

‖u(t)‖∞ ≤ c‖u(t− 1)‖r/(r+p−2)
r ≤ crt

−r/[(p−2)(r+p−2)]

for t ≥ 2. The instantaneous L1–L∞ smoothing of the evolution allows us
to prove this inequality for general L1 data as well. The final statement
follows by applying the bound (1.9) to the scaled solution v(t) = cu(cp−2t)
for c = ‖u(0)− u‖−1

r . ¤

5. Manifolds with boundary, Sobolev constants and the limit
as p→∞.

In this section we assume that (M, g) is a smooth, connected and compact
Riemannian manifold with smooth boundary, whose dimension d satisfies
d ≥ 3. The parameter p is still supposed to satisfy the condition p > d, so
that we can consider the Sobolev inequality

‖u‖∞ ≤ C̃b1−(d/p)‖∇u‖p ∀u ∈W 1,p
0 (M). (5.1)

We shall comment later on about the value of C̃ and b in the particular case
of Euclidean domains.

We aim at considering a version of the evolution equation u̇ = 4pu with
homogeneous Dirichlet boundary condition at ∂M . To this end we introduce
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the functional

Ẽp(u) :=

{∫
M |∇u|pdmg if u ∈W 1,p

0 (M)
+∞ otherwise

(5.2)

and consider the subdifferential of Ẽp. We can proceed exactly as above,
but the simpler form of the Sobolev inequality satisfied by the functions
for which Ẽp < +∞ makes things easier. As expected from the structure
of the problem the evolution with Dirichlet boundary conditions will drive
the system to the equilibrium solution u ≡ 0. In fact we shall not bother
the reader with all details (which would be a step–by–step repetition of
the previous ones) but only notice that from (5.1) the following family of
logarithmic Sobolev inequalities can easily be deduced:∫

M
|u|p log(

|u|
‖u‖)

pdmg ≤ εK̃bp−d‖∇u‖pp − ‖u‖pp log ε (5.3)

for all ε > 0 and for all u ∈W 1,p
0 . Here K̃ = C̃p > 0 where b and C̃ are as the

Sobolev inequality (5.1). The point here is the absence of a term behaving
like ε‖u‖pp in the right-hand side of the logarithmic Sobolev inequality. This
allows us to treat simultaneously the short- and long–time regime.

In fact we have the following result:

Theorem 5.1. Let (M, g) be a smooth, connected and compact Riemannian
manifold with smooth boundary and with dimension d > 2. Consider, for
any t > 0, the function u(t) := Ttu(0), where {Tt : t ≥ 0} is the semigroup
associated to the subdifferential of the functional Ẽp and u(0) ∈ Lq(M) with
q ≥ 1. Then the following ultracontractive bound holds true for all t > 0 :

‖u(t)‖∞ ≤ C̃(p, q, d)
bα

tβ
‖u(0)‖γq , (5.4)

where α, β and γ are as in Theorem 1.1 and

C̃(p, q, d) =(C̃ppq)1/(q+p−2)(
q + p− 2

q + 1
)1/[(p−2)(p−3)]

× (
q

q + p− 2
)q/[(p−2)2(q+p−2)]

(5.5)

b and C̃ being the constants appearing in the Sobolev inequality (5.1).
For large times the bound

‖u(t)‖∞ ≤
c

t1/(p−2)

holds true for all data u0 ∈ L1(M), t ≥ 1 and for a suitable c > 0 depending
only on p, d and on geometric quantities, but independent of u0.
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In fact the only point to prove is the large–time estimate, which uses the
fact, proved exactly as in the proof of the main theorem, that the L2 norm
of solutions (and hence the L1 norm as well) decay for large t as t−1/(p−2).
More precisely, letting β = β|q=1 = 1/(p− 1) and γ = γ|q=1 = 1/(p− 1) be
the constants appearing in the main theorem and evaluated when q = 1,

‖u(t)‖∞ ≤
c

tβ
‖u(t/2)‖γ1 ≤

c

tβ+γ/(p−2)
=

c

t1/(p−2)
.

We shall discuss now the limit p → +∞ in the equation at hand, in the
case in which M is a bounded Euclidean domain with smooth boundary.
In addition to its own interest, such discussion will allow us to gauge the
sharpness of our main bounds in such a limit also. We shall need in this
connection to discuss briefly the value of the Sobolev constant in (5.1).

We first recall that the limiting behaviour as p→ +∞ has been discussed
in [2] in the case D = Rd, where it is shown in particular that the solutions
up to the equation u̇ = 4pu converge, in a suitable sense, as p → +∞, to
the solution u∞ of the evolution equation driven by the subdifferential of the
functional I∞ which equals zero on those L2 functions whose distributional
gradient satisfies |∇u| ≤ 1 almost everywhere, and +∞ elsewhere. We notice
here that, although the discussion of that paper is given in the case D = Rd,
there is no essential difference in dealing with the case of a bounded smooth
domain, denoted again by D, as we keep on assuming. In fact, we shall still
denote by I∞ the functional equaling zero on L2(D) functions which, when
extended to be zero outside D, are such that the distributional gradient
satisfies |∇u| ≤ 1 almost everywhere, and +∞ otherwise. It has been shown
in [9] that such a functional is lower semicontinuous. We may say that
abstract homogeneous Dirichlet boundary conditions are assumed.

Our main result implies a uniform bound on u∞ in terms of geometric
quantities only; in particular, there is no time decay nor dependence on the
initial data at all. This is not so surprising first in view of the existence of
stationary solutions, and then of the fact (noticed in [2]) that mass transfer
occurs instantly. Our calculations will be possible since we have explicit
expressions for the numerical constants appearing in our main result. Again,
the following bound has an a–priori nature.

Corollary 5.2. Let D ⊂ Rd (d ≥ 3) be a smooth, bounded Euclidean do-
main. Let u∞ be a weak solution to the problem u̇∞ ∈ ∂I∞ for almost every
positive t, with homogeneous Dirichlet boundary conditions, corresponding to
the initial datum u0, which is assumed to be a Lipschitz–continuous function.
Then

‖u∞(t)‖∞ ≤ b
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for almost every positive t, where b is the constant appearing in the family
of Sobolev inequalities (5.1) for the domain D.

Proof. Let us consider the family {up} of weak solutions to the family of
equations

u̇ = 4pu

with homogeneous Dirichlet boundary conditions, corresponding to the
(common) initial datum u0. We have proved above that

‖up(t)‖∞ ≤ C(p, d, q)
bα

tβ
‖u(0)‖γq

with explicit expressions for the constants involved. We first notice that, as
p→ +∞, α→ 1, β → 0, γ → 0. Moreover, an easy computation also shows
that the constant

C(p, q, d) = (C̃ppq)1/(q+p−2)

× (
q + p− 2

q + 1
)1/[(p−2)(p−3)](

q

q + p− 2
)q/[(p−2)2(q+p−2)]

(5.6)

tends to 1 in such a limit. This uses the explicit form of C̃ which can be
taken to be (see below) C̃ = [(p−1)/(p−d)]1−(1/p). It thus remain to discuss
the relation between ‖up(t)‖∞ and ‖u∞(t)‖∞. To this end, we notice that in
[2] it has been proved that the set {up}p≥d+1 is bounded in L∞(D × [0, T ])
given any positive T . Then we can extract a sequence {upk} converging
in the w∗ topology of such space to a function u. In [2] it is also proved
that u is the (unique) solution to the problem u̇ ∈ ∂I∞ (for almost every
t) corresponding to the initial datum u0. The statement follows from the
weak∗ lower semicontinuity of the L∞ norm. ¤

It has thus some relevance to have some information about the value of
the constant b above.

We then state a version of the Morrey theorem.

Theorem 5.3. (Morrey). Let D ⊂ Rd be an open and connected bounded
set and p > d. Then in the Sobolev inequality

‖u‖∞ ≤ C̃b1−(d/p)‖∇u‖p ∀u ∈W 1,p
0 (D)

one can choose C̃ = [(p− 1)/(p− d)]1−(1/p), and b equaling the radius of the
smallest closed ball of Rd which contains D. Moreover, one has the estimate
b ≤
√

3 diam (D)/2.

The proof of this theorem is quite similar to the one in the book of Davies
[12], so it is omitted here, but we remark that it depends on the Median
Lemma (see e.g. [29], p. 387). In some cases it is clearly possible to choose b =
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diam (D)/2. This holds for those bounded domains D having the following
geometrical property: there exists a point xD ∈ D such that the ball of
radius b = diam (D)/2 includes D.

In particular, the latter fact holds in any ball, and thus our limiting es-
timate cannot be improved on such domains, since the stationary radial
function u(x, t) = r − |x| is a solution to the equation at hand.

It is also possible to prove that one can choose b = diam (D)/2 when D
satisfies an alternative geometrical condition: there exists r > 0 such that
all points x, y ∈ D with (geodesic) distance l can be joined by a chain of at
most l/r intersecting closed cubes. We omit the details.

6. Lq–L∞ Hölder continuity

We return now to the situation in which M has no boundary, although a
similar discussion could be given in the setting of Section 5.

Theorem 6.1. Under the same assumptions and with the notation of Theo-
rem 1.1, let u(0), v(0) ∈Lq(M) (q ≥ 1) have common mean value. Then the
following estimate (Lq–L∞ Hölder continuity) holds true for all t ∈ (0, 1] :

‖u(t)− v(t)‖∞ ≤
c1

tβ
‖u(0)− v(0)‖γq (6.1)

for all t > 0 and for a suitable c1 > 0, where β, γ are as in Theorem 1.1.
If t > 2 one has instead, for all data belonging to L2(M) :

‖u(t)− v(t)‖∞ ≤
c2

(c3(t− 1) + ‖u(0)− v(0)‖2−p2 )2/[p(p−2)]
(6.2)

for suitable c2, c3 > 0, and in particular, for any ε ∈ (0, 1),

‖u(t)− v(t)‖∞ ≤ c2
‖u(0)− v(0)‖2(1−ε)/p

2

[c3(t− 1)]2ε/[p(p−2)]
. (6.3)

Proof. (sketch). The proof follows closely the proof of Theorem 1.1, so that
we shall only stress the relevant differences. We consider the quantity

fr(s) =
∫
M
|u(s)− v(s)|rdmg

and compute the time derivative of fr(s). This yields
d
ds

fr(s) = −r(r − 1)
∫
M
|u(s)− v(s)|r−2

× 〈∇u(s)−∇v(s), |∇u(s)|p−2u(s)− |∇v(s)|p−2v(s)〉dmg,

where 〈·, ·〉 is the scalar product in the tangent space at the corresponding
point.
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We now use the well–known inequality (cf. [15])

〈|a|ap−2 − |b|bp−2, a− b〉 ≥ c|a− b|p

to yield

d
ds

fr(s) ≤ −cr(r − 1)
∫
M
|u(s)− v(s)|r−2|∇(u(s)− v(s))|pdmg.

Having at our disposal an inequality in which only the difference Tsu− Tsv
is involved, one can prove as in [10], by straightforward calculations, first
that

d
ds

fr(s)(s) ≤ ṙ(s)
∫
M
|u(s)− v(s)|r(s) log |u(s)− v(s)|dmg

− cr(s)(r(s)− 1)
∫
M
|u(s)− v(s)|r(s)−2|∇(u(s)− v(s))|pdmg,

for any nonincreasing function of class C1 r : [0,+∞)→ [2,+∞), and then
that

d
ds

log ‖u(s)− v(s)‖r(s)

≤ ṙ(s)
r(s)

∫
M

(
|u(s)− v(s)|
‖u(s)− v(s)‖r(s)

)r(s) log(
|u(s)− v(s)|
‖u(s)− v(s)‖r(s)

)dmg

− c(
p

r(s) + p− 2
)p

r(s)− 1
‖u(s)− v(s)‖r(s)Ep(|u(s)− v(s)|(r(s)+p−2)/p).

Such an inequality is identical, apart from the numerical factor c in the
coefficient of Ep to the conclusion of Lemma 3.3, and u(s) − v(s) has zero
mean at all times. The subsequent calculations follow then along the same
lines. ¤

The above proof and its close analogy to the proof of Theorem 1.1 show
that the constant c1 can be taken to be

c1(p, q, d, c, M) =eEbα(
2p−1Cp

c
pq)1/(q+p−2)(

q + p− 2
q + 1

)1/[(p−2)(p−3)]

× (
q

q + p− 2
)q/[(p−2)2(q+p−2)]

while c2 can be taken to be

c2 = c1(p, 2, d, c, M)e
pp

22p−1Cpbp−dVolM and c3 =
(p− 2)bd−p

Cp(VolM)p/2
.
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Clearly similar calculations show identical time–decay estimates for solutions
corresponding to data with different mean, but in such a case u(t) − v(s)
approaches (at the same rate) u− v.

The proof of the following corollary is identical to that of Corollary 1.2 as
soon as the considerations given in the proof of the previous theorem have
been taken into account.

Corollary 6.2. For all t > 2, all ε ∈ (0, 1) and all initial data u0, v0 with
common mean and in L1 there exists cε > 0 such that

‖u(t)− v(t)‖∞ ≤ cεt
−(1−ε)/(p−2) (6.4)

independently of the initial datum u0. Moreover, if the initial datum belongs
to Lr(M) with ‖u(0)− u‖r < 1, then

‖u(t)− v(t)‖∞ ≤ cε‖u(0)− v(0)‖εrt−(1−ε)/(p−2)

for all t ≥ 2‖u(0)− v(0)‖2−pr .

7. The p–sub–Laplacian associated to a collection of vector
fields

We shall present a generalization of our main results, which will be based
upon the fact that essentially all our calculations depend on the validity of
a suitable Sobolev inequality only.

We now deal with the following setting: M is a smooth and connected
Riemannian manifold without boundary, and {Xi}mi=1 is a collection of vector
fields with locally Lipschitz coefficients on M . Notice that the integer m may
or may not be equal to the dimension d of M . We aim at proving a result
similar to that of the previous subsection for evolution equations driven by
possibly degenerate operators similar to the p–Laplacian but constructed
in terms of the vector fields {Xi}. Our aim is to show that our approach
depends almost entirely on a suitable Sobolev inequality, and not on the
details of the generator itself. Although some further generalization could
be given (e.g. to sub-Riemannian structures in the sense of [31]) we feel that
the present example will suffice in this connection.

We first recall some well–known facts. First, the intrinsic quasi–metric
relative to the family of vector fields at hand is defined as follows:

%(x, y) = inf{T > 0 : there exists a sub–unit curve γ : [0, T ]→M

with γ(0) = x, γ(T ) = y},
where γ is said to be sub–unit if

|〈γ̇(t), ξ〉|2 ≤
∑
i

|〈Xi(γ(t)), ξ〉|2
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for any ξ ∈ Tγ(t)M , for almost every t ∈ [0, T ].
We assume without further comment that % is always finite, so that it

is a true metric on M . We shall assume that the Riemannian measure µ
is doubling in the sense that, denoting by B(x, r) the open intrinsic ball of
center x ∈M and radius r > 0 one has

µ(B(x, 2r)) ≤ δ µ(B(x, r)) (7.1)

for any x ∈ M . In particular (M, %, µ) is a homogeneous space in the sense
of [11]. It is well–known that (7.1) implies that the inequality

µ(B)
µ(B0)

≥ const.(
r

r0
)s (7.2)

holds whenever B0 is an intrinsic ball of radius r0 and B = B(x, r) with
x ∈ B0 and r ≤ r0, where s = log2 δ (see e.g. Lemma 14.6 in [23]). We refer
e.g. to [27] and [32] and references quoted as general references on these
topics.

It will moreover be assumed that a p–Poincaré inequality holds. By this
we mean the following: there exists c such that, for all Lipschitz functions,∫

M
|u− u|pdmg ≤ c(

∫
M
|Xu|pdmg). (7.3)

For a proof of this inequality in a very general context see [21]. See also
[7] for the discussion of local properties of solution to subelliptic equations
associated to the p–sub-Laplacian.

We shall next consider the operator formally given by

LXu :=
m∑
i=1

X∗i (|Xu|p−2Xi),

where |Xu|2 :=
∑m

i=1 |Xiu|2 and X∗i is the formal adjoint of Xi. To give
sense to such an operator again we consider the convex lower–semicontinuous
functional Ep,X defined as

Ep,X(u) :=
∫
M
|Xu|pdmg

whenever the integral is finite, and +∞ elsewhere. We shall still denote by
LX its subdifferential. We again refer to [9] for a proof of the fact that Ep,X
is a nonlinear Dirichlet form for all p > 1. Such a subelliptic p–Laplacian has
appeared, e.g. in [6], [25], at least in the case of vector fields satisfying the
Hörmander condition, i.e. such that the Lie algebra generated by the vector
fields at hand equals the whole tangent space at each point.
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We shall be interested in certain Sobolev inequalities involving Ep,X . For
various versions of the Sobolev inequalities we refer, of course with no claim
of completeness, e.g. to [16], [20], [23], [26] and references quoted.

In fact, it is known (see [23], Theorem 5.1, part 3, for this fact in an even
more general setting) that the inequality

‖u− u‖∞ ≤ Cb̃[1−(s/p)]Ep,X(u)1/p (7.4)

holds provided the vector fields at hand satisfy, besides (7.2), a p–Poincaré
inequality with p > s. The constant b̃ can be taken to equal the diameter of
M in the metric %.

We can now state our final result.

Theorem 7.1. Let us suppose that the vector fields at hand satisfy the dou-
bling condition (7.1) for some δ > 0 and the p–Poincaré inequality (7.3) for
some p > s := log2 δ. Consider the nonlinear semigroup Tt driven by the
subdifferential of the nonlinear Dirichlet form Ep,X . Then the following es-
timate holds true for the time–evolved function u(t) = Ttu(0) of an initial
datum u(0) ∈Lq(M) :

‖u(t)− u‖∞ ≤
C

tβ
‖u− u‖γq (7.5)

for all t ∈ (0, 1), for all u, v ∈Lq(M), where β, γ are as in Theorem 1.1, but
with the Euclidean dimension d replaced by the homogeneous dimension s.

If t > 2 one has instead, for all data belonging to L2(M),

‖u(t)− u‖∞ ≤
c1b

(p−d)/p

(c2(t− 1) + ‖u(0)− u‖2−p2 )2/[p(p−2)]
(7.6)

for suitable c1, c2 > 0 and in particular, for any ε ∈ [0, 1],

‖u(t)− u‖∞ ≤ c3
‖u(0)− u‖2(1−ε)/p

2

[(t− 1)]2ε/[p(p−2)]
. (7.7)

The proof of such a result follows as in Theorem 1.1, since they are only
based upon the appropriate ordinary, and hence logarithmic, Sobolev in-
equalities, as soon as the fact that the originating functionals are nonlinear
Dirichlet forms have been established. Similar two–function estimates in the
spirit of Theorem 6.1 follow similarly.

Corollary 7.2. For all t > 2, all ε ∈ (0, 1) and all initial data u0 in L1

there exists cε > 0 such that

‖u(t)− u‖∞ ≤ cεt
−(1−ε)/(p−2), (7.8)
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independently of the initial datum u0. Moreover, if the initial datum belongs
to Lr(M) with ‖u(0)− u‖r < 1, then

‖u(t)− u‖∞ ≤ cε‖u(0)− u‖εrt−(1−ε)/(p−2)

for all t ≥ 2‖u(0)− u‖2−pr .

Remark 7.3. The class of vector fields satisfying the assumptions of The-
orem 7.1 is large. Indeed, we mention only that vector fields satisfying the
Hörmander condition as well as vector fields of Grushin type, fall within
such a class. We refer e.g. to [18] and references quoted for such results. In
such a paper one can also find both a detailed discussion of Grushin–type
vector fields, and some more relevant examples of vector fields satisfying our
running assumptions.
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