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Deterministic Decoupling of Global Features
and its Application to Data Analysis

Eduardo Martı́nez-Enrı́quez, Marı́a del Mar González, and Javier Portilla

Abstract—We introduce a method for deterministic decoupling of global features and show its applicability to improve data analysis
performance, as well as to open new venues for feature transfer. We propose a new formalism that is based on defining
transformations on submanifolds, by following trajectories along the features’ gradients. Through these transformations we define a
normalization that, we demonstrate, allows for decoupling differentiable features. By applying this to sampling moments, we obtain a
quasi-analytic solution for the orthokurtosis, a normalized version of the kurtosis that is not just decoupled from mean and variance, but
also from skewness. We apply this method in the original data domain and at the output of a filter bank to regression and classification
problems based on global descriptors, obtaining a consistent and significant improvement in performance as compared to using
classical (non-decoupled) descriptors.

Index Terms—feature-based data analysis, feature redundancy, feature decoupling, nested normalization, feature transfer, local
de-correlation, orthokurtosis, regression, classification.
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1 INTRODUCTION

DATA analysis relies on the statistical distribution of
the observed samples. Usually, some features (i.e., real

functions) are applied to extract relevant information from
the observed data. In the Machine Learning field there are
two basic scenarios for data analysis: (i) the classical one,
where the set of features is chosen ad-hoc; (ii) the Deep
Learning scenario, which involves automatically learning
the features from the input data. In all cases, when features
are used, the observed dependencies among them come both from
the statistical behavior of the data and from the features’ joint
algebraic structure.

To illustrate this problem imagine that we analyze vec-
tors representing 1-D signals, extracting some marginal sam-
ple moments and the sample auto-correlation. We will find
a strong dependency between skewness and kurtosis, and
also between consecutive correlation factors, e.g., ρ(1) and
ρ(2), even when the input data are i.i.d. samples. The reason is
that the two mentioned pairs of features, like many others,
are algebraically coupled. As a consequence, their joint range
is not just the outer product of their marginal ranges: some
combinations of (independently) valid feature values are
incompatible for the same input data. E.g., a skewness of
10 and a kurtosis of 3, or ρ(1) = 0.9 and ρ(2) = 0.

Feature coupling, thus, produces spurious redundancy, a
sort of feature entanglement, regardless of (and in addition to)
the redundancy derived from input data statistics. It causes
difficulties for analysis, processing, and simulation. Having
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a joint feature range with a very intricate topology (full of
“holes” and complex boundaries’ structure) is an obstacle
to interpreting the role of each feature separately from the
others. It also complicates the manipulation of the samples,
in case we wanted to average feature values [1], study
the effect of modifying the value of a particular feature
independently of the others, or simulating data by imposing
some values onto their features [2]. An interesting example
of these problems appeared in [3], which addressed the
problem of simplifying the set of features used in [1] to
visually describe texture samples.

Despite its large negative impact on data analysis and
processing, much less effort has been devoted in the liter-
ature to study and reverse deterministic feature coupling
compared to statistical data modeling. Note that, when al-
gebraic coupling between features exists (as in the examples
mentioned above), conventional techniques such as PCA,
ICA, or even more advanced non-linear ICA (see, e.g.,
[4]), do not provide the right tools for disentangling the
involved joint feature vector structures. Even in the ideal
scenario of perfectly modeling all dependencies, a purely
statistical approach applied to the observed features would
mix up the two sources of redundancy, namely, statistical
and algebraic. It is advantageous to address separately these
two redundancy sources, as it is usual to apply the same
type of features for diverse statistical distributions (even in
ANNs, when doing transfer learning [5]). Therefore, many
different real problems on different data distributions using
the same features will benefit from their decoupling.

Here we propose a mathematical and algorithmic frame-
work for decoupling a set of given features, in the sense of
finding another set of similar functions with their gradients
mutually orthogonal everywhere in the domain - and, as
a consequence, with their ranges decoupled. We study the
mathematical conditions under which that is possible. We
also study less favorable scenarios where only a limited
and/or approximated decoupling is possible. We demon-



JULY 2022 2

strate the practical application of the proposed method to
several examples of data analysis, namely, statistical regres-
sion and textured image classification. Some of the seminal
ideas and applied results presented has been published in
three conference proceedings [2], [6], [7]. In this work we
provide a solid framework, unifying, extending, and giving
the necessary mathematical rigor to our previous results.

As concrete study cases, here we have focused on
marginal moments and on the second-order moments at
the output of a set of filters. Marginal moments are widely
used in the signal processing and statistics literature, for
analysis tasks such as estimation (e.g., the method of mo-
ments), detection, regression, classification, etc. [8], [9], [10],
[11], [12], [13], and also for synthesis-by-analysis [1], [14],
[15]. Typically they are used either implicitly, as empirical
marginal histograms, or in their standardized form, and
up to fourth order: sample mean, variance, skewness, and
kurtosis. Whereas, as shown here, the first three standard-
ized moments are already mutually decoupled, that is not
the case for the skewness and kurtosis. The problem of
the skewness-kurtosis coupling has been pointed out by
several authors [16], [17], [18], but it had not been fully
solved. In this respect, one of the main contributions of
this paper is presenting a normalized version of the fourth-
order sample moment, the orthokurtosis, which is not just
decoupled from the sample mean and variance, but also
from the skewness. This new statistical function is fully
consistent with the previous standardized sample moments
(mean, variance and skewness), that result from applying
our decoupling technique to the first three raw moments. In
addition, the orthokurtosis calculation has a modest compu-
tational cost. By using this new fourth-order feature, instead
of the classical kurtosis, we obtain a dramatic accuracy
gain in several regression problems (see Subsection 6.3).
Furthermore, higher-than-four order moments have been
very rarely used (see exceptions in, e.g., [19], [20]) because
of their instability and mutual redundancy. By decoupling
the marginal moments (exactly or approximately) here we
are able to exploit very high order decoupled moments (up
to 10th order) and demonstrate their positive impact for
texture classification (see Subsection 6.4.1).

Banks of convolutional filters, on the other hand, are
a classical tool in signal processing, with a huge field
of application, including early human vision modelling
and image/audio analysis, processing and synthesis. In
addition, they have also been incorporated [21], [22] into
artificial neural networks (ANNs) for signals having spa-
tial dimensions (image, video, 3-D, etc.) with tremendous
impact. In neural science, they have long been used to
model the responses at early stages of animal and hu-
man visual and auditory systems [23], [24], [25], [26]. The
latter image/audio representations share the feature of
being redundant, thus avoiding the artifacts that plague
critically-sampled linear transformations (e.g., orthogonal
or bi-orthogonal wavelets [27]). However, redundancy in
non-orthogonal linear representations demands paying a
high price, namely, the algebraic coupling of undecimated
sub-bands (outputs of the filters). Here we address the
problem of deterministically decoupling the second-order
moments at the output of a filter bank, with direct appli-
cation, besides analysis, to transfer [28] and synthesis [2].

In Section 6 we show how the gradients of the resulting
decoupled features are virtually orthogonal for white noise
samples and very close to orthogonal for photographic
textured image patches. Furthermore, we demonstrate how
approximately decoupling not just variance, but also higher-
order moments, at the output of a bank of filters, results
in an important performance boost in texture classification
(Subsection 6.4.2).

This paper is organized as follows. Section 2 sets the
mathematical foundations of the method, that allow, in
favorable cases, to transform a given feature by decoupling
it from a set of other given features. Section 3 proposes algo-
rithms (based on the Nested Normalization concept, NeN)
to obtain a hierarchically ordered set of mutually decoupled
features and to transfer features from one observed sample
to another. Section 4 addresses in detail two study cases
of features for being decoupled, namely marginal moments,
and the second-order moments at the output of a filter bank.
Section 5 addresses analytically the local de-correlation ef-
fect of feature decoupling, and why this improves parameter
discrimination, in regression problems. Section 6 is devoted
to showing how the proposed method actually decouples
the studied features, and its practical impact when it is
applied to data analysis (regression and classification). Sec-
tion 7 concludes the paper. In addition, some technical
and/or very detailed contents have been encapsulated in
appendices, for readability and reproducibility sake.

2 DETERMINISTIC DECOUPLING OF GLOBAL FEA-
TURES

In this section we propose a method for, given a set of
features S and another unrelated feature g, finding a trans-
formed feature ĝ, identical to g on a high dimensional
submanifold, that is decoupled to every feature in S .

2.1 Preliminary Concepts
2.1.1 Global Shift-Invariant Features
In this paper we associate a finite discrete signal made of N
samples with a vector x ∈ RN , possibly lexico-graphically
reordered, if the signal support is a multi-dimensional array.
We will term a feature f of that vector x a differentiable real
function f : Ω ⊂ RN → R for a domain Ω. We define
here global feature a feature that depends on all vector’s
coefficients.

In this paper we will focus on shift-invariant features,
a special case of global features1. Within them, we will
exemplify the application of our method to features of the
form:

f(x) =
1

N

N∑
n=1

[m(x)]n, (1)

with m : Ω → RN being a differentiable shift-equivariant
(i.e., commuting with shift operations), or shift-invariant,
mapping, assuming a shift operation with boundary con-
ditions (e.g., circular) has been defined. This kind of func-
tions, being averages, play the role of sample statistics, like
marginal moments, correlation coefficients, moments at the
output of filters, etc.

1. The only non-global shift-invariant features are the trivial func-
tions f(x) = c, where c is a real constant.
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2.1.2 Decoupled Features
We say that two features fi and fj are algebraically decoupled
(from now on just decoupled) on a subset of Ω iff

∇fi(x) · ∇fj(x) = 0, for all x in that subset. (2)

We extend this concept to a set of features S = {fj , j =
1 . . .M} by terming that the features of a set are decoupled,
iff they are mutually decoupled, i.e., iff all possible pairs of
features within that set {(i, j) : i, j ∈ {1..M}, i 6= j} are
decoupled. Similarly, we say that a feature is decoupled to a
(decoupled or not) set of features iff it is decoupled to each
of the features in that set.

It is worth pointing out two special cases, namely, when
features are trivially decoupled and when they are trivially
coupled. We term trivially decoupled features those for which
there exists at least one orthogonal basis where they have
disjoint supports2 (e.g. Fourier, orthogonal wavelets, etc.).
Here we refer to support, in a given domain, as the subset
of vector indices the feature depends on. On the other
extreme, a feature map f is trivially coupled iff it exists at
least one non-degenerate function F : RM → R such that
F (f(x)) = 0,∀x ∈ Ω. In this paper, we present methods
for decoupling features assuming none of those situations
happens (for which decoupling is either unnecessary or
impossible, respectively).

2.1.3 Normalization map
The construction of a normalization will be key in our
decoupling process.

Let S = {fj : Ω→ R, j = 1 . . .M} be a set of features, Ω
a subset of Ω, x̂S(x) : Ω→ Ω be a continuous non-constant
mapping, and vref a vector made of {vrefj , j = 1 . . .M}
(the reference values), some jointly compatible given reference
values for the features in S . We say that x̂S(x;vref ) is a
normalization w.r.t. S and vref in Ω iff it holds that

(i) {fj(x̂S(x;vref )) = vrefj }Mj=1;
(ii) if {fj(x) = vrefj }Mj=1 then x̂S(x;vref ) = x.

Note that previous conditions imply that every normaliza-
tion is idempotent:

x̂S(x̂S(x;vref );vref ) = x̂S(x;vref ). (3)

We now set up some notation for this set of refer-
ence values which will be useful in our exposition. Let
fS : Ω → RM be the vector transformation made of the
ordered features in S , [f1(x) . . . fM (x)], and set vref to be
an M -dimensional vector. We define a reference manifold as
RS(vref ) = f−1S (vref ), i.e., the set of vectors x such that
fS(x) = vref .

For being a valid set of reference values for the features,
vref must be made of jointly compatible values of the
functions in an algebraic sense, i.e., {x : fS(x) = vref} 6= ∅.
In addition, we will assume a non-degeneracy hypothesis,
under which all feature gradients are linearly independent
at every point (this will be condition C1 in Subsection 2.3.1).
This is a stronger condition than the set of features not being
trivially coupled, and it implies that the dimension of the
reference manifold is everywhere N −M .

2. Note that they can not have disjoint supports in the original
domain if they are both global.

2.2 Motivating example: decoupling two features
In order to motivate the general algorithm, let us explain the
method in the case of two features.

2.2.1 Gradient systems
Let us fix one feature f , defined in a connected open set Ω.
We study the trajectories x(t) of the initial value problem

dx

dt
= −∇f(x),

x(0) = x0.
(4)

This ODE is known as a gradient system. It is clear that
moving along a (non-constant) trajectory in the +t (resp.
−t) direction will strictly decrease (resp. increase) the value
of the function f until it reaches the minimum (resp. max-
imum) value or stabilize at a critical point of f (see the
reference [29, Section 9.3] for a discussion of this type of
systems).

Thus, in order to study the set of values that f may take
along a trajectory, one needs to impose some constraints
on its equilibrium points. The precise set of conditions are
given in Appendix A, and can be summarized in:

B1. Maxima and minima are all global extrema, not just
local.

B2. The set made of the basins of attraction of all saddle
points, denoted by Λ, is of lower dimension.

The first condition ensures that the trajectory will not stop at
a local non-global extreme. The second condition guarantees
that saddle points are non-degenerate and thus, essentially
unstable, so it allows to circumvent them by adding small
perturbations on the initial condition x0 (see Section 3.3.2).

We denote the trajectory that passes through the point
x0, or equivalently, the integral manifold of the system (4),
by I(x0, f). The main property we will need is that all
possible f values are reachable from any initial point x0

by moving along the gradient. As a consequence, fixed a
reference value vreff for f , conditions B1-B2 guarantee that,
for x 6∈ Λ, each trajectory I(x, f) reaches (only once) this
value. See Appendix A for a technical discussion.

2.2.2 Decoupling via normalization
Assume that we are given two features {f, g}. We would
like to replace g by a “similar” feature ĝ that is decoupled
from f in the sense given by (2), via normalization.

More precisely, fixed one feature f , we would like to con-
struct a normalization map x̂f (x) as defined in Section 2.1.3.
A possibility is to choose a point in the trajectory I(x, f)
that attains some reference value vref of the feature f . Thus
it is natural to define the normalization by x̂f (x; vref ), this
is, as the map that sends a point x to the point where the
trajectory I(x, f) crosses the reference manifold Rf (vref ),
which is unique by our previous discussion on gradient
systems.

Now, given another feature g, we define ĝ by

ĝ(x) = g(x̂f (x)). (5)

Then f and ĝ are decoupled, this is, their gradients are
orthogonal. To show this, apply the chain rule to Eq. (5), to
obtain ∇ĝf (x) = JTx̂f (x)∇g(x̂f (x)), where Jx̂f represents
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the Jacobian matrix of the map x̂f . Now, by pre-multiplying
both terms by ∇f(x)T , we obtain:

∇f(x) · ∇ĝ(x) = (Jx̂f (x)∇f(x))T∇g(x̂f (x)). (6)

Finally, note that

Jx̂f (x)∇f(x) =
d

dt

∣∣∣∣
t=0

x̂f (α(t)),

where α(t) is the integral curve of (4) starting at the point
x. By construction, the map x̂f is constant along this curve
and, thus, the above expression vanishes. This shows that
the two gradients in expression (6) are orthogonal, as de-
sired. Figure 1 graphically illustrates these concepts for two
given features f1, f2.

2.3 Decoupling features from a given set: multi-feature
normalization

Now we consider the problem of decoupling a feature g
from a given set S = {fi : Ω ⊂ RN → R, i = 1 . . .M} of
M features. The method follows the normalization scheme
explained in the two-feature case, by following trajectories
given by the gradients of all the fi. Unlike the simple case
of gradient systems, in order to build integral manifolds
from multiple feature gradients, additional conditions must
be fulfilled. Indeed, we will give a necessary and sufficient
condition for this method to apply (Proposition 2.2 below).

It is also clear that, in order to construct a normalization,
we need to restrict to a subdomain Ω, obtained from Ω by
removing its critical points corresponding to the set of given
features S = {fj , j = 1...M}.

2.3.1 Invariant mapping with respect to a set of features
We first introduce the notion of a mapping being invariant
with respect to a set of features S = {fi : Ω ⊂ RN → R, i =
1 . . .M}, a concept that will greatly facilitate the decoupling
of an arbitrary feature g from this set.

We say that a non-constant, differentiable mapping yS :
Ω→ Ω is invariant w.r.t. S iff

JyS (x)∇fi(x) = 0,∀fi ∈ S,∀x ∈ Ω, (7)

where JyS represents the Jacobian matrix of yS .

Proposition 2.1. Obtaining decoupled features from invari-
ant mappings. Let g be an arbitrary feature g : Ω → R, and
yS an invariant mapping w.r.t. a set of features S . From them we
construct a new feature:

ĝS(x) = g(yS(x)). (8)

Then it holds that ∇ĝS(x) · ∇fi(x) = 0, ∀fi ∈ S,∀x ∈ Ω, i.e.,
the new feature ĝS is decoupled from all features in S .

Proof. Mimicking the calculation in Eq. (6), we have

∇fi(x) · ∇ĝS(x) = (JyS (x)∇fi(x))T∇g(yS(x))

= 0, ∀fi ∈ S,∀x ∈ Ω (9)

where the last equality holds because of Eq. (7).

Now that the significance of having an invariant map-
ping has been established, let us consider the problem of
existence. We will need to assume that:

C1. The gradients {∇fi(x)} are linearly independent at
every point x; and

C2. they satisfy the Frobenius condition, which is an
integrability condition for several gradients∇fi. The
related technicalities are addressed in Appendix B.

We will always assume condition C1 in order to avoid
redundancy in the set of features S , even if not explicitly
stated.

Now we show that the Frobenius condition C2 is neces-
sary and sufficient for an invariant mapping to apply. This
gives a criterion for the possibility of exact decoupling.

Proposition 2.2. Given S as above, there exists an invariant
mapping yS w.r.t. S iff the gradients {∇fi, i = 1 . . .M} satisfy
the Frobenius condition C2 at each point.

This proof will be given in two steps. The only if part
will be postponed to the Appendix (Section B.1) because it
is rather technical and not relevant to our study. Here we
will concentrate in the if statement, which will be treated in
Subsection 2.3.3 below. Our proof is explicit, giving a precise
construction of the invariant map via normalization, which
is the crucial ingredient.

2.3.2 Invariance submanifolds
Given a set of features S = {fi : Ω → R, i = 1 . . .M},
the invariance submanifold I(x0,S) is an M -dimensional
submanifold passing through x0 whose tangent planes at
each point are spanned by the gradients {∇fi, i = 1 . . .M}.

To ensure that the invariance submanifold exists we need
to assume conditions C1 and C2 above, as it is explained in
Appendix B. Indeed, Frobenius condition C2 is a compatibil-
ity condition on the second derivatives of different fi which
is needed for multi-feature integrability. Moreover, it is is
vacuous if M = 1, as we only integrate along the gradient
of a single feature, see Eq. (4).

In addition, Frobenius theorem states that Ω is foliated
by invariance submanifolds.

2.3.3 Normalization of several features
Here we give the construction of a normalization of multiple
features generalizing the approach in Section 2.2 for the de-
coupling of two features, and show that this normalization
indeed yields an invariant mapping.

For this, we associate a single vector yS(x) to each
invariance submanifold I(x,S), this is,

yS(z) = yS(x0), ∀z ∈ I(x0,S), (10)

and ensure that such mapping yS(x) is continuous and dif-
ferentiable. The remaining question is, then, how to choose
a representative yS(x0) of each invariance submanifold
I(x0,S). In the case of a normalization, we choose the
vector belonging to I(x0,S) that attains some reference
values vrefS in its features, values that we know I(x0,S)
may take, for all x0 ∈ Ω.

The following proposition states that, after removing a
lower-dimensional subset Λ from Ω, we can attain a valid
set of reference values by moving along the invariance
submanifold:

Proposition 2.3. Let vref be any jointly compatible set of values
of fS . Then for all x0 ∈ Ω \ Λ, there exists z ∈ I(x0,S)
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Fig. 1: Decoupling two features through normalization. The proposed normalization consists in finding the intersection of
the invariance submanifolds passing by x (parallel curved thick lines) with the reference manifoldR1 = {x : f1(x) = vref1 }
(black dashed thick line). All vectors belonging to the same invariance submanifold (e.g., the mustard dashed curve), like
x1 and x2, have the same normalized vector x̂1 and, thus, the same f̂2 value. Therefore, ∇f̂2 must be locally orthogonal
everywhere to the invariance submanifolds (iso-level sets of f̂2), and, as a consequence, also to ∇f1.

that satisfies fS(z) = vref , and it is unique in the connected
component of Ω \ Λ where x belongs to. Thus, the solution
set I(x0,S)

⋂
RS(vref ) contains exactly one point in this

connected component.

Proof. By our assumptions on the critical points, the basin
of attraction of critical points that are not global maxima or
minima is lower dimensional. Note that the gradient flow
of each fi starting at x0 is fully contained in I(x0,S), and
thus, the fi’s take all possible values along the flow unless
x0 belongs to the basin of attraction of a saddle.

Next, there cannot be more than one point in I(x0,S)
with exactly the same reference values since, under our
assumptions on critical points, the flow of each gradient
always strictly decreases (resp. increases) the value of the
corresponding fi.

Thanks to the previous Proposition, for x ∈ Ω\Λ we can
define the normalization

x̂S(x;vrefS ) = I(x,S)
⋂
RS(vref ). (11)

Proposition 2.4. The normalization x̂S constructed in (11) has
the following properties:

i. x̂S is an invariant mapping.
ii. The Jacobian Jx̂S , when evaluated on the reference man-

ifold RS , is an orthogonal projection map on RS . More-
over, it is non-degenerate, i.e., rank(Jx̂S (x)) = N −M
∀x ∈ Ω.

iii. The pair
(
fS(x), x̂S(x;vref )

)
carries the same infor-

mation as x. In particular, x can always be recov-
ered from it by reversing the normalization, i.e., x =
x̂S(x̂S(x;vref ); fS(x)), x ∈ Ω \ Λ.

Proof. The fact that x̂S is an invariant mapping is obvious
from the construction. Indeed, by definition of Jacobian
matrix,

Jx̂S (x)∇fi(x) =
d

dt

∣∣∣∣
t=0

x̂S(αi(t))

for a curve αi(t) satisfying αi(0) = x and α′i(0) = ∇fi(x).
Since this curve can be taken fully contained inside the
invariant submanifold I(x,S) (following, for instance, the
gradient flow of fi), then x̂S(αi(t)) is a constant function in
t and thus, its derivative vanishes.

For the second statement note first that, by applying the
chain rule in the condition of Eq. (3) it immediately yields
that

Jx̂S (x̂S(x))Jx̂S (x) = Jx̂S (x), ∀x ∈ Ω.

Now, recall that for x in the reference manifoldRS we have
x̂S(x) = x, so the previous equation reduces to

(Jx̂S )2(x) = Jx̂S (x) for all x ∈ RS .

Moreover, since x̂S is an invariant mapping, the rows of
Jx̂S are orthogonal to gradients {∇fj , j = 1 . . .M}, and
then the projection is on the space orthogonal to the linear
span of the previous gradients. That is, on the local tangent
space in RS .

In addition, the non-degeneracy of the Jacobian follows
from a classical result in linear algebra that states that the
dimension N is the sum of the dimension of the kernel (M
in our case) plus the rank of the matrix.

The last statement is a consequence of Ω\Λ being foliated
by invariance submanifolds.

3 THE NESTED NORMALIZATION METHOD

So far we have proposed a method for decoupling a new
feature with respect to a given set of features. Here we apply
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the results of the previous analysis in a particular hierarchi-
cal fashion, and study how and under which conditions we
can obtain a set of mutually decoupled features.

3.1 Analysis
Let us consider a set S of M ordered non-trivially coupled
global features {fi(x), i = 1..M}. We propose here a se-
quential algorithm that, starting by taking the first original
feature f̂1 = f1 unchanged, aggregates at each step k a new
feature f̂k+1, as shown in Algorithm 1:

Algorithm 1 NeN: A hierarchical decoupling approach.
Require: Coupled features {fj , j = 1, . . . ,M}

1: Initialization: f̂1 = f1
2: for k = 1 to M − 1 do
3: f̂k+1 ← decouple(fk+1, {f̂i, i = 1 . . . k})
4: end for
5: return Decoupled features {f̂j , j = 1, . . . ,M}

Our particular strategy involves constructing suitable
normalization maps following this sequential aggregation
scheme. For this, we use hierarchically nested reference
manifolds:

RM−1 ⊂ · · · ⊂ R1 ⊂ R0 = Ω ⊂ RN ,

where, in the notation of Section 2.1.3, Rk = f̂−1k (vref ),
being f̂k a map made from the ordered set of features Ŝk =
{f̂1, . . . , f̂k}, and a corresponding set of reference values
vrefk . At each step k, we obtain a normalization map x̂k
with respect to Ŝk and this is, precisely, what defines and
gives its name to the Nested Normalization (NeN) method.

The proposed nested structure has some consequences.
First, although each normalization onto Rk imposes a new
reference value to the k feature, it respects the previously
normalized values for the features j = 1 . . . k− 1. Second, it
implies that

Rk = f̂−1k (vrefk ) = f−1k (vrefk ), (12)

because f̂k(x) = fk(x) when x ∈ Rk−1. This property
shows that, under these constraints, one can define reference
values with respect to fk or f̂k, interchangeably.

We present two variants of the NeN algorithm: Broad
and Narrow paths, presented in Subsections 3.1.1 and 3.1.2,
respectively, depending on the choice of the integration
path.

3.1.1 A broad path to normalization
This scheme is precisely explained in Algorithm 2. At the
k-th step in the Algorithm, we start with a set of features
Ŝk = {f̂1, . . . , f̂k}, constructed inductively. Assume that
these satisfy the Frobenius condition C2. Then the broad
path scheme yields a normalization x̂k with respect to the
Ŝk by integrating along trajectories inside the invariance
submanifold of Ŝk. Note that all trajectories made of linear
combinations of the features’ gradients imposing the de-
sired normalization values provide the same normalization
result, as they belong to the same integral manifold (which
tells us that the order of integration does not change the
output normalization). Therefore, this method provides us

with valuable degrees of freedom for choosing convenient
integration paths.

More formally, we look for suitable combinations of
coefficients αj,k, such that the initial value problem:

dyk(t)

dt
=

k∑
j=1

αj,k(t)∇f̂j(yk(t)), (13)

with yk(0) = x, can be integrated in yk(t, ~αk(t)).
We can write, taking into account Eq. (12) for the choice

of the reference values,

ts = argt

{
f(yk(t, ~αk(t))) = vrefk

}
,

x̂k(x;vrefk ) = yk(ts, ~αk(ts)),
(14)

with certainty that such a solution exists and is unique in
a connected domain, as it only depends on the reference
values of the adjusted features, and not on the choice of the
α coefficients. In any case, αj coefficients need to respect
two constraints: (i) having all the sign of (vrefj − fj(x)), in
order to go coordinately in the direction of imposing the
reference values to the features; and (ii) they should not
introduce any additional stationary solutions apart from the
already discussed admissible critical points of the features.
Under these constraints, each feature can be adjusted in its
full range.

Algorithm 2 Nested Normalization, Analysis - broad path.

Require: {fj , vrefj , j = 1, . . . ,M}
1: Initialization: f̂1(x) = f1(x)
2: for k = 1 to M − 1 do
3: fk(x) = [fj(x)], vrefk = [vrefj ], j = 1, . . . , k

4: Rk = f−1k (vrefk )

5: Ŝk = {f̂j , j = 1 . . . k} (∗)
6: Compute (ODEs) x̂k(x;vrefk ) = I(x, Ŝk) ∩Rk (∗)
7: f̂k+1(x) = fk+1(x̂k(x))
8: end for
9: return {f̂j , j = 1, . . . ,M}

(*) Modifications for the broad path relaxation in Section
3.1.3: Substitute Sk by Ŝk and fj by f̂j in Steps 5 and 6,
for the relaxed version of the NeN broad path.

The proposed Algorithm 1 (and its particular realization
Algorithm 2) produces a new set of features f̂1, . . . , f̂M
such that each f̂k+1 is decoupled from the previous ones
f̂1, . . . , f̂k. Unfortunately, it has several drawbacks that of-
ten make its implementation difficult in practice.

A first obstacle in the method is the fact that the ODEs
involved in computing Step 6 of Algorithm 2 are typically
difficult to solve analytically. In fact, lacking an analytical
solution for the normalization at the k-th iteration translates
into not being able to obtain the expression of the decoupled
feature for the k + 1 iteration (Step 7), and beyond.

However, a more significant drawback of this scheme is
that a new decoupled feature is defined upon the previous
ones. As a consequence, the loop stops after a single decou-
pled feature no longer fulfills the requirements, meaning
that the next “decoupled features” in the loop simply do
not exist. In particular, Frobenius condition C2 is rather
stringent, besides being usually hard to verify since the
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Algorithm 3 Nested Normalization - narrow path.

Require: x ∈ Ω \ Λ, {fj , vrefj , j = 1, . . . ,M}
1: Initialization: f̂1 = f1; R0 = Ω \ Λ; x̂0(x) = x
2: for k = 1 to k = M − 1 do
3: Compute gk = PRk−1

(∇fk)
4: yk(0) = x̂k−1(x)
5: Follow gk until fk(yk(t)) = vrefk

6: x̂k(x;vrefk ) = yk(t)

7: f̂k+1(x) = fk+1(x̂k)
8: end for
9: return {f̂j(x), j = 1, . . . ,M}, x̂M−1(x)

gradients of the new features f̂1, . . . , f̂M will tend to have
very convoluted mathematical expressions.

In next subsection we develop a second version of
the algorithm (narrow path) that provides: i) an alternative
method for feature decoupling that does not require ana-
lytical calculations; and, ii) a way to demonstrate that it is
possible to relax the normalization at each step k (also in
the broad path algorithm), by making it w.r.t. to the original
feature set Sk, instead of w.r.t. the decouple features set,
Ŝk. In Subsection 3.1.3 below we will discuss when both
approaches are equivalent.

3.1.2 The narrow path algorithm

Here we propose Algorithm 3 to construct a normalization
x̂k with respect to the features in Sk = {f1, . . . , fk}. Such
normalization is obtained, at each step k, by moving along
the gradient of each feature, projected over the previous
reference manifold. Thus our normalization x̂k is made of a
sequence of 1-D integral manifolds, whose only requirement
is being each free from critical points (conditions B1-B2, see
Subsection 2.2.1).

Assuming that Frobenius condition C2 holds for the
gradients of {f1, . . . , fk}, then the normalization map x̂k(x)
we obtain from the Algorithm 3 is an invariant mapping
with respect to the features in Sk. This fact follows from
Proposition 2.4, since we have just provided an admissible
integration path inside the invariance submanifold I(x,Sk)
to reach x̂k(x) as defined in (11). Another consequence of
this Proposition (statement ii.) is that, for x ∈ Rk,

∇f̂k+1(x) = PRk(∇fk+1(x)), (15)

where we have denoted by PRk the (orthogonal) projection
map on the reference manifold. This in particular implies
that ∇f̂k+1 is orthogonal to the linear span of the gradients
∇f1, . . . ,∇fk.

If, on the contrary, Frobenius condition does not hold
for the original gradients, we can still follow the direction
of those projected gradients (termed gk in Algorithm 3)
until we reach the desired feature values. This will not give
a new orthogonal gradient ∇f̂k+1. However, the algorithm
still yields interesting results since it produces approximate
decoupling and improves performance in different applica-
tions (an example is shown in Section 6).

Figure 2 illustrates the NeN algorithm in its narrow-path
version, for three dimensional vectors, defining two nested
normalization levels.

3.1.3 From a narrow path to a broad relaxation
As we have seen in the previous subsection, the narrow
path yields a normalization by moving along the gradients
of the original features, whereas in the broad path we use
the gradients of the modified features. These approaches are
equivalent if Frobenius condition C2 holds on the gradients
of the modified features. In fact that, under this condition,
given Sk = {fj , j = 1 . . . k} and Ŝk = {f̂j , j = 1 . . . k} (the
latter obtained with the Narrow Path Algorithm 3), then

x̂Sk(x) = x̂Ŝk(x). (16)

We see that, in this favorable setting, the obtained features in
Ŝk are mutually decoupled. Moreover, since our inductive
scheme produces a f̂k+1 that is decoupled from the previ-
ous ones, then the features in Ŝk+1 will also be mutually
decoupled.

The proof of (16) is a consequence of our construction,
since in Algorithms 2 and 3 the reference manifolds are
the same thanks to Eq. (12). In addition, we recall Eq.
(15) that compares the gradients of the original and the
modified features when being on the reference manifolds.
Thus, the solution constructed by the narrow path algorithm
is both a valid concatenation of 1-D integration paths for
the decoupled gradients (as we are following them), and
for the original gradients, as projected gradients are linear
combinations of original gradients.

As a corollary, given that the normalization result (and,
thus, also the resulting set of decoupled features) is unique,
if it exists, for a given ordered set S and their corresponding
reference values vref , then in the broad path Algorithm 2
we can simply substitute Ŝk by Sk in its Steps 5 and 6. By
doing that we make it totally equivalent to the narrow path
algorithm. We call this change a relaxation of the broad path
algorithm, and refer to this modified version as its relaxed
version. Besides being much easier to implement, the broad
path in its relaxed version (like the narrow path and unlike
the broad path in its original version), still provides useful
results (but not strictly decoupled) when the Frobenius
condition does not hold on the output features, as discussed
below.

More generally, our previous discussion yields decou-
pling in the case when a subset of the output features
obtained using Algorithm 3 (or equivalent) have gradients
fulfilling the Frobenius condition:

Proposition 3.1. If the set Sk = {fj , j = 1 . . . k} and the
subset Ŝk = {f̂j , j = 1 . . . k}, k ≤ M (the latter obtained from
Ŝ with Algorithm 3 or equivalent, for a given set of reference
values vref ) have gradients fulfilling Frobenius in Sk and Ŝk,
respectively, then all pairs (f̂i, f̂j), i = 1 . . . k, j = 1 . . .M ,
i 6= j, are mutually decoupled in the whole domain Ω.

Note that Frobenius condition is vacuous if k = 1
and consequently, (f̂1, f̂j), for j = 2 . . .M , are decoupled
unconditionally.

If Frobenius condition holds for the gradients of the
original features, but not for those of the transformed
features, their corresponding gradients will still be or-
thogonal on their corresponding reference manifolds, i.e.,
∇f̂i(x) · ∇f̂j(x) = 0, i 6= j, for all x ∈ Rk−1, where
k = max{i, j}. The proof of this fact follows from the
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Fig. 2: Illustration of the NeN algorithm, in its narrow path version. The original vector x is first normalized w.r.t. f1, that is,
it is modified along the gradient of f1 until reaching R1, the reference manifold with all its vectors having f1(x) = v

(1)
REF .

That vector is x̂1(x), and there we can evaluate f̂2(x) = f2(x̂1(x)). From there we follow the projection of the gradient of
f2 onto the local hyperplane tangent to R1 until reaching R2, the set of vectors having (f1(x) = v

(1)
REF , f2(x) = v

(2)
REF ).

That vector is x̂2(x), the normalization of x w.r.t. both f1 and f2. There we can evaluate f̂3(x) = f3(x̂2(x)) (and so on).

nested structure. Indeed, assume without loss of generality
that i < j. Then, in Rj−1, ∇f̂j is the orthogonal projection
over Rj−1 ⊂ Ri−1 of the original gradient, while ∇f̂i is
orthogonal to Ri−1 by Eq. (12). The interest of this comes
from the fact that many times, even if fully decoupling is
not possible, one can still have mutual decoupling over
high dimensional manifolds in Ω. In such situations, and
as a practical consequence, when dealing with probability
distributions it is convenient to choose reference values
that are the expected values of the density function. This
favors obtaining gradients close to mutually orthogonal (see
Figs. 8 and 9, panels (a) and (d), in Subsection 6.2), as
samples will be close to the reference manifolds, where exact
orthogonality holds.

Comparing narrow and broad path versions of the NeN
algorithm, the principal advantage of the broad path (es-
pecially in its much more convenient relaxed form) is that it
provides closed-form solutions in some favorable cases. This
usually translates on its solutions being easier to analyze
and faster to compute. On the other hand, narrow path is
simpler and more systematic at the implementation level,
since it only requires explicit functions for the original fea-
tures’ gradients, and it just relies on numerical integration
along 1-D trajectories.

3.1.4 Normalization of homogeneous features

A key characteristic of the NeN algorithm as we have
presented it so far, is to establish a sequential order among
the features to be decoupled. While there are cases, such that
of marginal moments, for which it is natural to establish a
hierarchical order for normalizing the features, there exist
other situations where this does not apply. An example is,
given a bank of scaled and rotated filters, to obtain features
by applying some functions to the filters’ outputs. In this

case there is no reason to establish a hierarchy among
the features coming from the filters at the same scale, just
rotated in different angles. For these situations, a combined
graph for the extracted features, having both sequential and
parallel nodes seems much more appropriate than a purely
sequential scheme.

Fortunately, the tools we have presented so far can
be readily applied for (i) “simultaneously”(the sequential
order chosen for the integration does not affect the result)
changing an input sample by forcing a set of Pk features to
have their reference values (i.e., normalizing the vector w.r.t.
that set of features), and (ii) obtaining new features that are
functions of the normalized vector (applying Equation (5),
and Section 2.3.3), which we know that will be decoupled
to those Pk parallel features. Therefore, we can easily adapt
our algorithms just by changing some of the sequentially
adjusted features fk by Pk-dimensional features f

(k)

p (not to
be confused with the aggregated maps fk from j = 1 to k),
without changing the underlying logic. It must be noted,
though, that this procedure does not mutually decouple
these parallel features 3.

Algorithm 4 shows our strategy to “simultaneously”
impose a set of reference values to a set of homogeneous fea-
tures, i.e., features having all the same functional expression,
but different parameters {~λj , j = 1 . . . Pk}. The underlying
idea is simple: to express analytically the solution of a single
sequential ODE integration, one ODE excursion for each of
the homogeneous features, and then obtain an analytical
expression concatenating all these excursions. The time val-
ues tj are left as variables, that are computed numerically

3. Mutual decoupling can be obtained by imposing a sequential order
to these homogeneous features. Fully parallel (symmetrical) decoupling
is a hard problem requiring different techniques from the ones pre-
sented here.
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in order to fulfill the normalization (or de-normalization).
Note the difference with Eqs. (14), where the normalization
was obtained by solving a single non-linear equation at a
time (scalar t, instead of a vector t, like now). However,
note as well that the solution of Algorithm 4 can also be
expressed in terms of those equations, by choosing {αj(t)}’s
that activate sequentially single-gradient combinations, at
times {tj}. Finally, it must be also noted that a variant of
the previous algorithm can be used as well for the case of
having homogeneous features not in parallel, but hierarchi-
cally ordered (e.g., second-order moment at the output of
a bank of filters). In that case we can apply Algorithm 4
to hierarchically normalize nested subsets of features, as a
particular procedure for computing Step 6 in Algorithm 2.
In Subsection 4.2 we study the different alternatives to

Algorithm 4 Normalization of homogeneous features

Require: x0 ∈ Ω \ Λ, S̃k = {fj,k(x) = f̃k(x;~λj)},
{vrefj,k }, j = 1, . . . , Pk

1: Solve for generic ODE yk(t;~λ,x) (analytically)
2: Initialization: x0,1 = x
3: for j = 1 to Pk − 1 do
4: x0,j+1 = yk(tj ;~λj ,x0,j)
5: end for
6: t = [t1, . . . , tPk ], L = {~λ1, . . . , ~λPk}
7: Solve for ỹk(t;L,x) = x0,Pk (analytically)
8: Solve for t̂ = argt{fj,k(ỹk(t;L,x0)) = vrefj,k }

Pk
j=1

9: return x̂S̃k(x0) = ỹk(t̂;L,x0)

approximately decouple the second-order moments at the
output of a set of hierarchically ordered filters, among which
Algorithm 4 provides the most systematic approach still
providing (partially) analytical solutions.

3.2 Feature Transfer
An essential characteristic of the integration along the di-
rection of one or several gradients is its reversibility. First,
the adjustment of a set of feature values, under the given
constraints and assumptions, is always possible for every
x ∈ Ω \ Λ, whenever the set of desired values are alge-
braically compatible (see Proposition 2.3). It is also true,
in particular, that we can de-normalize a normalized vector
(whenever the reference manifold itself is also contained
in Ω \ Λ), not just for recovering the original vector (as
pointed out in the property (iii) from Proposition 2.4), but
also for imposing whatever new feature values we may
aim for. Thus, the good properties of the NeN analysis
methodology presented so far allow us to change the role
of vector transformation (by integrating the gradient flows)
from instrumental to the main goal, and, as such, changing
the focus from analysis to feature transfer or even synthesis.

However, before going into how to do that, it is impor-
tant to realize that a set of mutually decoupled features
have their joint range decoupled, as shown next. Given
two features fi and fj it is immediate to assess that the
decoupling condition of Eq. (2) implies that a local change
in x along the gradient of one of the features does not affect
the value of the other feature. More precisely, let us assume
Ŝ is a set of decoupled features defined in a set Ω̂ \ Λ̂.

Since we can modify each feature within its whole range by
navigating along its one-dimensional flow, independently of
the values of the other features, we obtain as a corollary that

Rg(f̂) = Rg(f̂1)× . . .× Rg(f̂M ) (17)

in the set Ω̂ \ Λ̂.
The problems of finding the largest admissible domain Ω̂

for the decoupled set of features (which implies knowing the
location and subsequently excluding all its critical points, C1
condition), and the set Λ̂ of basins of all their saddles, as well
as the range of each decoupled feature, are not trivial, and
depend on the particular set of features. Thus, we leave that
analysis for Section 4 and the Appendix C (C.1.1 and C.2.1),
where the decoupling of two particular sets of features is
studied in detail.

3.2.1 Peeling the onion and covering it back with new layers
Now, the decoupling range property (17) allows to modify
a signal by enforcing arbitrary desired values (each within
its valid range) for the decoupled features without iterative
corrections, opening up an unprecedented scenario.

We show below how to achieve this by means of our
NeN algorithm. All we need is applying the following 3-
step procedure: (i) obtaining a set of desired decoupled
features vdes we want to transfer, either by applying any
of the NeN analysis algorithms we have presented so far
to some target vector data y, or simply by choosing any
combination of decoupled features’ values within their valid
range; (ii) normalizing the source vector data x (the one
we want to transform) up to the M − 1-level; and (iii)
de-normalizing the previously normalized data, in reverse
order, until achieving for each decoupled feature f̂k the
same value vdesk previously measured/chosen in step (i).
More formally:

(i) vdes = f̂(y)

(ii) ŵM−1(x) = x̂S(x;vrefM−1)

(iii) zf (x;vdes) = x̌S(ŵM−1(x);vdes),

where we have used the symbol ˇ to indicate de-
normalization. Thanks to the reversibility of the whole
process (based on the reversibility of each ODE integration),
the resulting transformed data vector zf shares the same
exact decoupled features vdes with the target vector, and
the same normalized kernel ŵM−1 with the source vector x:

ŵM−1(zf ;vrefM−1) = ŵM−1(x;vrefM−1)

f̂(zf ) = f̂(y),

Figures 3 and 4 illustrate this process. In Algorithm 5
we describe the de-normalization steps using the (reversed)
narrow-path algorithm.

This approach to feature transfer, termed Controlled
Feature Adjustment in [2], and applied to photo-realistic
style transfer in [28], opens up a new catalogue of transfer
and synthesis possibilities, as explained in those references.

3.3 Critical points and perturbations
3.3.1 Critical points
In this subsection we look at the conditions (assuming B1,
B2, C1, C2 hold) for the critical points of the decoupled fea-
tures obtained using the NeN algorithm. This will be needed
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Analysis via Normalization Transfer via De-normalization

Fig. 3: Feature transfer can be done as a sequence of (i) extracting decoupled features in a target vector data, (ii)
normalization of the source data (both (i) and (ii) represented on the left), and (iii) de-normalization of the data normalized
in (ii), by imposing the features vdes measured in (i), in reverse order (on the right). See Algorithm 5.

Algorithm 5 NeN, De-normalization (narrow path).

Require: ŵM−1 ∈ Ω \ Λ, fref ∈ Rg(f), fdes ∈ Rg(f̂)
1: Initialization: ẑM = ŵM−1
2: for k = M to 1 do
3: y(0) = ẑk
4: Compute gk = PRk−1

(∇fk)
5: Follow gk until fk(yk(t)) = vdesk

6: ẑk−1 = y(t)
7: end for
8: return zf = ẑ0

in order to establish the range of the newly constructed
features.

The critical points of a feature f̂k are those points x∗k
satisfying∇f̂k(x∗k) = 0. As, when using the Nested Normal-
ization algorithm, we have that ∇f̂k = PRk(∇fk) within
Rk−1, the critical point condition corresponds to the orthog-
onality of ∇fk to the reference manifold Rk−1. Because, by
the definition of reference manifold, the local tangent space
at x ∈ Rk−1 is the orthogonal complement of the linear
span L({∇fj}k−1j=1 ), having a null projection on that local
plane implies in this case that∇fk ∈ L({∇fj}k−1j=1 ), i.e., that
there exist {λj,k ∈ R}k−1j=1 not all zero such that:

∇fk(x∗k) =
k−1∑
j=1

λj,k∇fj(x∗k). (18)

(Note also that a trivial solution of Eq. (18) comes from
having common critical points of the original features for
orders j < k, for which both sides of the equation vanish.)
This is precisely the same condition as C1.

By introducing the (known) structure of the gradients,
we obtain a general expression for the critical points (which,
by the structure of the NeN method, are not isolated, but
entire submanifolds). In addition, by using the previous
equation plus the constraints derived from x∗k ∈ Rk we
obtain the expression of the critical points of f̂k on Rk (see
the corresponding calculations in the two study cases, in
Section 4).

Finally, it is important to note that decoupled features at
level j are not defined at critical points of decoupled features
at level i, for i < j. The reason is that iso-level sets of
the feature j all cross orthogonally the iso-level sets of the
feature i, until converging all to a critical point (maximum or
minimum, a source or a drain of the gradient field of feature
i), and therefore the feature j is not defined there. This is
a direct consequence of the normalization x̂i(x) requiring
the existence of a non-null gradient∇fi(x) for initiating the
ODE trajectory that adjusts the i-th feature to its reference
value, a previous step for computing f̂i+1(x) = fi+1(x̂i(x)).
Figure 5 (comparing the orthokurtosis to skewness and
kurtosis) may help to understand the involved concepts.

3.3.2 Introducing perturbations to avoid spurious basins
We have imposed that the domain in which the features in
S are defined, Ω, is free from critical points. A practical way
to choose the common domain Ω for a set of features S is to
find the largest admissible set, consisting of the intersection
of the domains on which each feature is defined, and then
to remove from it all critical points.

We have also assumed B1-B2 conditions, i.e., that the
basins of attraction of critical points other than the absolute
maxima and minima are a set Λ of submanifolds with a joint
dimension lower than that of Ω. In that case, it is well known
that a small perturbation of a point inside these basins will
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Fig. 4: Three-step feature transfer using de-normalization, within the Nested Normalization framework. The left half of
the figure represent the normalization+analysis process (first and second steps, in parallel), and the right half of the figure
(converging arrows) is the de-normalization+transfer process (third step).

take it back into Ω \ Λ with probability one.4 We should
also verify that for almost all x ∈ Ω \ Λ, the perturbed (x +
ε) will remain in Ω \ Λ5. At which stage should we add a
perturbation, then? The simplest solution, because it does
not even require to check if x ∈ Λ, is to always add the
perturbation just before performing gradient integration.

In addition, in the context of a real application, there
are two more concerns on the practical impact of the above
constraints and assumptions: (i) usually, real-world signals
are quantized, and, thus, they are not in RN , but in a finite,
numerable subset. In particular, within a quantized repre-
sentation, it is no longer true that the probability of falling on
a lower dimension basin of attraction of a spurious critical
point is zero. Actually, quite the opposite, signal quantiza-
tion will reduce the entropy and favor the symmetry. (ii)
Whereas being directly on a spurious basin of attraction (of
a saddle) will make our method to eventually get stuck,
that is not the only problem. Close-distance neighbor points,
although outside those basins of attraction, may be affected
negatively in terms of the speed of convergence of the
differential equations, and should be avoided. Same can be
said about the adjustment of features to values too close
to their absolute extrema, especially when using numerical
integration because of lacking analytical solutions.

3.3.3 Choosing a suitable perturbation
Critical points, as we will see in the study cases (Section 4),
are typically points presenting low entropy configurations
(high symmetry, a few repeated values/patterns, etc.). The
role of the added perturbation is to increase the entropy of
the signal in a suitable way, without affecting its relevant
(e.g., perceptual) features. Here is a list of desirable charac-
teristics of a perturbation ε on a digital signal:

4. Although it is very easy to fabricate ad-hoc counter-examples,
these counter-examples will never happen by chance using continuous
perturbation densities in RN .

5. Idem previous footnote.

• it should not cause a direct loss of information, i.e.,
q(x + ε) = q(x) = x, where here q(·) represents the
quantization already present in x,

• it should be reproducible,
• it should increase the entropy (break the symmetry),
• it should not affect the operational conditions (e.g.,

not noticeable under human observation).

Among previous characteristics, the third and fourth ones
discourage us from naively using noise-like perturbations
(i.i.d. pseudo-random coefficients), because they may pro-
duce (i) some samples having very close values (just by
chance); and (ii) noticeable (e.g., visual, auditory, etc.) ar-
tifacts, because of introducing unnecessarily large differ-
ences among neighbors. In appendix subsections C.1.2 and
C.2.1 we propose ad-hoc perturbations for two different
decoupling problems. In both studied cases the perturbation
aims at increasing the entropy of the signal, by increasing
the number either of the distinct signal values or of the
active frequencies in the Fourier domain. As such, these
perturbations expand the decoupled feature ranges to their
theoretically broadest possible intervals.

4 TWO STUDY CASES

4.1 Marginal Moments
We study here the problem of hierarchically decoupling the
first M sample moments:

S =

{
fj(x) =

1

N

N∑
n=1

xjn

}M
j=1

.

First of all, we check that in this case the Frobenius condi-
tion C2 holds (see Appendix B for a proof). Therefore, the
corresponding set of gradients defines a proper invariance
submanifold and we can use the broad path from Subsec-
tion 3.1.1. This fact will be crucially exploited for computing
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in a quasi-explicit way the fourth-order decoupled moment,
that we termed the orthokurtosis. In Section 6 we will show
how the pair skewness-kurtosis is clearly inferior for several
analysis tasks than the couple skewness-orthokurtosis.

To fix notations, we will use for the normalization the
moments of a zero-mean uni-variate Gaussian distribution:

vrefj =

{
(2j)!/(2jj!) for j even,
0, for j odd.

4.1.1 Analytic solutions: a path to the orthokurtosis
First, the gradient of the sample mean (the sample mean is
both f1 and f̂1) is:

∇f̂1(x) =
1

N
1,

and the normalization comes from solving the ODE

dy1(t)

dt
=

1

N
1

starting from y1(0) = x and finding t1 = argt{f1(y1(t)) =
0} (recall that R1 = f−11 (vref1 ) = {z ∈ Ω : f1(z) = 0}). The
normalization will then be x̂1(x) = y1(t1). In this case the
solution is straightforward:

y1(t) = x +
1

N
t

f1(y1(t)) = f1(x) +
1

N
t

t1 = −Nf1(x)

x̂1(x) = x− f1(x)1,

which corresponds to the original vector with the sample
mean subtracted to every sample. Now we obtain the next
decoupled feature, f̂2(x) = f2(x̂1(x)):

f̂2(x) = f2(x− f1(x)1),

which is a (biased) version of the classical sample variance.
Now we compute its gradient,

∇f̂2(x) =
2

N
x̂1(x)

=
2

N
(x− f1(x)1). (19)

Because of the irrelevance of the factor 2/N for the sub-
sequent calculations, we drop it. Now we can modify f̂2
by moving along its gradient without leaving R1, until
reachingR2 = f−12 (vref2 ) = {z ∈ Ω : f1(z) = 0, f2(z) = 1}.
Now y2(0) = x̂1(x),

dy2(t)

dt
= (y2(t)− f1(y2(t))1) .

This ODE simplifies by noting that, when the gradient has
zero sample mean, the sample mean can not change when
integrating it (the resulting curve belongs to R1). As the
initial value has zero mean, f1(y2(t)) = 0 ∀t, the ODE
simplifies to:

dy2(t)

dt
= y2(t),

whose solution log(y2(t)) + C = t1 results in

y2(t) = exp(t)x̂1(x),

by enforcing y2(0) = x̂1(x). We see that f2(y2(t)) =
f2(x̂1(x)) exp(2t) and the t value intersecting with R2 is
t2 = −1/2 log(f2(x1(x))). Then

x̂2(x) = y2(t2) = x̂1(x)/

√
f̂2(x).

We see that this second normalization is the standardization
of x. Now we can compute the next decoupled moment
f̂3(x) = f3(x̂2(x)):

f̂3(x) = f3

(
x− f1(x)1√
f2(x− f1(x)1)

)
, (20)

which is the sample skewness. Here again, we compute
∇f̂3(x) on R2 by differentiating in Eq. (20). We obtain:

∇f̂3(x) =
3

N

(
x̂2(x)�2 − f̂3(x)x̂2(x)− 1

)
, (21)

where we use the symbol “�” for representing a pointwise
scalar operation for the vector coefficients (here a power).

Unlike in previous cases, now the resulting ODE equa-
tion dy3(t)

dt = ∇f̂3(y3(t)) has no known closed-form solu-
tion. However, we note two facts. First one, as mentioned
above, the original gradients fulfill the C1-C2 conditions
and, thus, define a proper invariance submanifold. Second,
in this case we observe that the linear span of {∇f̂j(x)}3j=1

is the same as the linear span of {∇fj(x)}3j=1, ∀x ∈ Ω.
As a consequence, both sets of features produce the same
invariance submanifolds. Thus to compute the normaliza-
tion, it is equivalent to use both broad path (Algorithm 2)
or its relaxed version. In particular, using the gradients of
the original features instead of the decoupled ones allows
to find a closed-form solution for the normalization. More
precisely, we proceed as follows: first find a solution by
following ∇f3 until achieving zero skew, and then stan-
dardizing that result, i.e., imposing also zero-mean and
standard deviation one. The latter adjustments are a shift
and re-scaling that correspond to moving along ∇f1 and
∇f2, admissible operations within the submanifold, that do
not affect the zero-skew condition. Thus, we can pose the
much easier Ricatti ODE equation obtained moving along
the ∇f3, dz3(t)

dt = ∇f3(z3(t))6:

dz3(t)

dt
=

3

N
(z3(t))2,

with z3(0) = x̂1(x), whose solution is (because of its
irrelevance for the next calculations, we ignore the 3

N factor):

z3(t) = x̂1(x)� /(1− tx̂1(x)). (22)

Then we find a numerical solution for

t0(x) = argt{f̂3(x̂1(x)� /(1− tx̂1(x))) = 0}, (23)

and we obtain the third-order normalization by standardiz-
ing z3(t0(x))7:

x̂3(x) = x̂2 (x̂1(x)� /(1− t0(x)x̂1(x))) .

6. This is not the only possibility for obtaining analytic solutions
for the normalization, although it seems the best, in this case. Note
that other integrable gradients, such as z3(t)2 − 1 (giving rise to an
hiperbolic tangent solution) have a reduced range and converge to
spurious stationary solutions.

7. It is easy to check that Eq. (22) always has solution
within the open interval (1/min(x̂1(x))), 1/max(x̂1(x))) (note that
sign(min(x̂1(x))) 6= sign(max(x̂1(x))) for all x 6= 0).
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Finally, this allows us to define the fourth-order decoupled
moment as f̂4(x) = f4(x̂3(x)). We have termed this new
decoupled sample moment f̂4 the orthokurtosis, a function
that, unlike the classical standardized fourth-order sample
moment (the kurtosis) is not just decoupled from the mean
and variance, but also from the skewness.

Note that the computation of the orthokurtosis includes
a non-explicit function, namely t0(x). Although we could
apply a similar strategy for obtaining closed-form solutions
(up to the integration parameter value) for decoupling
higher-order moments by integrating separately along in-
teger power gradients, that would not provide us with
efficient solutions, because we would still need to numer-
ically find the parameter t0 for which the reference value
for the decoupled moment is reached. For instance, for
computing the fifth order decoupled moment we need to
normalize the orthokurtosis. This implies evaluating every
time in a loop this function, which, in turn, requires the
normalization in loop of the skewness. In summary, once
there are no fully analytic expressions, computationally
expensive nested search loops appear, and a piece-wise 1-
dimensional ODE integration strategy (as the one described
in Algorithm 3) is preferable.

Finally, it is worth emphasizing how the first three
decoupled moments obtained using the NeN algorithm are
precisely the classical standardized moments: mean, vari-
ance and skewness. This clearly reflects how our method
has captured the pre-existing natural intuitions about de-
coupling features through normalization. However, the next
standardized moment, the kurtosis, breaks the pattern of
being decoupled from all previous standardized moments,
as it is algebraically coupled to skewness. This algebraic
coupling has been previously noted, and some solutions
have been proposed (see, e.g., [16]). Previous efforts have
not aimed at orthogonalizing the involved gradients, and
the few proposed modifications of the kurtosis lack a theo-
retical foundation and have proven inferior in their practical
application to the solutions presented here (see Fig.12 in
Section 6).

Figure 5 illustrates the orthogonalization of the kurtosis
with respect to the skewness, giving rise to the orthokurto-
sis. It shows the actual iso-level curves, for the case ofN = 4
(for visualization purposes, a dimension has been removed,
namely forcing that the solutions belong to the hyperplane
µ(x) = 0). Each trajectory shown in the orthokurtosis
representation has been actually computed by integrating
the projected gradients, starting from a randomly perturbed
maximum of the skewness (a perturbation is necessary,
because the new function is not defined at the skewness’
critical points) and finishing in one minimum.

4.1.2 Beyond orthokurtosis: higher-order approximately
decoupled moments

As explained in Section 3, universal and exact feature decou-
pling is only possible when the gradients obtained by any
of the proposed algorithms fulfill the Frobenius condition
C2. The gradient of the orthokurtosis, together with the gra-
dients of its preceding decoupled moments (sample mean,
variance and skewness), no longer fulfill C2 condition.
Therefore, an exact unconstrained hierarchical decoupling

Fig. 5: Visual represention of sample skewness (up), kurtosis
(middle) and orthokurtosis, the new fourth-order normalized
moment (bottom). Dark curves (at all three panels), and
coloured curves (at the bottom), are actual iso-level curves.
Yellow/bright represents high values, and blue/dark low
values. At the bottom panel, the iso-orthokurtosis colored
curves are drawn over the iso-skewness curves (black) to
show mutual orthogonality. Note how the orthokurtosis is
not defined at the extrema of the skewness.

solution is not possible beyond four-order moments. Nev-
ertheless, as shown in Section 3.1.3, gradients orthogonality
can still hold exactly within the reference manifolds and, as
shown in Section 6.2, approximately outside of them.

Thus, in a looser sense of “decoupling”, the lack of
analytic solutions fulfilling Frobenius beyond the fourth
order is not an insurmountable obstacle for computing
higher-order approximately decoupled moments. In fact,
we have seen (Proposition 2.4 and posterior discussion,
in Subsection 2.3.3) how easy is to compute the gradi-
ent of a decoupled feature ∇f̂k(x) if we constrain x to
belong to the reference manifold Rk−1. In that case it
holds ∇f̂k(x) = gk(x) = PRk−1

(∇fk(x)), where PRk−1

is the projection operator on the local tangent plane to
Rk−1 in x, x ∈ Rk−1. As the orthogonal space to that
tangent plane is the linear span of the previous gradients
∇fj , j = 1 . . . k − 1, the projection can be computed by
finding a linear combination of all gradients (including∇fk)
that is orthogonal to the previous gradients. Because in our
case the original gradients are made of “monomial vector”
of increasing orders, it is easy to solve the triangular system
of equations resulting from equating their inner products to
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zero [6], yielding the projected gradients (a set of orthogonal
vectors):

g1(x) =
1

N
(1)

g2(x) =
2

N
(x− f11)

g3(x) =
3

N

(
x�2 − f21− a2,3g2(x)

)
...

gk(x) =
k

N

x�k−1 −
k−1∑
j=1

aj,kgj(x)

 , (24)

with

c
(`)
i,j =

{
fi+j − fifj if ` = 1,

c
(`−1)
i,j c

(`−1)
`−1,`−1 − c

(`−1)
`−1,i c

(`−1)
`−1,j if ` > 1,

aj,k =

{
fk−1 if j = 1,

c
(j−1)
j−1,k−1/c

(j−1)
j−1,j−1 if j > 1.

We remind the reader that, in general, gk = ∇f̂k only for
points belonging to their corresponding reference manifolds
(the k-th gradient is computed and applied in the Rk−1
manifold). Some of them may get simpler expressions when
imposing the corresponding reference values (particularly,
lower than order k odd moments vanish if we take as refer-
ence the moments of even symmetric pdf’s, e.g., Gaussian).
They have the cross-invariance property, i.e., by integrating
a curve along the k-th decoupled gradient we do not change
the previous featuress fj , f̂j j = 1 . . . k−1. Although in this
case we obtained a closed-form (recursive) solution for the
gradient projection, in case of lacking close-form expressions
we can always apply a purely numerical orthogonalization
method to the gradient vectors of the original features (like
Gram-Schmidt).

In our practical examples of applying decoupled mo-
ments to signal analysis in Section 6, we demonstrate the
usefulness of higher than four order decoupled moments.
This is, we believe, a relevant result, as the original moments
of so high order are very rarely used in the literature due to
their instability and high redundancy.

4.2 second-order moments at the output of a set of
filters

We study here the problem of hierarchically decoupling
second-order moments measured at the output of a set of M
linearly independent band-pass (zero DC-response) filters:

S =

{
fj(x) =

1

N

N∑
n=1

[x ∗ hj ]2n

}M
j=1

.

Such a set of features provides an economical description of
the auto-correlation of x. We will use for the normalization
{vrefj = fj(w)}Mj=1, being w = Nδ, a scaled Kronecker
delta. This is equivalent to taking for reference values the
expected value of fj(y) for y a vector made of i.i.d. zero-
mean and unit variance coefficients. This choice for refer-
ence values, being the values of the functions applied to a
given vector w, guarantees the algebraic compatibility of

vref , regardless of the chosen set of filters {hj}. In addition,
it makes the normalization to whiten the input.

Same as in previous Subsection 4.1, we first check that in
this case the Frobenius condition C2 holds for the original
gradients (see Appendix B for a proof), and, therefore, the
corresponding set of gradients defines a proper invariance
submanifold. This allows us to apply Algorithms 2 (in its
relaxed form), 3 or 4 for trying to decouple these features,
and see a posteriori if Frobenius condition also holds on the
gradients of the obtained features.

4.2.1 General analytical approach
We first obtain the feature gradients and study their integra-
bility. We have:

∇fj(x) =
2

N
x ∗ hj ∗ h̃j ,

where h̃j(n) = hj(−n). To simplify this expression and its
subsequent integration, we express it in the Fourier domain,
by doing the DFT of x and h:

Gj(X(ξ)) = F{∇fj(x)} =
2

N
|Hj(ξ)|2X(ξ), (25)

where ξ represents the (possibly vectorial, for n-D signals,
n > 1) discrete frequencies, and, as usual, upper case letters
represent the Fourier transforms of their original lower-case
counterparts (except for G, that corresponds to the Fourier
transform of the gradient of the features).

In order to normalize the first k features, following the
broad path algorithm, we can write the relaxed version of
Eq. (13) in the Fourier domain as:

dYk(ξ, t)

dt
=

2

N

 k∑
j=1

αj,k|Hj(ξ)|2
Yk(ξ, t),

for some convenient choice of the integration path, encoded
by the coefficients ~αk. Setting Yk(ξ, 0) = X(ξ) and call-
ing L(ξ; ~αk) the filter of the sum in brackets in previous
equation, the integration of the initial value problem for
computing the signal normalization is straightforward:

Yk(ξ, t; ~αk) = X(ξ) exp
( 2

N
L(ξ; ~αk)t

)
. (26)

To obtain x̂k(x,vref ), we first normalize α1,k = 1 and then
solve for

(~αrefk , trefk ) = arg
~α,t

{∑
ξ

|Hj(ξ)|2 |Yk(ξ, t; ~αk)|2 = vrefj

}k
j=1

(27)
Finally, X̂k(ξ) = Yk(ξ, trefk ; ~αrefk )}, and x̂k(x,vref ) =
F−1{X̂k(ξ)}. Solving the non-linear system of k equations
and k unknowns of Eq. (27) will require a numerical com-
putation in a general case. However, it may also have
simplified solutions in some special cases, as we will see
in next subsection.

An equivalent possibility for computing x̂k(x,vref ) con-
sists in following the Algorithm 4: calculating analytically
the result of a generic ODE excursion using a single gradient
∇fj from a given point, with αj,k = 1, as a function of
tj,k (initially left as unknown), Step 1. Then we concatenate
these 1-D trajectories (Steps 2-5) into a final analytical so-
lution depending on tk = [tj,k], j = 1 . . . k (Step 7). It is
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easy to see that such analytical solution has the same form
of Eq. (26) (but depending on a set of consecutive times
tj,k, instead of αj,k), and that the Step 8 of that algorithm,
which enforces the solution achieving all k reference values
in fk(x), is equivalent to Eq. (27).

4.2.2 A case including two complementary filters
Let us consider a Parseval frame representation [30] using
two filters, H1(ξ), H2(ξ) fulfilling |H1(ξ)|2 + |H2(ξ)|2 = 1,
e.g., a low and high-pass kernels of a redundant wavelet
transform. Here the features are simply fj(x) = σ2

j (x), j =
1, 2. Since the Euclidean metric is preserved, we have σ2

1 +
σ2
2 = σ2, the total signal variance (for simplicity sake we

assume here zero mean).
For normalizing the first feature, we integrate its corre-

sponding gradient, obtaining:

Y1(ξ, t) = X(ξ) exp
( 2

N
|H1(ξ)|2t

)
.

As usual, we then find the t parameter providing us the
desired reference value:

tref1 (x) = arg
t

{∑
ξ

|H1(ξ)|2 |Y1(ξ, t)|2 = vref1

}
and we obtain x̂1(x) = F−1{Y1(ξ, tref1 (x))}, from which
we obtain the decoupled feature f̂2(x) = f2(x̂1(x)).

If we wanted to normalize also the second feature (e.g.,
in order to add more decoupled features), we could move
along the gradient of the second feature, but, at the same
time, control that the first feature does not change its value
(this is equivalent to project ∇f2 onto R1). We can achieve
that by dividing by the square root of the first feature
evaluated for each t. Such an adjustment is valid in this
case because it corresponds to moving along the sum of
the two gradients (which in this case corresponds to simply
applying a scale factor to the vector):

Y2(ξ, t) =
X̂1(ξ) exp( 2

N |H2(ξ)|2t)√
(vref1 )−1

∑
ξ |H1(ξ)|2 |X̂1(ξ) exp( 2

N |H2(ξ)|2t)|2
,

(28)
thus enforcing that

∑
ξ |H1(ξ)|2|Y2(ξ, t)|2 = vref1 . Same as

before, we solve for the t value that achieves the desired
normalization:

tref2 (x) = arg
t

{∑
ξ

|H2(ξ)|2|Y2(ξ, t)|2 = vref2

}
and we obtain x̂2(x) = F−1{Y2(ξ, tref2 (x))}, from which
we could obtain another decoupled feature from any arbi-
trary (non-trivially redundant) feature g(x); indeed, ĝ(x) =
g(x̂2(x)).

Note also that Eq. (28), although looking quite differ-
ent from Eq. (26), is a particular case of the latter with
α1,2 = tref1 − ν, α2,2 = tref2 − ν, ν being the logarithm
of the square root in the denominator of Eq. (28). No matter
the adjustment method applied here may seem arbitrary,
the fulfillment of Frobenius conditions on the gradients of
the original features guarantees, jointly with the additional
constraints explained in Section 2, that the result of such
normalization exists and is unique, as it only depends on
the reference values of the adjusted features, and not on the

choice for the coefficients α’s in the linear combinations of
the feature gradients, in the ODEs.

Finally, although not mathematically proven here8, it
turns out that the resulting gradients of the new features ob-
tained in this case do not fulfill the Frobenius condition. This
implies that strict gradients’ orthogonality only holds for
all pairs within their reference manifolds, and in the whole
domain for the pairs (f̂1, f̂j), j = 1 . . .M , as explained in
Subsection 3.1.3. Nevertheless, we have obtained gradients
that are very close to being mutually orthogonal also in the
other cases when applying a set of bar and edge detectors
both to white noise and to textured patches of photographic
images (see Fig. 9 in Section 6.2).

4.3 A summary of feature-decoupling scenarios
Table 1 summarizes the different situations one may en-
counter when trying to apply the decoupling framework
proposed here to decouple a given set of ordered features.
From less favorable to more favorable, the first scenario is
when we do not have an explicit expression of the original
features gradients. The most extreme case would be that
each of our features is a black box function. In that case, a
very computationally costly numerical procedure (such as
described in Section 6.2, see Eq. (33)) is the only option for
approximately computing the gradients. A better situation
is when using artificial neural networks (ANNs) with au-
tomatic differentiation for computing the gradients of the
cost functions. In that case we can evaluate the gradients
with a reasonable cost (and apply numerical integration,
using the narrow-path algorithm), but we may not be able
to assess the fulfillment of the Frobenius condition for the
original features beyond the first layer. As such, we should
not expect a strict and universal decoupling beyond the
second feature (the second layer, if we decouple in a layer-
wise fashion). For those features, it becomes an empirical
matter to test how far new gradients typically are from being
mutually orthogonal.

Second scenario corresponds to knowing the explicit ex-
pressions of our features and their gradients, and knowing
that they do not jointly fulfill the Frobenius condition. In
that case we can still apply the narrow-path version of NeN
and, again, test empirically how far the resulting gradients
of the (approximately) decoupled features are from being
orthogonal. This corresponds, for instance, to the case of
higher-than-two order moments at the output of a set of
filters.

Third scenario is when we know the analytic expressions
of the gradients of the original features and they fulfill
Frobenius. In that case the definitions of Section 2 for the
decoupled features apply for finding decoupled features
to the original ones, and we may end up finding explicit
expressions for their gradients. However, in this scenario
these gradients turn out not fulfilling Frobenius condition.
First, we recall that the first decoupled feature is just the
first feature f̂1(x) = f1(x), as always, and, for that reason
S1 = Ŝ1, so the broad-path algorithm applied to obtaining
the second decoupled feature is the same as its relaxed ver-
sion. Furthermore, the second feature is exactly and univer-

8. Explicit expressions of the second decoupled feature’s gradient can
be obtained through implicit derivation.
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sally decoupled, as Frobenius condition becomes vacuous in
1-D. However, if we are able to compute both gradients and
they do not fulfill the Frobenius condition, we then know
that no added third or following features will be universally
and exactly decoupled from the two previous ones. Still, we
may find exact constrained decoupling solutions: the output
features will be exactly decoupled within the corresponding
reference manifolds, but only approximate outside them.
Again, finding how close to be orthogonal are the gradients
outside those manifolds requires an empirical measurement.
An example of this situation is when decoupling the second-
order moments at the output of a set of filters overlapping
in the Fourier domain.

Finally, the most favorable scenario corresponds to being
able to obtain explicit expressions for the input (coupled)
and output features (by using the broad-path NeN algo-
rithm, Algorithm 2, either in its original form or in its
relaxed version) and their corresponding gradients, and that
the two sets of gradients fulfill Frobenius condition. In this
case we obtain the full decoupling solution, which we know
is unique, universal and exact. In addition, in this case
there is a joint equivalence relationship between the set of
original features and the obtained decoupled set. E.g., when
decoupling the first three marginal moments, the decoupled
result (sample mean, variance and skewness) jointly carries
exactly the same information as the original set (first, second
and third-order moments). When adding the fourth-order
moment we obtain another exact and universally decou-
pled feature (the orthokurtosis). However, because of the
gradient of the orthokurtosis no longer fulfills Frobenius
condition jointly with the lower order gradients, then: (1)
the joint equivalence relationship between coupled and de-
coupled moments up to order four does not hold anymore,
and (2) we can not further obtain exact universal decoupling
for any added feature to this set (and, in particular, for any
higher-order moments).

5 DETERMINISTIC DECOUPLING AND LOCAL DE-
CORRELATION

Here we show how features’ decoupling removes local
covariance in the feature space, and how this improves
discrimination.

5.1 Covariance-free “balls” in the feature space
Let x ∈ RN be a random vector made of N i.i.d. samples
obeying a probability distribution p(x). Let us assume a fea-
ture set S of M global features {fj}. Define a vector c ∈ RM
containing the expected value of the features fj(x) for
different realizations of x, i.e., cj = E{fj(x)}, j = 1 . . .M .
Define a manifold A(c;S) = f−1(c), i.e., the manifold
containing the set of all vectors x having the same c (note
that it is non-degenerate by our initial assumption). Describe
vector samples as xi = x0i + di, where x0i ∈ A, and di is a
(relatively small) sampling fluctuation, with E{di,kdi,l} = 0,
k, l ∈ [1, . . . , N ], for all k-th and l-th components of the
vector di.

Proposition 5.1. (Decoupled features are locally uncorre-
lated). Under previous assumptions, for N large, decoupled fea-
tures will have uncorrelated deviations from their expected values,
i.e., E{(f̂n(x)− cn)(f̂m(x)− cm)} ≈ 0, n,m ∈ [1, . . . ,M ].

Fig. 6: A representation of the expected feature vector
manifold in the input space domain, showing some input
samples, and the influence of feature gradients’ correlation
on the correlation in the feature domain.

Proof. For N large, features’ values, as they behave like
sample statistics (see Eq. (1)), will not deviate much from
their expected values and thus vector samples {xi} will
be located in the vicinity of A. Thus, a first-order local
approximation can be applied, which gives

fj(xi) ≈ fj(x0i) +∇fj(x0i) ·di = cj +∇fj(x0i) ·di. (29)

Therefore, E{(fn(x) − cn)(fm(x) − cm)} ≈ E{(∇fn(x0) ·
d(x0))(∇fm(x0) · d(x0))}, yielding the covariance:

Cov(fn, fm)(x) ≈ σ2
d∇fn(x0) · ∇fm(x0), (30)

where σ2
d is the expected quadratic dispersion of the features

fluctuations.

In the decoupled features case gradients are mutually
orthogonal, and thus vector differences for the different fea-
tures will be uncorrelated. In contrast, when using coupled
features, di is projected onto non-orthogonal directions,
leading to correlated sampling fluctuations in the feature
space, as illustrated in Figure 6.

5.2 Features’ covariance and discriminability

Let us assume now that our pdf depends on a parameter
θ, p(x; θ). Consider also a global feature transformation
f(x) : RN → RM meant to be applied to vectors x(θ) ∈ RN
made of samples from p(x; θ). How well can we discrim-
inate samples coming from similar values of θ, based on
f(x(θ))? For studying this problem it is convenient to rep-
resent the samples x(θ) using an intermediate stochastic
sample x0 ∼ p(x; θ0) that does not depend on θ; then
we obtain the final sample by applying a deterministic
invertible mapping sθ : R → R of x0 depending on θ:
x(θ) = sθ(x0), such that x(θ) ∼ p(x; θ) (re-parametrization
trick [31], [32].
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TABLE 1: Four feature decoupling scenarios.

# S C E N A R I O
1 2 3 4

Original Feat. Gradients: Analytic Expression Non-Explicit Yes Yes Yes
Frobenius ? No Yes Yes

Output Feat. Gradients: Analytic Expression ? No Yes (2) Yes
Frobenius ? No No Yes

Joint Equivalence Coupled/Decoupled Set No No No Yes
Does accept one additional decoupled feature? No No No Yes

NeN Applicability:
Computation Heavy/? Medium Medium Light

Algorithm 3 3 3,4 2,3,4
Decoupling 1 layer Approx/Constr Approx/Constr Exact&Univ.

Example (See Table 2 for acronyms’ description) ANN MF (p > 2) MF (p = 2) MM (p ≤ 3)
See Secs.& Refs. Future Work 6.4, 6.4.2 & [6], [7] 4.2, 6.2.2 & [2] 4.1, 6.4.1, 6.2.1, 6.3

This allows us to study the dependency of the expected
feature vector f̄ on θ, by expressing:

df̄(θ)

dθ
=

dE{f(x(θ))}
dθ

= E
{
Jf
dx(θ)

dθ

}
= E

{
UfSfV

T
f

dx(θ)

dθ

}
, (31)

where Jf is the Jacobian matrix of f and UfSfV
T
f is its

singular value decomposition, SVD (we have omitted here
their dependency on x(θ) for brevity). On the other hand,
from Eq. (30) we can write the expected local covariance
matrix C(θ) of the features fluctuations, as:

C(θ) ≈ σ2
d E{JfJ

T
f }

= σ2
dE{UfS

2
fU

T
f }. (32)

Here it is crucial to notice that, under the assumptions made
in previous and current subsections, whereas Jf (x(θ)) will
heavily depend on x, Jf (x(θ))JTf (x(θ)) will be much less
sensitive to x, as it only depends on the inner products of
the different features’ gradients (see Eq. (30)). Furthermore,
in Subsection 6.2 we show how these inner products (at
least their correlation factor, which depends only on their
relative angle) are fairly stable, especially when inputs are
samples from pdf’s. Therefore, the Uf (x(θ)) and Sf (x(θ))
matrices, on their average behavior, will determine both the
direction of change of f̄ when changing θ (Eq. (31)) and the
dominant direction of C(θ) (Eq. (32)), which, thus, will tend
to coincide. Our observations indicate that the eigenvalues
of C(θ) (the diagonal terms of S2

f ) are fairly concentrated in
the studied cases. This implies that the features’ coupling ac-
tually causes a worst case scenario for discriminating between
similar θ’s: the features’ pdfs become (i) elongated (due
to eigenvalues’ concentration), and (ii) locally aligned with
the f̄(θ) curve. This causes strong overlapping of the pdf’s
having close θ values, and, as a result, poor discrimination.
Fig. 7(left) illustrates this phenomenon in a real experiment
with real data. Fig. 7(right) shows the effect of decoupling
the kurtosis from the skewness (orthokurtosis). We used 128
random vectors of 1024 i.i.d. samples each, from x(θ) = xθ0,
being x0 ∼ U(0, 1). Ellipses correspond to a Mahalanobis
radius of 2, and θ = 5 (black), 6 (blue), and 7 (red). Expected
error probabilities, using a bi-variate Gaussian model, are
12.4% (coupled) vs. 4.5% (decoupled).

Fig. 7: Comparing Gaussian classes in the original feature
space (left) and in the decoupled feature space (right). See
text for details.

To conclude this section, the techniques presented here
attack the core of the poor discrimination problem due to
using coupled features, by orthogonalizing the feature gra-
dients, which has the effect of approximately diagonalizing
the local covariance matrix C(θ). It is crucial to note that
this diagonalization is effective because it is local. A global
diagonalization (such as the classical Principal Component
Analysis, PCA) would be useless for reducing the pdfs’
overlapping corresponding to close θ values in the feature
space, as such overlapping is insensitive to global affine
transformations of that space. In contrast, a global linear
correlation (as the one shown in Figure 7(b) ) can be trivially
removed, if needed, by applying PCA after feature decou-
pling.

6 EXPERIMENTS AND APPLICATIONS

6.1 Using two families of global features

In this section we define the two features’ families (sets)
that will be studied in the experiments, namely: (i) marginal
moments of arbitrary order p (MM); (ii) p-th order moment
at the output of a 2-D filter bank defined from a filter
h (MF). Specifically, to extract the MF features, we first
applied the Translation Invariant Laplacian separable (TILs)
representation [33], a tight frame acting as bar and edge
detector that provides nine subbands, each with the same
number of coefficients as pixels in the image. Then, the
p-th order moment was obtained for every subband. To
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obtain the corresponding decoupled sets of the MM and
MF families (DFMM and DFMF respectively), we used the
Nested Normalization-narrow path (Algorithm 3). For the
MM set of features, we used as reference values the p-
th moment of a standardized Gaussian distribution (i.e.,
(p − 1)!! for even p, 0 for odd [34]). For the MF set of
features, reference values corresponded to moments ob-
tained by convolving zero-mean univariate white Gaussian
noise with a kernel h, which, in our case, using use the set
of kernels {hj , j = 1 . . . 9} from the TILs representation,
are the same function of p as for the MM family in all
subbands. Table 2 shows the original features for MM and
MF. It also shows their corresponding gradients expressions
(ignoring scaling factors which do not influence the result)
and indicates in which cases the set of original gradients
fulfills the Frobenius condition.

TABLE 2: Families of features (marginal moments, MM, and
moments at the output of filters, MF), and their gradients.

Family f(x) ∂f(x)/∂xi Frobenius

MM 1/N

N∑
n=1

xp
n x

(p−1)
i For all p

MF 1/N

N∑
n=1

(x ∗ h)pn (x ∗ h)(p−1) ∗ h̃ Only for p = 2

6.2 Measuring the amount of mutual coupling

In this section we evaluate how close to being mutually or-
thogonal are the feature’s gradients, for two sets of coupled
features and their corresponding decoupled sets, namely:
(i) a set composed of the first six orders of the classical
MM, in its standardized version: mean, variance, and the
rest the moments of the standardized sample to zero mean
and unit variance (that is, skewness, kurtosis, etc.). We will
refer to this classical set of statistical features by “MSM”
(from Marginal Standardized Moments), and DFMSM its
corresponding decoupled set; (ii) a set composed of the
second-order moments at the output of a filter bank (“VF”,
a particular case of MF with p = 2 and assuming zero mean)
and its corresponding decoupled set (DFVF).

Let {fj(x)} represent the original features and {f̂j(x)}
its corresponding decoupled set. Note that j = 1, . . . , 6 for
MSM and j = 1, . . . , 9 for VF (for the 9 subbands of the
TILs representation). Let x0 represent an N -D vector of i.i.d.
samples drawn from a Gaussian or an uniform distribution;
or anN -D vector that represents the pixel values of a texture
patch extracted from an image of the Broadtz database [35].
To obtain the gradient of a feature at x0, we numerically
calculated the partial derivatives with respect to the i-th
variable xi ∈ x by adding a differential perturbation ε to
the i-th element of vector x:

∂f(x0)

∂xi
= lim
ε→0

f(x0 + εei)− f(x0 − εei)
2ε

. (33)

This expression yields the gradients for each feature of
the MSM, the VF, and their corresponding decoupled sets
(DFMSM and DFVF respectively). To evaluate the function
f̂j(x) in the DFs cases we used the Nested Normalization-
narrow path (Algorithm 3) using equation (24) for a fast

analytical computation of the gradient’s orthogonal projec-
tions.

Then we measured the angle α between pairs of gradient
vectors of the different features that belong to the MSM and
VF sets {fj(x)} and that belong to the DFMSM and DFVF

sets {f̂j(x)}. The deviation from orthogonality (DO) was
obtained as the difference between 90 degrees (perfect or-
thogonality) and the actual calculated angles (DO = 90−α).
As such, DO > 0 indicates acute angles and DO < 0
obtuse angles. The number of samples were N=512 for
the Gaussian and uniform distributions and N=529 (23×23
pixels) for textures. The experiment was repeated M=256
times for the Gaussian and uniform distributions. In the
case where x0 came from textures, we used a single patch
for each of the M=112 different textures in the Brodatz
database. Table 3 shows the average of the absolute value
of the DO across the different pairs of feature’s gradients
for the different distributions tested, for the MSMs, VFs,
DFMSM and DFVF. We excluded from the average calculation
the mean and the variance in the MSM and DFMSM cases,
as they are orthogonal by definition. Figures 8 and 9 show
the DO results. Panels (a) and (b) show the DO between
different pairs of gradient’s features for the original set
and its decoupled counterpart (Gaussian and Textures cases
respectively). Panels (c-f) show the DO, in absolute value,
between different pairs of gradients. Panels (c) and (d) show
results for the Gaussian case; panels (e) and (f) show the
results obtained for the Textures case. Blue color indicates
|DO| close to 0 degrees (orthogonality), while yellow color
indicates a deviation from orthogonality close to 90 degrees
(angle of 0 degrees). Note that the main diagonal only acts
as a reference (0 degrees) here.

6.2.1 Marginal moments

Let us analyze first the case of the marginal moments.
In agreement with the theory (the first three decoupled
moments have gradients fulfilling Frobenius condition, see
Proposition 3.1) we see that the DO is exactly zero (perfect
orthogonality) for all standardized moments combined with
orders 1 and 2 (note that the MSM set is already a partially
decoupled version of the original MM family set), and for
all decoupled moments combined with orders 1, 2 and 3. In
addition, it is close to zero on average in the rest of odd-even
combinations, in which case it presents a wide variance for
MSM, and a much narrower one for DFMSM. For the odd-
odd and even-even rest of the cases, MSM presents highly
acute angles (strong average coupling) with an extremely
low variance, whereas DF provides either perfect (3-5 case)
or approximate (4-6 case) orthogonality, also with low vari-
ance. In summary, the decoupled moments DFMSM provide
close to orthogonal gradients also for orders greater than
3, especially for the random sampling experiments (samples
are close to their expected values, in the reference manifolds,
where exact orthogonality holds), but also, to a lesser extent
and with higher variability, for photographic images (tex-
tures). In contrast, MSM presented in those cases either very
high deviations (with low variability) or low-to-moderate
average deviations with high variability (especially in real
images). In Table 3 we can see that, for real photographic
images, the average absolute DO has been reduced in a
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factor 6, approx., whereas for Gaussian samples it has been
reduced 16 times.

6.2.2 Second-order moments at the output of a filter bank

Figure 8 shows the empirical results obtained using the
VF features. First, we note that original features are fairly
coupled, although not as much as in the marginal moments’
case. Now the new DFVF features are exactly and universally
decoupled only for the eight pairs (f̂1, f̂j), j = 2 . . . 9, for
which the theory tells us that the gradients of the new
features achieve perfect orthogonality when Frobenius con-
dition holds for the gradients of the original features (as
it happens in this case; see Proposition 3.1 and the note
about the special case Ŝ1 = S1). Although this particular
condition on the first eight pairs of gradients is difficult
to appreciate in Fig. 8(a) and (d), where deviation from
orthogonality seems approximately zero for all pairs of
features using white Gaussian samples, we measured a RMS
value of the deviation from orthogonality for the first eight
couples of 1.6×10−5 degrees. This is a negligible numerical
error exclusively due to the numerical computation of the
gradient (see Eq. (33)). For the rest of feature couples we
obtained an RMS of 0.42 degrees, still small, but four orders
of magnitude larger. Aside from the first eight pairs of
features, the excellent practical decoupling of the other ones
has been favored in this case by using a random distribution
(zero-mean uni-variate white Gaussian noise) for the sam-
ples, with features whose expected values are precisely the
reference values used in the NeN decoupling algorithm. As
explained in the theory (Subsection 3.1.3), exact decoupling
is also obtained for samples on the reference manifolds,
even if Frobenius condition does not hold for the output
features. For large enough samples, sample feature values
do not deviate much from their expected values, and, as a
consequence of the features’ smoothness, the gradients of
these samples will also be close to orthogonal. To test how
the decoupling quality degrades when using real samples
instead of pseudo-random ones, we have tested the method,
again, with the referred collection of 112 textured 23 × 23
pixel patches. We first note that the amount of mutual
coupling between features is almost exactly the same as
for the white noise case, a relevant fact that adds support
to the assumptions made in Section 5: the angle between
features is fairly constant for each couple of features, both
within a given distribution/collection (see the relatively
small amplitude of error bars) and also across different
distributions/collections (compare panel (a) with (b) and
(c) with (e)). We can say that, in this case, it is especially
accurate to say that the local covariance matrix is fairly inde-
pendent of x, behaving the Jacobian pretty close to a moving
frame. As for the decoupling quality for this collection of
real photographic patches, we now observe than in about
half of the pairs the decoupling is either perfect (first eight
couples) or almost perfect. For the other half, DO is still
very moderate and much smaller than for the original pairs,
in the great majority of cases. In Table 3 we can see that,
for real photographic images, the average absolute DO has
been reduced in a factor 6, approx., whereas for Gaussian
samples it has been reduced 65 times.

TABLE 3: Average (±σ) absolute deviation from orthogo-
nality (|DO|), in degrees, between feature’s gradients for the
MSM, VF, DFMSM and DFVF sets of features.

Gaussian Textures
MSM 32±26 59±21

DFMSM 2±3 9±17
VF 13±10 12±11

DFVF 0.2±0.3 2±3

6.3 Statistical regression

In this section we focus on the estimation of the parameters
of a distribution that best describe a dataset9. Different ap-
proaches have been proposed in the literature for different
families of parametric distributions, such as the classical
maximum likelihood estimation or the method of moments.
We approached the estimation task as a regression problem,
where the parameters of the distribution are estimated from
a set of global features obtained from the observed data.
Specifically, we tested, as global features: (i) a set of classical
MSM, and (ii) the corresponding decoupled set (DFMSM). In
order to thoroughly compare the descriptive capabilities of
both sets of features, we used several regression methods,
namely: linear regression models (LRM), regression trees
(RT), support vector regression (SVR), Gaussian process
regression (GPR), ensembles of trees (ET) and neural net-
works (NNR). All of these methods are implemented in
the Regression Learner App, ®Matlab. For reproducibility
purposes, we used the hyper-parameters set by default in
the referred app. Specific information about implementa-
tion, hyper-parameters selection and methodological details
can be found in [36].

In our experiments we used different statistical distribu-
tions, specifically: generalized Gaussian distribution (GGD),
Gamma distribution (GMD), and absolute value of a Normal
distribution raised to a positive number (GND). The shape
of these distributions depends on a shape parameter (β),
and the regression problem consists in estimating β from an
observed data set. See Appendix D for the expressions of
the probability density functions of these distributions and
their dependence with β.

Let x represent an N -D vector of i.i.d. samples drawn
from a GGD, GMD or GND distributions (we generated the
samples following [37], [38] for the GGD, and [39] for the
GMD, using the ®Matlab function gamrnd.m), normalized
to have zero mean and unitary variance. For the GGD and
GMD cases, given that the kurtosis of these distributions
changes very fast for small values of the β parameter, we
defined β = 2A and sampled uniformly the exponent A in
[−3, 3], resulting in β ranging in [1/8, 8]. In this way, we
obtained a quite uniform distribution of kurtosis values. In
the GND case, β was sampled uniformly in the range [1, 6].

MSM features and their corresponding decoupled fea-
tures, DFMSM, were obtained from the third (skewness)
to the sixth order. This led to two sets of 4 dimensional
predictors {fj(x), j = 3, . . . , 6} and {f̂j(x), j = 3, . . . , 6}
for each parameter β. We compared the β prediction accu-
racy of these two sets. We generated d = 2048 vectors x

9. Some results of this subsection have been presented in [7].
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(a) DO between different pairs of gradients. Gaussian case. (b) DO between different pairs of gradients. Textures case.

(c) MSM set. Gaussian case. (d) DFMSM set. Gaussian case. (e) MSM set. Textures case. (f) DFMSM. Textures case.

Fig. 8: Deviation from orthogonality (DO), in degrees, for the different pairs of gradient’s features for the standardized
marginal moments (MSM) and the corresponding decoupled sets (DFMSM). (a), (c) and (d) show results for the Gaussian
case, N = 512. (b), (e) and (f) show results for the Textures case, N = 529 (23× 23 pixels). In (a)-(b) positive values indicate
acute angle and negative obtuse. In (c-f) the color level represents the average of the absolute value of DO.

of different lengths N of i.i.d. samples, thus having 2048
pairs of predictors ({fj} or {f̂j(x)}) and targets (known
β values). We averaged 100 5-fold cross-validation runs to
measure the accuracy of the methods in terms of the RMSE
in the estimation of the exponent A = log2 β in the GGD
and GMD cases, and the estimation of β, in the GND case.

Figure 10 shows the RMSE of the results as a function
of N for the MSM and DFMSM sets of descriptors, by using
the NNR regression method, the method providing the best
results for almost all the tested cases (see Appendix D for
more detailed results). Figure 10(a) shows the results for
GGD, Figure 10(b) for GMD and Figure 10(c) for GND. The
shadow area represents the standard deviation across 100
repetitions of the experiment. The proposed DFMSM clearly
outperformed MSM for all the tested distributions and sam-
ple sizes. For instance, in the GGD case, using the proposed
DFMSM the RMSE was reduced by factors of 0.50, 0.54, 0.63,
0.68, 0.76, and 0.86, for N = 2048, 1024, 512, 256, 128, and
64, respectively.

Tables 6, 7 and 8 in Appendix D show the RMSE
obtained using MSM and DF descriptors for the different
sample sizes N and regression methods, for the GGD, GMD
and GND distributions, respectively. The best regression
method for each N is highlighted in bold. Our decoupled
descriptors DFMSM outperformed the MSM across all the
compared regression methods and sample sizes in 105 out

of 108 cases (97.2%), which shows the robustness and gen-
eralization ability of our approach.

6.4 Texture classification

In this section we apply the proposed method for texture
classification in two different settings: (i) comparing stan-
dardized moments (MSM) with their corresponding decou-
pled features DFMSM, both applied to a set of subbands, the
output of a filter bank (Section 6.4.1); (ii) using features that
directly are defined as marginal moments at the output of
a filter bank (MF), and their corresponding fully decoupled
features, DFMF (Section 6.4.2).

6.4.1 Texture classification based on marginally decoupled
moments in a filter bank

Here10 we compare the performance of two classifiers using
features derived (i) from MSM of order 2nd to 10th, (ii)
from a generalized form of Ref. [16], and (iii) from the corre-
sponding decoupled features DFMSM, all of them at the out-
put of subbands of the TILs representation [33]. We selected
54 textures of 640×640 pixels from the Broadtz [35] database
under the criterion of looking homogeneous in 64×64 pixel

10. This subsection is a summary of the results published in [6].



JULY 2022 21

(a) DO between different pairs of gradients. White Gaussian noise case.

(b) DO between different pairs of gradients. Textures case.

(c) VF, White Gaussian case. (d) DFVF, White Gaussian case. (e) VF, Textures case. (f) DFVF, Textures case.

Fig. 9: Deviation from orthogonality (DO), in degrees, for the different pairs of gradient’s features for the second-order
moment at the output of a filter bank (VF), and the corresponding decoupled set (DFVF). We used N = 529 (23 × 23 pixels).
(a), (c) and (d) show results for the Gaussian case. (b), (e) and (f) show results for the Textures case. In (a)-(b) positive
values indicate acute angle and negative obtuse. In (c-f) the color level represents the average of the absolute value of DO.

patches11. Every texture was divided into 10 × 10 disjoint
64×64 patches. The problem consisted in classifying patches
in their corresponding textures. To extract the features we
first applied the TILs representation [33] and discarded
the low-pass band (having 8 subbands). Then, for every
subband of every patch, three sets of features were obtained:
(i) classical MSM features {fj(x), j = 2, . . . , 10} (something
commonly used to characterize textures, but to a lower
order, see e.g. [40]); (ii) modified moment set: same as MSM,
except that now even order moments are shift-minimized
(µ̃n = minαn E{(x̂ − αn)n}, x̂ being the standardized
observation) [16]; and (iii) proposed marginally decoupled
moments DFMSM {f̂j(x), j = 2, . . . , 10}.

In order to quantify the redundancy between features,
we estimated the mutual information (MI) between pairs

11. The list of selected textures and the ®Matlab code of the exper-
iments is available in https://www.researchgate.net/project/Nested-
Normalizations-for-Decoupling-Global-Features.

TABLE 4: Averaged mutual information.

Features (3,4) (3,5) (4,5) (3,6) (4,6) (5,6)
MSM 0.26 0.61 1.39 0.55 3.10 3.11

Mod. [16] 0.23 0.61 1.39 0.55 3.07 3.03
DFMSM 0.22 0.04 0.08 0.09 0.54 0.09

of features [41]. Some mean values across subbands are
shown in Table 4. We see that, except for the (3,4)-th case,
the proposed DFMSM features present a drastic reduction
of redundancy compared to the classical MSM and modi-
fied [16] ones. We recall the reader that the aim of using
decoupled features is not to compensate for the statistics of
the data (to which the decoupling method is totally trans-
parent), like non-linear ICA aimes for, but rather to avoid
adding spurious coupling in the processed data, leaving
only the dependencies that are effectively caused by the
input data statistics. So, perfectly decoupled features will
generally reduce the mutual information among features,
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(a) GGD distribution (b) GMD distribution (c) GND distribution

Fig. 10: RMSE of the estimated parameters as a function of the number of samples N for the NNR regression method
applied to three density functions (see text for details).

but will not necessarily remove it, as that depends on the
data statistics (see, e.g., what happened in the example of
Fig. 7). Figure 11 shows a 3-D subset of the MSM (left)
and proposed DFMSM (right) features (i.e., before and after
our decoupling method) for two texture classes, to illustrate
the decoupling effect on the data distribution in the feature
space. Shown data correspond to a single subband (number
5 in the representation), of textures D103 and D111, selecting
just 3 features for the MSM (f3(x), f4(x) and f5(x)12)
and the proposed DFMSM (f̂3(x), f̂4(x) and f̂5(x)) sets. We
include the projections onto the three orthogonal planes.
The decoupling between every pair of features is apparent,
specially for the (3,5)-th and (4-5)-th order cases.

We used two classifiers: a naı̈ve (univariate) Gaussian
and a parameter-optimized Support Vector Machine (SVM)
using Radial Basis Functions13. We applied cross validation
with 4 folds, and averaged 8 runs for each result. Figure 12
shows the test classification results as a function of the
order of the moments included in the feature’s set for the
three compared sets and the two classifiers (see legend). We
observe a totally different behavior between using classi-
cal MSM and modified [16] moments, vs. the marginally
decoupled ones DFMSM: whereas the former achieve their
optima when using only variance (f2(x)), skewness (f3(x))
and kurtosis (f4(x)), roughly achieving 3% and 2% error
ratios for naı̈ve and SVM, respectively, the latter keep on
decreasing the error when adding higher-order features,
reaching 1.34% and 0.86%, respectively, for n = 10. We see
how [16] produces just a marginal improvement. It is also
very significant how, for MSM, the naı̈ve method behaves
very differently from SVM, whereas, for DFMSM, results of
SVM and naı̈ve classifiers run in close parallel. We believe
this is due to the strong assumption made by the naı̈ve
method (namely, that features are mutually independent),
which holds approximately true after the feature decoupling
(as shown in Table 3), but not before.

12. Note that f3(x) and f4(x) are equal to the classical definition of
sample skewness and kurtosis, respectively.

13. We thank the authors of the Pattern Recognition Toolbox
(http://covartech.github.io), which we used in preliminary experi-
ments.

TABLE 5: Texture patch classification, 2nd experiment. Test
classification error (%).

MSM DFMSM [6] DFMF
Naı̈ve Bayes 9.1 ± 0.4 7.4 ± 0.3 4.0 ± 0.3

SVM 5.2 ± 0.5 4.5 ± 0.4 3.1 ± 0.4

6.4.2 Texture classification based on jointly decoupled mo-
ments in a filter bank

In these experiments we compared the performance of
a classifier trained using three different sets of features,
namely: (i) MSM measured at the output of a filter bank; (ii)
the decoupled standardized moments DFMSM (same as in
the previous experiment), without considering the coupling
caused by the filter bank; and (iii) fully decoupled features,
DFMF, using as original features marginal moments at the
outputs of the filter bank. The three sets were obtained from
order 2 to 6. The first 20 textures from the Broadtz database
[35] were taken. The upper left quarter of every texture
was normalized and divided into 25 disjoint, 64 × 64 pixel,
patches. The problem consisted of classifying these patches
into one of the 20 texture classes. To extract the features
that characterized every patch we first applied the TILs rep-
resentation, using the 9 subbands (thus including the low-
pass residual, not used in previous section). Then, for every
subband, the above described sets of 45 features (5 moments
× 9 subbands) were calculated. We used two classifiers:
a Naı̈ve Bayes and a parameter-optimized Support Vector
Machine (SVM) using Gaussian kernels [42]. We applied
cross validation with 10 folds, and averaged 200 runs for
each result. Table 5 shows the mean ± standard deviation
test classification error across runs when using the MSM (1st
column), the partially decoupled DFMSM [6] (2nd column),
and the fully decoupled features DFMF (3rd column). First
row shows results using Naı̈ve Bayes, and second using
SVM. We observed that the probability of error is greatly
reduced when using DFMSM in comparison with MSM. In
addition, fully decoupled features DFMF also significantly
improved the results of the partially decoupled set [6]. Using
the Naı̈ve Bayes classifier, we see that the error obtained
by the fully decoupled set DFMF decreased the error in a
factor of 0.54 and 0.44 w.r.t. DFMSM and original MSM sets,
respectively. We also did the experiment of incrementally
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Fig. 11: Illustrating the decoupling effect in the feature space on two classes of texture patches. Left: Using classical MSM
features; Right: Using proposed DFMSM features.

Fig. 12: Texture patch classification, 1st experiment. Test
classification error (%) as a function of the order of the
moments included in the feature’s set.

increasing the highest order in the set of features, from just
the variance to including all orders from 2 to 6. Significantly,
the error was minimized when including high order DFMF,
up to 6, while for the MSM case the minimum error was
obtained when including features up to the fourth order
(kurtosis). This result is consistent with the one reported in
Fig.12.

It is especially relevant, at this point, to recall that the MF
set (for orders above 2) does not fulfill Frobenius condition
(as mentioned in Section 4). This implies that decoupling
solutions do not even exist within the theoretical framework
presented here. Nevertheless, Algorithm 3 (NeN, narrow
path) provides a well-defined transformation that, as empir-
ically shown in Section 6.2.2 for the case of the second-order

moments at the output of a filter bank, greatly reduces the
amount of coupling between the features’ gradients. This
translates here into a substantial performance boost when
applied to texture classification.

7 CONCLUSIONS AND FUTURE WORK

We have presented a new mathematical and algorithmic
framework for, given a set of differentiable functions acting
as global data descriptors, obtaining a closely related set
such that its gradients are mutually orthogonal. We have
set the conditions under which this can be done hierarchi-
cally and progressively, adding a new feature at a time,
and devised a new family of algorithms based on nested
normalization operations. We have also studied the need of
adding small perturbations in some cases, and devised some
specific methods for that.

We have shown, first, that the proposed method allows
for locally decorrelating features of statistical distributions,
and why this has a positive impact in discriminating close
values of statistical parameters. We have also tested empir-
ically (with both real textured image patches and pseudo-
random numbers, for some distributions) the degree of
accomplishment of mutual decoupling (gradient orthogo-
nality) for different global features, obtaining results that are
both practically interesting and consistent with the theory.

We have applied our decoupling methods to marginal
moments, both in the pixel domain and at the output of
a filter bank. Using the new decoupled features as de-
scriptors with state-of-the-art machine learning methods we
have obtained a dramatic decrease in error in regression
problems (over simulated random variables, under three
different distributions) and classification (over real textured
image patches), as compared to using classical standardized
moments. It is worth noting that we obtained substantial im-
provements in classification accuracy even when theoretical
conditions for perfect decoupling were not met.
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It is noteworthy that, applying our decoupling method
to the first three raw moments results into their standard-
ized counterparts. In addition, we obtained for the first time,
a (quasi-analytic) normalized fourth-order moment that is
decoupled from mean, variance, and skewness, which we
have termed orthokurtosis. For higher orders, we obtained
other new well-defined features, numerically computable,
which present a much-decreased amount of coupling. Fi-
nally, although not fully developed here, natural applica-
tion fields for our method go beyond analysis and include
promising style transfer and synthesis techniques [2], [28].

In future work we want to explore the extension of
the deterministic decoupling methods for non-hierarchical
sets, as well as its applicability for improving economy and
robustness in ANNs, by decoupling their features, either
at training phase or a posteriori. To conclude, a promising
research area is that of exploring actual biological mecha-
nisms of adaptation involving decoupling/cross-invariance,
in perceptual neural science.

APPENDIX A
EQUILIBRIUM POINTS OF GRADIENT SYSTEMS

In this section we study equilibrium points for the gradient
system (4).

If f is continuous we must have f(Ω) = [a, b] (here a, b
maybe ±∞ if the set is not bounded, but the analysis can be
performed similarly). We would like to see if, given x0 ∈ Ω,
we can reach all values in the range of f by moving in the
direction of the gradient. We look at stationary points in
Ω that are not a global maximum or minimum points. The
basin (or domain) of attraction of an equilibrium point x̄
is the set of all initial conditions with solutions that tend
to it. Let us consider all possible cases according to the
behavior of the linearized equation x = −D2f(x̄)x (see,
for instance, the introduction in [43]). Assume that D2f has
no zero eigenvalues:

• If the eigenvalues of the Hessian D2f are all strictly
positive then x̄ is a sink.

• Similarly for max.
• If the Hessian has a negative real eigenvalue then

the equilibrium is unstable. If all eigenvalues are
nonzero, then the dimension of the unstable man-
ifold is equal to the number of negative eigenval-
ues counting multiplicity. The dimension of the un-
stable manifold is the number of negative eigen-
values counting multiplicity. The tangent spaces of
these manifolds are the spans of the corresponding
eigenspaces so are orthogonal at the equilibrium
point.

If some eigenvalue is zero, then the picture is much more
complicated and we will make additional assumptions in
order to avoid technicalities:

• If x̄ is a local minimum of f (not necessarily strict),
then x̄ is a Lyapunov-stable equilibrium point of the
gradient flow of a real-analytic function f [44, Section
3]. Thus we pose the additional constraint that all
local maxima and minima are also global.

• If x is a degenerate saddle, we assume that its
basin of attraction has a lower dimension and thus,

saddles can be avoided by introducing a suitable
perturbation. We will actually assume that the union
of all basins of attraction, denoted by Λ, is also lower
dimensional.

APPENDIX B
FROBENIUS THEOREM

Let S = {fi : Ω → R, i = 1 . . .M} be a set of features.
Fix p a positive integer, p ≤M . A p-dimensional distribution
D in Ω is a (smooth) choice of a p-dimensional subspace
of the linear span of the {∇fi(x)}Mi=1 for every point in
x ∈ Ω. We denote the plane at x by D(x). We say that the
set of features S is of maximal rank in Ω if the gradients are
linearly independent at every point x so that the distribution
spanned by the gradients has p = M . This implies, in
particular, that we must choose Ω not containing critical
points of the fi.

We say that D satisfies the Frobenius condition if for every
f, g ∈ S , writing the gradient vectors as

X =
∑
`

∂x`f
∂

∂x`
, Y =

∑
j

∂xjg
∂

∂xj
, (34)

we have that the combination

XY − Y X =
∑
j,`

(
∂x`f∂x`xjg − ∂x`g∂xjx`f

) ∂

∂xj
(35)

also belongs to D.
The classical Frobenius theorem [45, Chapter 6] states

that a distribution D that satisfies the Frobenius condition
in Ω is integrable. That is, one can find a submanifold
I(x0,S) passing by x0 whose tangent hyperplane at each
location x is the linear span of {∇fi(x), i = 1 . . .M}.
In addition, this submanifold is p-dimensional, and Ω is
foliated by these submanifolds. A different presentation of
Frobenius theorem from the dynamical systems point of
view can be found in [46, Chapter VI].

B.1 Back to Proposition 2.2
We give now the proof of the only if statement in Proposition
2.2. Assume that, given set of features S , there exists an
invariant mapping x̂S exists, and denote by J := Jx̂S its
Jacobian matrix. We will show that the gradients of those
features in S satisfy the Frobenius condition C2.

For this, it is enough to pick two any two features in
S , say f and g. By the definition of invariant mapping, we
must have

J · ∇f = 0,
J · ∇g = 0,

at each point in the domain (which is not written in to
simplify the notation). Differentiating both equations w.r.t.
the `-th coordinate, component by component, we obtain

∂x`J · ∇f + J · ∂x`∇f = 0,
∂x`J · ∇g + J · ∂x`∇g = 0,

from where we can isolate the second derivatives of each
feature

∂x`∇f = −J−1 · ∂x`J · ∇f,
∂x`∇g = −J−1 · ∂x`J · ∇g.
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Now we extract the j-th component of both vectors above,
to have a formula for ∂x`xjf and ∂x`xjg. This is,

∂x`xjf = −
∑
k,s

(J−1)jk · (∂x`J)ks · ∂xsf,

∂x`xjg = −
∑
k,s

(J−1)jk · (∂x`J)ks · ∂xsg.

Next, in order to check Frobenius condition (35) we need to
calculate∑

`

(∂x`f∂x`xjg − ∂x`g∂xjx`f)

= −
∑
`,k,s

[
∂x`f · (J−1)jk · (∂x`J)ks · ∂xsg

− ∂x`g · (J−1)jk · (∂x`J)ks · ∂xsf
]
.

If one is able to interchange the indexes s and `, the above
quantity is identically zero. And this is possible since, for a
Jacobian matrix,

∂x`Jks = ∂x`∂xs(x̂S)k = ∂xs∂x`(x̂S)k = ∂xsJk`.

We have shown that Frobenius condition (35) holds for any
two features in the set S , which completes the proof.

B.2 Examples

B.2.1 Average of scalar functions
If the set S consists on features of the form

fj(x) =
1

N

N∑
n=1

mj(xn), j = 1..M,

for scalar functions mj : R → R, then it clearly satisfies
the Frobenius condition. This follows by simple inspection
of (35), because the Hessians ∂x`xjfi are multiples of the
identity.

B.2.2 Second-order moments at the output of a set of filters
Another example of features that satisfy Frobenius is a set
of second-order moments measured at the output of a set of
filters. To fix notation, we take two functions

f(x) =
1

N
(x ∗ h)�2, g(x) =

1

N
(x ∗ h′)�2.

Calculate

∂xif =
∑
k

(x ∗ h)khk−i =
2

N
(x ∗ (h ∗ h̃))i =

2

N
(x ∗ ĥ)i,

∂xixjf = ĥi−j ,

where we have denoted (h̃)s = hi−s, ĥ = h ∗ h̃, and
similarly for h′. Then, in the notation of (34), dropping the
multiplicative constants,

XY − Y X =
∑
i,j,s

xsĥi−sĥ
′
i−j

∂

∂xj
−
∑
i,j,s

xsĥ
′
i−sĥi−j

∂

∂xj

=
∑
j

{
[(x ∗ ĥ) ∗ ĥ′]j − [(x ∗ ĥ′) ∗ ĥ]j

} ∂

∂xj
= 0,

as desired.

APPENDIX C
ADDING PERTURBATIONS

C.1 Marginal moments

C.1.1 Critical points of the decoupled moments and their
basins of attraction

In order to apply the methods proposed in Section 3,
conditions B1 (no local non-global extrema) and B2 (lower
dimensional basins for saddles) must hold. Here we test this,
and search for explicit formulas for all critical points of the
new decoupled features. In particular, this is essential to
understand the structure of basins of attraction and discuss
the effectiveness of perturbations.

From the method in Subsection 3.3.1, obtaining the
critical points of the decoupled features is sort of dual to
finding the decoupled gradients within their corresponding
reference manifolds. Whereas for the latter we imposed
orthogonality on each new gradient with respect to the
previous ones (see Subsection 4.1.2), for finding the critical
points we impose co-linearity on each gradient with respect
to the previous ones, see Eq. (18). A particular solution cor-
responds to finding common critical points (through order
k) of the original features, where all gradients for j ≤ k
vanish. In this case there are no local (non-global) extrema,
as gradients are made of monomials, which either have a
single minimum at zero, for even orders, or a saddle point
at zero and no extrema in R (odd orders). Therefore, the
only solution coming from the original features’ gradients
vanishing corresponds to x∗0 = 0, i.e., at zero all decou-
pled moments have a critical point, same as the original
moments.

For the rest of solutions, we start by solving for the
critical points of f̂2, denoted by x∗1

14, in the equation
∇f2(x∗1) = λ1,2f1(x∗1), which, substituting its correspond-
ing expressions, gives us x∗1 = c1, c ∈ R. No surprisingly,
constant signals provide the minimal (zero) variance, the
only extreme value of this feature. Moreover, as explained
in Subsection 3.3.1, decoupled features are not defined at
x∗1 (being the sample variance null it can not be normalized
to one). This manifold only intersects R1 in x = 0, and
has no intersections with R2 and subsequent. Next, the
calculation of the critical points of f̂3 comes from solving for
x∗2 in f3(x∗2) = λ1,3f1(x∗2) + λ2,3f2(x∗2). This is a quadratic
equation, whose solution is a vector x∗2 made of only two
arbitrary values, repeated in arbitrary proportions (p and
1 − p), for all the coefficients. If we impose, in addition,
f1(x∗2) = 0 and f2(x∗2) = 1 (conditions of x∗2 ∈ R2), we
obtain, after some operations, that the only possible values
of the coefficients, for x∗2 in R2, are:

x∗2,1 =
√
p/(1− p)

x∗2,2 = −
√

1− p/p, (36)

where 0 < p < 1 denotes the proportion of the first value.
From this we can easily compute the skewness of x∗2, that
only depends on p, not on the particular values: f̂3(x∗2) =
(2p − 1)/

√
p(1− p). Although the previous expression has

no extrema for a continuous p, given the discrete nature of

14. Although for notation simplicity critical points here are denoted
as a vector x∗

j , they actually represent sets of vectors.
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p for discrete signals (from 1/N to (N − 1)/N ) we obtain
that the maximal and minimal skewness are produced when
p is either 1/N or (N − 1)/N , that is, when the vector is
constant except for one coefficient. The rest of the values
of p produce the vast majority of the critical points of f̂3,
which are saddles. There are no local (non-global) extrema
(condition B1). These critical points have subsequent unde-
fined decoupled moments (see Subsection 3.3.1), with the
only exception of the case p = 1/2 (possible just when N is
even), the only intersection of x∗2 with R3, which, having
already zero skewness, its (minimal) kurtosis is also its
orthokurtosis. One can see that the skewness of a bivaluated
vector can not be adjusted by applying a coefficient-wise re-
versible (monotonous) non-linearity, because the skewness
only depends on p.

For k > 3 we apply the same procedure for obtaining the
critical points of f̂k in Rk−1, namely, solving an algebraic
equation of degree k − 1, and obtaining any combination of
distinct k − 1 solutions for the values in the vector. Same as
for the previous case only the k − 2 distinct proportions
(k − 1 in total, adding up to 1) of each of these k − 1
different values matter for the computation of f̂k. And,
again, the vast majority of these critical points are saddles,
presenting no local (non-global) extrema (condition B1). For
instancce, in the case of k = 4, critical points have three
different distinct values or less, the minimal orthokurtosis
point being a degenerate case (having two single values
with p = 1/2, as mentioned above), whereas the maximal
orthokurtosis is produced for p1 = (N − 2)/N , p2 = 1/N ,
corresponding to all pixels having the same value, except
for two pixels, now having each of these two a different
value from the dominant and from each other. These vectors
can be adjusted to have the desired mean, variance and
skewness, but, having only three distinct values, we run
out of degrees of freedom to adjust their orthokurtosis too.
Therefore, except for the case when the orthokurthosis is
already three (its reference value), x̂4(x∗3) does not exist,
and, as a consequence, the fifth order and subsequent decou-
pled moment are not defined at these points. Note also that
the range of the decoupled features generally change with
respect to their original counterparts. Whereas the second-
order moment range does not change when decoupled (it
is still R+), the fourth-order (skewness) is constrained from
R to [− N−2√

N−1 ,
N−2√
N−1 ], and the fourth order (orthokurtosis)

from R+ to [1, N/2]. Finally, we note that the existence of
higher-order decoupled moments also depends on having
a large enough number of samples, N , In particular, the
last result implies that, for N < 6, there are no decoupled
moment of higher-than-four orders, as the reference value
for normalizing the orthokurtosis, 3, is not reachable within
its valid range. This limitation also comes from the already
explained requirement of having enough distinct values for
the samples.

Whereas a typical vector will have more than a few
distinct quantization values, and, thus, it will not produce
critical points for the first few decoupled moments, a dif-
ferent situation is created by the basins of attraction of the
saddles, which, as pointed out above, constitute the vast
majority of the critical points. It is easy to informally check
that any vector having coefficients with repeated maximal

(or minimal, for odd orders) values lies within the basin of
attraction of a saddle. To illustrate this, let us consider a
gray-level image in the range [0, 255], with two pixels hav-
ing the 255 value. As we increase its fourth-order decoupled
moment (the skewness) staying in R2, these two values are
going to grow at exactly the same pace, relatively to the rest
of the coefficients, that, due to the normalization, will get
relatively lower and progressively closer to each other. If
we keep on increasing the skewness we would approach, in
the limit, to an image made of all pixels sharing the same
value, except for two pixels, both sharing another value.
This mental experiment shows how our original image,
having more than one pixel with the maximal value, lies in
Λ, i.e., in the basin of attraction of a saddle. This situation,
unless avoided by adding a proper perturbation, provokes
the algorithm to eventually get stuck in the saddle, thus
not letting the vector to be adjusted along its full range (as
shown before, the maximal/minimal skewness is achieved
when all samples except for one have the same value).
The desired effect of a perturbation is to “break the tie”,
thus allowing the gradient to further advance towards the
absolute extrema of the feature. An analogous reasoning can
be applied for higher-order moments.

Then, how likely is that a vector belongs to Λ? The
answer, dealing with vectors having regular density distri-
butions in RN is: zero probability (as the basins of attraction
of these saddles are lower-than-N dimensional, condition
B1). However, the answer for digital (discrete quantized
samples) is totally different: potentially very likely. Let us
assume a vector having N samples quantized in Q levels.
Then, the probability of that a particular value v (e.g., the
highest) is repeated, assuming a uniform and independent
distribution for each of the vector coefficients is given by a
binomial distribution:15 P (n(v) > 1) = 1 − (1 − 1/Q)N −
N/Q(1−1/Q)N−1, n(v) being the number of occurrences of
v. For instance, for a very small size image of 64× 64 pixels
(N = 4096 - for larger images it gets worse) with pixels
ranging from 0 to 255 (Q = 256), the probability of a given
quantization level appearing more than once is extremely
high: 1 − 1.86 × 10−6. This example shows the importance
of adding a proper perturbation to our digital signal x, as
the one proposed in Subsection 3.3.3.

C.1.2 Adding a perturbation
In this subsection we propose a perturbation method that
not only ensures that all perturbed coefficient values x′i =
xi + εi, i = 1 . . . N are different (high entropy) but it also
maximizes the minimal possible difference between them.
The latter feature is achieved by using for the perturbation
N uniform extra levels within each single quantizing step
and assigning a different level to each εi. On the other
hand, noticeable local oscillations are avoided by choosing
a very low frequency pattern for the perturbation, which
minimizes its perceptual impact.

Algorithm 6 explains the process. First, a random angle
tangent is chosen for generating a ramp for the image grid
(same method can be straightforwardly generalized to n-
dimensional grids). The tangent value must not be a rational

15. This does not pretend to be an accurate estimation of the probabil-
ity of the repetition of the maximal/minimal value v in a typical signal
(e.g., an image). However, it does provide a useful reference value.
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p/q number with small p, q ∈ N, because that would create
repeated values on the ramp. Then, after checking that there
are no repeated values on the generated ramp, its cells are
sorted in a ranking according to their value, corresponding
the number 1 to the lowest value and N the highest. Finally,
these integers are normalized to the interval [−1/2, 1/2)
and returned as the perturbation. The result is a (slightly
curved, sigmoid) ramp made of all different values, having
an exactly uniform distribution.

Algorithm 6 High-entropy, low-impact perturbation
Require: An empty array of Nx ×Ny = N pixels

1: repeat
2: Generate a pseudo-random number r ∈ [0, 1]
3: Compute a ramp v(nx, ny) = nx + r ∗ ny
4: Check for repeated values in v
5: until there are no repeated values in v
6: Compute o(nx, ny) = rank(v(nx, ny)) ∈ {1 . . . N}
7: ε(nx, ny) = (o(nx, ny)− 1−N/2)/N ∈ [−1/2, 1/2)
8: return ε (Nx ×Ny array)

C.2 Second-order moments at the output of a filter
bank
C.2.1 Critical points, active frequencies and perturbations
Being the sample second-order moment at the output of a
filter a positive definite quadratic function, it has no saddle
points. Therefore, in this case, in contrast with Section C.1.1,
we do not face the problem of their basins of attraction.

The critical points of the decoupled features are those
vectors where the gradients are either zero (critical points
inherited from the original features) or co-linear. Substitut-
ing Eq. (25) into Eq. (18) it yields:

|Hk(ξ)|2X∗k(ξ) =
k−1∑
j=1

λj,k|Hj(ξ)|2X∗k(ξ), {λj,k 6= 0}.

This equation always admits the solution x∗0 = 0. In addi-
tion, in the case there are regions of the signal spectrum that
are not covered by any filter (e.g., signals made of a constant
value, for band-pass or high-pass filters), the corresponding
vectors having only those frequencies will also be critical
points. Apart from the previous solutions, all corresponding
to the “null space” of the filters’ output (which provide
the absolute minima of the original features), the equation
may only hold if the squared filters are themselves co-linear.
Thus, the latter possibility must be prevented - otherwise all
points in Ω̄ would be critical!

We see that, although in this case the decoupled features
do not introduce additional critical points, zeros in the
frequency domain, both of the signal and of the filters, act
as partial “gradient killers”: signal will not change at those
frequencies where kernels are zero, and, similarly, the signal
will neither change at those frequencies where the signal
itself vanishes.

Whereas in some applications it is normal to ignore
some regions of the spectrum that are not useful for a
given task, and thus they are left uncovered by the filters
bank, it seems advisable, nevertheless: i) to filter out those
frequencies (having a support D) also in x (otherwise those

spectral components will remain unchanged in x), and ii) to
introduce a small perturbation ε in x, such that x+ε will not
be zero or too small at any frequency in the above defined
support D. Then, a first reasonable concrete choice for the
perturbation may be

ε = arg min
z
‖z‖ s.t. |X(ξ) + Z(ξ)| ≥ θ,∀ξ ∈ D

which yields, in the Fourier domain, for ξ ∈ D:

E(ξ) =


0, if |X(ξ)| > θ
(θ − |X(ξ)|)ei2π arg(X(ξ)), if θ > |X(ξ)| > 0
θei2πr, if |X(ξ)| = 0,

(37)
and 0 for ξ 6∈ D, where E(ξ) = F(ε). Here r is a uniform
random value in [0, 1]. The so defined ε is a perturbation
of maximal entropy amongst all minimal Euclidean norm
ensuring a spectral content above a threshold θ in D.16 The
threshold θ can be chosen as the supreme of the set {θ :
q (x + ε(x, θ)) = q(x)}, or a similar criterion. Furthermore,
depending on the complete set of features, different types
of perturbations (see Subsection 3.3.3) can be fused into a
single one fulfilling all the requirements.

APPENDIX D
REGRESSION EXPERIMENTS

In this section we give some specific details about the
regression experiments. The probability density function of
the Generalized Gaussian Distribution (GGD) is given by:

f(x) =
β

2αΓ(1/β)
e−(|x−µ|/α)

β

,

where Γ denotes the gamma function, β is the shape param-
eter, α the scale parameter and µ the location parameter.
The probability density function of the Gamma Distribution
(GMD) is given by:

f(x) =
1

Γ(β)θβ
xβ−1e−x/θ,

where β is the shape parameter and θ the scale parameter.
The probability density function of the absolute value of

a Normal distribution raised to β (GND), X = |T |β , T ∼
N (0, 1), is given by, for every positive β:

f(x) =
2

β
√

2π
x(1/β)−1e−

1
2x

2/β

,

where β is the shape parameter. Note that, for β = 2,
this distribution leads to the chi-squared distribution of one
degree of freedom, χ2(1).

The RMSE results for the different regression methods
and sample sizes N are shown in Tables 6 (Generalized
Gaussian Distribution distribution, GGD), 7 (Gamma dis-
tribution, GMD) and 8 (absolute value of a Normal dis-
tribution raised to β, GND). The regression methods com-
pared are: linear regression models (LRM), regression trees
(RT), support vector regression (SVR), Gaussian process
regression (GPR), ensembles of trees (ET) and neural net-
works (NNR). MSM stands for the set of classical marginal

16. A perceptually-based perturbation may be easily obtained from
here by considering perceptual metrics/threshold instead.
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TABLE 6: RMSE Results for the different regression meth-
ods, Generalized Gaussian distribution (GGD).

N LRM RT SVR ET GPR NNR

MSM

64 0.71 0.59 0.54 0.55 0.52 0.51
128 0.75 0.46 0.46 0.44 0.41 0.41
256 0.85 0.36 0.44 0.35 0.34 0.32
512 0.95 0.30 0.47 0.29 0.29 0.27
1024 1.02 0.26 0.55 0.25 0.25 0.24
2048 1.13 0.22 0.63 0.22 0.22 0.21

DFMSM

64 0.79 0.48 0.51 0.45 0.47 0.44
128 0.67 0.34 0.44 0.32 0.38 0.31
256 0.85 0.25 0.38 0.23 0.31 0.22
512 0.51 0.18 0.31 0.17 0.26 0.17
1024 0.45 0.13 0.29 0.13 0.26 0.13
2048 0.41 0.10 0.32 0.10 0.31 0.10

TABLE 7: RMSE Results for the different regression meth-
ods, Gamma distribution (GMD).

N LRM RT SVR ET GPR NNR

MSM

64 0.58 0.76 0.59 0.71 0.50 0.52
128 0.45 0.59 0.46 0.56 0.39 0.40
256 0.37 0.48 0.38 0.46 0.31 0.31
512 0.27 0.39 0.30 0.36 0.23 0.24
1024 0.21 0.29 0.22 0.28 0.21 0.19
2048 0.18 0.22 0.18 0.21 0.15 0.13

DFMSM

64 0.45 0.45 0.39 0.40 0.39 0.38
128 0.32 0.32 0.28 0.29 0.27 0.28
256 0.25 0.24 0.21 0.22 0.20 0.20
512 0.19 0.18 0.16 0.15 0.14 0.14
1024 0.15 0.14 0.12 0.12 0.10 0.10
2048 0.12 0.10 0.11 0.08 0.07 0.07

standardized moments, and DFMSM for its corresponding
decoupled set. Highlighted in bold, the regression method
that minimizes the RMSE for each N value.
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