Symmetric Z_2 - homology 3-spheres have μ -invariant zero

Lucía Contreras Caballero

We prove here in a progressive way that:

The μ invariant of a 3-dimensional Z_2 -homology sphere with a periodic reversing orientation selfhomeomorphism whose period is bigger than two is zero.

Recall that if W_4 is an acyclic 4-dimensional manifold W^4 , whose boundary is M, by means of the signature of the intersection quadratic form in $H_2(W^4)$ We denote

$$\mu M = -\frac{\sigma W^4}{16} \mod 1$$

We can establish that the μ -invariant of N, a 3-dimensional Z_2 -homology sphere with a reversing orientation selfhomeomorphism is zero or 1/2, since the conected sum of N with N is equal to the connected sum of N with -N which is the boundary of $(N-B^3) \times I$, acyclic 4-dimensional manifold with null quadratic intersection form, so $2\mu N = 0$.

It has been proved independently by Birman and also by Galewski and Stern and by Hsiang and Pao, that the μ -invariant of a 3-dimensional Z_2 -homology sphere M with a periodic reversing orientation selfhomeomorphism h of period 2 is zero.

We see now that the μ -invariant of M is zero when the period of h is bigger than two by proving first the result for period a power of 2 and considering afterwards the period $o2^m$ where o is odd.

The μ -invariant of a 3-dimensional \mathbb{Z}_2 -homology sphere M with a periodic reversing orientation selfhomeomorphism h of period four is zero.

Proof:

The set of fixed points of h is formed by two separate points and the fixed points set of h^2 is a knot by Smith theory, when M is a Z_2 -homology sphere. This knot contains the two fixed points of h, and the selfhomeomorpism h leaves invariant the knot, reversing its orientation.

If M is a Z_2 -homology sphere, with a periodic seldifeomorfism h There must be an integer summand in $H_1(M)$, because otherwise the manifold Fixh would be a manifold with torsion, which cannot be invariant.

Let's call $N = M/h^2$, then N is also a Z_2 -homology sphere. The self-homeomorphism h projects to a selfhomeomorphism h in N, that we will design with the same letter because there is no place to confusion.

M is the double cover of N, branched over the knot K, (amphicaeiral by h).

When M is a Z_2 -homology sphere, $N = M/h^2$ is also a Z_2 -homology sphere, and $H_1(N)$ is the direct sum of Z_2 with itself for as many times are the generators of $H_1(M)$ are; r if m_1, m_2, \dots, m_r are these generators.

So it is enough to prove the result for Z - homology spheres.

Our knot K does not bounds a bicollared Seifert surface in N, if it is not nulhomologous, but some odd multiple of K: ((2s+1)K) is nulhomologous and the proof follows if (2s+1)K bounds a bicollared Seifert surface.

Making the connected sum $\sum N$ of 2s+1 copies of N with itself, by fixed points of h, in such a way that the connected sum is compatible with h, we get also the connected sum of K with itself 2s+1 times, which is nulhomologous in $\sum N$ and we do the proof:

We call $\sum N$ the connected sum of 2s+1 copies of N. The manifold $\sum N$ is also a Z_2 -homology sphere, with a reversing orientation selfhomeomorphism, so its μ -invariant is zero or 1/2. We call K_{σ} the knot connected sum of 2s+1 copies of K) one copy 0f K in every copy of N); (the knot K_{σ} is amphicaeiral for h).

The connected sum of M with itself 2s+1 times $(\sum M)$, is a double cover of $\sum N$ branched over K_{σ} .

We construct a bordism B_{σ} between $\sum M$ and two disjoint copies of $\sum N$, by considering $(\sum N) \times I$, and making the 2-cover B_{σ} of $(\sum N) \times I$, branched over $F \times [0, 1/2)$, from two copies of

$$\sum N \times I) - bicollar(F \times [0,1/2)) \approx \sum N \times I - F \times [-1,1] \times [0,1/2),$$

by identifying in the copies, in a crossed way, the boundaries of

$$bicollar((F \times [0, 1/2)) - (F - K_{\sigma}) \times (-1, 1) \times \{0\}:$$

If x is the point copy $x \in F$ in the first copy and x' is the point copy $x \in F$ in the second copy, (δ meaning boundary) and being

$$(\delta(F \times [-1,1] \times [0,1/2)) - (F - K_{\sigma}) \times (-1,1) \times \{0\} = F \times \{-1,1\} \times [0,1/2) \cup (F) \times (-1,1) \times \{1/2\}$$

we identify

$$(x, -1, t) \in (F \times \{-1\} \times [0, 1/2))$$
 with $(x', 1, t) \in (F \times \{1\} \times [0, 1/2))$ and

$$(x, 1, t) \in (F \times \{1\} \times [0, 1/2))$$
 with $(x', -1, t) \in (F \times \{-1\} \times [0, 1/2))$

We identify also (x, s, 1/2) with (x, -s, 1/2) $\forall x \in F \times (-1, 1) \times \{1/2\}.$

The boundary of B_{σ} is the disjoint union of $\sum M$ and two copies of $\sum N$.

By a Mayer-Vietoris sequence, $H_2(B_{\sigma})$ is a direct sum of $H_2(N)$ with itself 2(2s+1) times with a free abelian group of 2g generators, where every generator corresponds to a c_i , generator of $H_1(F)$, for which, some $(2n_i+1)c_i$ is nulhomologous, and so has a Seifert surface.

We write now how the elements of $H_2(B_{\sigma})$ determined by nulhomologous closed curves contained in F, with Seifert surface in $\sum N$ are:

We call [a] the element of $H_2(B_{\sigma})$ determined by a, representative closed curve from $H_1(F)$, nulhomologous in $\sum N$, which bounds a Seifert surface $F_a \subset \sum N$;

Given a closed curve $a \subset F \subset \sum N$, we call

 $a^+ = a \times \{1\} \subset F \times \{1\} \subset bicollar(F) \subset \sum N$ and $F_{a^+} \subset \sum N$ the Seifert surface of a^+

 $a^- = a \times \{-1\} \subset F \times \{-1\} \subset bicollar(F) \subset \sum N$, and $F_{a^-} \subset \sum N$ the Seifert surface of a^-

We denote by $F_{a^+}^1 \subset \sum N$, the Seifert surface of a^+ in the first copy of $N \times I$, at any level $\{t\}$ and by $F_{a^+}^2 \subset \sum N$, the Seifert surface of a^+ in the second copy, $(F_{a^+} \subset \sum N \subset \sum N \times I)$.

Then,

$$[a] = F_{a^+}^1 \times \{1/2\} \cup a^+ \times [0, 1/2) \cup a^- \times [0, 1/2) \cup F_{a^-}^2 \times \{1/2\}$$

and also,

$$[a] = F_{a^-}^1 \times \{3/4\} \cup a^- \times [0, 3/4) \cup a^+ \times [0, 3/4) \cup F_{a^+}^2 \times \{3/4\}.$$

Then, we have for a pair $([a_i], [a_j])$, where a_i , a_j are closed curves in F, generators of $H_1(F)$, nulhomologous in $\sum N$:

$$[a_i] \cap [a_j] = (F_{a_i^+}^1 \times \{1/2\} \cup a_i^+ \times [0, 1/2) \cup a_i^- \times [0, 1/2) \cup F_{a_i^-}^2 \times \{1/2\}) \cap (F_{a_j^-}^1 \times \{3/4\} \cup a_j^- \times [0, 3/4) \cup a_j^+ \times [0, 3/4) \cup F_{a_j^+}^2 \times \{3/4\}) = (lk \text{ meaning linking number}) = lk(a_i^+, a_j^-) + lk(a_i^-, a_j^+) = lk(a_i^+, a_j) + lk(a_i, a_j^+)$$

The intersection quadratic form matrix in $H_2(B_{\sigma})$ is, then, given by a matrix whose entries are:

$$(lk(a_i^+, a_j) + lk(a_j^+, a_i)) =$$

$$= (lk((2n_i + 1)c_i^+, (2n_j + 1)c_j + lk((2n_j + 1)c_i^+, (2n_i + 1)c_i)).$$

Now we prove that this matrix has signature zero, because the knot K_{σ} is amphicaeiral:

In fact, as the knot K verifies h(K) = -K, the bordism B_{σ} can be constructed also by doing the double cover of $N \times I$ branched over $h(F) \times [0, 1/2)$. Then, another matrix for the intersection quadratic form Q in B_{σ} can be calculated from the basis $\{h(c_1), h(c_2), \cdots, h(c_{2g-1}), h(c_{2g})\} \subset h(F)$, (which gives a different basis of $H_2(B_{\sigma})$), and, as $(h(a))^+ = h(a^-)$ for every curve in F, because h reverses orientation, we have:

$$lk(h(a_i))^+, h(a_j)) = -lk(h(a_i^-), h(a_j)) = -lk(a_i^-, a_j) = -lk(a_i, a_j^+) =$$

= $-lk(a_i^+, a_i)$

$$lk(h(a_j))^+, h(a_i)) = -lk(h(a_j^-), h(a_i)) = -lk(a_j^-, a_i) = -lk(a_j, a_i^+) =$$

= $-lk(a_i^+, a_j)$

By adding the previous terms, we get as matrices for Q two opposite matrices which should have the same signature, therefore, zero.

Then, the μ -invariant of $\sum M$ is equal to the signature of the intersection quadratic form in $H_2(B_{\sigma})$ plus 2μ -invariant $\sum N = 0$, because $\sum N$ is Z_2 -homology sphere with a reversing orientation selfhomeomorphim, $(\mu \sum N = 0 \text{ or } 1/2)$ And

$$0 = \mu \sum M = (2s+1)\mu M \Longrightarrow \mu M = 0$$

because M is Z_2 -homology sphere with a reversing orientation selfhomeomorphim, ($\mu M = 0$ or 1/2) and the μ -invariant is defined module 1.

In an analogous way, we can prove that:

The μ -invariant of a 3-dimensional \mathbb{Z}_2 -homology sphere M with a periodic reversing orientation selfhomeomorphism h of period 2^3 is zero.

Proof:

In the following we have to read Z_2 -homology sphere M in the place of Z-homology sphere M and assume that Smith theory and Seifert bicollared surfaces work the same in both.

The set of fixed points of h is formed by two separate points and the fixed points set of h^4 is a knot by Smith theory, when M is a Z-homology sphere. This knot contains the two fixed points of h, and the selfhomeomorpism h leaves invariant the knot, reversing its orientation.

Let's call $N = M/h^4$. The selfhomeomorphism h projects to a selfhomeomorphism h in N, that we will design with the same letter because there is no place to confusion.

When M is a Z-homology sphere, $N = M/h^4$ also is a Z-homology sphere. M is a double cover of N, branched over the knot K.

Repeating the previous procedure for M y N, we get that the μ -invariant of M is zero.

With the same procedure we get that:

The μ -invariant of an 3-dimensional Z-homology sphere M with a periodic reversing orientation selfhomeomorphism h of period 2^r , r > 1 is zero.

For that, we consider $N = M/h^{2^{r-1}}$ and repeat the previous procedure.

We have got, together with the first result from Birman, Galewski and Stern, Hsiang and Pao, that The μ -invariant of a 3-dimensional Z-homology sphere M with a periodic reversing orientation self-homeomorphism h whose period is any power of 2, is zero.

Then, we can settle that:

The μ -invariant of a 3-dimensional Z-homology sphere M with a periodic reversing orientation selfhomeomorphism h is zero.

This result follows now from the consideration that any number n bigger than 2 can be written $n = m2^r$ where m is an odd number and r > 1. Then M has h^m , a reversing orientation selfhomeomorphism with period 2^r .

REFERENCES.

Periodic transformations in homology 3-spheres and the Ronlin invariant. L. Contreras Caballero. Low-Dimensional Topology, Volume 1: Cambridge University Press 1982.

More references in the previous paper.

REFERENCES.

- [B]J. S. BIRMAN, 'Orientation reversing involutions on 3-manifolds' Preprint, Columbia University, (1978).
- [C]S.E. CAPPELL and J.L. SHANESON, 'Branched cyclic coverings', Knots, groups and 3-manifolds. Annals of Mahematics Studies 84 (1975), pp. 165-173.
- [Co]L. CONTRERAS CABALLERO, 'Periodic transformations in homology 3-spheres and the Ronlin invariant'. Notices of the Amer. Math. Soc. October 1979, p. A-530.
- [D]A. DOLD, Lectures on Algebraic Topology. Springer-Verlag. Berlin, Heidelberg, New York, 1972.
- [DK]A. DURFEE and L. KAUFFMAN, 'Periodicity of branched cyclic covers', Math. Ann. 218 (1975), pp. 157-174.
- [E]J. EELLS and K:H. KUIPER, 'An invariant for certain smooth manifolds', Ann. Mat. Pur Appl. (4) 60(1972), pp. 93-110.

- [F]E.E. FLOYD, 'Periodic maps via Smith theory', Seminar on Transformation Groups. Annals of Mathematics Studies 46 (1960), pp. 35-47.
- [Go]C. Mc. GORDON,'Some aspects of classical knot theory', Knot theory: Plans sur Bex, Switzerland, 1977. Springer Lecture Notes in Math. 685 (1978), pp. 1-65.
- ——— 'Knots, homology spheres and contractible manifolds', Topology 14 (1975), pp. 151-172.
- [H]W.C. HSIANG and P.S. PAO, Orientation reversing involutions on homology 3 spheres', Notices Amer. Math, Soc. 26, February 1979. p.A-251.
- [Kf]L. KAUFFMAN, 'Branched coverings, open books and knot periodicity', Topology 13 (1974) pp. 143-160.
- [Kw]A. KAWAUCHI, 'On three manifolds admitting orientation reversing involution' Preprint I.A.S. Princeton, (1979).
- ——— 'Vanishing of the Rohlin invariant of some Z_2 -homology 3-spheres, Preprint I.A.S. Princeton (1979).
- [KN]S. KOBAYASHI and K. NOMIZU, Foundations of Differential Geometry. Springer-Verlag. Berlin, Heidelberg, New York, 1969.
- [Ko]S. KOBASYASHI, Transformation Groups in Differential Geometry. Springer-Verlag. Berlin, Heidelberg, New York, 1972.
- [L]J. LEVINE, 'Invariant of knot cobordism', Inventiones Math. 8 (1969), pp. 98-110 and 355.
- [M]A. MARDEN, 'The geometry of finitely generated Kleinian groups', Ann. of Math. 99 (1974), pp. 383-462.
- [Mi]J. MILNOR, 'Infinite cyclic coverings', Conference on the Topology of Manifolds Prindle, Weber, and Smidt, Boston, Mass. (1968), pp.115-133.

- [MH]J. MILNOR and D. HUSEMOLLER, 'Symmetric bilinear forms. Springer-Verlag, Berlin, Heidelberg, New York, 1973.
- [Mo]G.D. MOSTOW, 'Strong rigidity of Locally Symmetric Spaces', Ann. of Math. Study, 78, 1976 Princeton Univ. Press.
- [Nm]W. NEUMANN, 'Cyclic suspension of knots and periodicity of signature for singularities', Bull. Amer. Math. Soc. 80, pp 977-981, 1974.
- [Nw]L.P. NEUWIRTH, 'Knot groups', Annals of Math. Studies 56, Princeton, 1965.
- [R]W.A. ROHLIN, 'New results in the theory of four dimensional manifolds', Dokl. Acad. Nauc. SSRR 84 (1952), pp. 221-224.
- [S]L. SIEBEMANN, 'On vanishing of the Rochlin invariant and non-finitely amphichaeiral homology 3-spheres, Topology Symposium Siegen, 1979, Springer Lecture Notes in Math. 788 (1980), pp. 172-222
- [T]W. THURSTON, 'The Geometry and Topology of 3-manifolds', Preprints, Princeton University, (1978).
- [Tr]A.G. TRISTRAM, 'Some cobordism invariants for links', Proc. Cambridge Phil. Soc. 66 (1969), pp. 251-264.
- [W]F. WALDHAUSEN, 'On irreducible 3-manifolds that are sufficiently large', Ann. of Math. 87 (1968), pp. 56-58.

 Lucía Contreras Caballero.