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By Lućıa Contreras Caballero.

We prove here in a progressive way that:
The µ invariant of a 3-dimensional Z2-homology sphere with a

periodic reversing orientation selfhomeomorphism whose period
is bigger than two is zero.

Recall that the µ−invariant of a 3-dimensional Z2-homology sphere M is
defined by using an acycled 4-dimensional manifold W 4, whose boundary is
M, by means of the signature of the intersection quadratic form in H2(W

4):

µM = −σW 4

16
mod 1

We can establish that the µ−invariant of a 3-dimensional Z2-homology
sphere with a reversing orientation selfhomeomorphism is zero or 1/2, since
in this case, the conected sum of N with N is equal to the connected sum of
N with −N which is the boundary of (N−B3)×I, 4-dimensional manifold
with null quadratic intersection form, so 2µN = 0.

It was proved by Birman and also by Galewski and Stern and by Hsiang
and Pao, separately, that the µ−invariant of a 3-dimensional Z2-homology
sphere M with a periodic reversing orientation selfhomeomorphism h of
period 2 is zero.

We see here that the µ−invariant of M is zero when the period of h is
bigger than two.

First we prove:
The µ−invariant of a 3-dimensional Z2-homology sphere M with

a periodic reversing orientation selfhomeomorphism h of period
four is zero.

Proof:
The set of fixed points of h is formed by two separate points and the fixed

points set of h2 is a knot, by Smith theory, when M is a Zhomology sphere.
This knot contains the two fixed points of h, and the selfhomeomorpism h
leaves invariant the knot, reversing its orientation. The same is true when
M is a Z2−homology sphere; we do the proof:
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Let’s call N = M/h2, then N is also a Z2−homology sphere. The self-
homeomorphism h projects to a selfhomeomorphism h in N, that we will
design with the same letter because there is no place to confusion.

M is the double cover of N, branched over the knot K, (amphicaeiral by
h).

When M is a Z2-homology sphere, N = M/h2 is also a Z2-homology
sphere, and H1(N) = Z2m1+1 ⊕ Z2m2+1 ⊕ · · · ⊕ Z2mr+1, for some integer
numbers: m1,m2, · · · ,mr.

Our knot K does not necessarily bounds a bicollared Seifert surface in
N, if it is not nulhomologous, but some odd multiple of K: ((2s+1)K) is
nulhomologous and making the connected sum

∑
N of 2s+1 copies of N

with itself, by the fixed points of h, in such a way that the connected sum
is compatible with h, we get also the connected sum of K with itself 2s+1
times, which is nulhomologous in

∑
N and we do the proof:

We call
∑

N the connected sum of 2s+1 copies of N. The manifold
∑

N
is also a Z2-homology sphere, with a reversing orientation selfhomeomor-
phism, so its µ-invariant is zero or 1/2. We call Kσ the knot connected
sum of 2s+1 copies of K; (the knot Kσ is amphicaeiral for h).

The connected sum of M with itself 2s+1 times (
∑

M), is a double cover
of

∑
N branched over Kσ.

We construct a bordism Bσ between
∑

M and two disjoint copies of∑
N , by considering (

∑
N)× I, and making the 2-cover Bσ of (

∑
N)× I,

branched over F × [0, 1/2), from two copies of

∑
N × I − bicollar(F × [0, 1/2)) ≈

∑
N × I − F × [−1, 1]× [0, 1/2),

by identifying in the copies, in a crossed way, the boundaries of

bicollar((F × [0, 1/2))less(F −Kσ)× (−1, 1)× {0} :

If x1 is the point x ∈ F in the first copy and x2 is the point x ∈ F in
the second copy, (δ meaning boundary) and being

(δ(F × [−1, 1]× [0, 1/2))− (F −Kσ)× (−1, 1)× {0} =
F × {−1, 1} × [0, 1/2) ∪ (F )× (−1, 1)× {1/2}

we identify
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(x1,−1, t) ∈ (F × {−1} × [0, 1/2)) with (x2, 1, t) ∈ (F × {1} × [0, 1/2))

and

(x1, 1,−s) ∈ (F × {1} × [0, 1/2)) with (x2,−1, s) ∈ (F × {−1} × [0, 1/2))

We identify also (x1, s, 1/2) with (x2,−s, 1/2) ∀x ∈ F×(−1, 1)×{1/2}.

The boundary of Bσ is the disjoint union of
∑

M and two copies of
∑

N .

By a Mayer-Vietoris sequence, H2(Bσ) is a direct sum of H2(N) with
itself 2(2s + 1) times plus a free abelian group of 2g generators, where
every generator corresponds to a ci, generator of H1(F ), for which, some
(2ni + 1)ci is nulhomologous,

We write now how are the elements of H2(Bσ) determined by nulhomol-
ogous closed curves contained in F , with Seifert surface in

∑
N :

We call [a] the element of H2(Bσ) determined by a, representative closed
curve from H1(F ), nulhomologous in

∑
N , which bounds a Seifert surface

Fa ⊂
∑

N ;
Given a closed curve a ⊂ F ⊂

∑
N , we call

a+ = a × {1} ⊂ F × {1} ⊂ bicollar(F ) ⊂
∑

N and Fa+ ⊂
∑

N the
Seifert surface of a+

a− = a× {−1} ⊂ F × {−1} ⊂ bicollar(F ) ⊂
∑

N , and Fa− ⊂
∑

N the
Seifert surface of a−

We denote by F 1
a+ ⊂

∑
N , the Seifert surface of a+ in the first copy of

N × I, at any level {t} and by F 2
a+ ⊂

∑
N , the Seifert surface of a+ in the

second copy, (Fa+ ⊂
∑

N ⊂
∑

N × I).
Then,

[a] = F 1
a+ × {1/2} ∪ a+ × [0, 1/2) ∪ a− × [0, 1/2) ∪ F 2

a− × {1/2}

and also,

[a] = F 1
a− × {3/4} ∪ a− × [0, 3/4) ∪ a+ × [0, 3/4) ∪ F 2

a+ × {3/4}.

Then, we have for a pair ([ai] = [(2ni + 1)ci, [aj] = (2nj + 1)cj), where
ai, aj are closed curves in F, generators of H1(F ), nulhomologous in

∑
N :
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[ai] ∩ [aj] =
(F 1

a+i
× {1/2} ∪ a+i × [0, 1/2) ∪ a−i × [0, 1/2) ∪ F 2

a−i
× {1/2})∩

(F 1
a−j

× {3/4} ∪ a−j × [0, 3/4) ∪ a+j × [0, 3/4) ∪ F 2
a+j

× {3/4}) =
(lk meaning linking number)

= lk(a+i , a
−
j ) + lk(a−i , a

+
j ) = lk(a+i , aj) + lk(ai, a

+
j )

The intersection quadratic form matrix in H2(Bσ) is, then, given by a
matrix whose entries are:

(lk(a+i , aj) + lk(a+j , ai)) =

= (lk((2ni + 1)c+i , (2nj + 1)cj + lk((2nj + 1)c+j ), (2ni + 1)ci)).

Now we prove that this matrix has signature zero, because the knot Kσ

is amphicaeiral:

In fact, as the knot K verifies h(K) = −K, the bordism Bσ can be
constructed also by doing the double cover of N × I branched over

h(F )×[0, 1/2). Then, another matrix for the intersection quadratic form
Q inBσ can be calculated from the basis {h(c1), h(c2), · · · , h(c2g−1), h(c2g)} ⊂
h(F ), (which gives a different basis of H2(Bσ)), and, as (h(a))+ = h(a−)
for every curve in F , because h reverses orientation, we have:

lk(h(ai))
+, h(aj)) = −lk(h(a−i ), h(aj)) = −lk(a−i , aj) = −lk(ai, a

+
j ) =

= −lk(a+j , ai)

lk(h(aj))
+, h(ai)) = −lk(h(a−j ), h(ai)) = −lk(a−j , ai) = −lk(aj, a

+
i ) =

= −lk(a+i , aj)

By adding the previous terms, we get as matrices for Q two opposite
matrices which should have the same signature, therefore, zero.

Then, the µ−invariant of
∑

M is equal to the signature of the intersec-
tion quadratic form in H2(Bσ) plus 2µ−invariant

∑
N = 0, because

∑
N
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is Z2−homology sphere with a reversing orientation selfhomeomorphim,
(µ

∑
N = 0 or 1/2), so

0 = µ
∑

M = (2s+ 1)µM =⇒ µM = 0

because M is Z2−homology sphere with a reversing orientation selfhome-
omorphim, (µM = 0 or 1/2) therefore, the µ-invariant is defined module
1.

In an analogous way, we can prove that:
The µ−invariant of a 3-dimensional Z2-homology sphere M with

a periodic reversing orientation selfhomeomorphism h of period
23 is zero.

Proof:
The set of fixed points of h is formed by two separate points and the fixed

points set of h4 is a knot by Smith theory, when M is a Z2−homology sphere.
This knot contains the two fixed points of h, and the selfhomeomorpism h
leaves invariant the knot, reversing its orientation.

Let’s callN = M/h4. The selfhomeomorphism h projects to a selfhomeo-
morphism h in N, that we will design with the same letter because there
is no place to confusion.

When M is a Z2-homology sphere, N = M/h4 also is a Z2-homology
sphere. M is a double cover of N, branched over the knot K.

Repeating the previous procedure for M y N, we get that the µ-invariant
of M is zero.

With the same procedure we get that:

The µ−invariant of an 3-dimensional Z2-homology sphere M
with a periodic reversing orientation selfhomeomorphism h of pe-
riod 2r, r > 1 is zero.

For that, we consider N = M/h2r−1

and repeat the previous procedure.

We have got, together with the first result from Birman, Galewski and
Stern, Hsiang and Pao, that The µ−invariant of a 3-dimensional Z-
homology sphere M with a periodic reversing orientation self-
homeomorphism h whose period is any power of 2, is zero.
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Then, we can settle that:

The µ−invariant of a 3-dimensional Z2-homology sphere M with
a periodic reversing orientation selfhomeomorphism h is zero.

This result follows now from the consideration that any number n bigger
than 2 can be written n = m2r where m is an odd number and r > 1. Then
M has hm, a reversing orientation selfhomeomorphism with period 2r.
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