
The Pohozaev identity for the
Spectral Fractional Laplacian

Itahisa Barrios-Cubas, Matteo Bonforte, Maŕıa del Mar González and Clara Torres-Latorre

Abstract

In this paper, we prove a Pohozaev identity for the Spectral Fractional Laplacian (SFL).
This identity allows us to establish non-existence results for the semilinear Dirichlet problem
(−∆|Ω)su = f(u) in star-shaped domains. The first such identity for non-local operators was
established by Ros-Oton and Serra in 2014 for the Restricted Fractional Laplacian (RFL).
However, the SFL differs fundamentally from the RFL, and the integration by parts strategy
of Ros-Oton and Serra cannot be applied. Instead, we develop a novel spectral approach
that exploits the underlying quadratic structure. Our main result expresses the identity as a
Schur product of the classical Pohozaev quadratic form and a transition matrix that depends
on the eigenvalues of the Laplacian and the fractional exponent.

1 Introduction

Pohozaev identities are a fundamental tool in the analysis of elliptic PDEs, with applications
ranging from non-existence results to geometric problems. Notable consequences include the
non-existence results by Pucci and Serrin [31] or Brézis and Nirenberg [10] for semilinear PDEs,
as well as Schoen’s application [43] to the Yamabe problem in conformal geometry, which is
the higher-dimensional analogue of Kazdan and Warner’s curvature prescription problem for
surfaces [24].

These identities can be understood as conservation laws arising from symmetries of the
operator such as the scaling invariance of the Laplacian. They also encode the geometry of the
domain Ω and the normal derivative of the function on ∂Ω.

Non-local versions extend these results to fractional and integro-differential equations, which
model anomalous diffusion, long-range interactions, and non-local phenomena in physics and
probability, see [19]. The first Pohozaev identity for non-local operators was established in the
influential paper by Ros-Oton and Serra [38], where they used the invariances of the fractional
Laplacian to obtain a new Pohozaev formula. Their breakthrough consisted of finding the
appropriate boundary term for the Restricted Fractional Laplacian (RFL) on a domain Ω.

However, it is not possible—to the best of our knowledge—to mimic the proof by Ros-Oton
and Serra in the case of the Spectral Fractional Laplacian (SFL) in a domain. The situation is
fundamentally different: the SFL is not invariant under dilations or translations, has a kernel
that degenerates at the boundary, and sharp boundary regularity is not yet known. These
obstructions have prevented the development of a Pohozaev identity for the SFL for over a
decade.

To overcome these obstacles, we propose a novel spectral approach based on the underlying
quadratic structure to obtain a new Pohozaev identity for the SFL. We apply this identity to
establish non-existence of non-trivial solutions for semilinear Dirichlet problems in star-shaped
domains.
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1.1 Main results

Let Ω ⊂ RN be a bounded C1,1 domain and s ∈ (0, 1). Let {λk, φk}∞k=1 denote the eigenele-
ments of the classical Dirichlet Laplacian, where λk are the eigenvalues 0 < λ1 ≤ λ2 ≤ . . . with
λk → ∞ (repeated according to multiplicity), and φk are the eigenfunctions satisfying{

−∆φk = λkφk, in Ω,

φk = 0, on ∂Ω,

normalized to ⟨φj , φk⟩ = δjk. Any u ∈ L2(Ω) has Fourier coefficients ûk = ⟨u, φk⟩ and expansion
u =

∑∞
k=1 ûkφk. The Spectral Fractional Laplacian (SFL) is then defined as

(−∆|Ω)su =
∞∑
j=1

λs
j ûjφj .

We recall the classical Pohozaev identity for the (local) Dirichlet Laplacian: let u ∈ C2(Ω)
and u = 0 on ∂Ω, then

(1.1) Q(1)[u] :=

(
2−N

2

)∫
Ω
u(−∆)u dx−

∫
Ω
(x · ∇u)(−∆)u dx =

1

2

∫
∂Ω

∣∣∣∣∂u∂ν
∣∣∣∣2 (x · ν) dS,

where ν is the outward normal vector and dS is the (N − 1)-dimensional surface measure. It is
clear from the above expression that Q(1)[u] ≥ 0 when the domain Ω is star-shaped. In terms

of Fourier coefficients, Q(1) can be written as the quadratic form Q(1)[u] =
∑

j,k Q
(1)
jk ûj ûk with

Q
(1)
jk =

1

2

∫
∂Ω

(∇φj · ∇φk)(x · ν) dS.

Our main result is a Pohozaev identity for the SFL whose positivity is inherited from the
classical Pohozaev identity and thus depends only on the geometry of the domain.

Theorem 1.1 (Abstract Pohozaev identity for the SFL). Let Ω be a bounded C1,1 domain,

s ∈ (0, 1) and u ∈ H
max{2s,3/2}
0 (Ω). Define

(1.2) Q(s)[u] :=

(
2s−N

2

)∫
Ω
u(−∆|Ω)su dx−

∫
Ω
(x · ∇u)(−∆|Ω)su dx.

Then Q(s) is a positive semidefinite quadratic form whenever Q(1) is. In particular,

Q(1)[u] ≥ 0 implies Q(s)[u] ≥ 0.

Moreover, Q(s) can be expressed as

(1.3) Q(s) = P (s) ◦Q(1),

where ◦ denotes the Schur (or Hadamard) product. Equivalently, in coordinates,

Q(s)[u] =

∞∑
j,k=1

Q
(s)
jk ûj ûk, where Q

(s)
jk = P

(s)
jk Q

(1)
jk .

The transition matrix P (s) is given by

(1.4) P
(s)
jk =


λs
j − λs

k

λj − λk
, if λj ̸= λk,

sλs−1
j , if λj = λk.
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Application to Semilinear PDEs. Theorem 1.1 can be applied to semilinear elliptic equations
involving the SFL and Dirichlet boundary conditions, in star-shaped domains Ω ⊂ RN :

(1.5)

{
(−∆|Ω)su = f(x, u), in Ω,

u = 0, on ∂Ω,

where the non-linearity f ∈ C0,1
loc (Ω× R), and its primitive is defined as

F (x, z) =

∫ z

0
f(x, t) dt .

The key idea is that, in star-shaped domains, Q(1)[u] ≥ 0 and thus Q(s)[u] ≥ 0 by Theorem 1.1.

Proposition 1.2 (Pohozaev inequality for semilinear equations). Let Ω be a bounded
C1,1 star-shaped domain, f ∈ C0,1

loc (Ω× R) and u be a bounded solution of (1.5). Then,

(1.6)

(
2s−N

2

)∫
Ω
uf(x, u) dx+N

∫
Ω
F (x, u) dx+

∫
Ω
x · Fx(x, u) dx ≥ 0 .

As a consequence of the above inequality we obtain the following non-existence results:

Corollary 1.3 (Non-existence of solutions I). Under the assumptions of Proposition 1.2, if

(1.7)

(
2s−N

2

)
tf(x, t) +NF (x, t) + x · Fx(x, t) < 0, for all x ∈ Ω, and t ∈ R \ {0},

then problem (1.5) admits no non-trivial bounded solution.

If the non-linearity f does not depend on x, then the above result simplifies to:

Corollary 1.4 (Non-existence of solutions II). Under the assumptions of Proposition 1.2,
if

(1.8)

∫ t

0
f(τ) dτ <

(
N − 2s

2N

)
tf(t), for all t ∈ R \ {0},

then problem (1.5) admits no non-trivial bounded solution.

A canonical application is the power non-linearity, f(t) = |t|p−1t. In the subcritical range
1 < p < N+2s

N−2s , existence of non-trivial solutions can be easily shown by applying a variational

mountain pass-argument thanks to the compact embedding Hs
0(Ω) ↪→ Lp+1(Ω) (see [42] for the

RFL; the argument for the SFL is analogous). For the supercritical case the above corollary
yields:

Corollary 1.5 (Non-existence of solutions III). Let Ω be a bounded C1,1 star-shaped domain
and p > N+2s

N−2s . Then the problem{
(−∆|Ω)su = |u|p−1u, in Ω,

u = 0, on ∂Ω

admits no non-trivial bounded solution.

The critical value p = N+2s
N−2s is quite delicate and Corollary 1.4 cannot be used, since equality

in condition (1.8) only implies that Q(s)[u] = 0, which is insufficient a priori to establish non-
existence. Whether non-trivial solutions exist at this critical exponent remains open, in contrast
to the local case, where the Pohozaev identity combined with the Hopf lemma yields non-
existence in star-shaped domains.
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1.2 The Spectral Fractional Laplacian and the Restricted Fractional Lapla-
cian

In the study of diffusion processes, the classical heat equation with the Laplacian operator
corresponds to Brownian motion, following Einstein’s work [18]. When modeling phenomena
involving Lévy flights—processes that allow for jumps of arbitrary length—one can subordinate
the Brownian motion to obtain a jump process. The corresponding diffusion operator is a
fractional power of the Laplacian, which gives rise to integro-differential equations; see [19] for
details on applications.

In the Euclidean space, there are many different ways to define the Fractional Laplacian:
through Fourier transform, through the heat semigroup and spectral analysis, using integral
operators with hypersingular kernels, via the Caffarelli-Silvestre extension, etc. All these a priori
different definitions of the Fractional Laplacian turn out to be equivalent in RN . However, when
dealing with bounded domains, most definitions give rise to different operators.

Indeed, on the whole space, killing and subordination commute when applied to the Brownian
motion. However, when dealing with bounded domains, the two operations do not commute and
generate two different operators. By first killing (i.e. considering the Dirichlet Laplacian) and
then subordinating (i.e. taking the spectral power), we obtain the SFL. For more details on the
SFL and its applications to killed jump processes, see [46, 47], and also [1, 5, 6, 7] and references
therein.

By first subordinating and then killing the process, we obtain the RFL. In order to evaluate
this operator, one needs to know the values of the function outside Ω, where it is set to zero.
This justifies the terminology “restricted” and models the “killed upon landing” jump process.
See [19] and references therein for more details and applications.

The SFL, already defined in Section 1.1 via the spectral sum, admits an equivalent repre-
sentation through the heat semigroup:

(−∆|Ω)su =
∞∑
j=1

λs
j ûjφj =

1

Γ(−s)

∫ ∞

0

[
et∆|Ωu− u

] dt

t1+s
,

where Γ is the Gamma function. The SFL can also be represented using a hypersingular kernel:

(−∆|Ω)su(x) = P.V.

∫
Ω
[u(x)− u(y)] JΩ(x, y) dy +KΩ(x)u(x) ,

where P.V. denotes the Cauchy principal value,

KΩ(x) ≍ d(x)−2s, with d(x) := min
x∈Ω

{|x− y| : y ∈ ∂Ω},

and we write a ≍ b to denote that there exist constants c, C > 0 such that cb ≤ a ≤ Cb. The
jumping kernel JΩ is a singular symmetric compactly supported kernel that degenerates at the
boundary ∂Ω. More precisely, we have the following estimates:

(1.9) JΩ(x, y) ≍
1

|x− y|N+2s
min

{
d(x)

|x− y|
, 1

}
min

{
d(y)

|x− y|
, 1

}
.

We refer to [46, 1] for a proof of the above representation and estimates and for further details.
In contrast, the RFL on domains shares the same kernel as the Fractional Laplacian on RN ,

but is defined only for (restricted to) functions supported in Ω, more precisely:

(−∆)su(x) = CN,sP.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy, whenever supp(u) ⊆ Ω ,

where CN,s is a normalization constant given in [38, Proposition A.1]. Note that unlike the SFL
kernel (1.9), the RFL kernel is translation and rotation invariant, and homogeneous.

Finally, both operators admit representations as Dirichlet-to-Neumann operators for exten-
sion problems. For the RFL, this is the Caffarelli-Silvestre extension [13]. For the SFL, such
extensions were constructed by Cabré and Tan [12] for the half-Laplacian, and by Brändle,
Colorado, de Pablo and Sánchez [9].
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1.3 Known results on the Pohozaev identity

The Pohozaev identity in the local case was first proved by Stanislav I. Pohozaev in his 1965
paper [30],

Theorem 1.6. (Pohozaev identity for the Laplacian [32, Theorem 5.1]) Let N ≥ 3 and
let u ∈ C2(Ω) satisfy u = 0 on ∂Ω. Then

Q(1)[u] :=

(
2−N

2

)∫
Ω
u(−∆)u dx−

∫
Ω
(x · ∇u)(−∆)u dx =

1

2

∫
∂Ω

∣∣∣∣∂u∂ν
∣∣∣∣2 (x · ν) dS,

where ν is the outward normal and dS is the surface measure. If Ω is star-shaped, Q(1)[u] ≥ 0.

For the classical Laplacian, the term ∂u
∂ν in the identity arises naturally from integration by

parts and plays a fundamental role in relating the behavior of the solution inside the domain to
its boundary conditions.

The spectral half-Laplacian can be expressed as the Dirichlet-to-Neumann operator for a
harmonic extension with Dirichlet conditions on the half cylinder ∂Ω×R+. It therefore inherits
a Pohozaev identity from that of the Laplacian in Ω×R+, as shown by Tan [48] for the half-SFL.
However, the boundary term in this identity is defined on ∂Ω×R+ rather than just on ∂Ω, since
it depends on the extension.

In the genuine non-local setting, the first formulation of the Pohozaev identity was obtained
by Xavier Ros-Oton and Joaquim Serra in their celebrated 2014 article [38] for the RFL, see
formula (1.10) below. Let us state the main result of [38] in detail, to highlight the role of
boundary regularity.

Theorem 1.7 (Proposition 1.6 of [38]). Let Ω be a bounded C1,1 domain. Assume that u is a
Hs

(
RN

)
function which vanishes in RN\Ω, and satisfies

1. u ∈ Cs
(
RN

)
and, for every β ∈ [s, 1 + 2s), u is of class Cβ(Ω) and

[u]Cβ({x∈Ω | d(x)≧ρ}) ≦ Cρs−β, for all ρ ∈ (0, 1).

2. The function u
ds

∣∣
Ω

can be continuously extended to Ω. Moreover, there exists α ∈ (0, 1)

such that u
ds ∈ Cα(Ω). In addition, for all β ∈ [α, s+ α], the following estimate holds[ u

ds

]
Cβ({x∈Ω | d(x)≧ρ})

≦ Cρα−β, for all ρ ∈ (0, 1).

3. (−∆)su is pointwise bounded in Ω.

Then, the following identity holds

(1.10)

(
2s−N

2

)∫
Ω
u(−∆)su dx−

∫
Ω
(x · ∇u)(−∆)su dx =

Γ(1 + s)2

2

∫
∂Ω

( u

ds

)2
(x · ν) dS.

Ros-Oton and Serra showed in [37] that solutions of semilinear problems for the RFL indeed
have the right regularity to apply Theorem 1.7. More precisely:

Theorem 1.8 (Theorem 1.1 of [38]). Let Ω be a bounded C1,1 domain, f be a locally Lipschitz
function and u be a bounded solution of{

(−∆)su = f(u), in Ω,

u = 0, in RN \ Ω.

Then u
ds

∣∣
Ω
∈ Cα(Ω), for some α ∈ (0, 1), meaning that u

ds

∣∣
Ω
has a Hölder continuous extension

to Ω, and the following identity holds(
2s−N

2

)∫
Ω
uf(u) dx+N

∫
Ω
F (u) dx =

Γ(1 + s)2

2

∫
∂Ω

( u

ds

)2
(x · ν) dS,

where F (z) =
∫ z
0 f(t) dt.
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In their original proof in [38], Ros-Oton and Serra used the regularity of the solution up
to the boundary to obtain a boundary term involving u/ds. This term serves as the non-
local counterpart for ∂u

∂ν in the local case. Nevertheless, in our setting solutions are Lipschitz
continuous and the approach in [38] does not recover any boundary term.

1.4 Why the Ros-Oton–Serra proof strategy fails for the SFL

The SFL differs fundamentally from the RFL in ways that prevent adapting the Ros-
Oton–Serra approach [38]. First, the SFL lacks the translation and dilation invariance that
the RFL inherits from the fractional Laplacian on RN ; these symmetries play a crucial role in
[38]. Second, the boundary regularity differs markedly between the two operators. The main
reason for this difference is that the kernel of the SFL degenerates at the boundary (recall
(1.9)), while the RFL kernel does not. See [6, Sections 2A and 10A], [5] and references therein
for further details on boundary estimates and regularity theory.

In the semilinear case with power non-linearity |u|p−1u, the boundary behaviour of u is
dictated by the first eigenfunction: u(x) ≍ d(x). This is in stark contrast to the RFL case,
where u ∈ Cs(Ω) and u(x) ≍ ds(x).

To provide broader context, the RFL and SFL also exhibit distinct boundary behavior in
the linear setting. Solutions to the Dirichlet problem Lu = f are bounded when f ∈ Lp(Ω) with
p > N/2s, both for L = (−∆)s (RFL) and for L = (−∆|Ω)s (SFL). Bounded solutions of the
RFL enjoy optimal Cs(Ω) regularity (see [37]), and this holds in particular for the eigenfunctions,
which also satisfy the boundary estimates φ1(x) ≍ ds(x) and |φk(x)| ≲ ds(x). On the other
hand, the eigenfunctions of the SFL are the same as those of the classical Dirichlet Laplacian.
Hence they can be as regular as the domain allows (up to C∞), and in particular they are at
least Lipschitz in C1,1 domains, with φ1(x) ≍ d(x) and |φk(x)| ≲ d(x).

When s > 1/2, the first eigenfunction dominates the boundary behaviour of bounded solu-
tions, as in the case of the RFL. However, when s ≤ 1/2, the boundary behaviour may differ due
to the degeneracy of the kernel and the nature of the forcing term. To illustrate this, consider
three representative cases:

• The eigenvalue problem. The solution to (−∆|Ω)su = λu with u = 0 on ∂Ω satisfies
u(x) ≍ d(x) for all s ∈ (0, 1).

• The case f = 0 at the boundary. When the forcing term vanishes at the boundary,
solutions inherit the behaviour of the eigenfunctions: u(x) ≍ d(x).

• The case f = 1 (stopping time problem). When the forcing term does not vanish at the
boundary, the situation changes for s ≤ 1/2. Solutions behave like d(x)(1 + | log(d(x))|)
when s = 1/2 and as d(x)2s when s ∈ (0, 1/2).

The boundary behaviour and regularity of bounded solutions of the SFL when s ≤ 1/2 is a
delicate issue that remains only partially understood. These differences in boundary behaviour
are one of the main obstacles to proving Pohozaev identity for the SFL following the approach
of Ros-Oton and Serra in [37, 38]. They also raise the intriguing question of optimal boundary
regularity for the SFL when s ≤ 1/2.

1.5 A bit of history

In 1943, Rellich [33] established a preliminary version of (1.1) for the particular case f = 1
2λu

2.
Later, in 1961, Morawetz used similar techniques in spirit to Pohozaev’s method to get integral
identities and inequalities for the wave equation [27].

In 1965, Pohozaev [30] discovered the identity for the standard Laplacian which now carries
his name, providing a fundamental tool in the study of semilinear elliptic problems and, in
particular, allowing one to prove sharp non-existence results in supercritical semilinear problems.
Some classical applications were mentioned above and include the non-existence results by Pucci
and Serrin [31] and the study of the perturbed problem by Brézis and Nirenberg [10] in star-
shaped domains (see also the earlier work by Moser and Rabinowitz [29]).
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Since then, a number of generalizations have been obtained in the local setting. For instance,
in 2010 Bozhkov and Mitidieri developed extensions of the Rellich-Pohozaev identities using
Noether-type approximation techniques [8]. For systems, Van der Vorst [49] generalized Pucci-
Serrin’s results. Still in the elliptic framework, Pohozaev identities can show uniqueness for
problems where a non-trivial solution exists [17]. They also may be used to study blow-up
behavior near critical exponents (Brézis-Peletier conjecture) [11, 22, 34]. Additionally, in the
paper [41], Serra used the method of Lions in [25] that combines an isoperimetric inequality with
a Pohozaev identity in order to prove radial symmetry of solutions and obtain an alternative
proof to the classical result by Gidas-Ni-Nirenberg, see [20]. More general elliptic PDEs with
associated Pohozaev identities include models for nematic liquid crystals [15] and the anisotropic
p-Laplacian, already considered by Pucci and Serrin in [31].

In geometric analysis, Pohozaev-type identities arise as conservation laws related to geometric
structures [35]. Notable examples include the Pohozaev-Schoen formula in [43], written in terms
of a conformal killing vector field on a manifold with boundary, which is used in the study of
the Yamabe problem in conformal geometry. Pohozaev-type identities have also been considered
in the context of harmonic maps, exploiting the scaling properties of the stress-energy tensor
[44, 45].

Beyond elliptic equations, in the study of dispersive PDE, Pohozaev-type identities are known
as Morawetz identities (following the work of Morawetz [27, 28]) or, more generally, virial iden-
tities that appear due to invariance under scaling (see, for example, the recent lecture notes on
the non-linear Schrödinger equation [14] for a thorough account of the subject).

The spectral half-Laplacian in Ω may be defined using the Caffarelli-Silvestre extension of
[13] (see also [9, 12]) with Dirichlet conditions on ∂Ω. As the associated extension is harmonic
in Ω× R+, the half-Laplacian inherits a Pohozaev identity from that of the Laplacian, written
in terms of the extension variable, as proved by Tan in [48] in 2011. Note that the boundary
integral in this expression is defined on the whole cylinder ∂Ω× R+.

The first Pohozaev identity that was genuinely non-local (meaning, with a boundary term
defined only on ∂Ω and not on the extension) was derived by Ros-Oton and Serra in 2014 in their
famous paper [38] for the RFL, proving non-existence results for the associated semilinear PDE.
Afterwards, Ros-Oton, Serra, and Valdinoci generalized their method to anisotropic integro-
differential operators, see [39], and the survey [36].

In the case of the whole RN , where there is no boundary term, an integration by parts
procedure yields a Pohozaev formula. This method has been applied to derive a Pohozaev
identity for the fractional anisotropic p−Laplacian in RN , see [4, 3]. Another application of
Pohozaev-type energy identities appears in the study of half-harmonic maps (see the note [16]
and the references therein).

Finally, in 2016, Grubb obtained Pohozaev identities for space-dependent fractional-order
operators using microlocal analysis techniques [21]. Her proof also recovers the original result
by Ros-Oton and Serra [38].

2 Proof of the Pohozaev identity for the SFL

We recall two key results that are essential for the proof of Theorem 1.1: the Schur product
theorem and Bochner’s theorem.

Theorem 2.1. (Schur product theorem [23, Theorem 7.5.3]) Let A = [aij ], B = [bij ] ∈ Mn

be two positive semidefinite matrices, where Mn is the set of n×n complex matrices. Define the
Schur (or Hadamard) product as A ◦B = [aijbij ]. Then A ◦B is positive semidefinite.

The following celebrated result characterizes positive semidefinite functions:

Theorem 2.2. (Bochner theorem [40, Sections 1.4.1 and 1.4.3]) A continuous function H :
RN −→ R is positive semidefinite if and only if it is the Fourier transform of a non-negative
bounded regular Borel measure µ on RN . Equivalently, for every choice of complex numbers
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c1, . . . , cn and any finite set of points x1, . . . , xn, we have

n∑
j,k=1

cjckH(xj − xk) ≥ 0

if and only if there exists a non-negative bounded regular Borel measure µ on RN such that

H(t) =

∫
RN

e−2πi⟨t,x⟩ dµ(x),

for all t ∈ RN .

Now let us proceed with the proof of the Pohozaev identity for the SFL.

Remark (On the regularity hypotheses of Theorem 1.1). The C1,1 assumption on the domain
makes the proof clearer by avoiding heavy technicalities, though it may be possible to relax

this condition. The regularity u ∈ H
max{2s,3/2}
0 (Ω) is needed in the decomposition of Q(s) as a

Schur product of P (s) and Q(1) to ensure that all the quantities involved are finite. On the one
hand, the exponent 3/2 is the minimal regularity requirement for the boundedness of Q(1), when
written in the form of a boundary integral as in (1.1). On the other hand, the exponent 2s is
required to have (−∆|Ω)su ∈ L2(Ω). Notably, when s ∈ [3/4, 1], the H2s

0 regularity is sufficient
for all such purposes. However, if we only need Q(s) ≥ 0, we can show by approximation that
the sign is preserved even if Q(1) diverges (see the proof of Proposition 1.2).

Proof of Theorem 1.1. We shall prove first the quadratic structure in the s-Pohozaev expres-
sion (1.2), that we recall here:

(2.1) Q(s)[u] :=

(
2s−N

2

)∫
Ω
u(−∆|Ω)su dx−

∫
Ω
(x · ∇u)(−∆|Ω)su dx.

We shall see that the right-hand side above can be rewritten as a quadratic form over our chosen
Fourier basis (λk, φk) of L

2(Ω),

(2.2) Q(s)[u] =
∞∑

j,k=1

Q
(s)
jk ûj ûk =

∞∑
j,k=1

P
(s)
jk Q

(1)
jk ûj ûk,

where the transition matrix P (s) is given in (1.4), and Q(1)[u] is the quadratic form from the
classical Pohozaev identity with the expression

Q(1)[u] =
∞∑

j,k=1

Q
(1)
jk ûj ûk, where Q

(1)
jk =

1

2

∫
∂Ω

(∇φj · ∇φk)(x · ν) dS.

The second part of the proof will focus on showing that Q(1)[u] ≥ 0 implies that Q(s)[u] ≥ 0.
In order to simplify the presentation, we will assume that all eigenvalues λj are different, and
postpone the case of multiplicity until the end of the proof.

Step 1. A consequence of the classical Pohozaev identity in Fourier variables. We first prove
the following preliminary identity, valid for all j, k ≥ 1,

(2.3)

∫
Ω
(x · ∇φj)φk dx =


−N/2, for j = k,

1

λj − λk

∫
∂Ω

∇φj · ∇φk(x · ν) dS, for j ̸= k with λj ̸= λk.

For j = k, we have ∇(φ2
j ) = 2φj∇φj , and then

(2.4)

∫
Ω
(x · ∇φj)φj dx =

1

2

∫
Ω
x · ∇

(
φ2
j

)
dx = −1

2

∫
Ω
φ2
j ∇ · x dx = −N

2
.
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Now we consider the case j ̸= k, for which we shall use the classical Pohozaev identity:

(2.5)
(2−N)

2

∫
Ω
u(−∆)u dx−

∫
Ω
(x · ∇u)(−∆)u dx =

1

2

∫
∂Ω

∣∣∣∣∂u∂ν
∣∣∣∣2 (x · ν) dS.

Substituting u = φj and using (2.4) in the above formula gives, for all j ≥ 1,

λj =
1

2

∫
∂Ω

|∇φj |2(x · ν) dS .

With this in mind, it will be useful to write

(2.6) Q
(1)
jk =

1

2

∫
∂Ω

(∇φj · ∇φk)(x · ν) dS = λkδjk +
(1− δjk)

2

∫
∂Ω

(∇φj · ∇φk)(x · ν) dS.

Next, we substitute u = φj , u = φk and u = φj + φk into (2.5), which yields

(2.7) λk

∫
Ω
(x · ∇φj)φk dx+ λj

∫
Ω
(x · ∇φk)φj dx = −

∫
∂Ω

(∇φj · ∇φk) (x · ν) dS,

taking into account the identities above. In addition,

(2.8)

∫
Ω
(x · ∇φj)φk dx+

∫
Ω
(x · ∇φk)φj dx =

∫
Ω
(x · ∇ (φjφk)) dx

=

∫
Ω
φjφk∇ · x dx = 0,

since φj and φk are orthogonal.
If λj ̸= λk we obtain from (2.7) that

(2.9) (λj − λk)

∫
Ω
(x · ∇φj)φk dx =

∫
∂Ω

(∇φj · ∇φk) (x · ν) dS,

hence, ∫
Ω
(x · ∇φj)φk dx =

1

λj − λk

∫
∂Ω

(∇φj · ∇φk) (x · ν) dS , for λj ̸= λk,

and this concludes the proof of (2.3).
Step 2. Rewriting the right-hand side of (2.1) in Fourier variables. We have that(

2s−N

2

)∫
Ω
u(−∆|Ω)su dx−

∫
Ω
(x · ∇u)(−∆|Ω)su dx

=

(
2s−N

2

) ∞∑
j=1

λs
j û

2
j −

∞∑
j,k=1

ûj ûkλ
s
k

∫
Ω
(x · ∇φj)φk dx.

(2.10)

To see this, recall that u =
∑∞

k=1 ûkφk. Then the first integral in (2.10) becomes∫
Ω
u (−∆|Ω)s u dx =

∞∑
j,k=1

ûkûj

∫
Ω
φkλ

s
jφj dx =

∞∑
j=1

λs
j û

2
j ,

and for the second integral in (2.10), we find∫
Ω
(x · ∇u) (−∆|Ω)s u dx =

∞∑
j,k=1

ûj ûkλ
s
k

∫
Ω
(x · ∇φj)φk dx.

Step 3. The quadratic form structure of the s-Pohozaev identity in Fourier variables. Our aim
here is to show that the right-hand side of the Pohozaev identity, written in (2.10) in Fourier
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variables, has the quadratic structure given in (2.2). That is, Q(s) can be written as a Schur
product, more precisely:

(2.11) Q(s)[u] = P (s) ◦Q(1)[u],

where Q(1) is defined in (2.6) and we recall the formula for P (s) from (1.4):

(2.12) P
(s)
jk = sλs−1

j δjk +

(
λs
j − λs

k

λj − λk

)
(1− δjk).

Now, the proof of (2.11)–(2.12) proceeds as follows: we have seen in (2.10) that the right-hand
side of the s-Pohozaev identity can be written in Fourier variables as

Q(s)[u] =

(
2s−N

2

) ∞∑
j=1

λs
j û

2
j −

∞∑
j,k=1

λs
kûj ûk

∫
Ω
(x · ∇φj)φk dx =:

∞∑
j,k=1

Q̃
(s)
jk ûj ûk,

where the coefficients of the (non-symmetric) quadratic form Q̃(s) are given by

(2.13) Q̃
(s)
jk =

(
2s−N

2

)
λs
kδjk − λs

k

∫
Ω
(x · ∇φj)φk dx.

Applying (2.3) we get

Q̃
(s)
jk = sλs

jδjk − (1− δjk)
λs
k

λj − λk

∫
∂Ω

∇φj · ∇φk(x · ν) dS.

We symmetrize the matrix by defining Q
(s)
jk = 1

2

(
Q̃

(s)
jk + Q̃

(s)
kj

)
, which does not change the

quadratic form. Thus

Q(s)[u] =
∞∑

j,k=1

Q̃
(s)
jk ûj ûk =

∞∑
j,k=1

Q
(s)
jk ûj ûk,

where

Q
(s)
jk = sλs

jδjk +
(1− δjk)

2

(
λs
j − λs

k

λj − λk

)∫
∂Ω

(∇φj · ∇φk)(x · ν) dS,

and (2.11) follows by identifying terms in (2.6).
Step 4. Positivity of Q(s) via Schur’s product theorem. We apply Theorem 2.1 to the Schur
product (2.11). We first establish that Q(1) is positive semidefinite. In star-shaped domains, we
have

∞∑
j,k=1

Q
(1)
jk ûj ûk =

1

2

∫
∂Ω

∣∣∣∣∣∣
∞∑
j=1

∇φj ûj

∣∣∣∣∣∣
2

(x · ν) dS ≥ 0, for all u ∈ H3/2(Ω).

To apply Theorem 2.1, we consider the finite-dimensional matrices Q(s)
n := P(s)

n ◦ Q(1)
n , where

P(s)
n and Q(1)

n are the n× n truncations of P (s) and Q(1), respectively. Since Q(1)
n ≥ 0, Theorem

2.1 will give Q(s)
n ≥ 0 for all n once we establish that P(s)

n ≥ 0. We will prove this in the next
step. Since u ∈ Hmax{2s,3/2}, we can pass to the limit n → ∞ and obtain Q(s) ≥ 0.

Step 5. P(s)
n is positive semidefinite through Bochner’s theorem. Recall that P(s)

n is the n × n

truncation of the infinite matrix P (s) with elements given by (2.12). To show P(s)
n ≥ 0 for all n,

it suffices to prove that P (s) is positive semidefinite.
Writing λk = e2µk , we have

P
(s)
jk = se2(s−1)µjδjk +

e2sµj − e2sµk

e2µj − e2µk
(1− δjk)

= se(s−1)(µj+µk)δjk + e(s−1)(µj+µk)
es(µj−µk) − e−s(µj−µk)

eµj−µk − e−(µj−µk)
(1− δjk)

= e(s−1)(µj+µk)P̃ s
jk,
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where

P̃ s
jk = sδjk +

sinh (s (µj − µk))

sinh (µj − µk)
(1− δjk) =: Hs (µj − µk) ,

and Hs(t) =
sinh(st)
sinh t , with the understanding that Hs(0) = s by continuity.

In order to prove the positivity of P (s), we observe that P
(s)
jk can be written as a Schur

product e(s−1)(µj+µk) ◦ P̃ s
jk. Applying Theorem 2.1, it suffices to show that both factors are

positive semidefinite matrices. The matrix with entries e(s−1)(µj+µk) is positive semidefinite as
an outer product of a vector with itself. Thus it remains to show that P̃ s is positive semidefinite.

For this, we apply Theorem 2.2 which says that Hs is a positive semidefinite function if and
only if Hs is the Fourier transform of a non-negative measure. Thus we need to calculate

F−1(Hs)(ξ) =

∫
R
e2πiξtHs(t) dt

=

∫
R
cos(2πξt)

sinh(st)

sinh t
dt+ i

∫
R
sin(2πξt)

sinh(st)

sinh t
dt.

The second term in the right-hand side above vanishes since the integrand is odd. Now, a
straightforward computation gives

F−1(Hs)(ξ) =

∫
R
cos(2πξt)

sinh(st)

sinh t
dt =

π sin(sπ)

cos(sπ) + cosh(2π2ξ)
≥ 0,

which shows our claim.
Step 6. The case of repeated eigenvalues. We will indicate the necessary changes in the proof
above.

If λj = λk for some j ̸= k, then the right-hand side of (2.9) vanishes, and we can only
conclude antisymmetry from (2.8), that is,

(2.14)

∫
Ω
(x · ∇φj)φk dx = −

∫
Ω
(x · ∇φk)φj dx.

In particular, it follows from (2.7) that

Q
(1)
jk = 0.

In this case, the argument in Step 3 is modified as follows. From (2.13) we obtain

Q̃
(s)
jk = −λs

k

∫
Ω
(x · ∇φj)φk dx,

and then by (2.14)

Q
(s)
jk =

1

2

(
−λs

k

∫
Ω
(x · ∇φj)φk dx+ λs

j

∫
Ω
(x · ∇φj)φk dx

)
= 0.

Then, the Schur product structure (1.3) holds trivially since both Q
(1)
jk and Q

(s)
jk vanish. This

completes the proof for the case of repeated eigenvalues.

3 Proofs of non-existence results

The strategy to prove non-existence results from the Pohozaev identity is analogous to the
classical case. First, we deduce an inequality for solutions to semilinear equations.
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Proof of Proposition 1.2. This is a straightforward corollary of Theorem 1.1.
First, note that since u is bounded, |u| ≤ M , f ∈ C0,1(Ω× [−M,M ]). Then, by [26, 2] (see also
[7, Appendix]), and the fact that if u ∈ Hα, f(x, u) ∈ Hmin{1,α}, we can bootstrap the regularity
as follows:

u ∈ L2 ⇒ f(x, u) ∈ L2 ⇒ u ∈ H2s ⇒ f(x, u) ∈ Hmin{1,2s} ⇒ . . . ⇒ u ∈ H1+2s.

When s ≥ 1/4, we have 1 + 2s ≥ 3/2, so u ∈ H1+2s ⊆ Hmax[2s,3/2] and Theorem 1.1
applies directly. When s < 1/4, we have u ∈ H1+2s but 1 + 2s < 3/2. In this case, we use an

approximation argument. Let un ∈ H
3/2
0 (Ω) be a sequence approximating u in H1+2s. For each

n, Theorem 1.1 gives Q(s)[un] ≥ 0. Since u ∈ H1+2s ensures that Q(s)[u] is well-defined and
finite, and since Q(s) is a continuous bilinear form on H1+2s×H1+2s, we have Q(s)[un] → Q(s)[u]
as n → ∞. Taking the limit yields Q(s)[u] ≥ 0.

Once we have the positivity of Q(s)[u], the rest of the argument is classical. Indeed, by the
definition of F we know that,

∇F (x, u) = Fx(x, u) +∇u · Fu(x, u) = Fx(x, u) +∇u · f(x, u),

thus since u is a solution to problem (1.5),

(x · ∇u)(−∆|Ω)su = (x · ∇u)f(x, u) = x · ∇F (x, u)− x · Fx(x, u).

Knowing that N = div(x) and integrating by parts,∫
Ω
(x · ∇u)(−∆|Ω)su dx =

∫
Ω
(x · ∇u)f(x, u) dx = −N

∫
Ω
F (x, u) dx−

∫
Ω
x · Fx(x, u) dx.

The conclusion follows from the fact that Q(s)[u] ≥ 0.

Our non-existence results easily follow from contradicting the sign condition that comes from
the Pohozaev identity. We prove the first of them for the sake of illustration.

Proof of Corollary 1.3. Let u be a bounded non-trivial solution to problem (1.5). Then, by
Proposition 1.2,(

2s−N

2

)∫
Ω
uf(x, u) dx+N

∫
Ω
F (x, u) dx+

∫
Ω
x · Fx(x, u) dx ≥ 0.

Moreover, we are assuming u ̸≡ 0 and(
2s−N

2

)
tf(x, t) +NF (x, t) + x · Fx(x, t) < 0, for all x ∈ Ω, and t ∈ R \ {0},

and hence (
2s−N

2

)∫
Ω
uf(x, u) dx+N

∫
Ω
F (x, u) dx+

∫
Ω
x · Fx(x, u) dx < 0,

a contradiction.

Finally, Corollary 1.4 follows from Corollary 1.3 by taking f independent of x, and Corollary
1.5 follows by specializing to the power nonlinearity f(t) = |t|p−1t.
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[9] Brändle, C., Colorado, E., de Pablo, A. and Sánchez, U. A concave-convex elliptic problem
involving the fractional Laplacian. Proceedings of the Royal Society of Edinburgh: Section
A Mathematics, 143 (1): 39–71, 2013.

[10] Brézis, H. and Nirenberg, L. Positive solutions of nonlinear elliptic equations involving
critical sobolev exponents. Communications on Pure and Applied Mathematics, 36 (4):
437–477, 1983
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(1): 19–37, 1989.

[35] Rivière, T. Conservation laws for conformally invariant variational problems. Inventiones
mathematicae, 168 (1): 1–22, 2007.

[36] Ros-Oton, X. Boundary regularity, Pohozaev identities and nonexistence results. Recent
developments in nonlocal theory. De Gruyter Open Poland: 335–358, 2017.

14

https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1007/978-3-031-54242-8
https://doi.org/10.1007/978-3-031-54242-8
https://doi.org/10.1007/BF01221125
https://doi.org/10.1007/BF01221125
https://doi.org/10.1016/j.jde.2016.04.017
https://doi.org/10.1016/j.jde.2016.04.017
https://doi.org/10.1016/S0294-1449(16)30270-0
https://doi.org/10.1016/S0294-1449(16)30270-0
https://doi.org/10.1016/S0294-1449(16)30270-0
https://doi.org/10.1017/CBO9781139020411
https://doi.org/10.1017/CBO9781139020411
https://doi.org/10.2307/1971012
https://doi.org/10.2307/1971012
https://doi.org/10.1080/00036818108839367
https://doi.org/10.1080/00036818108839367
https://doi.org/10.1007/978-3-642-65161-8
https://doi.org/10.1007/978-3-642-65161-8
 https://doi.org/10.1002/cpa.3160140327
 https://doi.org/10.1002/cpa.3160140327
 https://doi.org/10.1002/cpa.3160140327
https://ui.adsabs.harvard.edu/link_gateway/1968RSPSA.306..291M/doi:10.1098/rspa.1968.0151
https://ui.adsabs.harvard.edu/link_gateway/1968RSPSA.306..291M/doi:10.1098/rspa.1968.0151
https://ui.adsabs.harvard.edu/link_gateway/1968RSPSA.306..291M/doi:10.1098/rspa.1968.0151
http://www.jstor.org/stable/24890752
http://www.jstor.org/stable/24890752
http://www.jstor.org/stable/24894216
http://www.jstor.org/stable/24894216
https://doi.org/10.1007/978-3-030-18222-9
http://eudml.org/doc/146328
http://eudml.org/doc/146328
https://doi.org/10.1007/BF01168364
https://doi.org/10.1007/BF01168364
https://doi.org/10.1007/s00222-006-0023-0
https://doi.org/10.1007/s00222-006-0023-0
https://doi.org/10.1515/9783110571561-011
https://doi.org/10.1515/9783110571561-011


[37] Ros-Oton, X. and Serra, J. The Dirichlet problem for the fractional Laplacian: regularity
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Campus de Cantoblanco, 28049 Madrid, Spain.
itahisa.barrios@uam.es

Matteo Bonforte
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