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Abstract. We initiate the study of a bulk-boundary eigenvalue problem for the Bilaplacian with a
particular third order boundary condition that arises from the study of dynamical boundary conditions

for the Cahn-Hilliard equation. First we consider continuity properties under parameter variation (in

which the parameter also affects the domain of definition of the operator). Then we look at the ball
and the annulus geometries (together with the punctured ball), obtaining the eigenvalues as solutions

of a precise equation involving special functions. An interesting outcome of our analysis in the annulus

case is the presence of a bifurcation from the zero eigenvalue depending on the size of the annulus.
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1. Introduction

Let Ω be a bounded domain in Rn for n ≥ 2 with smooth boundary and exterior normal ν. We
consider the energy functional

(1.1) Eγ [u] =

∫
Ω

|∆u|2∫
Ω

|u|2 + γ

∫
∂Ω

|u|2
,

for any possible choice of the parameter γ > 0, with the associated energy space

H2
∗ (Ω) = {u ∈ H2(Ω) : ∂νu = 0 on ∂Ω} ⊂ H2(Ω),

endowed with the standard H2-norm. We remark that the space H2
∗ (Ω) is not the only possible choice

for the functional (1.1), however we will not consider any energy space other than that. In this situation,
the Euler-Lagrange equation for the associated minimization problem is

(1.2)


Lu := ∆2u = λu in Ω,

Nu := ∂νu = 0 on ∂Ω,

Bu := −∂ν(∆u) = γλu on ∂Ω.

The objective of this paper is to study eigenvalues of the bulk-boundary operator T = (L, B). Remark
that, while the parameter γ takes values in the interval (0,∞), it is possible to formally define the
associated problems for γ = 0 and γ = ∞ (see (2.10) for the latter). These two extremal cases are
particularly interesting because of the disappearance of the bulk-boundary coupling, making them easier
to handle.
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In the extremal case γ =∞, problem (1.2) reduces to

(1.3)


∆2u = 0 in Ω,

∂νu = 0 on ∂Ω,

−∂ν(∆u) = λu on ∂Ω,

which was introduced in the 1960’s by [42] (see also the references therein), and several bounds were
established. Note that versions of (fourth-order) eigenvalue problems in which the eigenvalue appears
in the boundary condition have appeared in the literature [8, 9, 10, 14, 27, 33]. These are generally
referred to as biharmonic Steklov eigenvalue problems. However, we remark that problem (1.2) has
different features: the eigenvalue appears both in the bulk Ω and on the boundary ∂Ω, coupled by the
parameter γ, which makes it a coupled fourth-order in Ω, third-order on ∂Ω eigenvalue problem.

In the particular case that Ω is a half-space, the operator B is simply the fractional Laplacian (−∆)3/2

on ∂Ω, up to multiplicative constant (without being exhaustive, we cite [17, 21, 18], for instance). We
also refer to [43], where the authors study traces of Sobolev functions by means of biharmonic eigenvalue
problems that are strictly related to (1.2).

To the best of our knowledge, bulk-boundary eigenvalue problems first appeared in [48] (see also
[30]), where the authors consider the second order problem

(1.4)

{
−∆u = λu in Ω,

∂νu = γλu on ∂Ω,

which can be seen as the analogue of (1.2) for the Laplace operator. They call it a dynamical eigenvalue
problem as it can be derived it from the study of parabolic problem with dynamical boundary conditions
for the heat equation. Similarly, the motivation behind (1.2) comes from the study of a linear version of
the Cahn-Hilliard equation, which is a fourth-order problem. Indeed, consider the following parabolic
problem for v(x, t) with dynamical boundary conditions:

(1.5)


∂tv = −∆2v x ∈ Ω, t > 0

∂νv = 0 on ∂Ω,

γ∂tv = ∂ν(∆v) on ∂Ω.

Standard separation of variables v(x, t) = u(x)T (t) then yields the eigenvalue problem (1.2).
The system (1.5) can be understood as a simplified model for the linearization of the Cahn-Hilliard

equation with third-order dynamic boundary conditions, while the introduction of a zero-Neumann
condition on ∂Ω makes the problem more analytically tractable. We only give a brief motivation here
and refer to [40, Section 1.1] and the references therein for a summary of the current research in the
subject. The Cahn-Hilliard equation is a phase-field model that describes phase separation processes
of binary mixtures by a non-linear fourth-order equation,

∂tv = ∆µ,

where

(1.6) µ = −∆v +W ′(v)

is the bulk potential in Ω (here W is a double-well in Ω).
In recent years, several types of dynamic boundary conditions have been proposed in order to account

for the interactions of the material with the solid wall. In [41] the authors introduced a model which
can be derived as a gradient flow for a Ginzburg-Landau type energy that contains both a bulk and a
boundary contribution (compare to our (1.1)), which gives a third-order dynamic boundary condition

∂tv = −β∂νµ on ∂Ω
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and introduces a separate chemical potential µ̃ on the boundary satisfying a relation similar to (1.6)
but with a different double-well on ∂Ω. The term −∂νµ represents the mass flux at ∂Ω, it is directly
influenced by differences of the chemical potentials

(1.7) L∂νµ = βµ̃− µ on ∂Ω

for a constant L related to the reaction rate.
Singular limits as L→ 0 and L→∞ were also considered in the above mentioned paper [41]. On the

one hand, in the limit L→∞ (previously studied in [45, 31]) the two potentials are fully decoupled. On
the other hand, we are more interested in the limit L→ 0 (introduced in [35]) since it imposes that the
two potentials are in chemical equilibrium µ = βµ̃, related by the parameter β (in our setting, γ = 1/β).
We remark that well-posedness, analytic setup and basic statements for this eigenvalue problem were
established in [39], for any L.

We also observe that the study of (1.2), at least for the particular values γ = 0 and γ =∞, is partly
inspired from a eigenvalue problem in conformal geometry [36]. In this paper the authors study the
(fourth-order) Paneitz operator on locally conformally flat 4-manifolds, and its associated third-order
boundary operator (see the papers [19, 20, 18] for the precise definitions). The main term of both
operators coincides with L and B, respectively, but they include lower order terms that make them
conformally covariant (this is, they satisfy a simple intertwining rule under conformal changes of the
metric) and contain a lot of geometric/topological information. In particular, the conformally covariant
versions of L,B appear in the Gauss-Bonnet formula in four dimensions for manifolds with boundary.

An interesting open question is, thus, to understand the intrinsic geometric meaning of a bulk-
boundary coupling.

Here we take an analytic approach and study geometric properties for the model (1.2). It is easy to
see that, for each fixed γ, there exists a sequence of eigenvalues

0 = λ1(γ) ≤ λ2(γ) ≤ . . . .
Our first result deals with the behavior of the eigenvalues and eigenfunctions at the limits γ → 0 and
γ →∞. Theorem 3.3 shows that they have good convergence properties. This is not completely trivial
since, although eigenvalues usually behave continuously under perturbation, the standard theory does
not apply directly when the domain of the operator changes with the parameter (which, in our case,
is the non-standard space L2

γ(Ω, ∂Ω), defined precisely in (2.2)). Instead, our proof is inspired in the
recent paper [34] where the authors consider a number of applications of problem (1.4).

Next, we obtain expressions for the eigenvalues and eigenfunctions in the ball (Theorem 4.1 below).
More precisely, under the standard spherical harmonic decomposition, for each fixed projection ` =
0, 1, . . ., eigenfunctions can be written in terms of special functions, while eigenvalues are obtained as
the roots of the equation (4.4). Since this is a nontrival expression, we have given some numerical
approximations, as well as looking at the limits γ → 0 and γ →∞ explicitly. In any case, we show that
the fundamental mode (the first non-zero eigenvalue) in the ball case occurs at the projection ` = 1
(see Theorem 4.11), as one would expect for the ball geometry.

Then we move to the annular geometry (and the punctured ball as a limiting case), obtaining similar
formulas for the eigenvalues and eigenfunctions after projection over spherical harmonics. However,
here we find a surprising behavior: indeed, a bifurcation from the zero eigenvalue may happen when
varying the size of the annulus, which implies that there is a non-trivial radially symmetric eigenfunction
(corresponding to ` = 0) whose associated eigenvalue is the fundamental mode. This picture is more
easily understood by looking at Figures 3 and 5 from Section 5. We remark that a similar phenomena
can be observed in the calculation of the lowest non-zero Steklov eigenvalue in a 2-dimensional annulus
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from [29] or the lowest non-zero eigenvalue for the third-order boundary operator associated to the
fourth-order Paneitz operator on a locally conformally flat 4-manifold [36].

Regarding the punctured ball, we observe that the behavior is precisely that of the full ball in any
dimension, meaning in particular that the eigenfunctions can be analytically continued up to the origin.
Notice that this phenomenon is different from what is observed for other Bilaplacian eigenvalue prob-
lems, such as the Dirichlet case or the buckling problem, where in the low dimension regime (n = 2, 3)
the radial eigenfunctions are the only ones that separate the ball from the punctured ball, while in the
high dimension regime (n ≥ 4) the two problems coincide (see e.g., [13, 24, 25]).

Our last observation is that problem (1.2) is closely related both to a Steklov-type problem and to a
Neumann-type one, standing somewhat in the middle. This has deep consequences at the geometrical
level, since it qualitatively changes the behavior of any domain optimization problem for the fundamental
mode, which is a challenging problem that is outside the scope of this paper. In any case, for the two
extremal cases (that, we recall, are decoupled), optimization has already been considered: for γ = 0, it
is an immediate consequence of the fact that the problem reduces to the Neumann Laplacian squared
(see equation (2.9) and the discussion right below), while the case γ =∞ was studied in [49]. In both
the extremal cases the ball turns out to be the maximizer for the fundamental tone.

On the other hand, for other values of γ it is not even clear if the ball is a maximizer. Nevertheless,
the arguments used in [10] (see also the references therein) suggest that the ball is at least a critical
point under volume or perimeter constraint (cf. [11]). We also remark that, while continuity of the
eigenvalues is expected to hold for smooth perturbations of the domain, the eigenvalues of problem
(1.2) may not behave well if the perturbation is not smooth. We refer the interested reader to [26, 37]
for classical results on the Laplacian, as well as the more recent [16] for other related results regarding
the spectral stability of nonnegative operators and to [7] for the Steklov problem.

The paper will be structured as follows: first, in Section 2 we give all the functional analytic prelim-
inaries. In Section 3 we give our first results and prove convergence as γ → 0 and γ → ∞. Finally, in
Sections 4 and 5 we consider the ball and annulus domains, respectively.

2. Functional analytic setup

Let n ≥ 2, let Ω be a bounded domain in Rn, and let ν denote the exterior unit normal vector to ∂Ω.
For the sake of simplicity we will always consider ∂Ω ∈ C2, even though in principle it may be possible
to consider the problems we study under a less smooth environment. Integrals will be over Ω or ∂Ω, with
their respective measures that will not be written explicitly in this exposition. Also, we will set s = n−2

2 .

We denote by H2(Ω) the set of (real-valued) functions in L2(Ω) whose first and second derivatives
are all in L2(Ω). We recall that, in this case, it makes sense to consider the trace operators Γ0,Γ1 :
H2(Ω) 7→ L2(∂Ω) which are the extensions of the classical restriction operators

Γ0(u) = u|∂Ω, Γ1(u) = (∇u)|∂Ω · ν, ∀u ∈ H2(Ω) ∪ C∞(Ω).

Without loss of generality, we will denote by u, ∂νu the traces of an H2-function. We refer to [15] for
properties of Sobolev spaces and their traces.

We can therefore introduce the following space

H2
∗ (Ω) = {u ∈ H2(Ω) : ∂νu = 0 on ∂Ω} ⊂ H2(Ω),

which is a Hilbert subspace of H2(Ω) when endowed with the standard scalar product

〈u, v〉H2
∗ =

∫
Ω

[uv + (∆u)(∆v)],



BULK-BOUNDARY BILAPLACIAN EIGENVALUES 5

producing the norm

(2.1) ‖u‖2H2
∗
=

∫
Ω

[u2 + (∆u)2].

For any γ ∈ (0,∞), we also define the space

(2.2) L2
γ(Ω, ∂Ω) := {(u, u|∂Ω) : u ∈ H2(Ω)},

which turns out to be a Hilbert space when endowed with the scalar product

〈u, v〉L2
γ(Ω,∂Ω) :=

∫
Ω

uv + γ

∫
∂Ω

uv.

The Trace inequality immediately implies that H2
∗ (Ω) is compactly embedded in L2

γ(Ω, ∂Ω), leading to
the Hilbert triple:

H2
∗ (Ω) ↪→ L2

γ(Ω, ∂Ω) ↪→ H2
∗ (Ω)∗.

Given f ∈ L2(Ω) and h ∈ L2(∂Ω), we consider the boundary value problem

(2.3)


Lu := ∆2u = f in Ω,

Nu := ∂νu = 0 on ∂Ω,

Bu := −∂ν(∆u) = h on ∂Ω,

whose associated bilinear functional is given by

Q(u, v) =

∫
Ω

(∆u)(∆v).

In this notation, we can define weak solutions of (2.3) as those functions u ∈ H2
∗ (Ω) satisfying

(2.4) Q(u, v) =

∫
Ω

fv + γ

∫
∂Ω

hv ∀v ∈ H2
∗ (Ω).

It is important to remark that the boundary conditions N,B satisfy the so-called complementing
condition of [3, 4]. This is, for any tangent vector at the boundary τ(x) and for any orthogonal vector
v(x), the boundary operators N(τ + tv) and B(τ + tv) are linearly independent modulo the polynomial
(t + i|τ |)2. For our case, it means that the polynomials t and t3 + t are linearly independent modulo
(t+ i)2. Satisfying this complementing condition is crucial in order to have solvability of polyharmonic
problems, see also [32, Chaper 2].

Existence of solutions of problem (2.3) follow from a standard Fredholm argument thanks to the
energy estimate ‖u‖2H2

∗
≤ Q(u, u) + ‖u‖2L2(Ω). Thus equation (2.3) is well posed, has good Fredholm

properties, and if the compatibility condition∫
Ω

f + γ

∫
∂Ω

h = 0

holds, then there exists a one-dimensional set of solutions to (2.3). Two such solutions only differ by a
constant.

Regularity for solutions of polyharmonic problems has been well studied. In particular, given k ≥ 4,
for a-priori estimates in Sobolev spaces we recall ([32, Theorem 2.20]) that

(2.5) ‖u‖Wk,p(Ω)≤ C
(
‖f‖Wk−4,p(Ω)+‖h‖

W
k−3− 1

p
,p

(∂Ω)
+‖u‖L1(Ω)

)
,

while for Hölder regularity we have ([32, Theorem 2.19])

(2.6) ‖u‖Ck,γ(Ω̄) ≤ C
(
‖f‖Ck−4,γ(Ω̄) + ‖h‖Ck−3,γ(∂Ω) + ‖u‖L1(Ω)

)
.
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Note that both estimates can be localized.

In the notation of (2.3), we define the operator T over the space L2
γ(Ω, ∂Ω), given by the pair

(L,B) subject to the Neumann condition N = 0. We are interested in the corresponding eigenvalue
problem, namely equation (1.2). It is standard to show that T is a non-negative, densely defined, self-
adjoint operator with compact resolvent, therefore its spectrum consists of a non-decreasing sequence
of eigenvalues of finite multiplicities

0 = λ1(γ,Ω) ≤ λ2(γ,Ω) ≤ λ3(γ,Ω) ≤ · · · ≤ λk(γ,Ω) ≤ . . .

where each individual eigenvalue is repeated accordingly. In addition, the eigenfunctions {uk}∞k=1 can
be normalized to form an orthonormal basis for H2

∗ (Ω). We observe that the first eigenvalue is always
zero with associated eigenfunction the constant function on Ω. Moreover, bootstrapping the estimates
(2.5)-(2.6) yields that all eigenfunctions are smooth. Since Ω is assumed to be connected, necessarily
λ2(γ,Ω) > 0. Notice that the eigenvalues always depend both on γ and on Ω; however, we will drop
either argument when clear from the context, in order to ease the notation.

We also recall that, by the Courant min-max principle, the eigenvalues can be variationally charac-
terized as

(2.7) λk(γ,Ω) = min
V⊆H2

∗(Ω),
dimV=k

max
u∈V \{0}

Eγ [u],

where Eγ is the Rayleigh quotient associated with T :

(2.8) Eγ [u] :=
Q(u)

‖u‖L2
γ(Ω,∂Ω)

=

∫
Ω
|∆u|2∫

Ω
|u|2 + γ

∫
∂Ω
|u|2 .

In particular, the first non-zero eigenvalue (the so-called fundamental tone) can be written as

λ2(γ,Ω) = min
u∈Aγ ,u6≡0

Eγ [u],

where Aγ is the set of functions

Aγ :=

{
u ∈ H2

∗ (Ω) :

∫
Ω

u+ γ

∫
∂Ω

u = 0

}
.

We note that this problem has a scaling property that affects also the γ factor, due to the scale
difference between the interior measure and the boundary surface area. More precisely for R > 0, we
call RΩ = {x ∈ Rn : x/R ∈ Ω}. Then, if we denote λ(γ,Ω) the eigenvalue in (1.2) for a fixed γ and a
domain Ω, we have that

λ(γ,Ω) = R4λ(Rγ,RΩ).

Next, although the previous discussion considered only the situation γ ∈ (0,∞), the two limiting
cases γ = 0 and γ =∞ are actually very interesting. If we set γ = 0 in (1.2) we obtain

(2.9)

{
∆2u = λu in Ω,

∂νu = ∂ν(∆u) = 0 on ∂Ω,

which can be associated with the Poisson-type problem{
∆2u = f in Ω,

∂νu = ∂ν(∆u) = 0 on ∂Ω,
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for any f ∈ L2(Ω) (see [32, Section 1.1.3] for a discussion of the Navier problem for the Bilaplacian).
The latter, if we set v = −∆u, can be decomposed into the system of differential equations{

−∆v = f in Ω,

∂νv = 0 on ∂Ω,
and

{
−∆u = v in Ω,

∂νu = 0 on ∂Ω.

Since Ω is smooth, this immediately implies that the associated operator is the classical Neumann
Laplacian squared, that is, the eigenvalues of (2.9) are the squared of the eigenvalues of{

−∆u = λu in Ω,

∂νu = 0 on ∂Ω.

We refer to [2, 32] for more details on this identification. Also in this case, the associated operator
is self-adjoint with compact resolvent, resulting in a non-decreasing sequence of eigenvalues of finite
multiplicities, diverging to plus infinity, and the corresponding eigenfunctions can be normalized to
form an orthonormal basis of H2

∗ (Ω). We will list them as λk(0,Ω).

In addition, when γ =∞, if we consider instead the Rayleigh quotient

(2.10) Ẽγ [u] =

∫
Ω

(∆u)2

1
γ

∫
Ω
u2 +

∫
∂Ω
u2

= γ−1Eγ [u],

it is easy to see that this case is associated with the Steklov-type eigenvalue problem

(2.11)


∆2u = 0 in Ω,

∂νu = 0 on ∂Ω,

−∂ν(∆u) = λu on ∂Ω.

Problem (2.11) was first introduced in [42], and has recently gained attention for its relations with the
other biharmonic problems, as well as related questions (see e.g., [11, 43, 44]). Problem (2.11) admits
as well a non-decreasing sequence of eigenvalues of finite multiplicities, diverging to plus infinity, and
the corresponding eigenfunctions can be normalized to form an orthonormal basis of H2

∗ (Ω). We will
list them as λk(∞,Ω).

In this case, an application of Fichera’s duality principle (see [28]) allows to provide an additional
characterization of the first non-trivial eigenvalue of (2.11). Let us set

(2.12) τ(Ω) = inf
06=w∈B∞(Ω)

∫
∂Ω

(∂νw)2∫
Ω
w2

= inf
0 6=w∈B∞(Ω)

∫
∂Ω

(∂νw)2∫
Ω
w2

,

where

B∞(Ω) :=

{
w ∈ C2(Ω) : ∆w = 0 in Ω,

∫
Ω

w = 0

}
,

and B∞(Ω) is the closure of B∞(Ω) endowed with the norm

‖w‖B∞(Ω) = ‖∂νw‖L2(∂Ω).

Theorem 2.1. Suppose Ω ⊆ Rn is a bounded Lipschitz open set. Then B∞(Ω) ↪→ L2(Ω) compactly,
and problem (2.12) admits a minimizer w ∈ B∞(Ω). If in addition ∂Ω ∈ C2, then

(2.13) τ(Ω) = λ2(∞,Ω),

and moreover the minimizers of τ(Ω) are the Laplacians of the eigenfunctions associated with λ2(∞,Ω).

We remark that the identity (2.13) has already appeared in [42], although the authors do not provide
an explicit proof and refer to [28]. We add a proof of this fact here for the reader’s convenience (cf. [32,
Theorem 3.23]).
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Proof. We start showing that the embedding B∞(Ω) ↪→ L2(Ω) is compact when Ω is bounded and with
Lipschitz boundary. It is trivial to observe that B∞(Ω) ⊆ H2(Ω), since

‖w‖B∞(Ω) = ‖∂νw‖L2(∂Ω) ≤ C‖w‖H2(Ω),

for some positive constant C. Now, combining [38, Theorem 2] with [46, Proposition 2.3] we have that

‖w‖H1(Ω) ≤ C1‖∇w‖L2(Ω) ≤ C2‖w‖B∞(Ω),

for some positive constants C1, C2. This means that the embedding B∞(Ω) ↪→ H1(Ω) is continuous,
hence the compactness of B∞(Ω) ↪→ L2(Ω).

Now we prove that the minimization problem (2.12) admits a minimizer w. Consider a minimizing
sequence (wn)n such that ‖wn‖B∞(Ω) = 1. Up to a subsequence, there exists w ∈ B∞(Ω) such that

wn ⇀ w, hence wn → w in L2(Ω). In particular

‖w‖−2
L2(Ω) = lim

n
‖wn‖−2

L2(Ω) = τ,

while the weak lower semicontinuity of the norm implies that

‖∂νw‖L2(∂Ω) = ‖w‖B∞(Ω) ≤ lim inf
n
‖w‖B∞(Ω) = 1,

namely ∫
∂Ω

(∂νw)2∫
Ω
w2

≤ τ,

proving that w is a minimizer.
Now suppose that ∂Ω ∈ C2, and take a minimizer w of τ(Ω). Then, the Euler-Lagrange equation

associated with the minimization problem reads∫
∂Ω

∂νw ∂νv = τ(Ω)

∫
Ω

wv, ∀v ∈ B∞(Ω).

We set {
−∆u = w in Ω,

∂νu = 0 on ∂Ω.

Note that there is a unique solution u ∈ B∞(Ω) since w ∈ B∞(Ω) and Ω is smooth, and in particular
u ∈ H2

∗ (Ω). Hence ∫
Ω

wv = −
∫

Ω

v∆u =

∫
Ω

∇u · ∇v =

∫
∂Ω

u∂νv,

from which we get that

(2.14) −
∫
∂Ω

∂ν∆u ∂νv = τ(Ω)

∫
∂Ω

u∂νv.

Now, since v varies in B∞(Ω), we get that ∂νv (on ∂Ω) varies in H3/2(∂Ω), so that (2.14) implies that
u satisfies

−∂ν∆u = τ(Ω)u on ∂Ω.

Multiplying both sides by u we obtain

τ(Ω)

∫
∂Ω

u2 = −
∫
∂Ω

u∂ν∆u = −
∫

Ω

∇u · ∇∆u =

∫
Ω

(∆u)2,

meaning in particular that

τ(Ω) =

∫
Ω

(∆u)2∫
Ω
u2

≥ min
u∈H2

∗(Ω),
∫
Ω
u=0

∫
Ω

(∆u)2∫
Ω
u2

= λ2(∞,Ω),
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where the last equality is due to the fact that the additional condition
∫

Ω
u = 0 in the minimax

characterization is quotienting away the constants (associated with λ1(∞,Ω) = 0). This proves that
τ(Ω) ≥ λ2(∞,Ω).

To prove the other verse of the inequality, we now consider u ∈ H2
∗ (Ω) an eigenfunction associated

with λ2(∞,Ω). By the regularity estimate (2.5) it is easy to see that w = −∆u belongs to H2(Ω),
therefore u satisfies a.e. the equation

−∂ν∆u = λ2(∞,Ω)u on ∂Ω.

It is now possible to multiply both sides by ∂νv for v ∈ B∞(Ω), and repeating the same computations
as before we get ∫

∂Ω

∂νw ∂νv = λ2(∞,Ω)

∫
Ω

wv,

which shows that λ2(∞,Ω) ≥ τ(Ω), as desired. �

3. Convergence to the limiting cases

In this section we analyze the limiting behavior of the eigenvalues λk(γ,Ω) of problem (1.2) as the
parameter γ tends either to zero or to plus infinity. We will achieve this result by adapting the arguments
of [34, Theorem 5].

We start with the following:

Theorem 3.1. For any smooth and bounded domain Ω, and for any k ∈ N, the map

γ 7→ λk(γ)

is non-increasing in [0,+∞), while the map

γ 7→ γλk(γ)

is non-decreasing in [0,+∞).

Proof. The proof follows from the variational characterization of the eigenvalues: given γ1 < γ2 we
immediately see that

E0[u] ≤ Eγ1
[u] ≤ Eγ2

[u],

for any u ∈ H2
∗ (Ω), so that applying the min-max formula (2.7) we obtain as a consequence that

λk(γ1) ≤ λk(γ2),

for any k ∈ N. On the other hand,

Ẽγ1
[u] ≥ Ẽγ2

[u],

for any u ∈ H2
∗ (Ω), so that applying once more the min-max principle we obtain as a consequence that

γ1λk(γ1) ≤ γ2λk(γ2),

for any k ∈ N. �

Corollary 3.2. For any k and for any γ ∈ (0,+∞) the following hold:

λk(0) ≥ λk(γ) and γλk(γ) ≤ λk(∞).

We are now ready to prove the convergence as γ → 0.
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Theorem 3.3. For any smooth and bounded domain Ω, and for any k ∈ N, the function

γ 7→ λk(γ)

is continuous in [0,+∞) and we have that

λk(γ,Ω)→ λk(0,Ω), as γ → 0.

More precisely, given an eigenpair (λk(γ,Ω), uk(γ)) there exists an eigenfunction uk(0) of problem (2.9)
associated to the k-th eigenvalue λk(0,Ω) such that

λk(γ,Ω)→ λk(0,Ω) and uk(γ)
H2
∗−−→ uk(0), as γ → 0.

On the other hand, there exists an eigenfunction uk(∞) of problem (2.11) associated to the k-th eigen-
value λk(∞,Ω) such that

γλk(γ,Ω)→ λk(∞,Ω) and γ
1
2uk(γ)

H2
∗−−→ uk(∞), as γ →∞.

Proof. We start by considering the case γ → 0 and we observe that, since λk(γ) is non-increasing in γ,
then the limit for γ → 0 must exist, and we pose

λ̄k = lim
γ→0

λk(γ).

Now we consider the eigenpair (λk(γ), uk(γ)), where the eigenfunction uk(γ) is normalized in L2
γ(Ω, ∂Ω).

We have that ∫
Ω

|uk(γ)|2 ≤ ‖uk(γ)‖2L2
γ(Ω,∂Ω) ≤ 1, and

∫
Ω

(∆uk(γ))2 = λk(γ),

which tells us that the set {uk(γ)}γ>0 is bounded in H2
∗ (Ω). We can then extract a subsequence of

such eigenfunctions which is weakly convergent in H2
∗ (Ω) as γ → 0, and we call the limit ūk. Notice

that also the sequence of associated eigenvalues will converge to λ̄k. It holds that (λ̄k, ūk) is a solution
to the following problem ∫

Ω

∆ūk∆v = λ̄k

∫
Ω

ūkv, ∀v ∈ H2
∗ (Ω),

that is, it is an eigenpair for problem (2.9).
Now we would like to prove that (λ̄k, ūk) = (λk(0), uk(0)), and we argue by induction on the index k

of the eigenpair. We remark that the multiplicity of λk(γ) does not interfere with the argument we use,
since for multiple eigenvalues we can always choose an associated eigenfunction from the corresponding
eigenspace which does not overlap with the other eigenfunctions. Since the case k = 1 is obvious, we
assume convergence for all the eigenpairs up to the index k − 1. We set

(3.1) uk(0) = U(γ) +

k−1∑
j=1

〈uk(0), uj(γ)〉L2
γ
uj(γ),

for some function U . This is clearly an orthogonal decomposition, and we furthermore decompose

(3.2) 〈uk(0), uj(γ)〉L2
γ

= 〈uk(0), uj(0)〉L2
γ

+ 〈uk(0), uj(γ)− uj(0)〉L2
γ
.

For the first term in the right-hand side of (3.2) we see that

〈uk(0), uj(0)〉L2
γ

=

∫
Ω

uk(0)uj(0) + γ

∫
∂Ω

uk(0)uj(0),

where the first integral vanishes by hypothesis, and the second goes to zero as γ → 0. For the second
term in the right-hand side of (3.2) we have instead that

〈uk(0), uj(γ)− uj(0)〉L2
γ

=

∫
Ω

uk(0)[uj(γ)− uj(0)] + γ

∫
∂Ω

uk(0)[uj(γ)− uj(0)].
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Here the inductive hypothesis that uj(γ)
H2
∗−−→ uj(0) combined with classical Sobolev embeddings and

the Trace Theorem allows again to conclude that this term goes to zero as γ → 0. Therefore

for all 1 ≤ j ≤ k − 1, 〈uk(0), uj(γ)〉L2
γ
→ 0 as γ → 0.

Now we have, taking into account the decomposition (3.1),

λk(0) = Q(uk(0), uk(0))

=

∫
Ω

|∆U(γ)|2 +

k−1∑
j=1

〈uk(0), uj(γ)〉2L2
γ

∫
Ω

|∆uj(γ)|2 + 2

k−1∑
j=1

〈uk(0), uj(γ)〉L2
γ

∫
Ω

(∆uj(γ))(∆U(γ))

≥
∫

Ω

|∆U(γ)|2 +

k−1∑
j=1

〈uk(0), uj(γ)〉2L2
γ

∫
Ω

|∆uj(γ)|2

− 2

k−1∑
j=1

∣∣∣〈uk(0), uj(γ)〉L2
γ

∣∣∣ (∫
Ω

(∆uj(γ))2

) 1
2
(∫

Ω

(∆U(γ))2

) 1
2

.

(3.3)

We observe that the last two terms above converge to zero as γ → 0, while the Courant min-max
principle implies that ∫

Ω

|∆U(γ)|2 ≥ λk(γ)

(∫
Ω

U(γ)2 + γ

∫
∂Ω

U(γ)2

)
.

Here again the second term goes to zero, while∫
Ω

U(γ)2 =

∫
Ω

uk(0)2

− 2

k−1∑
j=1

〈uk(0), uj(γ)〉L2
γ

∫
Ω

uj(γ)uk(0)

+

k−1∑
j,l=1

〈uk(0), uj(γ)〉L2
γ
〈uk(0), ul(γ)〉L2

γ

∫
Ω

uj(γ)ul(γ).

(3.4)

Hence from (3.3) and (3.4), taking the limit γ → 0, we obtain that∫
Ω

U(γ)2 →
∫

Ω

uk(0)2, as γ → 0.

Summing up, all this shows that

λk(0) ≥ λ̄k(1 + o(1)),

and since λ̄k is an eigenvalue of problem (2.9), this means that (λ̄k, ūk) = (λj(0), uj(0)) for some
1 ≤ j ≤ k. Supposing that j < k leads to

1 = lim
γ→0

∫
Ω

uj(0)uk(γ)

= lim
γ→0

∫
Ω

(uj(0)− uj(γ))uk(γ) + lim
γ→0

∫
Ω

uj(γ)uk(γ) = 0,

a contradiction. This concludes the proof in the case γ → 0.
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The continuity of the eigenpair with respect to γ ∈ [0,+∞) can now be proven in the same way. As
for limit γ → +∞, we can reverse the variable to t = γ−1 and consider the eigenvalues

λ̃k(t) = t−1λk(t−1) = min
V⊆H2

∗(Ω),
dimV=k

max
u∈V \{0}

∫
Ω
|∆u|2

t
∫

Ω
|u|2 +

∫
∂Ω
|u|2 .

It is now clear that the same technique leads to the continuity of the eigenpair (λ̃k(t), t−
1
2uk(t)) with

respect to t up to t = 0, which corresponds to the case γ = +∞. Note that in this case the eigenfunctions
must be multiplied by t−

1
2 = γ

1
2 in order to keep the normalization. �

4. The eigenvalue problem in the ball

In this section, we set Ω = B1 to be the unit ball in Rn and study the eigenvalue problem (1.2). For
simplicity, we will denote the eigenvalues by λ4 instead of λ.

A well known fact of polyharmonic problems on balls is that any solution of the equation

(4.1) ∆2u = λ4u

in B1 can be written as the product of a radial function times a spherical harmonic function (see e.g.,
[23]) using spherical coordinates (r, θ). Let us recall that the spherical harmonics are the eigenfunctions
of the Laplace-Beltrami operator on the unit sphere Sn−1, namely

(4.2) −∆Sn−1Y`,m(θ) = `(`+ n− 2)Y`,m(θ).

Here ` ∈ N, while 1 ≤ m ≤ C`,n, where C`,n is the multiplicity of the eigenvalue `(` + n − 2). Any
spherical harmonic associated with the eigenvalue `(`+n− 2) is said to be of order `, and we will drop
the index m whenever it is not necessary.

We rewrite equation (4.1) as

(∆ + λ2)(∆− λ2)u = 0.

For any λ > 0, the general solution to (∆ + λ2)u = 0 has the form

(Aj`(λr) +By`(λr))Y`(θ),
for some ` ∈ N, where the functions j` and y` are the ultraspherical Bessel functions:

j`(z) = z1−n2 J`+n
2−1(z), y`(z) = z1−n2 Y`+n

2−1(z).

We refer to e.g., [47], which is the modern version of the classical [1], for the definition and standard
properties of Bessel functions. Notice that here any spherical harmonic of order ` produces a viable
solution.

Similarly, for any λ > 0 the general solution to (∆− λ2)u = 0 has the form

(Ci`(λr) +Dk`(λr))Y`(θ),
where the functions i` and k` are the ultraspherical modified Bessel functions:

i`(z) = z1−n2 I`+n
2−1(z), k`(z) = z1−n2 K`+n

2−1(z).

Therefore, a general solution of (4.1) will take the form

(Aj`(λr) +By`(λr) + Ci`(λr) +Dk`(λr))Y`(θ).
However, the functions y` and k` are singular at the origin and so is any linear combination (see [23])

By`(λr) +Dk`(λr).

Since eigenfunctions of (4.1) on the ball must be smooth at the origin, this means that B = D = 0, so
that such eigenfunctions will take the form

(Aj`(λr) + Ci`(λr))Y`(θ).
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The values of A,C, and λ can now be obtained imposing the boundary conditions.

Theorem 4.1. Fix γ ≥ 0. The positve eigenvalues of

(4.3)


∆2u = λ4u in B1,

∂νu = 0 on ∂B1,

∂ν(∆u) = −γλ4u on ∂B1,

are all and only the solutions of the equation

(4.4) 2j′`(λ`)i
′
`(λ`) + γλ`(j

′
`(λ`)i`(λ`)− i′`(λ`)j`(λ`)) = 0,

for some ` ∈ N. For any such solution, the associated eigenfunctions take the form

u`(r)Y`(θ)

for some spherical harmonic Y` of order `, where

(4.5) u`(r) = i′`(λ`)j`(λ`r)− j′`(λ`)i`(λ`r).

Proof. The proof is a minor variation of [23], but we detail it here for completeness.
As we saw at the beginning of the section, the function u` will be of the form

u`(r) = A`j`(λr) +B`i`(λr),

for some constants A`, B`, λ. Now we impose boundary conditions. Notice that the condition ∂νu = 0
readily implies

A`j
′
`(λ) +B`i

′
`(λ) = 0,

and from here we obtain (4.5).
Moreover, we can consider the boundary conditions as a system of homogeneous equations{

Mu = ∂ru = 0,

Nu = ∂r∆u+ λ4γu = 0.

Since we search non-trivial eigenvalues, this system must have a non-trivial solution, so we are bound
to impose that the following determinant vanishes at r = 1:∣∣∣∣Mj` Mi`

N j` N i`

∣∣∣∣ .
Thus, any number λ is an eigenvalue of problem (4.3) if and only if it satisfies the equation

−λ4[2j′`(λ)i′`(λ) + γλ(j′`(λ)i`(λ)− i′`(λ)j`(λ))] = 0.

Finally, if λ 6= 0, we get (4.4). �

We remark that, in order to approximate numerically the value of the eigenvalues, one can rewrite
(4.4) as a fixed-point problem for each `, for γ ∈ (0,∞):

(4.6) λ =
−2γ−1

i`(λ)
i′`(λ) −

j`(λ)
j′`(λ)

=: γ−1Ψ(λ).

In Figure 1 below we plot the function Ψ(λ) in dimensions n = 2, 3, for ` = 0, . . . , 5, together with the
identity function (in black).
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Figure 1. Function Ψ(λ).

Remark 4.2. For the case λ = 0, solutions of problem ∆2u = 0 are, after projecting over spherical
harmonics, of the form

(4.7) u`(r) =


A+B log r + Cr2 +Dr2 log r if n = 2, ` = 0,

Ar +Br log r + C
r +Dr3 if n = 2, ` = 1,

A+B log r + Cr2 + D
r2 if n = 4, ` = 0,

Ar` +Br−(`+n−2) + Cr`+2 +Dr−(`+n−4) otherwise,

which shows that the eigenfunctions associated to the zero eigenvalue for (4.3) in the unit ball must be
constant.

4.1. The limit as γ → 0. As we already saw, the limit γ → 0 is actually a regular value for problem
(1.2), so that from Theorem 4.1 we get

Corollary 4.3. Consider the eigenvalue problem

(4.8)


∆2u = λ4u in Ω,

∂νu = 0 on ∂Ω,

∂ν(∆u) = 0 on ∂Ω.

Then, any non-zero eigenvalue solves the equation

(4.9) j′`(λ`) = 0,

for some `, and the corresponding eigenfunctions have the form

u`(r) = j`(λ`r).

Note that here again the eigenvalues are the squares of those of the Neumann Laplacian, with the
same associated eigenfunctions.

A more precise behavior of the tail eigenvalues for problem (4.8) is given in the following:
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Proposition 4.4. Fix n > 2 and ` ∈ N. Let (λk)∞k=1 be the set of positive zeroes of equation (4.9).
Then, for any k large enough, we have:

0 < c < λk+1 − λk ≤ 4π.

Proof. Using the definition of j`(r), we can expand:

j′`(r) = (r−sJ`+s(r))
′ = r−sJ ′`+s(r)− sr−s−1J`+s(r).

Then, we can rewrite the equation (4.9) as a fixed-point equation

r =
sJ`+s(r)

J ′`+s(r)
.

Now, to study the function sJ`+s(r)
J′`+s(r)

for r big enough, we can use Hankel’s asymptotic expansion of the

Bessel function as |r| → ∞ from [1, page 364, section 9.2]

J`(r) ≈
√

2

πr

(
P (`, r) cos

(
r − 2`−1

4 π
)
−Q(`, r) sin

(
r − 2`−1

4 π
))
,

J ′`(r) ≈ −
√

2

πr

(
S(`, r) cos

(
r − 2`−1

4 π
)

+R(`, r) sin
(
r − 2`−1

4 π
))
,

where

P (`, r) =

∞∑
k=0

(−1)k〈`, 2k〉
(2r)2k

,

Q(`, r) =

∞∑
k=0

(−1)k〈`, 2k + 1〉
(2r)2k+1

,

R(`, z) =

∞∑
k=0

(−1)k
4`2 + 16k2 − 1

4`2 − (4k − 1)2

〈`, 2k〉
(2z)2k

,

S(`, z) =

∞∑
k=0

(−1)k
4`2 + 4(2k + 1)2 − 1

4`2 − (4k + 1)2

〈`, 2k + 1〉
(2z)2k+1

,

for 〈`, k〉 =
k∏
s=1

(4`2 − (2s+ 1)2).

Then, by inspecting this expansions we get that, for every fixed `, we have that our function sJ`+s(r)
J′`+s(r)

is asymptotically a cotangent function. As both the cotangent and the identity are increasing functions,
we easily obtain an estimate for the difference of two eigenvalues (see Figure 2).
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and its limit, a cotangent function

scaled and displaced. The black line is the identity function.

�

4.2. The limit as γ →∞. In the case of the ball, the limiting problem as γ →∞ looks like

(4.10)


∆2u = 0 in Ω,

∂νu = 0 on ∂Ω,

∂ν∆u = −λ4u on ∂Ω.

We first recall the following result, which is a special case of the so-called Almansi decomposition for
polyharmonic operators (see e.g., [5, 6]). For the sake of completeness we provide here a proof.

Proposition 4.5. Consider the problem

∆2u = 0 in Rn,

Then, any solution can be written as

(4.11) u(r, θ) =

∞∑
`=0

(A`r
` + C`r

`+2)Y`(θ).

Proof. Since the Bilaplacian commutes with the Laplace-Beltrami operator ∆Sn−1 , we know we can
employ a separation of variables technique, solving for each projection u`. For this, we write the
Laplacian in spherical coordinates

∆u` = ∂rru` +
n− 1

r
∂ru` +

−`(`+ n− 2)

r2
u`.

Now, the change of variables r = e−t gives

(4.12) ∆u` = e2t(∂t + `)(∂t − (`+ n− 2))u`,
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which yields the formula for the Bilaplacian

∆2u` = e4t(∂t + `)(∂t − (`+ n− 2))(∂t + (`+ 2))(∂t − (`+ n− 4))u`.

Hence, our solutions will be of the form

u(t, θ) =

∞∑
`=0

(A`e
−`t +B`e

(`+n−2)t + C`e
−(`+2)t +D`e

(`+n−4)t)Y`(θ).

Since eigenfunctions are regular at the origin (that is, when t→∞), we must set B` = D` = 0 and this
yields the conclusion. �

From Proposition 4.5 it is then straightforward to completely characterize eigenfunctions and eigen-
values of problem (4.10) (see also [49]).

Proposition 4.6. For the the biharmonic Steklov eigenvalue problem (4.10) in Ω = B1 the unit ball we
know that eigenvalues are

λ4 = `2(2`+ n)

with eigenfunctions

u`(r, θ) = ((`+ 2)r` − `r`+2)Y`(θ).

Now we show convergence of the eigenvalues and the eigenfunctions. Even though this was known by
Theorem 3.3 in the previous Section, here we obtain convergence directly by looking at the asymptotics.
Indeed, the trick is to find the correct scale that allows to take the limit γ → ∞. In the following, we
work directly with the `-th projection.

Proposition 4.7. Consider the eigenvectors u` in Theorem 4.1. Then, the minimizers γ
1−`

2 u` and
their associated non-zero eigenvalues converge to those in Proposition 4.6 when γ →∞.

Proof. By Theorem 4.1, the radial coordinates of the minimizers of the energy Eγ [u] are:

u`(r) = i′`(γ
− 1

4λ)j`(γ
− 1

4λr)− j′`(γ−
1
4λ)i`(γ

− 1
4λr),

and their respective eigenvalues satisfy the equation:

2j′`(λ)i′`(λ) + γλ(j′`(λ)i`(λ)− i′`(λ)j`(λ) = 0.

By using the series for Bessel ultraspherical functions in [23] (formulae (14) and (15)) for the eigenvalue
equation we arrive to:

2γ
1−`

2 (λ2`−2`2a0 − 2λ2`−2a0a2) +O(γ−
`
2 ) = 0,

where the terms ak are the terms in the series and depend only on the dimension n and `. Thus, if we

consider the scaled eigenvectors γ
1−`

2 u`, the equation reads

2(λ2`−2`2a0 − 2λ2`−2a0a2) +O(γ−
`
2 ) = 0

Taking the limit γ →∞ and solving for λ we arrive to

λ4 =
`2a0

2a2
= `2

Γ(1 + n
2 + `)22+`

2Γ(n2 + `)2`
= `2(2n+ `).

�



18 D. BUOSO, C. FALCÓ, M.D.M. GONZÁLEZ, AND M. MIRANDA

4.3. The fundamental mode in the ball. We now aim to identify which eigenfunction corresponds
to the fundamental mode in the ball or, more precisely, for what value of the index ` we obtain the
fundamental mode. In particular, we will see it corresponds to ` = 1. We follow the ideas in [23] for
a different Bilaplacian eigenvalue problem. Remark that, in contrast to the previous subsections, this
smallest non-zero eigenvalue will be denoted by µ(1).

For each `, the seeked eigenvalues are the roots of Φ`(z) = 0 where

Φ`(z) = 2j′`(z)i
′
`(z) + γz

(
j′`(z)i`(z)− i′`(z)j`(z)

)
.

Analogously to the usual Bessel functions Jν , Iν , the ultraspherical Bessel functions have several useful
recurrence relations [12]. In particular we will use

(4.13) j′`(z) =
`

z
j`(z)− j`+1(z),

(4.14) i′`(z) =
`

z
i`(z) + i`+1(z),

as well as

(4.15) j′`(z) = j`−1(z)− `+ n− 2

z
j`(z).

We will find the study of the zeros of the ultraspherical Bessel functions in [22] particularly useful.
Let p1,1 be the smallest zero of j′1(z). Then, we have the following result.

Lemma 4.8 (Lemmas 5 and 6 in [22]). We have j1(z) > 0 for z ≤ p1,1 and j′1 > 0 on (0, p1,1).

As a direct consequence we deduce:

Lemma 4.9. The smallest ` = 1 eigenvalue on the unit ball, denoted by µ(1), is smaller than p1,1.

Proof. µ(1) is an eigenvalue with ` = 1 if Φ1(µ(1)) = 0. Now observe that

Φ1(p1,1) = −γp1,1i
′
1(p1,1)j1(p1,1) < 0,

since j1(p1,1) > 0 and i′1 is always positive. Note also that Φ1(0) = 2a2
0, which means that Φ is positive

near z = 0. Since µ(1) is the smallest eigenvalue, it follows that µ(1) < p1,1. �

Lemma 4.10. We have j0 > 0 on (0, p1,1).

Proof. Use (4.15) to write

j0(z) = j′1(z) +
n− 1

z
j1(z).

The claim follows now from Lemma 4.8. �

We are now ready to prove the main result in this Subsection:

Theorem 4.11. The smallest non-zero eigenvalue µ(1) on the unit ball corresponds to ` = 1.

Proof. We follow [23] and divide the proof in two stages. We show first that, for any fixed smooth
radial function R and ` ≥ 1, the energy Eγ [RY`] is minimized for ` = 1. Then we show that, among
` = 1 and ` = 0, the smallest non-zero eigenvalue corresponds to ` = 1.

The first part is immediate in our case. Indeed,

Eγ [RY`] =

∫
B1

(
R′′ + n−1

r R′ − R
r2 `(`+ n− 2)

)2

dr∫
B1
R2rn−1 dr + γ|Sn−1|R(1)2

,

and thus there is only one term in the numerator which depends on `. This term is increasing with `,
and hence Eγ [RY`] reaches its minimum at ` = 1.
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We only need to look at the cases ` = 1 and ` = 0 now. Let µ(0) be the smallest non-zero eigenvalue
corresponding to ` = 0. Due to Lemma 4.9, it suffices to show that p1,1 < µ(0).

Clearly, for ` = 0, one has Φ0(0) = 0. By using (4.13) and (4.14) we can rewrite

Φ0(z) = −2j0(z)i0(z)− γz
(
j1(z)i0(z) + i1(z)j0(z)

)
.

From Lemmas 4.8 and 4.10, and by using the fact that i` and all its derivatives are always positive we
find that Φ0 < 0 on (0, p1,1). Hence p1,1 < µ(0) and µ(1) < µ(0), as claimed. �

5. The eigenvalue problem in the annulus

In this section we aim to characterize the eigenfunctions and eigenvalues of our problem in the
annulus Ωa = {x ∈ Rn : a < |x| < 1} for each 0 < a < 1. In particular we will consider

(5.1)


∆2u = λ4u in Ωa,

∂νu = 0 on ∂Ωa,

−∂ν(∆u) = γλ4u on ∂Ωa.

We first look at eigenfunctions correspoding to the zero-eigenvalue:

Proposition 5.1. Eigenfunctions of (5.1) for λ = 0 are just the constants.

Proof. Recalling Remark 4.2, we know that after projection over spherical harmonics, solutions to
∆2u = 0 are of the form given by expression (4.7). Imposing boundary conditions in the first three
cases yields the constants as the only possible solution. Assuming then that we are in the fourth case,
direct calculations show that

∂r∆u` = 2C`(2`+ n)r`−1 + 2D(2`+ n− 4)(`+ n− 2)r−(`+n−1).

Thus imposing boundary conditions yields the system of equations
` 2− `− n `+ 2 4− `− n

`a`−1 (2− `− n)a−(`+n−1) (`+ 2)a`+1 (4− `− n)a−(`+n−3)

0 0 `(2`+ n) (2`+ n− 4)(`+ n− 2)
0 0 `(2`+ n)a`−1 (2`+ n− 4)(`+ n− 2)a−(`+n−1)



A
B
C
D

 =


0
0
0
0

 .

In order to have non-trivial solutions, the matrix determinant needs to be equal to 0. But this deter-
minant reduces to

−(a`−1 − a−(`+n−1))2`2(2`+ n)(2`+ n− 4)(`+ n− 2)2.

Note that we assumed that 2` + n 6= 4 and ` + n > 2. Hence the only possibility for this determinant
to be zero is setting ` = 0 when n 6= 2, 4. But, in this case, the rank of this matrix is three, so the
eigenspace is still one-dimensional, as desired. �

Theorem 5.2. Non-zero eigenvalues of problem (5.1) are given by solutions of the equation

(5.2) detW`(λ) = 0,

where W` is the matrix given in (5.4), for each ` = 0, 1, . . .

Proof. We will follow the same steps as in the proof of Theorem 4.1, for λ 6= 0. More precisely, after
projection over spherical harmonics, we use ultraspherical Bessel functions to write the radial coordinate
of the eigenfunction

(5.3) u`(r) = A`j`(λr) +B`y`(λr) + C`i`(λr) +D`k`(λr),
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for some constants A,B,C,D, which will be fixed from the boundary conditions. Imposing the zero-
Neumann and the third order conditions at both boundaries yields the system of equations, in matrix
form,

W`(λ) ·


A
B
C
D

 =


0
0
0
0


where we have used W`(λ) to denote the matrix

(5.4)


j′`(λa) y′`(λa) i′`(λa) k′`(λa)
j′`(λ) y′`(λ) i′`(λ) k′`(λ)

j′`(λa)− γλj`(λa) y′`(λa)− γλy`(λa) −i′`(λa)− γλi`(λa) −k′`(λa)− γλk`(λa)
j′`(λ) + γλj`(λ) y′`(λ) + γλy`(λ) −i′`(λ) + γλi`(λ) −k′`(λa) + γλk`(λ)


Non-trivial solutions exist when its determinant vanishes, which is precisely condition (5.2). This
completes the proof of the Theorem.

�

Now we would like to study the behavior of the eigenvalues by looking at the solutions of equation
(5.2) depending on the size of the annulus (the parameter a), for each γ. In order to illustrate the
general picture, let us start with dimension n = 2. In this case, s = 0 and the ultraspherical Bessel
functions become the usual ones. Hence the matrix W`(λ) reduces to

J ′`(λa) Y ′` (λa) I ′`(λa) K ′`(λa)
J ′`(λ) Y ′` (λ) I ′`(λ) K ′`(λ)

J ′`(λa)− γλJ`(λa) Y ′` (λa)− γλY`(λa) −I ′`(λa)− γλI`(λa) −K ′`(λa)− γλK`(λa)
J ′`(λ) + γλJ`(λ) Y ′` (λ) + γλY`(λ) −I ′`(λ) + γλI`(λ) −K ′`(λ) + γλK`(λ)


Imposing equation (5.2) yields Figure 3 below for the eigenvalues.
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Figure 3. First four eigenvalues (k = 1, 2, 3, 4) for ` = 0, 1, 2, 3 and different values of
γ and a (in dimension n = 2).
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Note that for small values of γ (γ = 0.4 in Figure 3) a bifurcation from λ = 0 appears for a specific
value of a. To understand why this happens, we also plot in Figure 4 detW`(λ) for different values of
` and observe that in the ` = 0 case, detW0(0) changes sign in a neighborhood of a ≈ 0.2. Whenever
detW0(0) is positive, there exists a solution for ` = 0 with a non-zero eigenvalue which is smaller than
the smallest ` = 1 eigenvalue. However, when detW0(0) is negative, the smallest non-zero eigenvalue
corresponds to ` = 1.

0 2 4 6 8 10
λ

−4

−2

0

2

4

d
et

(W
`(
λ

))

n = 2, γ = 0.4, a = 0.19

` = 0

` = 1

` = 2

0 2 4 6 8 10
λ

n = 2, γ = 0.4, a = 0.21

Figure 4. detW`(λ) as a function of λ for n = 2, γ = 0.4, ` = 0, 1, 2 for the cases
a = 0.19 and a = 0.21.

According to this discussion, finding when the determinant is equal to zero should tell us exactly when
the bifurcation happens. To see this, use the asymptotic expansions of the Bessel functions expansions
for ` = 0 to obtain that

lim
λ→0+

detW0(λ) =
2(a+ 1)2(a− 1)(a+ 2γ − 1)

πa2

and, hence, the bifurcation should happen when a + 2γ − 1 = 0. For example, when γ = 0.4 the
bifurcation occurs at a = 0.2 which agrees with the plot. This bifurcation exists as long as 0 < 1−2γ < 1.

In the case n ≥ 3 we can follow a similar procedure. Using the expansions for the ultraspherical
Bessel functions we have instead

detW0(λ) =
2πs2(a2s+2 − 1)

(
a2s+2 + 2γ(s+ 1)a2s+1 + 2γ(s+ 1)− 1

)
a4s+2(s+ 1)2Γ(1 + s)2Γ(1− s)2 sin2(πs)

λ−4s + o(λ)

=
2(a2s+2 − 1)

(
a2s+2 + 2γ(s+ 1)a2s+1 + 2γ(s+ 1)− 1

)
πa4s+2(s+ 1)2

λ−4s + o(λ),

By a similar argument, the bifurcation appears when

a2s+2 + 2γ(s+ 1)a2s+1 + 2γ(s+ 1)− 1 = 0

or, recalling the definition of s, when

F (a) :=
1− an

1 + an−1
= γn.

Since the function F (a) is strictly decreasing for a ∈ (0, 1), F (0) = 1 and lima→1− F (a) = 0, this
equation has a unique solution if and only if γn < 1. Hence there exists a bifurcation as long as
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0 < γ < 1
n (See Figure 5 for γ = 0.2). Note, finally, that in the limit s → 0 we recover the previous

results on dimension n = 2.
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Figure 5. First four eigenvalues (k = 1, 2, 3, 4) for ` = 0, 1, 2, 3 and different values of
γ and a (n = 4).

We summarize some of our findings below, as seen in Figure 3 (for dimension n = 2) and Figure 5
(for n = 4):

Proposition 5.3. Assume that n ≥ 2 and γ ∈ (0, 1
n ). There exists a∗ ∈ (0, 1) such that, or a∗ < a < 1,

the eigenfunction corresponding to the lowest non-zero eigenvalue is radially symmetric, while if 0 <
a < a∗, the eigenfunction is not radially symmetric but corresponds to the mode ` = 1. For n = 2,
a∗ = 1− 2γ.

We remark that a similar phenomena can be observed in the calculation of the lowest non-zero Steklov
eigenvalue in a 2-dimensional annulus from [29]. Indeed, there is a critical size that, above which, the
eigenfunction is radially symmetric, while below this critical value, the eigenfunction corresponds to the
mode ` = 1. Moreover, this bifurcation is present in some four-dimensional problems for the Paneitz
operator and its associated third-order boundary operator [36] in the context of conformal geometry
and classification of locally conformally flat manifolds.

5.1. The punctured ball. While for 0 < a < 1 eigenfunctions and eigenvalues on the annulus Ωa can
be treated as we saw in the previous section, the case of the punctured ball Ω0 = B1(Rn) \ {0} has to
be handled in a different way. First of all, we observe that the boundary of Ω0 is no longer smooth,
nevertheless problem (5.1) can still be considered, at least in its weak formulation (2.4).

In order to understand how to treat the punctured ball, we first recall that it is possible to define
an H2-capacity measure such that, whenever a set E has zero H2-capacity, the following identification
holds:

H2(Ω) = H2(Ω \ E),
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in the sense that the standard embedding H2(Ω) ↪→ H2(Ω\E) is surjective. We refer to [50, Section 2.6]
for the precise definition and basic properties of the capacity applied to Sobolev spaces. In particular,
if n ≥ 4, a singleton has vanishing H2-capacity (see [50, Theorem 2.6.16]), so that

H2(Ω0) = H2(B1).

In addition, since it is not possible to properly define any trace of an H2-function on a singleton for
n ≥ 4, this means that

H2
∗ (Ω0) = H2

∗ (B1),

hence the weak formulation (2.4) set in Ω0 is equivalent to that set in B1, producing the same solutions.
In particular, the hole in Ω0 is not seen by the problem, and therefore the strong formulation (5.1) in
Ω0 has to be considered as in B1.

On the other hand, if n = 2, 3 a singleton has now a non-vanishing H2-capacity (see [50, Remark
2.6.15]), meaning that it is now possible for the embedding H2(B1) ↪→ H2(Ω0) not to be surjective.
Hence we must analyze the behaviour of any u ∈ H2(Ω0) at the origin.

First of all, we observe that ∇u ∈ H1(Ω0)n = H1(B1)n, since singletons have zero H1-capacity for
any n ≥ 2. In particular, ∇u is an L2-vector and is continuous on almost every straight line passing
through the origin. Moreover, it is not possible to trace the gradient on a singleton for any n ≥ 2 (cf.
[15, Section 5.2]).

On the other hand, by the Sobolev Embedding Theorem (cf. [15, Section 4.6]) we know that u ∈
Cb(Ω0), meaning in particular that u has to be bounded around the origin. Since it is also possible to
trace u on a singleton if n = 2, 3, then we infer that u can be continuously extended at the origin, and
therefore H2(Ω0) = H2(B1). Moreover, since it is not possible to trace the gradient ∇u on the origin,
we also get H2

∗ (Ω0) = H2
∗ (B1).

Finally, we observe that the smooth part of ∂Ω0, namely ∂B1, is in fact smooth, therefore the
boundary conditions on ∂B1 look as expected:

∂νu = 0, and − ∂ν(∆u) = γλ4u on ∂B1.

All these considerations can be summed up in the following

Theorem 5.4. For any n ≥ 2, the eigenvalues and the eigenfunctions of problem (5.1) on the punctured
ball Ω0 conincide with those of problem (1.2) on the ball B1(Rn). In particular, the eigenfunctions on
the punctured ball can be analytically continued to the whole ball.

Let us conclude by observing that, in other type of eigenvalue problems for the Bilaplacian, this
behaviour on the punctured ball may or may not appear depending on the boundary conditions: we
refer for instance to [13, 24, 25] where the case n = 2 is considered and the eigenfunctions and the
eigenvalues on the punctured disk are different from those of the unit disk. In fact, while it is not
possible to trace the gradient of an H2-function on a singleton, it is still possible to trace the function
itself, so that

H2
0 (Ω0) $ H2

0 (B1(Rn))

for n = 2, 3, showing that the Dirichlet Bilaplacian presents a different behaviour in the disk and in the
punctured disk.
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