Symmetric Z_{2} - homology 3-spheres have μ-invariant zero

Lucía Contreras Caballero

We prove here in a progressive way that:
The μ invariant of a 3-dimensional Z_{2}-homology sphere with a periodic reversing orientation selfhomeomorphism whose period is bigger than two is zero.

Recall that if W_{4} is an acyclic 4-dimensional manifold W^{4}, whose boundary is M , by means of the signature of the intersection quadratic form in $H_{2}\left(W^{4}\right)$ We denote

$$
\mu M=-\frac{\sigma W^{4}}{16} \quad \bmod 1
$$

We can establish that the μ-invariant of N , a 3-dimensional Z_{2}-homology sphere with a reversing orientation selfhomeomorphism is zero or $1 / 2$, since the conected sum of N with N is equal to the connected sum of N with $-N$ which is the boundary of $\left(N-B^{3}\right) \times I$, acyclic 4-dimensional manifold with null quadratic intersection form, so $2 \mu N=0$.

It has been proved independently by Birman and also by Galewski and Stern and by Hsiang and Pao, that the μ-invariant of a 3 -dimensional Z_{2}-homology sphere M with a periodic reversing orientation selfhomeomorphism h of period 2 is zero.

We see now that the μ-invariant of M is zero when the period of h is bigger than two by proving first the result for period a power of 2 and considering afterwards the period $o 2^{m}$ where o is odd.

The μ-invariant of a 3-dimensional Z_{2}-homology sphere M with a periodic reversing orientation selfhomeomorphism h of period four is zero.

Proof:

The set of fixed points of h is formed by two separate points and the fixed points set of h^{2} is a knot by Smith theory, when M is a Z_{2}-homology sphere. This knot contains the two fixed points of h, and the selfhomeomorpism h leaves invariant the knot, reversing its orientation.

If M is a Z_{2}-homology sphere, with a periodic seldifeomorfism h There must be an integer summand in $H_{1}(M)$, because otherwise the manifold Fixh would be a manifold with torsion, which cannot be invariant.

Let's call $N=M / h^{2}$, then N is also a Z_{2}-homology sphere. The selfhomeomorphism h projects to a selfhomeomorphism h in N , that we will design with the same letter because there is no place to confusion.

M is the double cover of N , branched over the knot K , (amphicaeiral by $h)$.

When M is a Z_{2}-homology sphere, $N=M / h^{2}$ is also a Z_{2}-homology sphere, and $H_{1}(N)$ is the direct sum of Z_{2} with itself for as many times are the generators of $H_{1}(M)$ are; r if $m_{1}, m_{2}, \cdots, m_{r}$ are these generators.

So it is enough to prove the result for Z - homology spheres.
Our knot K does not bounds a bicollared Seifert surface in N, if it is not nulhomologous, but some odd multiple of $\mathrm{K}:((2 \mathrm{~s}+1) \mathrm{K})$ is nulhomologous and the proof follows if $(2 s+1) K$ bounds a bicollared Seifert surface.

Making the connected sum $\sum N$ of $2 \mathrm{~s}+1$ copies of N with itself, by fixed points of h, in such a way that the connected sum is compatible with h, we get also the connected sum of K with itself $2 \mathrm{~s}+1$ times, which is nulhomologous in $\sum N$ and we do the proof:

We call $\sum N$ the connected sum of $2 \mathrm{~s}+1$ copies of N . The manifold $\sum N$ is also a Z_{2}-homology sphere, with a reversing orientation selfhomeomorphism, so its μ-invariant is zero or $1 / 2$. We call K_{σ} the knot connected sum of $2 \mathrm{~s}+1$ copies of K) one copy 0 f K in every copy of N); (the knot K_{σ} is amphicaeiral for h).

The connected sum of M with itself $2 \mathrm{~s}+1$ times $\left(\sum M\right)$, is a double cover of $\sum N$ branched over K_{σ}.

We construct a bordism B_{σ} between $\sum M$ and two disjoint copies of $\sum N$, by considering $\left(\sum N\right) \times I$, and making the 2 -cover B_{σ} of $\left(\sum N\right) \times I$, branched over $F \times[0,1 / 2$), from two copies of

$$
\left.\sum N \times I\right)-\operatorname{bicollar}(F \times[0,1 / 2)) \approx \sum N \times I-F \times[-1,1] \times[0,1 / 2),
$$

by identifying in the copies, in a crossed way, the boundaries of

$$
\text { bicollar }\left((F \times[0,1 / 2))-\left(F-K_{\sigma}\right) \times(-1,1) \times\{0\}:\right.
$$

If x is the point copy $x \in F$ in the first copy and x^{6} is the point copy $x \in F$ in the second copy, (δ meaning boundary) and being

$$
\begin{gathered}
\left(\delta(F \times[-1,1] \times[0,1 / 2))-\left(F-K_{\sigma}\right) \times(-1,1) \times\{0\}=\right. \\
F \times\{-1,1\} \times[0,1 / 2) \cup(F) \times(-1,1) \times\{1 / 2\}
\end{gathered}
$$

we identify
$(x,-1, t) \in(F \times\{-1\} \times[0,1 / 2))$ with $\left(x^{6}, 1, t\right) \in(F \times\{1\} \times[0,1 / 2))$ and
$(x, 1, t) \in(F \times\{1\} \times[0,1 / 2))$ with $\left(x^{\prime},-1, t\right) \in(F \times\{-1\} \times[0,1 / 2))$

We identify also $(x, s, 1 / 2)$ with $(x,-s, 1 / 2) \quad \forall x \in F \times(-1,1) \times\{1 / 2\}$.
The boundary of B_{σ} is the disjoint union of $\sum M$ and two copies of $\sum N$.
By a Mayer-Vietoris sequence, $H_{2}\left(B_{\sigma}\right)$ is a direct sum of $H_{2}(N)$ with itself $2(2 s+1)$ times with a free abelian group of 2 g generators, where every generator corresponds to a c_{i}, generator of $H_{1}(F)$, for which, some $\left(2 n_{i}+1\right) c_{i}$ is nulhomologous, and so has a Seifert surface.

We write now how the elements of $H_{2}\left(B_{\sigma}\right)$ determined by nulhomologous closed curves contained in F, with Seifert surface in $\sum N$ are:

We call [a] the element of $H_{2}\left(B_{\sigma}\right)$ determined by a, representative closed curve from $H_{1}(F)$, nulhomologous in $\sum N$, which bounds a Seifert surface $F_{a} \subset \sum N ;$

Given a closed curve $a \subset F \subset \sum N$, we call
$a^{+}=a \times\{1\} \subset F \times\{1\} \subset \operatorname{bicollar}(F) \subset \sum N$ and $F_{a^{+}} \subset \sum N$ the Seifert surface of a^{+}
$a^{-}=a \times\{-1\} \subset F \times\{-1\} \subset \operatorname{bicollar}(F) \subset \sum N$, and $F_{a^{-}} \subset \sum N$ the Seifert surface of a^{-}

We denote by $F_{a^{+}}^{1} \subset \sum N$, the Seifert surface of a^{+}in the first copy of $N \times I$, at any level $\{t\}$ and by $F_{a^{+}}^{2} \subset \sum N$, the Seifert surface of a^{+}in the second copy, $\left(F_{a^{+}} \subset \sum N \subset \sum N \times I\right)$.

Then,

$$
[a]=F_{a^{+}}^{1} \times\{1 / 2\} \cup a^{+} \times[0,1 / 2) \cup a^{-} \times[0,1 / 2) \cup F_{a^{-}}^{2} \times\{1 / 2\}
$$

and also,

$$
[a]=F_{a^{-}}^{1} \times\{3 / 4\} \cup a^{-} \times[0,3 / 4) \cup a^{+} \times[0,3 / 4) \cup F_{a^{+}}^{2} \times\{3 / 4\} .
$$

Then, we have for a pair $\left(\left[a_{i}\right],\left[a_{j}\right]\right)$, where a_{i}, a_{j} are closed curves in F, generators of $H_{1}(F)$, nulhomologous in $\sum N$:

$$
\begin{gathered}
{\left[a_{i}\right] \cap\left[a_{j}\right]=} \\
\left(F_{a_{i}^{+}}^{1} \times\{1 / 2\} \cup a_{i}^{+} \times[0,1 / 2) \cup a_{i}^{-} \times[0,1 / 2) \cup F_{a_{i}^{-}}^{2} \times\{1 / 2\}\right) \cap \\
\left(F_{a_{j}^{-}}^{1} \times\{3 / 4\} \cup a_{j}^{-} \times[0,3 / 4) \cup a_{j}^{+} \times[0,3 / 4) \cup F_{a_{j}^{+}}^{2} \times\{3 / 4\}\right)= \\
(l k \text { meaning linking number }) \\
\quad=l k\left(a_{i}^{+}, a_{j}^{-}\right)+l k\left(a_{i}^{-}, a_{j}^{+}\right)=\operatorname{lk}\left(a_{i}^{+}, a_{j}\right)+l k\left(a_{i}, a_{j}^{+}\right)
\end{gathered}
$$

The intersection quadratic form matrix in $H_{2}\left(B_{\sigma}\right)$ is, then, given by a matrix whose entries are:

$$
\begin{gathered}
\left(l k\left(a_{i}^{+}, a_{j}\right)+l k\left(a_{j}^{+}, a_{i}\right)\right)= \\
=\left(l k\left(\left(2 n_{i}+1\right) c_{i}^{+},\left(2 n_{j}+1\right) c_{j}+l k\left(\left(2 n_{j}+1\right) c_{j}^{+},\left(2 n_{i}+1\right) c_{i}\right)\right) .\right.
\end{gathered}
$$

Now we prove that this matrix has signature zero, because the knot K_{σ} is amphicaeiral:

In fact, as the knot K verifies $h(K)=-K$, the bordism B_{σ} can be constructed also by doing the double cover of $N \times I$ branched over $h(F) \times$ $[0,1 / 2)$. Then, another matrix for the intersection quadratic form Q in B_{σ} can be calculated from the basis $\left\{h\left(c_{1}\right), h\left(c_{2}\right), \cdots, h\left(c_{2 g-1}\right), h\left(c_{2 g}\right)\right\} \subset h(F)$, (which gives a different basis of $H_{2}\left(B_{\sigma}\right)$), and, as $(h(a))^{+}=h\left(a^{-}\right)$for every curve in F, because h reverses orientation, we have:

$$
\begin{gathered}
\left.l k\left(h\left(a_{i}\right)\right)^{+}, h\left(a_{j}\right)\right)=-l k\left(h\left(a_{i}^{-}\right), h\left(a_{j}\right)\right)=-l k\left(a_{i}^{-}, a_{j}\right)=-l k\left(a_{i}, a_{j}^{+}\right)= \\
=-l k\left(a_{j}^{+}, a_{i}\right) \\
\begin{array}{r}
\left.l k\left(h\left(a_{j}\right)\right)^{+}, h\left(a_{i}\right)\right)=-l k\left(h\left(a_{j}^{-}\right), h\left(a_{i}\right)\right)=-l k\left(a_{j}^{-}, a_{i}\right)=-l k\left(a_{j}, a_{i}^{+}\right)= \\
=-l k\left(a_{i}^{+}, a_{j}\right)
\end{array}
\end{gathered}
$$

By adding the previous terms, we get as matrices for Q two opposite matrices which should have the same signature, therefore, zero.

Then, the μ-invariant of $\sum M$ is equal to the signature of the intersection quadratic form in $H_{2}\left(B_{\sigma}\right)$ plus 2μ-invariant $\sum N=0$, because $\sum N$ is Z_{2}-homology sphere with a reversing orientation selfhomeomorphim, ($\mu \sum N=0$ or $1 / 2$) And

$$
0=\mu \sum M=(2 s+1) \mu M \Longrightarrow \mu M=0
$$

because M is Z_{2}-homology sphere with a reversing orientation selfhomeomorphim, $(\mu M=0$ or $1 / 2)$ and the μ-invariant is defined module 1 .

In an analogous way, we can prove that:
The μ-invariant of a 3-dimensional Z_{2}-homology sphere M with a periodic reversing orientation selfhomeomorphism h of period 2^{3} is zero.

Proof:

In the following we have to read Z_{2}-homology sphere M in the place of Z-homology sphere M and assume that Smith theory and Seifert bicollared surfaces work the same in both.

The set of fixed points of h is formed by two separate points and the fixed points set of h^{4} is a knot by Smith theory, when M is a Z-homology sphere. This knot contains the two fixed points of h, and the selfhomeomorpism h leaves invariant the knot, reversing its orientation.

Let's call $N=M / h^{4}$. The selfhomeomorphism h projects to a selfhomeomorphism h in N , that we will design with the same letter because there is no place to confusion.

When M is a Z-homology sphere, $N=M / h^{4}$ also is a Z-homology sphere. M is a double cover of N , branched over the knot K .

Repeating the previous procedure for M y N , we get that the μ-invariant of M is zero.

With the same procedure we get that:
The μ-invariant of an 3-dimensional Z-homology sphere M with a periodic reversing orientation selfhomeomorphism h of period $2^{r}, r>1$ is zero.

For that, we consider $N=M / h^{2^{r-1}}$ and repeat the previous procedure.

We have got, together with the first result from Birman, Galewski and Stern, Hsiang and Pao, that The μ-invariant of a 3 -dimensional Zhomology sphere M with a periodic reversing orientation selfhomeomorphism h whose period is any power of 2 , is zero.

Then, we can settle that:
The μ-invariant of a 3-dimensional Z-homology sphere M with a periodic reversing orientation selfhomeomorphism h is zero.

This result follows now from the consideration that any number n bigger than 2 can be written $n=m 2^{r}$ where m is an odd number and $r>1$. Then M has h^{m}, a reversing orientation selfhomeomorphism with period 2^{r}.

REFERENCES.

Periodic transformations in homology 3 -spheres and the Ronlin invariant. L. Contreras Caballero. Low-Dimensional Topology, Volume 1: Cambridge University Press 1982.

More references in the previous paper.

REFERENCES.

[B]J. S. BIRMAN,'Orientation reversing involutions on 3-manifolds' Preprint, Columbia University, (1978).
[C]S.E. CAPPELL and J.L. SHANESON, 'Branched cyclic coverings', Knots, groups and 3-manifolds. Annals of Mahematics Studies 84 (1975), pp. 165-173.
[Co]L. CONTRERAS CABALLERO, 'Periodic transformations in homology 3 -spheres and the Ronlin invariant'. Notices of the Amer. Math. Soc. October 1979, p. A-530.
[D]A. DOLD, Lectures on Algebraic Topology. Springer-Verlag. Berlin, Heidelberg, New York, 1972.
[DK]A. DURFEE and L. KAUFFMAN, 'Periodiciy of branched cyclic covers', Math. Ann. 218 (1975), pp. 157-174.
[E]J. EELLS and K:H. KUIPER, 'An invariant for certain smooth manifolds', Ann. Mat. Pur Appl. (4) 60(1972), pp. 93-110.
[F]E.E. FLOYD, 'Periodic maps via Smith theory', Seminar on Transformation Groups. Annals of Mathematics Studies 46 (1960), pp. 35-47.
[G]D. GALEWSKI and R. STERN, 'Orientation reversing involutions on homology 3-spheres', Math. Proc. Cam. Phil. Soc. 85 (1979), pp.449-451. 'Classification of Simplicial Triangulations of topological manifolds', Bull. Amer. Math. Soc. 82 (1976), pp. 916-918.
[Go]C. Mc. GORDON,'Some aspects of classical knot theory', Knot theory: Plans sur Bex, Switzerland, 1977. Springer Lecture Notes in Math. 685 (1978), pp. 1-65.
'Knots, homology spheres and contractible manifolds', Topology 14 (1975), pp. 151-172.
$[\mathrm{H}]$ W.C. HSIANG and P.S. PAO, Orientation reversing involutions on homology 3 spheres', Notices Amer. Math, Soc. 26, February 1979. p.A251.
[Kf]L. KAUFFMAN, 'Branched coverings, open books and knot periodicity', Topology 13 (1974) pp. 143-160.
[Kw$]$ A. KAWAUCHI, 'On three manifolds admitting orientation reversing involution' Preprint I.A.S. Princeton, (1979).
_ - 'Vanishing of the Rohlin invariant of some Z_{2}-homology 3spheres, Preprint I.A.S. Princeton (1979).
[KN]S. KOBAYASHI and K. NOMIZU, Foundations of Differential Geometry. Springer-Verlag. Berlin, Heidelberg, New York, 1969.
[Ko]S. KOBASYASHI, Transformation Groups in Differential Geometry. Springer-Verlag. Berlin, Heidelberg, New York, 1972.
[L]J. LEVINE, 'Invariant of knot cobordism', Inventiones Math. 8 (1969), pp. 98-110 and 355.
[M]A. MARDEN, 'The geometry of finitely generated Kleinian groups', Ann. of Math. 99 (1974), pp. 383-462.
[Mi]J. MILNOR, 'Infinite cyclic coverings', Conference on the Topology of Manifolds Prindle, Weber, and Smidt, Boston, Mass. (1968), pp.115133.
[MH]J. MILNOR and D. HUSEMOLLER, 'Symmetric bilinear forms. Springer-Verlag, Berlin, Heidelberg, New York, 1973.
[Mo]G.D. MOSTOW, 'Strong rigidity of Locally Symmetric Spaces', Ann. of Math. Study, 78, 1976 Princeton Univ. Press.
[Nm]W. NEUMANN, 'Cyclic suspension of knots and periodicity of signature for singularities', Bull. Amer. Math. Soc. 80, pp 977-981, 1974.
[Nw]L.P. NEUWIRTH, 'Knot groups', Annals of Math. Studies 56, Princeton, 1965.
[R]W.A. ROHLIN, 'New results in the theory of four dimensional manifolds', Dokl. Acad. Nauc. SSRR 84 (1952), pp. 221-224.
[S]L. SIEBEMANN, 'On vanishing of the Rochlin invariant and nonfinitely amphichaeiral homology 3 -spheres, Topology Symposium Siegen, 1979, Springer Lecture Notes in Math. 788 (1980), pp. 172-222
[T]W. THURSTON, 'The Geometry and Topology of 3-manifolds', Preprints, Princeton University, (1978).
[Tr]A.G. TRISTRAM, 'Some cobordism invariants for links', Proc. Cambridge Phil. Soc. 66 (1969), pp. 251-264.
[W]F. WALDHAUSEN, 'On irreducible 3-manifolds that are sufficiently large', Ann. of Math. 87 (1968), pp. 56-58.

Lucía Contreras Caballero.

