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We prove here in a progressive way that:

The µ invariant of a 3-dimensional Z2-homology sphere with a
periodic reversing orientation selfhomeomorphism whose period
is bigger than two is zero.

Recall that if W4 is an acyclic 4-dimensional manifold W 4, whose bound-
ary is M, by means of the signature of the intersection quadratic form in
H2(W

4) We denote

µM = −σW 4

16
mod 1

We can establish that the µ−invariant of N, a 3-dimensional Z2-homology
sphere with a reversing orientation selfhomeomorphism is zero or 1/2, since
the conected sum of N with N is equal to the connected sum of N with −N
which is the boundary of (N−B3)×I, acyclic 4-dimensional manifold with
null quadratic intersection form, so 2µN = 0.

It has been proved independently by Birman and also by Galewski and
Stern and by Hsiang and Pao, that the µ−invariant of a 3-dimensional
Z2-homology sphere M with a periodic reversing orientation selfhomeo-
morphism h of period 2 is zero.

We see now that the µ−invariant of M is zero when the period of h is
bigger than two by proving first the result for period a power of 2 and
considering afterwards the period o2m where o is odd.

The µ−invariant of a 3-dimensional Z2-homology sphere M with
a periodic reversing orientation selfhomeomorphism h of period
four is zero.

Proof:
The set of fixed points of h is formed by two separate points and the fixed

points set of h2 is a knot by Smith theory, when M is a Z2−homology sphere.
This knot contains the two fixed points of h, and the selfhomeomorpism h
leaves invariant the knot, reversing its orientation.
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If M is a Z2−homology sphere, with a periodic seldifeomorfism h There
must be an integer summand in H1(M), because otherwise the manifold
Fixh would be a manifold with torsion, which cannot be invariant.

Let’s call N = M/h2, then N is also a Z2−homology sphere. The self-
homeomorphism h projects to a selfhomeomorphism h in N, that we will
design with the same letter because there is no place to confusion.

M is the double cover of N, branched over the knot K, (amphicaeiral by
h).

When M is a Z2-homology sphere, N = M/h2 is also a Z2-homology
sphere, and H1(N) is the direct sum of Z2 with itself for as many times are
the generators of H1(M) are; r if m1,m2, · · · ,mr are these generators.

So it is enough to prove the result for Z − homology spheres.
Our knot K does not bounds a bicollared Seifert surface in N, if it is not

nulhomologous, but some odd multiple of K: ((2s+1)K) is nulhomologous
and the proof follows if (2s+ 1)K bounds a bicollared Seifert surface.

Making the connected sum
∑

N of 2s+1 copies of N with itself, by fixed
points of h, in such a way that the connected sum is compatible with
h, we get also the connected sum of K with itself 2s+1 times, which is
nulhomologous in

∑
N and we do the proof:

We call
∑

N the connected sum of 2s+1 copies of N. The manifold
∑

N
is also a Z2-homology sphere, with a reversing orientation selfhomeomor-
phism, so its µ-invariant is zero or 1/2. We call Kσ the knot connected
sum of 2s+1 copies of K ) one copy 0f K in every copy of N); (the knot Kσ

is amphicaeiral for h).
The connected sum of M with itself 2s+1 times (

∑
M), is a double cover

of
∑

N branched over Kσ.

We construct a bordism Bσ between
∑

M and two disjoint copies of∑
N , by considering (

∑
N)× I, and making the 2-cover Bσ of (

∑
N)× I,

branched over F × [0, 1/2), from two copies of

∑
N × I)− bicollar(F × [0, 1/2)) ≈

∑
N × I − F × [−1, 1]× [0, 1/2),

by identifying in the copies, in a crossed way, the boundaries of

bicollar((F × [0, 1/2))− (F −Kσ)× (−1, 1)× {0} :
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If x is the point copy x ∈ F in the first copy and x‘ is the point copy
x ∈ F in the second copy, (δ meaning boundary) and being

(δ(F × [−1, 1]× [0, 1/2))− (F −Kσ)× (−1, 1)× {0} =
F × {−1, 1} × [0, 1/2) ∪ (F )× (−1, 1)× {1/2}

we identify

(x,−1, t) ∈ (F × {−1} × [0, 1/2)) with (x‘, 1, t) ∈ (F × {1} × [0, 1/2))

and

(x, 1, t) ∈ (F × {1} × [0, 1/2)) with (x′,−1, t) ∈ (F × {−1} × [0, 1/2))

We identify also (x, s, 1/2) with (x,−s, 1/2) ∀x ∈ F × (−1, 1)×{1/2}.

The boundary of Bσ is the disjoint union of
∑

M and two copies of
∑

N .

By a Mayer-Vietoris sequence, H2(Bσ) is a direct sum of H2(N) with
itself 2(2s + 1) times with a free abelian group of 2g generators, where
every generator corresponds to a ci, generator of H1(F ), for which, some
(2ni + 1)ci is nulhomologous, and so has a Seifert surface.

We write now how the elements of H2(Bσ) determined by nulhomologous
closed curves contained in F , with Seifert surface in

∑
N are:

We call [a] the element of H2(Bσ) determined by a, representative closed
curve from H1(F ), nulhomologous in

∑
N , which bounds a Seifert surface

Fa ⊂
∑

N ;
Given a closed curve a ⊂ F ⊂

∑
N , we call

a+ = a × {1} ⊂ F × {1} ⊂ bicollar(F ) ⊂
∑

N and Fa+ ⊂
∑

N the
Seifert surface of a+

a− = a× {−1} ⊂ F × {−1} ⊂ bicollar(F ) ⊂
∑

N , and Fa− ⊂
∑

N the
Seifert surface of a−

We denote by F 1
a+ ⊂

∑
N , the Seifert surface of a+ in the first copy of

N × I, at any level {t} and by F 2
a+ ⊂

∑
N , the Seifert surface of a+ in the

second copy, (Fa+ ⊂
∑

N ⊂
∑

N × I).
Then,

[a] = F 1
a+ × {1/2} ∪ a+ × [0, 1/2) ∪ a− × [0, 1/2) ∪ F 2

a− × {1/2}
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and also,

[a] = F 1
a− × {3/4} ∪ a− × [0, 3/4) ∪ a+ × [0, 3/4) ∪ F 2

a+ × {3/4}.

Then, we have for a pair ([ai], [aj]), where ai, aj are closed curves in F,
generators of H1(F ), nulhomologous in

∑
N :

[ai] ∩ [aj] =
(F 1

a+i
× {1/2} ∪ a+i × [0, 1/2) ∪ a−i × [0, 1/2) ∪ F 2

a−i
× {1/2})∩

(F 1
a−j

× {3/4} ∪ a−j × [0, 3/4) ∪ a+j × [0, 3/4) ∪ F 2
a+j

× {3/4}) =
(lk meaning linking number)

= lk(a+i , a
−
j ) + lk(a−i , a

+
j ) = lk(a+i , aj) + lk(ai, a

+
j )

The intersection quadratic form matrix in H2(Bσ) is, then, given by a
matrix whose entries are:

(lk(a+i , aj) + lk(a+j , ai)) =

= (lk((2ni + 1)c+i , (2nj + 1)cj + lk((2nj + 1)c+j , (2ni + 1)ci)).

Now we prove that this matrix has signature zero, because the knot Kσ

is amphicaeiral:

In fact, as the knot K verifies h(K) = −K, the bordism Bσ can be
constructed also by doing the double cover of N × I branched over h(F )×
[0, 1/2). Then, another matrix for the intersection quadratic form Q in Bσ

can be calculated from the basis {h(c1), h(c2), · · · , h(c2g−1), h(c2g)} ⊂ h(F ),
(which gives a different basis of H2(Bσ)), and, as (h(a))

+ = h(a−) for every
curve in F , because h reverses orientation, we have:

lk(h(ai))
+, h(aj)) = −lk(h(a−i ), h(aj)) = −lk(a−i , aj) = −lk(ai, a

+
j ) =

= −lk(a+j , ai)

lk(h(aj))
+, h(ai)) = −lk(h(a−j ), h(ai)) = −lk(a−j , ai) = −lk(aj, a

+
i ) =

= −lk(a+i , aj)
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By adding the previous terms, we get as matrices for Q two opposite
matrices which should have the same signature, therefore, zero.

Then, the µ−invariant of
∑

M is equal to the signature of the intersec-
tion quadratic form in H2(Bσ) plus 2µ−invariant

∑
N = 0, because

∑
N

is Z2−homology sphere with a reversing orientation selfhomeomorphim,
(µ

∑
N = 0 or 1/2) And

0 = µ
∑

M = (2s+ 1)µM =⇒ µM = 0

because M is Z2−homology sphere with a reversing orientation selfhomeo-
morphim, (µM = 0 or 1/2) and the µ-invariant is defined module 1.

In an analogous way, we can prove that:
The µ−invariant of a 3-dimensional Z2-homology sphere M with

a periodic reversing orientation selfhomeomorphism h of period
23 is zero.

Proof:
In the following we have to read Z2-homology sphere M in the place of

Z-homology sphere M and assume that Smith theory and Seifert bicollared
surfaces work the same in both.

The set of fixed points of h is formed by two separate points and the fixed
points set of h4 is a knot by Smith theory, when M is a Z−homology sphere.
This knot contains the two fixed points of h, and the selfhomeomorpism h
leaves invariant the knot, reversing its orientation.

Let’s callN = M/h4. The selfhomeomorphism h projects to a selfhomeo-
morphism h in N, that we will design with the same letter because there
is no place to confusion.

When M is a Z-homology sphere, N = M/h4 also is a Z-homology sphere.
M is a double cover of N, branched over the knot K.

Repeating the previous procedure for M y N, we get that the µ-invariant
of M is zero.

With the same procedure we get that:

The µ−invariant of an 3-dimensional Z-homology sphere M
with a periodic reversing orientation selfhomeomorphism h of pe-
riod 2r, r > 1 is zero.

For that, we consider N = M/h2r−1

and repeat the previous procedure.
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We have got, together with the first result from Birman, Galewski and
Stern, Hsiang and Pao, that The µ−invariant of a 3-dimensional Z-
homology sphere M with a periodic reversing orientation self-
homeomorphism h whose period is any power of 2, is zero.

Then, we can settle that:

The µ−invariant of a 3-dimensional Z-homology sphere M with
a periodic reversing orientation selfhomeomorphism h is zero.

This result follows now from the consideration that any number n bigger
than 2 can be written n = m2r where m is an odd number and r > 1. Then
M has hm, a reversing orientation selfhomeomorphism with period 2r.
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