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§1. Introduction

The questions concerning trigonometric series expansions of functions, which
go back to the studies of d’Alembert, Euler, and Bernoulli, have been the most
important ones in the theory of Fourier series to date. In this field, there is a class
of problems that can be stated briefly as follows: estimate the Fourier coefficients
of a function via the function itself, and conversely, estimate a function via its
Fourier coefficients. Numerous mathematicians have contributed to the solution of
these problems. For the space L2, the main results are Parseval’s equality and the
Riesz–Fischer theorem. These results are partly extended to spaces Lp for p 6= 2
by the Hausdorff–Young and Hardy–Littlewood–Paley theorems. In the case of the
L1-metric, we cannot say anything interesting about the coefficients (except for
the fact that they tend to zero). However, for analytic functions from spaces H1,
stronger assertions expressed in the form of the Hardy and Paley inequalities are
valid. Furthermore, there are a number of theorems on the behaviour of the Fourier
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coefficients under additional smoothness conditions imposed on a function. The
fundamental result in this field is the Bernstein theorem on the absolute convergence
of the Fourier series of functions of the class Lipα (α > 1/2).

In the last decades similar questions for classes of functions with values in Banach
spaces have been attracting increasing attention. The analysis of vector-valued
functions is a comparatively new trend; it dates back to the thirties and has
its origins in the papers by Bochner [11], Boas and Bochner [10], and Paley and
Zygmund [61]. Vector-valued analysis is related to the classical problems of the
theory of functions and often makes it possible to combine different and seemingly
unrelated results of the theory on the basis of a common approach. This possibility
is associated with the fact that many fundamental operators of real analysis can be
interpreted as convolution operators with vector-valued kernels. We find it useful
to cite some examples of this kind (although, at first sight, they are far from the
main subject of this survey).

On the real line we consider the maximum Hardy–Littlewood operator

Mf(x) = sup
I

1

|I|

∫
I

|f(t)| dt, (1.1)

where the upper bound is taken over all intervals I ⊂ R that contain the point x.
It is well known ([74], Ch. 1) that for 1 < p <∞ this operator is bounded in Lp(R).

We arrange all positive rational numbers in a sequence {ρn} and put In =

(−ρn, ρn) and ϕn =
1

|In|
χIn (where χE is the characteristic function of a set E).

Then for f > 0 we have

Mf(x) 6 2 sup
n

1

|In|

∫
In

f(t) dt = 2 sup
n

∫
R
ϕn(x− t)f(t) dt. (1.2)

Let ϕ = {ϕn}. For each x ∈ R we consider the linear mapping K(x) of the space
X = R into the space Y = l∞ such that K(x)ξ = ξ · ϕ(x) (ξ ∈ R). Let

Tf(x) =

{∫
R
ϕn(x− t)f(t) dt

}
=

∫
R
ϕ(x− t)f(t) dt ≡

∫
R
K(x− t)f(t) dt (1.3)

(the last two integrals are interpreted in the sense of Bochner (see § 2)). The
operator T takes each function f to a sequence of functions. Here, by virtue of
(1.2), we have

Mf(x) 6 2‖Tf(x)‖l∞
for f > 0. Thus, the question about the boundedness in Lp (1 < p < ∞) of the
semiadditive Hardy–Littlewood operator (1.1) is reduced to the same question for
the linear (convolution) operator (1.3) acting from Lp(R) into the space LpY (R)
(Y = l∞).

Convolution operators are the main subject of the theory of Calderón and
Zygmund. For the scalar case, the theory was developed in the fifties [17], [18].
The fundamental idea was to derive the boundedness in Lp (1 < p < ∞) of the
operator

Tf(x) = lim
ε→+0

∫
|x−t|>ε

K(x− t)f(t) dt (1.4)
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from the assumption of its boundedness in L2 and some smoothness conditions
imposed on the kernel K. Later it was discovered that boundedness in L2 can be
replaced by boundedness in Lr for some r ∈ [1,∞].

These ideas were extended to the vector-valued case by Benedek, Calderón,
and Panzone [6]. Namely, they constructed a similar theory for operators of the
form (1.4), where f is a function on Rn with values in a Banach space X and
the kernel K is a function with values in the space L(X,Y ) of all linear bounded
operators from X into Y (here Y is a Banach space).

Returning to the operator (1.3), we note that its boundedness from L∞(R)
into L∞Y (R) (Y = l∞) is obvious. To apply the theory of Calderón and Zygmund,
it remains to choose a majorant of K satisfying the corresponding smoothness con-
ditions1.

As another example, we cite theorems of Littlewood–Paley type ([74], Ch. 4),
associated with quite difficult results of the theory of functions. Just as in the
case of the maximum operator, it turns out that estimates for the Littlewood–
Paley quadratic function in Lp (1 < p <∞) can be derived from the boundedness
in Lpl2 of a special vector-valued operator with a Calderón–Zygmund kernel (see [74],
[41], [78]).

Of course, the role of vector-valued analysis in the theory of functions is not
exhausted by the cited examples. It is also clear that further investigations in this
field are an important and interesting problem and may lead to new unexpected
results.

Let us return to the subject of the present paper. Our starting point is the
classical Hausdorff–Young theorem, which we now consider in more detail.

Let f(x) ∈ L[0, 1] be a complex-valued 1-periodic function with Fourier series

∞∑
n=−∞

cne
2πinx.

If f ∈ L2[0, 1], then ∫ 1

0

|f(x)|2 dx =
+∞∑

n=−∞
|cn|2 (1.5)

(Parseval’s equality). On the other hand, if a sequence {cn}+∞n=−∞ of complex
numbers satisfies

∑
|cn|2 < ∞, then there is a function f(x) ∈ L2[0, 1] such that

the cn are its Fourier coefficients and (1.5) is valid (the Riesz–Fischer theorem).
These theorem can be partly extended to the spaces Lp for p 6= 2. For 1 6 p 6∞,

we put p′ = p/(p− 1).

Theorem 1.1. Let 1 6 p 6 2. Then the following assertions hold:

(1) if f ∈ Lp[0, 1] and

cn =

∫ 1

0

f(x)e−2πinx dx (n ∈ Z), (1.6)

1For details see the paper [71].
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then ( +∞∑
n=−∞

|cn|p
′
)1/p′

6
(∫ 1

0

|f(x)|p dx
)1/p

; (1.7)

(2) if {cn}+∞n=−∞ is a sequence of complex numbers such that

+∞∑
n=−∞

|cn|p <∞,

then there is a function f ∈ Lp′ [0, 1] such that (1.6) holds and(∫ 1

0

|f(x)|p′ dx
)1/p′

6
( +∞∑
n=−∞

|cn|p
)1/p

. (1.8)

Let us point out that this theorem does not hold for p > 2 (see [82], Ch. 12).
Theorem 1.1 was proved by Young in 1912–13 for the case in which p′ is an even

positive number. The starting point of Young’s proof was a convolution inequality
obtained by him. In 1923 Hausdorff extended Young’s results to all values p ∈ [1, 2].
In the same year F. Riesz proved that an analogue of Theorem 1.1 holds for any
uniformly bounded orthonormal system on [a, b],

|ϕn(x)| 6M (x ∈ [a, b], n ∈ N).

Theorem 1.2. Let 1 6 p 6 2. Then the following assertions hold:

(1) if f ∈ Lp[a, b], then

‖{ck}‖lp′ 6M2/p−1‖f‖Lp , (1.9)

where the ck are the Fourier coefficients of f ;
(2) if {ck} ∈ lp, then there is a function f ∈ Lp′ [a, b] such that the ck are its

Fourier coefficients and

‖f‖Lp′ 6M2/p−1‖{ck}‖lp . (1.10)

In 1926 M. Riesz proposed another proof of this theorem as one of the first
applications of his convexity theorem.

An analogue of Theorem 1.1 for the Fourier transform was proved by Titch-
marsh [76], [77].

The Fourier transform of a function f ∈ L1(Rn) is defined by the formula

f̂(ξ) =

∫
Rn
f(x)e−2πix·ξ dx (ξ ∈ Rn). (1.11)

According to the Plancherel theorem, if f ∈ L2(Rn), then the sequence

FN (ξ) =

∫
|x|6N

f(x)e−2πix·ξ dx (1.12)

converges in L2(Rn). The limit is denoted by f̂(ξ) and is called the Fourier trans-

form of f . Furthermore, ‖f‖2 = ‖f̂ ‖2.
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Theorem 1.3. Let f ∈ Lp(Rn), 1 6 p 6 2. Then the sequence (1.12) converges in

the norm of Lp
′
(Rn), and the limit function satisfies the inequality

‖f̂ ‖p′ 6 ‖f‖p. (1.13)

The function f̂ defined in Theorem 1.3 is called the Fourier transform of the
function f ∈ Lp, 1 6 p 6 2.

Let us compare inequalities (1.7) and (1.13). If f(x) = Ae2πimx (m ∈ Z),
then (1.7) becomes an equality (Hardy and Littlewood showed that the equality
in (1.7) holds only for functions of the above-mentioned type). At the same time,
it turns out that for 1 < p < 2 inequality (1.13) can be improved. Namely, for
1 < p < 2 one has

‖f̂ ‖p′ 6 Anp‖f‖p, Ap =
(
p1/p(p′)−1/p′

)1/2
. (1.14)

This inequality was proved by Babenko [3] for the case in which p′ is an even
positive number (n = 1) and by Beckner [5] for the general case.

Let us return to Theorem 1.1. In the theorem it is supposed that 1 6 p 6 2. In
particular, the theorem states that any sequence from lp is the sequence of Fourier
coefficients of a function from Lp

′
. For given p ∈ [1, 2], the set of all such functions

is a subset of Lp
′
. Moreover, the closer p is to 2, the larger is the part of the space

occupied by the subset. For p = 2, this subset coincides with L2. The situation is
different for p > 2. It turns out that in this case not every sequence of the class
lp is a sequence of Fourier coefficients. Namely, in the thirties Paley and Zygmund
proved that if

∑+∞
n=−∞ |an|2 =∞, then for some arrangement of signs the series

+∞∑
n=−∞

±ane2πinx

is not the Fourier series of an integrable function. This assertion is a special case of
the more general Paley–Zygmund theorem related to the so-called random trigono-
metric series

a0

2
+
∞∑
n=1

(an cosnx+ bn sinnx)rn(t)

(here the rn are the Rademacher functions). The results of Paley and Zygmund
stimulated research on random function series

∑
fnrn(t) (the fn are functions from

some space) and the more general series
∑
xnrn(t), where {xn} is a sequence of

vectors of an arbitrary Banach space X (see [43]).
In the late 60s, interest appeared in trigonometric series with vector-valued coef-

ficients and vector-valued Fourier transforms. Strictly speaking, these subjects
were touched on by Bochner [11] as early as the 30s (in particular, Bochner noted
that the Plancherel theorem need not hold for Fourier transforms of vector-valued
functions).

In 1967, Peetre [62] singled out Banach spaces X such that for some p ∈ (1, 2]
and for any function f : R→ X one has(∫

R
‖f̂(ξ)‖p

′

X dξ

)1/p′

6 Ap
(∫

R
‖f(t)‖pX dt

)1/p

, p′ =
p

p− 1
. (1.15)
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In this case, one says that X has the Fourier type p. In the paper [64], this concept
was used in studying interpolation spaces.

If X is a Hilbert space, then X obviously has the Fourier type 2 (more precisely,

the Plancherel equality ‖f̂ ‖L2
X

= ‖f‖L2
X

is true). In 1972 Kwapién [50] proved that
any space with the Fourier type 2 is isomorphic to a Hilbert space. He derived this
result from a similar assertion for spaces whose Rademacher type and cotype are
simultaneously equal to 2.

The definitions of Rademacher type and cotype for Banach spaces were intro-
duced in 1972 by Hoffman-Jorgensen [38] (in connection with probability problems
on the unconditional convergence of series in Banach spaces) and by Maurey (in
papers on the theory of factorization of linear operators). These concepts were
immediately applied in numerous papers devoted to the geometry of Banach spaces,
probability, and operator theory (see [39], [51], [68]). Considerably fewer papers
dealt with the study of the Fourier type of Banach spaces and the correspond-
ing problems of the theory of functions. Essential progress in this field is due to
Bourgain [12], [13], who proved the validity of the Hausdorff–Young inequality with
respect to the trigonometric system and the Walsh system for Banach spaces with
a non-trivial Rademacher type. Weaker inequalities of the same type were obtained
by Bourgain [12] for the systems of characters of arbitrary Abelian groups.

The publication of the present survey is due to the fact that although so far a
number of general results have already been obtained in the field, these results are
scattered in the literature, which does not permit one to see the overall picture
at once. At the same time, investigations of vector-valued harmonic analysis and
related problems involving inequalities of Hausdorff–Young type have been consid-
erably extended recently. Though it is too early to claim that a unified theory has
been constructed, it is necessary to ”frame” what has already been done, highlight
the most important results and unsolved problems and, on this basis, establish
a common approach to further investigations. These are the main purposes of
our work. Our approach consists in studying the fundamental concepts of type
and cotype of Banach spaces for general uniformly bounded orthonormal systems
rather than for the Fourier transform on locally compact Abelian groups. First of
all, this enables us to single out general results and principles not associated with
specific features of a given system. On the other hand, the study of the whole class
of orthonormal systems leads to interesting and non-trivial problems related both
to the theory of orthogonal series and the geometry of Banach spaces and harmonic
analysis. We hope that this approach will also provide new relations between these
theories.

As was mentioned above, a great number of studies are devoted to the concepts
of Rademacher type and cotype. From these extensive studies we highlight only
the results that are closely related to problems of the theory of functions.

We have tried to make the presentation consistent, systematic, and simple. That
is why we sketch the proofs of the basic results. Moreover, for a number of cases,
we give new proofs. Some results are apparently presented for the first time.

Finally, we pose unsolved problems—both well-known and those which arose in
writing this paper.
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§2. General definitions and auxiliary results

Let R be a non-empty set and Λ a σ-algebra of subsets of R. Suppose that a
σ-finite measure µ is defined on Λ. We say that (R,Λ, µ) (or, briefly, (R,µ)) is a
measure space (see [40], p. 15).

An atom is a µ-measurable set A ⊂ R with µ(A) > 0 such that it does not
contain measurable subsets with measure different from zero and µ(A).

Lemma 2.1. Let (R,µ) be a measure space. Suppose that a µ-measurable set
E ⊂ R with µ(E) > 0 does not contain atoms. Then for any 0 < t < µ(E) there is
a µ-measurable set Q ⊂ E with µ(Q) = t.

The proof can be found, for example, in [81], p. 372.
A real- or complex-valued function f defined on R is said to be µ-measurable if

for any open subset G of the real line R (or the complex plane C) the inverse image
f−1(G) is µ-measurable.

We denote by χE the characteristic function of a µ-measurable set E ⊂ R.
The distribution function of a µ-measurable function f is defined by the formula

λf (y) ≡ µ
(
{x ∈ R : |f(x)| > y}

)
(y > 0).

We denote by S0(R,µ) the class of all µ-measurable functions f on R such that
they are finite µ-almost everywhere on R and satisfy the condition λf (y) < +∞ for
any y > 0.

The non-increasing rearrangement of a function f ∈ S0(R,µ) is the function f∗

non-increasing on (0,+∞) and equimeasurable with |f |, that is, such that for any
y > 0 ∣∣{t > 0 : f∗(t) > y}

∣∣ = µ
(
{x ∈ R : |f(x)| > y}

)
.

The rearrangement f∗ can be defined by the formula (see [7], Ch. 2)

f∗(t) = inf{y > 0 : λf (y) 6 t}, 0 < t <∞. (2.1)

We note the following properties of rearrangements (see [49], [7]):

(1) if 0 < t < t+ s <∞, then

(f + g)∗(t+ s) 6 f∗(t) + f∗(s) (2.2)

and
(fg)∗(t+ s) 6 f∗(t)f∗(s); (2.3)

(2) if 0 < p <∞, then ∫
R

|f |p dµ =

∫ ∞
0

[f∗(s)]p ds; (2.4)

(3) if E is a measurable subset of R with µ(E) = t, then∫
E

|f | dµ 6
∫ t

0

f∗(s) ds. (2.5)
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Let p and r be positive numbers. A function f ∈ S0(R,µ) belongs to a Lorentz
space Lp,r ≡ Lp,r(R,µ) if

‖f‖p,r ≡
(∫ ∞

0

(
t1/pf∗(t)

)r dt
t

)1/r

<∞.

We haveLp,p = Lp, 0 < p <∞ (see (2.4)). Next, if 0 < p <∞ and 0 < r < q <∞,
then Lp,r ⊂ Lp,q; moreover,

‖f‖p,q 6 c ‖f‖p,r (2.6)

(see [7], p. 217).
We consider the discrete case in which R = N and µ(n) = 1 for any n ∈ N. In

this case, S0 is the set of all sequences {ak} of numbers such that limk→∞ ak = 0. A
non-increasing rearrangement of a sequence {ak} is denoted by {a∗k}. If a sequence
{|ak|} has infinitely many elements different from zero, then the rearrangement {a∗k}
is obtained by arranging all such elements in non-increasing order. The Lorentz
sequence space is denoted by lp,r. If a = {ak} and ak → 0, then

‖a‖p,r =

( ∞∑
k=1

kr/p−1(a∗k)r
)1/r

.

In what follows we use the following Hardy inequalities.

Lemma 2.2. Let f be a measurable non-negative function on (0,∞) and α > 0.
Then

(1) if 1 6 p <∞, then the following assertions hold:

∫ ∞
0

x−α−1

(∫ x

0

f(t) dt

)p
dx 6 Cp,α

∫ ∞
0

x−α−1(xf(x))p dx, (2.7)∫ ∞
0

xα−1

(∫ ∞
x

f(t) dt

)p
dx 6 Cp,α

∫ ∞
0

xα−1(xf(x))p dx; (2.8)

(2) if the function f is monotone decreasing on (0,∞), then inequalities (2.7)
and (2.8) are valid for any p > 0.

The proof of assertion (1) can be found in [35], Russian p. 296. To prove inequal-
ity (2.7) for 0 < p < 1 for a decreasing function f , we note that in this case the
integral on the right-hand side of (2.7) can converge only for α < p (provided that
f is not identically zero). Moreover, one can assume that f is bounded and com-

pactly supported. We put F (x) =

∫ x

0

f(t) dt. If we integrate by parts and take

into account the fact that f is decreasing, then we obtain∫ ∞
0

x−α−1(F (x))p dx =
1

α

∫ ∞
0

x−αf(x) (F (x))p−1 dx

6 1

α

∫ ∞
0

x−α+p−1(f(x))p dx.

We can prove (2.8) for 0 < p < 1 in a similar manner (assuming that f is decreas-
ing).
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Lemma 2.3. Let {an} be a non-negative sequence and α > 0. Then the following
assertions hold:

(1) if 1 6 p <∞, then

∞∑
n=1

n−α−1

( n∑
k=1

ak

)p
6 Cp,α

∞∑
n=1

n−α−1(nan)p, (2.9)

∞∑
n=1

nα−1

( ∞∑
k=n

ak

)p
6 Cp,α

∞∑
n=1

nα−1(nan)p; (2.10)

(2) if the sequence {an} is monotone decreasing, then inequalities (2.9) and (2.10)
hold for any p > 0.

This lemma can readily be derived from the previous one (or can be proved in a
similar way).

Let us give some definitions and results related to vector-valued functions.
Let A be a Banach space and (R,µ) a measure space. We consider functions

f : R→ A. A function of the form

f =
N∑
j=1

ajχEj , (2.11)

where aj ∈ A and the Ej ⊂ R are µ-measurable disjoint sets with µ(Ej) < ∞, is
called a µ-simple function. A function f : R→ A is said to be strongly µ-measurable
if there is a sequence {fn} of µ-simple functions such that

lim
n→∞

‖f(x)− fn(x)‖ = 0 for µ-almost all x ∈ R. (2.12)

It is clear that if f is strongly µ-measurable, then the real function x 7→ ‖f(x)‖ is
µ-measurable on R.

The Bochner integral of the µ-simple function (2.11) is defined by the formula∫
R

f(x) dµ(x) =
N∑
j=1

ajµ(Ej).

A strongly µ-measurable function f : R→ A is said to be µ-integrable in the sense
of Bochner on R if there is a sequence {fn} of µ-simple functions satisfying (2.12)
such that

lim
n→∞

∫
R

‖f(x)− fn(x)‖ dµ(x) = 0.

In this case, the sequence {
∫
R
fn dµ} of integrals converges in the norm of A. The

limit of the sequence is called the Bochner integral of f over R and is denoted by∫
R

f(x) dµ(x) (see [40], Ch. 5).

By the Bochner theorem [11] (see also [40], p. 132), a strongly
µ-measurable function f is µ-integrable in the sense of Bochner if and only if
the norm ‖f(x)‖ is µ-integrable.
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We denote by LpA ≡ L
p
A(R,µ) (1 6 p 6∞) the space of all strongly µ-measurable

functions f : R→ A with finite norm

‖f‖LpA =

(∫
R

‖f(x)‖p dµ(x)

)1/p

(1 6 p <∞),

‖f‖L∞A = sup vrai
x∈R

‖f(x)‖ (p =∞).

In the discrete case R = N, the corresponding space is denoted by lpA. Thus, lpA is
the space of all sequences {an} (an ∈ A) with finite norm

‖{an}‖lpA =

( ∞∑
n=1

‖an‖p
)1/p

(1 6 p <∞),

‖{an}‖lpA = sup
n∈N
‖an‖ (p =∞).

The following lemma can be proved in the standard way (see [22], p. 125).

Lemma 2.4. Let A be a Banach space, and let 1 6 p < ∞. Then the set of all
µ-simple functions is everywhere dense in LpA(R,µ).

If A is a Banach space, then we denote by A∗ the dual space of all continuous
linear functionals on A. If the space A is complex, then multiplication by complex
numbers in A∗ is defined by the equality

(αg)(a) = αg(a) (g ∈ A∗, a ∈ A) (2.13)

(see [44], pp. 75, 181, 199). Instead of g(a), where g ∈ A∗ and a ∈ A, we also write
〈a, g〉.
Proposition 2.5. Let A be a Banach space, and let 1 < p < ∞. Then for any
function f ∈ LpA we have

‖f‖LpA = sup

{∣∣∣∣∫
R

〈f(x), g(x)〉 dµ
∣∣∣∣ : ‖g‖

Lp
′
A∗

= 1

}
, (2.14)

where the upper bound is taken over all functions g : R→ A∗ such that ‖g‖
Lp
′
A∗

= 1.

This proposition is proved in [23], p. 97. It means that the space LpA is isomet-

rically embedded in (Lp
′

A∗)
∗. Note that, generally speaking, these spaces do not

coincide (see [23]).

Similarly, a dual assertion holds, by whichLp
′

A∗ is isometrically embedded in (LpA)∗.

Proposition 2.6. Let A be a Banach space, and let 1 < p < ∞. Then for any

function g ∈ Lp
′

A∗ one has

‖g‖
Lp
′
A∗

= sup

{∣∣∣∣∫
R

〈f(x), g(x)〉 dµ
∣∣∣∣ : ‖f‖LpA = 1

}
. (2.15)
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We also consider Lorentz spaces of vector-valued functions. Let f : R → A be
a strongly µ-measurable function. The non-increasing rearrangement of the real
function ‖f(x)‖ (x ∈ R) is denoted by f∗(t) (0 < t < +∞). If 0 < p, r < ∞, then
we denote by Lp,rA ≡ Lp,rA (R,µ) the space of all strongly µ-measurable functions
f : R→ A such that

‖f‖Lp,rA ≡
(∫ ∞

0

[t1/pf∗(t)]r
dt

t

)1/r

<∞. (2.16)

In the discrete case R = N, we consider sequences {ak} (ak ∈ A) such that
limk→∞ ak = 0. The non-increasing rearrangement of a sequence {‖ak‖} is denoted
by {a∗k}. The Lorentz space is denoted by lp,rA ; this is the space of all sequences
{ak} (ak ∈ A) such that

‖{ak}‖lp,rA ≡
( ∞∑
k=1

kr/p−1(a∗k)r
)1/r

<∞. (2.17)

In conclusion we turn our attention to the concept of a vector-valued analytic
function.

Let A be a Banach space and D a domain in the complex plane C. A function
f : D→ A is said to be analytic at a point z0 ∈ D if in A there is a limit

lim
z→z0,z∈D

f(z)− f(z0)

z − z0
.

If a function f is analytic at each point z ∈ D, then it is called analytic in the
domain D. Starting from this definition, one can develop a theory of vector-valued
analytic functions almost identical with the familiar one.

In particular, the following analogue of the Hadamard theorem on three lines
is true ([22], p. 538). We denote by Ω the strip {z = x + iy : 0 < x < 1} in the
complex plane and by Ω its closure.

Theorem 2.7. Let A be a Banach space and f : Ω → A a function bounded and
continuous in Ω and analytic in Ω. Then the function

Mθ = sup
−∞<y<+∞

|f(θ + iy)|

satisfies the inequality

Mθ 6M1−θ
0 Mθ

1 (0 6 θ 6 1).

§3. Interpolation spaces

In this section we briefly describe the interpolation theory methods that play an
important role in the questions we consider.

3.1. The complex interpolation method. The basis of the method is the
classical Riesz–Thorin theorem (see [82], Ch. 12).
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Let R and S be spaces with measures µ and ν, respectively. Suppose that
T is a linear operator whose domain is the space of all µ-simple complex-valued
functions on R and whose values are ν-measurable complex-valued functions on S.
Let 1 6 p, q 6∞. If there is a constant M such that

‖Tf‖Lq(S,ν) 6M‖f‖Lp(R,µ) (3.1)

for all µ-simple functions f on R, then T is said to have the strong type (p, q). The
least constant M in (3.1) is called the strong (p, q)-norm (or merely the norm) of
the operator T .

Theorem 3.1. Suppose that 1 6 pj, qj 6∞ (j = 0, 1), 0 < θ < 1, and

1

p
=

1− θ
p0

+
θ

p1
,

1

q
=

1− θ
q0

+
θ

q1
. (3.2)

Let T be a linear operator of the strong types (p0, q0) and (p1, q1) with the corre-
sponding strong norms M0 and M1. Then T has the strong type (p, q), and its
strong (p, q)-norm Mθ satisfies the inequality

Mθ 6M1−θ
0 Mθ

1 . (3.3)

For the real case this theorem was proved in 1926 by M. Riesz (in this case it
is necessary to assume that pj 6 qj , otherwise, an additional factor 2 appears on
the right-hand side of (3.3)). In 1938, Thorin extended Theorem 3.1 to complex
spaces Lp. The starting point of Thorin’s proof is the replacement of the function
f by a family of functions depending on the parameter z,

F (z) = |f |p/p(z)ei arg f
(
F (θ) = f

)
, (3.4)

where F (z) is a complex-valued function on R for each fixed z, the complex param-
eter z varies in the strip 0 6 Re z 6 1, and p(z) is defined by the first equation
in (3.2) with θ replaced by z. The theorem on three lines also plays a very important
role in the proof.

These ideas served as the starting point of the complex interpolation method,
which was independently introduced in works by Calderón, Lions, and Krein
(see [79], Ch. 1).

Let A0 and A1 be complex Banach spaces linearly and continuously embedded
in a Hausdorff topological vector space A. We call two such spaces an interpolation
pair {A0, A1}. The sum A0 + A1 is defined as the set of all elements a ∈ A
representable in the form a = a0+a1, where a0 ∈ A0, a1 ∈ A1. For each a ∈ A0+A1

we put
‖a‖A0+A1 = inf

(
‖a0‖A0 + ‖a1‖A1

)
,

where the lower bound is taken over all representations a = a0 + a1 (a0 ∈ A0,
a1 ∈ A1). Furthermore, for any a ∈ A0 ∩A1, by definition,

‖a‖A0∩A1 = max
(
‖a‖A0, ‖a‖A1

)
.

Then A0 ∩A1 and A0 +A1 are Banach spaces (see [8], § 2.3).
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The following basic definition was introduced by Calderón [16].
Let {A0, A1} be an interpolation pair. We denote by F ≡ F(A0, A1) the space

of all functions F that are defined in the strip 0 6 Re z 6 1 of the complex plane,
assume values in A0 +A1 and have the following properties:

(i) F is bounded and continuous with respect to the norm of A0 + A1 in the
strip 0 6 Re z 6 1;

(ii) F is (A0 +A1)-analytic in the open strip 0 < Re z < 1;
(iii) the function y 7→ F (j + iy) (y ∈ R, j = 0, 1) assumes values in Aj , is

Aj-continuous on R, and tends to zero as |y| → ∞.

It is obvious that F is a vector space. We define a norm on F by putting

‖F‖F = max
(

sup
y∈R
‖F (iy)‖A0 , sup

y∈R
‖F (1 + iy)‖A1

)
.

The space F is complete with respect to this norm ([8], Ch. 4).

Definition 3.2. Let 0 < θ < 1. We say that an element a ∈ A0 +A1 belongs to a
space [A0, A1]θ ≡ Aθ if there is a function F ∈ F such that

a = F (θ).

The norm in the space [A0, A1]θ is defined by the formula

‖a‖[A0,A1]θ = inf
{
‖F‖F : F (θ) = a, F ∈ F

}
.

The space Aθ is complete ([8], Ch. 4).

Lemma 3.3. Suppose that a function F ∈ F has the additional property

F (iy) ∈ Lr0A0
, F (1 + iy) ∈ Lr1A1

(1 6 r0, r1 <∞).

Let a = F (θ). Then

‖a‖Aθ 6 Cθ
(
‖F (iy)‖Lr0A0

+ ‖F (1 + iy)‖Lr1A1

)
, (3.5)

where Cθ is independent of F .

The lemma is proved in [16].
The most important role is played by the following interpolation property (see

[16], [8], 4.1.2).

Theorem 3.4. Let {A0, A1} and {B0, B1} be interpolation pairs of Banach spaces,
and let T : A0 + A1 → B0 + B1 be a linear operator. Suppose that the restriction
of T to Ai is a bounded operator from Ai to Bi with norm Mi (i = 0, 1). Let
0 < θ < 1. Then T is a bounded operator from Aθ to Bθ with norm Mθ satisfying
the inequality

Mθ 6M1−θ
0 Mθ

1 .

We cite another result of Calderón on the interpolation of spaces LpA(R,µ), where
(R,µ) is a given measure space (see [79], 1.18.4, [8], 5.1).
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Theorem 3.5. Suppose that {A0, A1} is an interpolation pair of Banach spaces,
1 6 p0, p1 <∞, 0 < θ < 1, and 1/p = (1− θ)/p0 + θ/p1. Then[

Lp0

A0
, Lp1

A1

]
θ

= Lp[A0,A1]θ
, (3.6)

and the norms in these spaces are equal. Equality (3.6) remains valid for 1 6 p0 <
p1 =∞ if L∞A1

is replaced by the closure of the set of simple functions with respect
to the norm of the space.

3.2. The real interpolation method. The idea of the method goes back to the
Marcinkiewicz interpolation theorem.

As above, let (R,µ) and (S, ν) be measure spaces. Suppose that T is a mapping
of the space Lp(R,µ) (1 6 p < ∞) into the set of all ν-measurable functions on S
(we can consider either real or complex-valued functions). Let 1 6 q <∞. We say
that T has a weak type (p, q) if there is a constant C > 0 such that(

Tf
)∗

(t) 6 C‖f‖Lp(R,µ)t
−1/q (t > 0) (3.7)

for any function f ∈ Lp(R,µ). We further assume that T possesses the subadditivity
property

|T (f + g)(x)| 6 |Tf(x)|+ |Tg(x)|.

Theorem 3.6. Let 1 < r < ∞. Suppose that T is a subadditive mapping from
L1(Rn) + Lr(Rn) into the space of measurable functions on Rn. If T has the weak
type (1, 1) and a weak type (r, r), then for any 1 < p < r the mapping T has the
strong type (p, p),

‖Tf‖p 6 Cp‖f‖p, f ∈ Lp(Rn). (3.8)

The theorem remains valid for r =∞ if we require that T act boundedly in L∞(Rn),
‖Tf‖∞ 6 C‖f‖∞.

The Marcinkiewicz theorem was stated by him without proof in 1939; it was
proved by Zygmund in 1956 for the first time (see [8], Ch. 1). The basic idea of
the proof consists in the following: to estimate the distribution function λTf (y)
for any y > 0, one splits the function f into two summands f = g + h so that
g ∈ L1 and h ∈ Lr; here the splitting is made by “cutting” |f | at the level of y.
That idea of “variable splitting” has turned out to be very fruitful and has found
numerous applications in analysis. In particular, it has led to the concept of the
real interpolation method for Banach spaces. There are various modifications of the
method. They involve different ways of splitting the elements but lead to the same
interpolation space defined by two indices p and θ, where 1 6 p 6∞ and 0 < θ < 1.
The K-method introduced by Peetre (see [79], 1.3) is the most widespread.

Let {A0, A1} be an interpolation pair. The Peetre K-functional is defined by
the formula (t > 0)

K(t, a;A0, A1) = inf
a=a0+a1

{
‖a0‖A0 + t‖a1‖A1

}
, a ∈ A0 +A1,

where the lower bound is taken over all possible representations a = a0 + a1 with
a0 ∈ A0, a1 ∈ A1. One often writes K(t, a) instead of K(t, a;A0, A1).
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Definition 3.7. Let 0 < θ < 1 and 1 6 p 6 ∞. The space (A0, A1)θ,p consists of
all elements a ∈ A0 +A1 such that

‖a‖θ,p =

{∫ ∞
0

(
t−θK(t, a)

)p dt
t

}1/p

<∞ (p <∞), (3.9)

‖a‖θ,∞ = sup
t>0

t−θK(t, a) <∞ (p =∞). (3.10)

The L-method (also introduced by Peetre) is based on a similar idea. The method
is equivalent to the K-method but is more flexible in many cases. Without going
into details, we cite the equivalence theorem reflecting the essence of the L-method
(see [79], 1.4).

Theorem 3.8. Let 1 6 r0, r1 <∞ and

L(t, a) = inf
a=a0+a1
aj∈Aj

(
‖a0‖r0A0

+ t‖a1‖r1A1

)
(t > 0, a ∈ A0 +A1).

Further, let 0 < η < 1, r = (1− η)r0 + ηr1, θ = ηr1/r, and 1 6 p 6∞.
Then there is a positive constant K such that for any element a ∈ A0 +A1 one

has
1

K
‖a‖θ,p 6

(∫ ∞
0

(
t−ηL(t, a)

)p/r dt
t

)1/p

6 K‖a‖θ,p

if 1 6 p <∞ and

1

K
‖a‖θ,∞ 6 sup

t>0

(
t−ηL(t, a)

)1/r 6 K‖a‖θ,∞.
Peetre also developed a J-method based on an integral representation of elements.

For t > 0 and a ∈ A0 ∩A1, we put

J(t, a) ≡ J(t, a;A0, A1) = max
(
‖a‖A0, t‖a‖A1

)
.

The following equivalence theorem holds ([79], 1.6).

Theorem 3.9. Let 1 6 p <∞ and 0 < θ < 1. For a ∈ (A0, A1)θ,p, it is necessary
and sufficient that there is a function t → u(t) (t > 0) strongly measurable in
A0 +A1 with values in A0 ∩A1 such that

a =

∫ ∞
0

u(t)
dt

t
(convergence in A0 +A1) (3.11)

and

Jθ,p(u) ≡
(∫ ∞

0

(
t−θJ(t, u(t))

)p dt
t

)1/p

<∞. (3.12)

Moreover, there is a constant K > 0 such that for any element a ∈ (A0, A1)θ,p

1

K
‖a‖(A0,A1)θ,p 6 inf

u
Jθ,p(u) 6 K‖a‖(A0,A1)θ,p , (3.13)
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where the lower bound is taken over all possible functions u satisfying the conditions
(3.11) and (3.12).

The theorem also holds for p = ∞ and 0 6 θ 6 1 if we put Jθ,∞(u) =
supt>0 t

−θJ(t, u(t)).
The method of averages is also based on an integral representation. Historically,

this method (introduced by Lions and Peetre [53]) was the first real interpolation
method.

For a Banach space A and 1 6 p <∞, we denote by L∗pA the space of all A-valued
strongly measurable functions t→ u(t) (t > 0) such that

‖u‖L∗pA =

(∫ ∞
0

‖u(t)‖pA
dt

t

)1/p

<∞ (p <∞),

‖u‖L∗∞A = sup
t>0
‖u(t)‖A <∞ (p =∞).

The essence of the method of averages can be expressed by the following theorem
([79], Ch. 1).

Theorem 3.10. Let 1 6 p0, p1 6 ∞, 0 < θ < 1, and 1/p = (1 − θ)/p0 + θ/p1.
For a ∈ (A0, A1)θ,p, it is necessary and sufficient that there is a function t→ u(t)
(t > 0) strongly measurable in A0 +A1 with values in A0 ∩A1 such that

a =

∫ ∞
0

u(t)
dt

t
(convergence in A0 + A1) (3.14)

and
t−θu(t) ∈ L∗p0

A0
, t1−θu(t) ∈ L∗p1

A1
. (3.15)

Moreover, there is a constant K > 0 such that for any element a ∈ (A0, A1)θ,p one
has

1

K
‖a‖(A0,A1)θ,p 6 inf

u
max

{
‖t−θu(t)‖L∗p0

A0

, ‖t1−θu(t)‖L∗p1
A1

}
6 K‖a‖(A0,A1)θ,p ,

where the lower bound is taken over all functions u satisfying conditions (3.14)
and (3.15).

If p0 = p1, then Theorem 3.10 coincides with Theorem 3.9. The point is that we
obtain equivalent norms regardless of the choice of p0 and p1; it is this fact that
makes the mean method more flexible.

At this point, we complete our brief survey of basic real interpolation methods.
The fundamental property of the spaces (A0, A1)θ,p is the interpolation property
expressed in the following theorem ([79], Ch. 1, [7], p. 301).

Theorem 3.11. Let {A0, A1} and {B0, B1} be interpolation pairs of Banach spaces,
and let T : A0 + A1 → B0 + B1 be a linear operator. Suppose that the restriction
of T to Ai is a bounded operator from Ai to Bi with a norm Mi (i = 0, 1). Let
0 < θ < 1, 1 6 p < ∞ or 0 6 θ 6 1, p = ∞. Then T is a bounded operator from
(A0, A1)θ,p to (B0, B1)θ,p with a norm Mθ,p satisfying the inequality

Mθ,p 6M1−θ
0 Mθ

1 .

The following theorem describes the interpolation of Lorentz spaces (see [8],
Ch. 5, [79], 1.18.6). The basic measure space (R,µ) is supposed to be fixed.
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Theorem 3.12. Let 1 6 pi < ∞, 1 6 rj , r 6 ∞ (i = 0, 1), 0 < θ < 1, and
1/p = (1− θ)/p0 + θ/p1. Next, let A be a Banach space. Suppose that p0 6= p1 (or
p0 = p1, 1/r = (1− θ)/r0 + θ/r1). Then(

Lp0,r0
A , Lp1,r1

A

)
θ,r

= Lp,rA , (3.16)

and the norms are equivalent.

Corollary 3.13. Let 1 6 p0, p1 < ∞, p0 6= p1, 1 6 r 6 ∞, 0 < θ < 1, and
1/p = (1− θ)/p0 + θ/p1. Then(

Lp0

A , L
p1

A

)
θ,r

= Lp,rA . (3.17)

In particular, (
Lp0

A , L
p1

A

)
θ,p

= LpA. (3.18)

Remark. Equation (3.17) is also valid for 1 6 p0 < p1 = ∞ if L∞A1
is replaced by

the closure of the set of simple functions with respect to the norm of the space.
Let us note that, in contrast with Theorem 3.5, the space A is supposed to be

fixed. This restriction can only be removed in (3.18). Namely, Lions and Peetre [53]
(see also [79], 1.18.4) obtained the following result.

Theorem 3.14. Let 1 6 p0, p1 <∞, 0 < θ < 1, and

1

p
=

1− θ
p0

+
θ

p1
.

Further, let {A0, A1} be an interpolation pair. Then(
Lp0

A0
, Lp1

A1

)
θ,p

= Lp(A0,A1)θ,p
. (3.19)

As Cwikel showed [21], generally speaking, there is no similar description of the
spaces (Lp0

A0
, Lp1

A1
)θ,r for r 6= p.

3.3. Comparison of real and complex interpolation methods. We consider
spaces Lp of scalar functions. By virtue of (3.6) and (3.19), for 1 6 p0, p1 < ∞,
0 < θ < 1, and 1/p = (1− θ)/p0 + θ/p1, we have(

Lp0 , Lp1
)
θ,p

=
[
Lp0 , Lp1

]
θ

= Lp.

In this example, the spaces obtained by means of real and complex interpolation
coincide. However, in the general case these methods result in quite different scales
of interpolation spaces. Namely, there are interpolation pairs {A0, A1} such that
[A0, A1]θ and (A0, A1)η,p are different spaces for any 0 < θ, η < 1 and 1 6 p 6 ∞
(for example, this is the case for the interpolation of Sobolev spaces [79], 1.9.3).

Let X and Y be Banach spaces; then X ↪→ Y implies that X ⊂ Y and ‖x‖Y 6
C‖x‖X for any element x ∈ X. If for given t > 0 we introduce the new norm
‖x‖tX = t‖x‖X (x ∈ X) in a Banach space X, then the space thus obtained will
be denoted by tX.

The following embeddings hold (Lions and Peetre [53]; [8], Ch. 4).



452 J. Garcia-Cuerva, K. S. Kazarian, V. I. Kolyada, and J. L. Torrea

Theorem 3.15. Let {A0, A1} be an interpolation pair, and let 0 < θ < 1. Then

(A0, A1)θ,1 ↪→ [A0, A1]θ ↪→ (A0, A1)θ,∞. (3.20)

Proof. 1) Let a ∈ (A0, A1)θ,1. By virtue of Theorem 3.9, a admits the representa-
tion

a =

∫ ∞
0

u(t)
dt

t

with a function u satisfying the corresponding conditions. We consider the Mellin
transform of the function t−θu(t),

F (z) =

∫ ∞
0

tz−θu(t)
dt

t
. (3.21)

We have a = F (θ). Obviously, F ∈ F and ‖F‖F 6 C‖a‖(A0,A1)θ,1 . This proves the
first embedding in (3.20).

2) Let a ∈ [A0, A1]θ. Then a admits the representation a = F (θ), F ∈ F. By
virtue of the theorem on three lines (see § 2), we have

K(t, a) = K(t, F (θ)) = ‖F (θ)‖A0+tA1

6 sup
y
‖F (iy)‖1−θA0

tθ sup
y
‖F (1 + iy)‖θA1

6 tθ‖F‖F.

Therefore, a ∈ (A0, A1)θ,∞ (see (3.10)) and ‖a‖(A0,A1)(θ,∞)
6 ‖F‖F. This implies

the second embedding in (3.20).

Let us note another embedding, which follows readily from Definition 3.7:

(A0, A1)θ,p ↪→ (A0, A1)θ,q if 1 6 p < q 6∞. (3.22)

§4. Interpolation and the Fourier type of Banach spaces

Theorem 3.15 raises the following question: under what additional conditions on
the spaces A0, A1 can this theorem be strengthened so that the embedding

(A0, A1)θ,p ↪→ [A0, A1]θ ↪→ (A0, A1)θ,q (1 < p 6 q <∞)

will hold? This question was considered by Peetre [62] and led to the concept of
the Fourier type of a Banach space. The original idea is contained in the proof of
Theorem 3.15: the change of variable t = e−2πs (s ∈ R) in (3.21) for x = 0 and
x = 1 yields the Fourier transforms of the functions

f0(s) = e2πsθu(e−2πs) and f1(s) = e2πs(θ−1)u(e−2πs).

Thus it is clear that the properties of the Fourier transform viewed as an operator
defined on the corresponding space of vector-valued functions play an important
role in the problem under consideration.

Let A be a complex Banach space. We consider functions f : R → A. The
Fourier transform of a function f ∈ L1

A is defined by the formula

f̂(ξ) =

∫
R
f(x)e−2πixξ dx, ξ ∈ R (4.1)

(where the integral is interpreted in the sense of Bochner).
The following definition, based on the Hausdorff–Young inequality, was intro-

duced by Peetre [62].
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Definition 4.1. Let 1 6 p 6 2. We say that a space A has the Fourier type p if
there is a constant K such that for any function f ∈ LpA with compact support one
has

‖f̂ ‖
Lp
′
A

6 K‖f‖LpA. (4.2)

This definition is equivalent to the fact that the Fourier transform defined orig-
inally on L1

A ∩ L
p
A by formula (4.1) can be extended to a bounded linear operator

from LpA to Lp
′

A .
It is clear that any Banach space has the type 1.
The following Peetre theorem [62] answers the question posed at the beginning

of this section.

Theorem 4.2. Let {A0, A1} be an interpolation pair; suppose that Aj has a Fourier
type pj (1 < pj 6 2, j = 0, 1). Next, let 0 6 θ < 1 and 1/p = (1 − θ)/p0 + θ/p1.
Then

(A0, A1)θ,p ↪→ [A0, A1]θ ↪→ (A0, A1)θ,p′ . (4.3)

Proof. 1) Let a ∈ (A0, A1)θ,p. We use the method of averages. Suppose that the
function t 7→ u(t) ∈ A0 ∩A1 is such that

a =

∫ ∞
0

u(t)
dt

t
(convergence in A0 +A1) (4.4)

and
‖u‖∗ ≡ ‖t−θu‖L∗p0

A0

+ ‖t1−θu‖L∗p1
A1

<∞. (4.5)

We fix an interval I ⊂ (0,∞) and put

v = uχI , b =

∫ ∞
0

v(t)
dt

t
.

Further, let

G(z) =

∫ ∞
0

tz−θv(t)
dt

t
, z = x+ iy ∈ C (4.6)

(the Mellin transform). Then G ∈ F(A0, A1) (G is analytic in C) and G(θ) = b. Let
ϕj(t) = tj−θv(t) (j = 0, 1). If in (4.6) we change the variables t = e−2πs (s ∈ R)
for x = 0 and x = 1, then we obtain

G(iy) = 2πψ̂0(y), G(1 + iy) = 2πψ̂1(y),

where ψj(s) = ϕj(e
−2πs) (j = 0, 1). By virtue of (4.5), ψj ∈ LpjAj ; here ψj has a

compact support (j = 0, 1). Since Aj has the Fourier type pj, we have

‖G(j + iy)‖
L
p′
j
Aj

6 C‖ψj‖LpjAj
= (2π)−1/pjC‖ϕj‖L∗pjAj

(j = 0, 1).

Hence, by virtue of the inequality (3.5),

‖b‖[A0,A1]θ 6 C‖v‖∗, (4.7)
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where the constant C is independent of the choice of the function u and the inter-

val I. We now put Ik = [1/k, k], vk = uχIk , and bk =

∫ ∞
0

vk(t)
dt

t
. By virtue of

(4.4), bk → a as k →∞ in A0 +A1. Moreover, it follows from (4.7) that {bk} is a
Cauchy sequence in [A0, A1]θ and ‖bk‖[A0,A1]θ 6 C‖u‖∗. Therefore, since [A0, A1]θ
is complete, we have ‖a‖[A0,A1]θ 6 C‖u‖∗. This proves the left embedding in (4.3).

2) Let a ∈ [A0, A1]θ. We take an arbitrary representation a = F (θ), where

F ∈ F. Let F̃ (z) = F (z)

(
θ + 1

z + 1

)2

, so that F̃ (θ) = a. Then

F̃ (iy) ∈ Lp0

A0
, F̃ (1 + iy) ∈ Lp1

A1
. (4.8)

We put

u(t) =
tθ

2πi

∫ x+i∞

x−i∞
t−zF̃ (z) dz (t > 0, 0 6 x 6 1) (4.9)

(the inverse Mellin transform). By putting x = 0 and x = 1, we obtain

tj−θu(t) =
1

π

∫ +∞

−∞
t−iyF̃ (j + iy) dy (j = 0, 1).

Since Aj has the Fourier type pj , it follows by virtue of (4.8) that

‖tj−θu‖
L
∗p′
j

Aj

6 C‖F̃ (j + iy)‖
L
pj
Aj

6 c′ sup
y
‖F (j + iy)‖Aj (4.10)

for j = 0, 1. Then, putting x = θ in (4.9), we have

u(t) =
1

2π

∫ ∞
−∞

t−iyF̃ (θ + iy) dy,

so that u(e2πs) = (2π)−1Φ̂(s), where Φ(y) = F̃ (θ + iy).
This implies that

a = Φ(0) =

∫
R

Φ̂(s) ds =

∫ ∞
0

u(t)
dt

t
. (4.11)

Taking into account (4.10), (4.11) and Theorem 3.10, we obtain the right embedding
in (4.3). The proof of the theorem is complete.

Since any Banach space has the type 1, we see that Theorem 3.15 can be viewed
as the limiting case of Theorem 4.2.

Remark 4.3. Under the assumptions of Theorem 4.2, neither of the embeddings (4.3)
can be strengthened by substituting r > p for p on the left-hand side or q < p′

for p′ on the right-hand side. This follows easily from Theorems 3.5 and 3.12 and
the following proposition.
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Proposition 4.4. Let (Ω, ν) be a measure space, and let 1 < p < ∞. Then the
space A = Lp(Ω, ν) has the Fourier type min(p, p′).

Proof. Let 1 < p 6 2. Suppose that f : R → A is a simple function. We consider
the Fourier transform

f̂(ξ) =

∫
R
e−2πixξf(x) dx.

For each given ξ ∈ R, f̂(ξ) is a function defined on the space Ω. Applying the
generalized Minkowski inequality, we have(∫

R
‖f̂(ξ)‖p

′

A dξ

)p/p′
=

(∫
R

(∫
Ω

|f̂(ξ)(y)|p dν(y)

)p′/p
dξ

)p/p′
6
∫

Ω

(∫
R
|f̂(ξ)(y)|p′

)p/p′
dν(y).

By virtue of the Hausdorff–Young inequality,(∫
R
‖f̂(ξ)(y)‖p′ dξ

)1/p′

6
(∫

R
|f(x)(y)|p dx

)1/p

for each y ∈ Ω. Therefore, by the Fubini theorem,(∫
R
‖f̂(ξ)‖p

′

A dξ

)p/p′
6
∫

Ω

dν(y)

∫
R
|f(x)(y)|p dx =

∫
R
‖f(x)‖pA dx.

Thus, Lp has the Fourier type p for 1 < p 6 2. The case p > 2 can be considered
similarly.

Below we shall give a more sophisticated treatment of results related to the
concept of the Fourier type. Here we briefly consider further applications of the
concept in the theory of interpolation and the theory of function spaces.

Peetre showed in his paper [62] that by using Theorem 4.2 one can obtain some
well-known embedding theorems for the Sobolev–Liouville and Besov spaces. We
now give the definition of these spaces (see [74], Ch. 5).

Let 1 6 p 6 ∞ and r ∈ N. A function f ∈ Lp(Rn) belongs to the Sobolev
space W r

p (Rn) if f has all generalized derivatives Dαf of order |α| 6 r belonging
to Lp(Rn). The norm in W r

p is defined by the formula

‖f‖Wr
p

=
∑
α6r
‖Dαf‖p.

If 1 6 p 6 ∞ and α > 0, then the Sobolev–Liouville space Lαp (Rn) is defined as
the set of all functions f representable in the form of the convolution f = Gα ∗ g,
where g ∈ Lp(Rn) and Gα is the Bessel kernel of order α. Here

‖f‖Lαp = ‖g‖p.
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It is known ([74], Ch. 5) that

W r
p (Rn) = Lrp(Rn) (1 < p <∞, r ∈ N).

Let α > 0, 1 6 p 6∞, and 1 6 q <∞.
The Besov space Bαp,q(Rn) consists of all functions f ∈ Lp(Rn) such that the

norm

‖f‖Bαp,q ≡ ‖f‖p +

(∫ ∞
0

[t−αωk(f ; t)p]
q dt

t

)1/q

is finite, where k > α is an integer and

ωk(f ; t)p = sup
|h|6t

∥∥∥∥ k∑
j=0

(
k

j

)
(−1)k−jf(x+ jh)

∥∥∥∥
p

is a modulus of continuity of order k. It is easy to see that

Bαp,q ⊂ Bαp,s with q < s. (4.12)

It is known that

(Lp,W r
p )θ,q = Bθrp,q (1 6 p 6∞, 1 6 q <∞, r ∈ N, 0 < θ < 1) (4.13)

and
[Lp,W r

p ]θ = Lθrp (1 < p <∞, 0 < θ < 1, r ∈ N) (4.14)

(see [79], Ch. 2). Next, the space Lαp is isometric to the space Lp ([74], Ch. 5); by
virtue of Proposition 4.4, it follows that W r

p (1 < p 6 2) has the Fourier type p.
By applying Theorem 4.2, we obtain the embeddings

Bαp,p ⊂ Lαp ⊂ Bαp,p′ (1 < p 6 2, α > 0). (4.15)

In a similar manner, we obtain

Bαp,p′ ⊂ Lαp ⊂ Bαp,p (2 6 p <∞, α > 0). (4.16)

These results are well known (they go back to the paper [54] by Marcinkiewicz and
were completely proved by Besov, Lizorkin, and Taibleson; see [74], Ch. 5). The
first embedding in (4.15) cannot be improved. However, the second one can be
strengthened. Namely,

Lαp ⊂ Bαp,2 (1 < p 6 2, α > 0). (4.17)

Similarly,
Bαp,2 ⊂ Lαp (2 6 p <∞, α > 0) (4.18)

(see [74]).
In connection with the last embeddings, we note another paper by Peetre [63],

where he considered the concept of the λ-type of a Banach space (related to the
unconditional convergence of series in B-spaces). In particular, in that paper new
proofs of the embeddings (4.17) and (4.18) are obtained with the use of interpola-
tion.

Useful applications of Theorem 4.2 can also be found in Milman [58]. One of the
results of this paper is the equality

(W r
1 ,W

r
p )θ = W r

pθ

(
1

pθ
=

1− θ
1

+
θ

p
, 1 < p <∞, r ∈ N

)
,

including the limiting case of the space W r
1 .
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§5. The Rademacher type and cotype

Let us consider the system of Rademacher functions

rn(t) = sign sin 2nπt (t ∈ [0, 1], n ∈ N).

The Khinchine inequalities (see [82], Ch. 5) express important properties of the
system.

Theorem 5.1. Let 0 < p < ∞. There is a constant Ap > 0 such that for any
polynomial F (t) =

∑n
k=1 akrk(t) (ak ∈ C) one has

1

Ap

( n∑
k=1

|ak|2
)1/2

6
(∫ 1

0

|F (t)|p dt
)1/p

6 Ap
( n∑
k=1

|ak|2
)1/2

. (5.1)

Corollary 5.2. Let 1 < p < ∞. There is a constant Bp > 0 such that for any
complex-valued function f ∈ Lp[0, 1] and any n ∈ N one has∥∥∥∥ n∑

k=1

ck(f)rk

∥∥∥∥
p

6 Bp‖f‖p, ck(f) =

∫ 1

0

f(t)rk(t) dt. (5.2)

Indeed, if Sn =
∑n
k=1 ck(f)rk, then, by virtue of (5.1),

‖Sn‖2p 6 A2
p

n∑
k=1

|ck(f)|2 = A2
p

∫ 1

0

f(t)Sn(t) dt

6 A2
p‖f‖p‖Sn‖p′ 6 Bp‖f‖p‖Sn‖p.

This implies (5.2).
We consider polynomials in the Rademacher system with coefficients from an

arbitrary Banach space X. Generally speaking, for such polynomials the Khinchine
inequality is not valid. However, the following Kahane theorem holds ([43], Ch. 2).

Theorem 5.3. Let 0 < p < q < ∞. There is a constant Ap,q > 0 such that for
any Banach space X and any polynomial F (t) =

∑n
k=1 rk(t)xk (xk ∈ X) one has

‖F‖LpX 6 ‖F‖LqX 6 Ap,q‖F‖LpX . (5.3)

Thus, all LpX -norms (0 < p < ∞) of the polynomial F are equivalent. At the
same time, in the case of an arbitrary Banach space X, only the trivial estimates
of these norms via the coefficients of the polynomial, namely,

‖{xk}‖l∞X 6
∥∥∥∥ n∑
k=1

rkxk

∥∥∥∥
L1
X

6 ‖{xk}‖l1X , (5.4)

are valid.
Non-trivial estimates form the basis of the concepts of the Rademacher type and

cotype, introduced by Hoffman-Jorgensen and Maurey in 1972.
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Definition 5.4. Let 1 6 p 6 2. We say that a Banach space X has the type p if
there is a constant C > 0 such that for any vectors x1, . . . , xn ∈ X one has∥∥∥∥ n∑

k=1

rkxk

∥∥∥∥
L2
X

6 C
( n∑
k=1

‖xk‖p
)1/p

. (5.5)

Definition 5.5. Let 2 6 q 6∞. We say that a Banach space X has the cotype q
if there is a constant C > 0 such that for any vectors x1, . . . , xn ∈ X one has

‖{xk}nk=1‖lqX 6 C
∥∥∥∥ n∑
k=1

rkxk

∥∥∥∥
L2
X

. (5.6)

By Theorem 5.3, the L2
X-norm in these definitions can be replaced by some

LrX -norm (0 < r <∞).
Each Banach space has the type 1 and the cotype ∞ (see (5.3) and (5.4)).
Note that for p > 2 for any constant C we can choose x1, . . . , xn ∈ X such

that (5.5) does not hold. Indeed, let x1 = · · · = xn 6= 0. Then, by virtue of (5.5),
for any n ∈ N we have n1/2 6 Cn1/p; therefore, p 6 2.

A similar remark is valid for the condition q > 2 in Definition 5.5.
If X is a Hilbert space, then X has the type 2 and the cotype 2.
Indeed, in this case, since the functions rk are orthogonal, we have∫ 1

0

∥∥∥∥ n∑
k=1

rk(t)xk

∥∥∥∥2

dt =
n∑
k=1

‖xk‖2.

This assertion is convertible in a sense. Namely, Kwapién [50] established the
following important result.

Theorem 5.6. Let a Banach space X have the type 2 and the cotype 2. Then X
is isomorphic to a Hilbert space.

By virtue of (5.3), this theorem can be stated as follows.

A Banach space X is isomorphic to a Hilbert space if and only if X satisfies the
two-sided Khinchine inequalities.

Kwapién [50] also proved that the space X has the type 2 and the cotype 2
simultaneously if and only if

C−1

( n∑
k=−n

‖xk‖2
)1/2

6
(∫ 1

0

∥∥∥∥ n∑
k=−n

e2πiktxk

∥∥∥∥2

dt

)1/2

6 C
( n∑
k=−n

‖xk‖2
)1/2

,

where the xk are arbitrary vectors from X and C > 0 is a constant. The property,
in turn, is equivalent to the assertion that X has the Fourier type 2.

Let us return to the general case. The definitions of type and cotype and the
Jensen inequality yield the following result.
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Proposition 5.7. Let X be a Banach space. Then the following assertions hold:

(i) if X has a type p0, 1 < p0 6 2, then X has the type p for any 1 6 p 6 p0;
(ii) if X has a cotype q0, 2 6 q0 < ∞, then X has the cotype q for any q0 6

q 6∞.

We introduce the following definition.

Definition 5.8. For any Banach space X, we put

pX = sup{p 6 2 : X has the type p},
qX = inf{q > 2 : X has the cotype q}.

If pX > 1 (qX < ∞), then X is said to have a non-trivial type (respectively, a
non-trivial cotype).

As an example, we consider the spaces Lp (see [51], p. 70).

Proposition 5.9. Let X = Lp(Ω, µ), 1 6 p < ∞. Then X has the type min(p, 2)
and the cotype max(p, 2).

Proof. Let 1 6 p 6 2 and x1, . . . , xn ∈ X. By applying the Fubini theorem and the
Khinchine inequalities, we obtain

∥∥∥∥ n∑
k=1

rkxk

∥∥∥∥
LpX

�
(∫

Ω

( n∑
k=1

|xk(ξ)|2
)p/2

dµ(ξ)

)1/p

, (5.7)

whence ∥∥∥∥ n∑
k=1

rkxk

∥∥∥∥
LpX

6 C
( n∑
k=1

‖xk‖pLp
)1/p

,

so that X has the type p. On the other hand, by virtue of (5.7) and the Minkowski
inequality,

∥∥∥∥ n∑
k=1

rkxk

∥∥∥∥p
LpX

> C
( n∑
k=1

(∫
Ω

|xk(ξ)|p dµ(ξ)

)2/p)p/2
= C

( n∑
k=1

‖xk‖2Lp
)p/2

(C > 0);

therefore, X has the cotype 2. The case 2 < p <∞ can be considered in a similar
way.

If a measure µ is such that Ω consists of finitely many µ-atoms, then the space
Lp(Ω, µ) (1 6 p 6∞) is finite-dimensional and has the type 2 and the cotype 2. In
the other cases, however, the type and cotype values obtained in Proposition 5.9
are sharp.
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Proposition 5.10. Let 1 6 p <∞ and X = Lp(Ω, µ), where the space Ω is not a
union of finitely many µ-atoms. Then

pX = min(p, 2), qX = max(p, 2).

Proof. It follows from our condition and Lemma 2.1 that for any n ∈ N there
are pairwise disjointµ-measurable subsetsE1, . . . , En ⊂ Ω withµ(Ek) ≡ µk > 0,

k = 1, . . . , n. We put xk(ξ) = χEk(ξ)µ
−1/p
k , ξ ∈ Ω. Then ‖xk‖Lp = 1 and

‖
∑n
k=1 rk(t)xk‖Lp = n1/p for any binary irrational t ∈ [0, 1]. Let 1 6 p 6 2. If∥∥∥∥ n∑

k=1

rkxk

∥∥∥∥
L2
X

6 C
( n∑
k=1

‖xk‖sLp
)1/s

for some s > 1 (where the constant C is independent of n), then n1/p 6 Cn1/s and,
since n is arbitrary, we have s 6 p. Taking into account Proposition 5.9, we obtain
pX = p and qX = 2. Similarly, for p > 2 we have qX = p and pX = 2.

Remark 5.11. If X = L∞[0, 1] or X = c0, then pX = 1 and qX =∞.
Indeed, in the space X = L∞[0, 1] we choose the vectors xk = rk (k = 1, . . . , n).

For any binary irrational point t ∈ [0, 1], we have∥∥∥∥ n∑
k=1

rk(t)xk

∥∥∥∥
X

= n. (5.8)

If p > 1, then (5.5) does not hold for sufficiently large n. Thus, pX = 1. Considering
xk(ξ) = χ[(k−1)/n,k/n)(ξ) (k = 1, . . . , n), we also make sure that qX =∞.

In the case X = c0, for any fixed n ∈ N we put

xk =
2n∑
j=1

ε
(j)
k ej (k = 1, . . . , n),

where ε
(j)
k is a value of the function rk on the interval ( j−1

2n ,
j

2n ). We again obtain
equality (5.8), which implies that pX = 1. We obtain qX = ∞ by taking xk = ek,
where ek is the sequence whose elements are all zero except for the kth, which is
equal to 1.

There is a certain symmetry (duality) between the concepts of type and cotype.
Indeed, using Proposition 2.6 and the orthogonality of the Rademacher functions,
it is easy to prove the following assertion.

Proposition 5.12. Let a Banach space X have a type p, 1 < p 6 2. Then the
dual space X∗ has the cotype p′.

The converse is not true: the space c0 has only the type 1 and the dual space l1

has the cotype 2.
From the fact that X has a cotype q, 2 6 q <∞, it does not follow that X∗ has

the type q′ (as an example, we can take X = l1).
Spaces with a non-trivial type play an important role in many problems of geom-

etry of Banach spaces and Fourier vector-valued analysis. It was established in
[56], [67] that the non-triviality of type implies that the space possesses certain
geometric and analytic convexity properties.



Vector-valued Hausdorff–Young inequality and applications 461

Definition 5.13. Let 1 6 p 6 ∞. We say that a Banach space X uniformly
contains lpn if for any λ > 1 and any n ∈ N there are elements x1, . . . , xn ∈ X such
that for any numbers α1, . . . , αn one has( n∑

k=1

|αk|p
)1/p

6
∥∥∥∥ n∑
k=1

αkxk

∥∥∥∥ 6 λ( n∑
k=1

|αk|p
)1/p

(1 6 p <∞),

max
16k6n

|αk| 6
∥∥∥∥ n∑
k=1

αkxk

∥∥∥∥ 6 λ max
16k6n

|αk| (p =∞).

It is clear that the elements xk satisfy the inequalities 1 6 ‖xk‖ 6 λ.
Maurey and Pisier [56] proved the following theorem.

Theorem 5.14. If X is a Banach space, then

(i) p(X) > 1 if and only if X does not uniformly contain l1n;
(ii) q(X) <∞ if and only if X does not uniformly contain l∞n .

It is not hard to show that X uniformly contains l1n if and only if X∗ uniformly
contains l1n (see [30], [31]). We restrict our consideration to the real case. Let
X uniformly contain l1n. Then for any n ∈ N and any λ > 1 there are vectors
x1, . . . , x2n such that ‖xi‖ 6 λ and

∥∥∥∥ 2n∑
i=1

αixi

∥∥∥∥ > 2n∑
i=1

|αi|

for any numbers α1, . . . , α2n . Let δ(i) = {δ(i)
1 , . . . , δ

(i)
n } (i = 1, . . . , 2n) be all

possible systems of n numbers equal to ±1. On the subspace Y spanned by the
linearly independent vectors x1, . . . , x2n , we define linear functionals y∗k by putting

〈x, y∗k〉 = λ

2n∑
i=1

δ
(i)
k αi, x =

2n∑
i=1

αixi (k = 1, . . . , n).

It is clear that 1 6 ‖y∗k‖ 6 λ. We extend y∗k to the whole space X preserving the
norm. Since 〈

xi,

n∑
k=1

βky
∗
k

〉
= λ

n∑
k=1

δ
(i)
k βk,

we have ∥∥∥∥ n∑
k=1

βky
∗
k

∥∥∥∥ > n∑
k=1

|βk| (βk ∈ R).

Therefore, X∗ uniformly contains l1n. The converse can be proved in a similar way.
Thus, from Theorem 5.14 we derive the following assertion.

Proposition 5.15. If X is a Banach space, then pX > 1 if and only if pX∗ > 1.

The following proposition is an easy consequence of Theorem 5.14.
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Proposition 5.16. If pX > 1, then qX <∞.

The converse is not true (if X = l1, then pX = 1 and qX = 2). Moreover, even
if we suppose that qX <∞ and qX∗ <∞, we cannot claim that pX > 1 (see [67]).

Returning to the duality between the concepts of type and cotype, we demon-
strate that Proposition 5.12 can be strengthened.

Proposition 5.17. Let a Banach space X have a type p, 1 < p 6 2. Then for any
r, 1 < r <∞, there is a constant C > 0 such that for each function g ∈ LrX∗ [0, 1] the
sequence {ck(g)} of its Fourier coefficients with respect to the Rademacher system
satisfies the inequality ( ∞∑

k=1

‖ck(g)‖p
′

X∗

)1/p′

6 C‖g‖Lr
X∗
. (5.9)

Proof. By virtue of Proposition 2.6, for any ε > 0 and any n ∈ N there is a sequence
{xk} ∈ lpX such that ‖{xk}‖lpX = 1 and

( n∑
k=1

‖ck(g)‖p
′

X∗

)1/p′

<

n∑
k=1

〈xk, ck(g)〉+ ε.

Since X has the type p, we have, by virtue of (5.3),

n∑
k=1

〈xk, ck(g)〉 =

∫ 1

0

〈 n∑
k=1

rk(t)xk, g(t)

〉
dt

6
∥∥∥∥ n∑
k=1

rkxk

∥∥∥∥
Lr
′
X

‖g‖Lr
X∗
6 C‖g‖Lr

X∗
.

This implies (5.9).
The converse can be proved similarly.

Proposition 5.18. Let X be a Banach space, and let 1 < p 6 2. Suppose that
there are numbers C > 0 and 1 < r <∞ such that for each function g ∈ LrX∗ [0, 1]
inequality (5.9) is valid. Then X has the type p.

Remark 5.19. Propositions 5.17 and 5.18 remain valid if we interchange X and X∗.
The propositions we have proved lead to the following definition.

Definition 5.20. Let 2 6 q < ∞. We say that a Banach space X has the strong
cotype q if for each r, 1 < r <∞, the space possesses the following property: there
is a constant Ar > 0 such that for each function f ∈ LrX [0, 1] one has( ∞∑

k=1

‖ck(f)‖q
)1/q

6 Ar‖f‖LrX , (5.10)

where the ck(f) are the Fourier coefficients of f with respect to the Rademacher
system.
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Remark 5.21. If for fixed q ∈ [2,∞) the above-mentioned property holds for some
1 < r < ∞, then it holds for any r, 1 < r < ∞ (see Propositions 5.17 and 5.18
and Remark 5.19). In particular, by choosing r = q′, we obtain an analogue of the
Hausdorff–Young–Riesz inequality (1.9).

Propositions 5.17 and 5.18 and Remark 5.19 imply the following result.

Proposition 5.22. Let X be a Banach space and 1 6 p 6 2. Then

(i) X has the type p if and only if X∗ has the strong cotype p′;
(ii) X∗ has the type p if and only if X has the strong cotype p′.

Taking account of Proposition 5.15, we obtain the following result.

Corollary 5.23. A Banach space X has a non-trivial type if and only if X has a
non-trivial strong cotype.

It is obvious that if X has a strong cotype q, 2 6 q < ∞, then X has the
cotype q. The converse is not true. It is also clear that the equivalence of the
cotype and strong cotype is related to additional properties of the space, expressed
by inequalities of the form (5.2).

Let 1 < r < ∞. We say that a Banach space X is Kr-convex if there is a
constant Ar > 0 such that for any function f ∈ LrX [0, 1] the partial sums of its
Fourier series with respect to the Rademacher system satisfy the inequality∥∥∥∥ n∑

k=1

ck(f)rk

∥∥∥∥
LrX

6 Ar‖f‖LrX (n ∈ N). (5.11)

By virtue of the Kahane inequality (5.3), the exponent r on the left-hand side can
be replaced by any s > 0. Therefore, for r < s, Kr-convexity implies Ks-convexity.
Let us prove that this is also the case for 1 < s < r.

Lemma 5.24. Let X be a Banach space. Then the following assertions hold:

(i) if 1 < r <∞, then X is Kr-convex if and only if X∗ is Kr′-convex;
(ii) if X is Kr-convex for some 1 < r < ∞, then X is Ks-convex for any

1 < s <∞.

Proof. Suppose that X is Kr-convex. Let g ∈ Lr′X∗ and n ∈ N. By Proposition 2.6,
for any ε > 0 there is a function f ∈ LrX with ‖f‖LrX = 1 such that∥∥∥∥ n∑

k=1

ck(g)rk

∥∥∥∥
Lr
′
X∗

<

∫ 1

0

〈
f(t),

n∑
k=1

ck(g)rk(t)

〉
dt+ ε.

It is easy to see that the integral on the right-hand side is equal to∫ 1

0

〈 n∑
k=1

ck(f)rk(ξ), g(ξ)

〉
dξ.

By virtue of (5.11) the latter integral, in turn, does not exceed Ar‖g‖Lr′
X∗

. Thus,

X∗ is Kr′-convex. The converse can be proved in a similar way. Assertion (ii)
follows from (i) and the Kahane inequality.
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For r = 2, the definition of Kr-convexity was introduced in the paper [56].
Following this paper, we refer to Kr-convex spaces (1 < r < ∞) just as K-convex
spaces.

It follows from the definition that if X is K-convex and has a cotype q ∈ [2,∞),
then X has the strong cotype q.

The spaces L1[0, 1] and l1 are not K-convex (they have the cotype 2 but have no
non-trivial strong cotype). The spaces Lp(Ω, µ) (1 < p < ∞) are K-convex (this
easily follows from (5.2)).

Using Proposition 5.22 and Lemma 5.24, we obtain the following proposition [56].

Proposition 5.25. Let X be a Banach space. Then the following assertions are
valid.

(i) X is K-convex if and only if X∗ is K-convex.
(ii) If X is K-convex, then X has a type p, 1 < p 6 2, if and only if X∗ has

the cotype p′. In particular,

1

pX
+

1

qX∗
=

1

pX∗
+

1

qX
= 1. (5.12)

For X = l1, equality (5.12) fails. In [56], the following conjecture was put
forward: K-convex spaces are the only spaces that do not uniformly contain l1n.
This conjecture was proved by Pisier [67].

Theorem 5.26. A Banach space X is K-convex if and only if X does not uni-
formly contain l1n.

By virtue of Theorem 5.14, we see that a space is K-convex if and only if it has
a non-trivial type.

§6. The Fourier type of Banach spaces with respect to groups

In § 4 we introduced the concept of Fourier type of a Banach space X; it means
that the Hausdorff–Young inequality holds for the Fourier transform of functions
defined on R and taking values inX. If we consider functions defined on an arbitrary
locally compact Abelian group, then we arrive at a more general concept of the
Fourier type. Some results have already been obtained in this field. The present
section deals with these results.

We start with a brief survey of necessary definitions and facts from the theory
of topological groups (see [69], [36], [72]).

A topological group is a group G equipped with a topology such that the group
operations in G are continuous with respect to the topology.

For the basic group operation, we use the sum or the product symbol. Defini-
tions, as a rule, are given for additive groups.

In what follows we suppose that G is an Abelian group and a locally compact
Hausdorff space. It is well known (see, for example, [72], [36]) that on any compact
Abelian group G there is a unique probability Borel measure µG that has the
following invariance properties:

µG(E + h) = µG(E), µG(−E) = µG(E), (6.1)
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for any Borel set E ⊂ G and any h ∈ G. The measure µG is called the Haar
measure on the group G.

For a locally compact Abelian group, the Haar measure exists and is defined
uniquely up to a positive constant factor.

The following examples are most important for us.
1) The circle

T = {z ∈ C : |z| = 1}

is a multiplicative group with the topology induced from C.
2) The real line R with the sum operation and the ordinary topology.
3) The group Z of integers with the discrete topology.
4) The Cantor group D = {0, 1}N is the Cartesian product of a sequence of

second-order groups Gn = {0, 1} (n = 1, 2, . . . ). The elements of D are all possible
sequences {δn} (δn = 0, 1). The set D is equipped with coordinatewise addition
modulo 2 and the direct product topology. According to the Tikhonov theorem,
the group D is compact. Therefore, the mapping

{δn} → 2
∞∑
n=1

δn3−n

is a homeomorphism of D onto the classical Cantor set.

Let G be a locally compact Abelian group. A character of G is a continuous
homomorphism of G into the group T, that is, a continuous complex-valued function
γ on G such that

|γ(t)| = 1 and γ(t+ s) = γ(t)γ(s) (t, s ∈ G).

The set Ĝ of all characters of the groupG is a multiplicative Abelian group (with

pointwise multiplication). The identity element in Ĝ is a function that is identically

equal to 1; the inverse element is γ−1 = γ. On Ĝ we introduce the topology in
which the convergence is equivalent to the uniform convergence on compact subsets

of G. The group Ĝ is called the dual group of G.
A group equipped with a discrete topology is called a discrete group. We note

the following property: if a group G is compact, then the group Ĝ is discrete;

conversely, if the group G is discrete, then Ĝ is compact.
Let us consider some examples.
If G = Z and γ is a character on Z, then

γ(n) =

(
γ(1)

)n
for any n ∈ Z.

The value γ(1) can be any complex number z ∈ T. Thus, we can identify Ẑ with

the group T, Ẑ = T.
Now let G = T. It is clear that for any n ∈ Z the function γn(z) = zn (z ∈ T) is a

character of T. One can prove that T has no other characters, and the multiplicative

group T̂ is isomorphic to the additive group Z.
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The characters of the group G = R are defined by the formula

γx(t) = e2πixt (t ∈ R) for some x ∈ R.

This formula defines all characters of R, and the group R̂ is isomorphic to R (with
the ordinary topology).

For G = D, each character has the form

{δj}∞j=1 → (−1)
∑k
µ=1 εµδµ ,

where k ∈ N and εµ is equal to 0 or 1 (µ = 1, . . . , k). Thus, the character is uniquely
determined by the number

n =
k∑
µ=1

εµ2µ−1. (6.2)

The dual group D̂ is isomorphic to the group N0 of non-negative integers, where
the sum operation is defined as follows: if

n =
k∑
µ=1

εµ(n)2µ−1, m =
l∑

ν=1

εν(m)2ν−1,

are the binary expansions of numbers n,m ∈ N0, then

m+ n =

max(k,l)∑
µ=1

[εµ(m)⊕ εµ(n)]2µ−1,

where ⊕ stands for addition modulo 2. It is obvious that for this definition of the
operation +, for each m ∈ N0 we have m +m = 0 and −m = m. It is convenient
to identify the group N0 with a special sequence of functions defined on [0, 1] and
assuming values +1 and −1. Let

w0(t) = 1 for t ∈ [0, 1].

Next, the formula

t =
∞∑
j=1

δj2
−j

establishes a one-to-one correspondence between non-periodic elements of D and
binary irrational points t ∈ [0, 1]. Starting from the binary expansion (6.2) of a
positive integer n, we put

wn(t) = (−1)
∑k
µ=1 εµ(n)δµ (n = 1, 2, . . . ). (6.3)

Since rµ(t) = (−1)δµ , we have

wn(t) =
k∏
µ=1

(
rµ(t)

)εµ(n)
(n = 1, 2, . . . ). (6.4)
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Here t is any binary irrational point. In the questions under consideration, the
values of wn on the countable set of binary rational points are inessential; so, at
these points we agree to define the functions wn (n > 1) by formula (6.4) as well.
In particular,

w2j (t) = rj(t) (j ∈ N, t ∈ [0, 1]). (6.5)

The sequence of functions {wn}∞n=0 is called the Walsh system.
We have seen that the groups Z and T are duals of each other. This fact is a

special case of the following theorem.

The Pontryagin duality principle. For any locally compact Abelian group G

with a dual group Γ = Ĝ, the natural mapping of G into Γ̂ that takes each element
t ∈ G to the character t′ on Γ defined by the formula

t′(γ) = γ(t), γ ∈ Ĝ, (6.6)

is an isomorphism of the topological groups G and Γ̂.

In what follows, we identify t ∈ G and t′ ∈ Γ̂.
Let G be a locally compact Abelian group. The Fourier transform of a function

f ∈ L1(G) is defined by the formula

FG(f)(γ) =

∫
Γ

f(t)γ(t) dµG(t), γ ∈ Ĝ. (6.7)

We sometimes write f̂(γ) in place of F(f)(γ). An analogue of the Hausdorff–Young
theorem holds for locally compact Abelian groups, which makes it possible to define
the Fourier transform for functions f ∈ Lp(G), 1 < p 6 2 (the Fourier transform is

a bounded operator from Lp(G) to Lp
′
(Ĝ) [36], Ch. 8).

If X is a Banach space, then the Fourier transform of a function f ∈ L1
X(G) is

defined as in (6.7), where the integral is understood in the sense of Bochner.
Let 1 6 p 6 2. For linear combinations of the form

n∑
j=1

ϕj(t)xj (xj ∈ X, ϕj ∈ Lp(G), j = 1, . . . , n), (6.8)

the Fourier transform is defined by the formula

F

( n∑
j=1

ϕjxj

)
(γ) =

n∑
j=1

ϕ̂j(γ)xj . (6.9)

The set of functions of the form (6.8) (the tensor product Lp(G)⊗X) is every-
where dense in LpX(G) (see § 2).

Definition 6.1. We say that a space X has a Fourier type p with respect to the
group G if the operator F originally defined on Lp(G)⊗X by formula (6.9) can be
extended to a bounded operator

F : LpX(G)→ Lp
′

X(Ĝ).

The norm of the operator F is denoted by Cp(X,G).
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Definition 6.1 was introduced by Milman [59].

Remark 6.2. Let G be a discrete countable group, G = {hk}∞k=1. It is easy to see
that in this case Definition 6.1 is equivalent to the assertion that for any vectors
x1, . . . , xn ∈ X one has

(∫
Ĝ

∥∥∥∥ n∑
k=1

γ(hk)xk

∥∥∥∥p′ dγ)1/p′

6 C
( n∑
k=1

‖xk‖p
)1/p

. (6.10)

We consider the concept of Fourier type in terms of duality. Let G be a locally
compact Abelian group. According to the duality principle, the Fourier transform

of a function ψ ∈ L1(Ĝ) is defined by the formula

ψ̂(t) =

∫
Ĝ

ψ(γ)γ(t) dµĜ(γ), t ∈ G. (6.11)

Theorem 6.3. A Banach space X has a Fourier type p (1 6 p 6 2) with respect
to the group G if and only if the dual space X∗ has the Fourier type p with respect

to Ĝ. Here Cp(X,G) = Cp(X
∗, Ĝ).

Proof. Suppose that X has the Fourier type p with respect to G. Then for any
function f ∈ LpX(G) one has

(∫
Ĝ

‖f̂(γ)‖p
′

X dγ

)1/p′

6 C
(∫

G

‖f(t)‖pX dt
)1/p

. (6.12)

Let us show that the Fourier transform can also be extended to a bounded operator

F : LpX∗(Ĝ)→ Lp
′

X∗(G).

Let

g(γ) =
m∑
k=1

ψk(γ)x∗k
(
ψk ∈ Lp(Ĝ), x∗k ∈ X∗

)
. (6.13)

The Fourier transform ĝ =
∑m
k=1 ψ̂kx

∗
k belongs to Lp

′

X∗(G) (see (6.11)). By Propo-
sition 2.6, for any ε > 0 there is a function f ∈ LpX(G) with ‖f‖LpX(G) = 1 such
that (∫

G

‖ĝ(t)‖p
′

X∗ dµG(t)

)1/p′

6 (1 + ε)

∣∣∣∣∫
G

〈f(t), ĝ(t)〉 dµG(t)

∣∣∣∣.
Using the Fubini theorem and taking into account (6.11), (6.7) and (2.13), we obtain∫

G

〈f(t), ĝ(t)〉 dµG(t) =

∫
Ĝ

〈f̂(γ), g(γ)〉 dµĜ(γ).
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Therefore, by virtue of (6.12) and the invariance of the measure µĜ with respect to
the inverse element (see (6.1)), we have

(∫
G

‖ĝ(t)‖p
′

X∗ dµG(t)

)1/p′

6 (1 + ε)

∫
Ĝ

‖f̂(γ)‖X‖g(γ)‖X∗ dµĜ(γ)

6 (1 + ε)

(∫
Ĝ

‖f̂(γ)‖p
′

X dµĜ(γ)

)1/p′(∫
Ĝ

‖g(γ)‖pX∗ dµĜ(γ)

)1/p

6 C(1 + ε)‖g‖Lp
X∗(Ĝ).

Since the set of functions of the form (6.13) is everywhere dense in LpX∗(Ĝ), we see

that X∗ has the Fourier type p with respect to Ĝ, and Cp(X
∗, Ĝ) 6 Cp(X,G).

The converse assertion can be obtained in a very similar way. The theorem is
thereby proved.

In the case G = R, we see that the Banach space X has the Fourier type p
(1 6 p 6 2) if and only if X∗ has the Fourier type p (this result was obtained
by Peetre [62]).

Let us now establish that if a Banach space X has a Fourier type p with respect
to one of the groups T, R or Z, then it has the Fourier type p with respect to each
of the groups.

We use the following relations:

∑
k∈Z

(
sin θ

θ + kπ

)2

= 1 for any θ ∈ R (6.14)

and

Br ≡ inf
θ∈R

(∑
k∈Z

∣∣∣∣ sin θ

θ + kπ

∣∣∣∣r)1/r

> 0 (r > 1). (6.15)

The first relation follows readily from Parseval’s equality (1.5) applied to the
1-periodic function ϕθ(x) = e−iθ(x−[x]) (where [x] is the integral part of a num-
ber x ∈ R and θ is fixed). The second inequality is obvious.

Theorem 6.4. A Banach space X has a Fourier type p (1 6 p 6 2) with respect
to R if and only if X has the Fourier type p with respect to Z. Here

Cp(X,R) 6 Cp(X,Z) 6 B−1
p′ Cp(X,R).

Proof. We first suppose that X has the Fourier type p with respect to R. Then for
any function f ∈ LpX(R) we have

(∫
R
‖f̂(ξ)‖p′ dξ

)1/p′

6 C
(∫

R
‖f(t)‖p dt

)1/p

. (6.16)
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We must show that the Fourier transform can be extended to a bounded operator

F : LpX(Z)→ Lp
′

X(T). To this end, it suffices to prove the inequality(∫ 1

0

∥∥∥∥∑
n∈Z

xne
2πint

∥∥∥∥p′ dt)1/p′

6 C′
(∑
n∈Z
‖xn‖p

)1/p

, (6.17)

where {xn} is an arbitrary finite sequence of vectors from X.
We consider the function

f(t) =
∑
n∈Z

xnχ[n,n+1)(t), t ∈ R.

We have
‖f(t)‖p =

∑
n∈Z
‖xn‖pχ[n,n+1)(t), t ∈ R,

and consequently, (∫
R
‖f(t)‖p dt

)1/p

=

(∑
n∈Z
‖xn‖p

)1/p

. (6.18)

Further,

f̂(ξ) =
∑
n∈Z

xne
−2πinξχ̂[0,1)(ξ) =

∑
n∈Z

xne
−2πinξ 1− e−2πiξ

2πiξ

and

‖f̂(ξ)‖ =
1

π

∣∣∣∣ sinπξξ

∣∣∣∣∥∥∥∥∑
n∈Z

xne
−2πinξ

∥∥∥∥.
Hence we obtain∫

R
‖f̂(ξ)‖p′ dξ =

∑
k∈Z

∫ k+1

k

∣∣∣∣ sinπξπξ

∣∣∣∣p′∥∥∥∥∑
n∈Z

xne
−2πinξ

∥∥∥∥p′ dξ
=

∫ 1

0

∑
k∈Z

∣∣∣∣ sinπξ

π(ξ + k)

∣∣∣∣∥∥∥∥∑
n∈Z

xne
−2πinξ

∥∥∥∥p′ dξ,
and, by virtue of (6.15),(∫ 1

0

∥∥∥∥∑
n∈Z

xne
−2πinξ

∥∥∥∥p′ dξ)1/p′

6 B−1
p′

(∫
R
‖f̂(ξ)‖p′ dξ

)1/p′

.

Using (6.16) and (6.18), we obtain (6.17) (with the constant C′ = B−1
p′ C).

We now suppose that X has the Fourier type p with respect to Z, so that (6.17)
holds. From this we must derive (6.16), that is, the fact that X also has the Fourier
type p with respect to R. Obviously, it suffices to consider functions of the form

f(t) =
∑
n∈Z

xnχ[nδ,(n+1)δ)(t),
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where {xn} is a finite sequence of vectors from X and δ > 0. For such functions we
have ∫

R
‖f(t)‖p dt = δ

∑
n∈Z
‖xn‖p (6.19)

and

f̂(ξ) =
∑
n∈Z

xne
−2πinδξ 1− e−2πiδξ

2πiξ
.

As above, using (6.14), we obtain∫
R
‖f̂(ξ)‖p′ dξ = δp

′−1

∫
R

∣∣∣∣ sinπξπξ

∣∣∣∣p′∥∥∥∥∑
n∈Z

xne
−2πinξ

∥∥∥∥p′ dξ
6 δp′−1

∫ 1

0

∥∥∥∥∑
n∈Z

xne
−2πinξ

∥∥∥∥p′ dξ.
By virtue of (6.17) and (6.19), we obtain(∫

R
‖f̂(ξ)‖p′ dξ

)1/p′

6 C′
(
δ
∑
n∈Z
‖xn‖p

)1/p

= C′‖f‖LpX(R),

as desired. The theorem is proved.

Since the group R is isomorphic to its dual group, we readily obtain the following
results by applying Theorems 6.3 and 6.4.

Theorem 6.5. A Banach space X has a Fourier type p with respect to R if and
only if X has the Fourier type p with respect to T. Here

Cp(X,R) 6 Cp(X,T) 6 B−1
p′ Cp(X,R).

Theorem 6.6. For any Banach space X, the following properties are equivalent:

(1) X has a Fourier type p with respect to the circle T;
(2) X has the Fourier type p with respect to the real line R;
(3) X has the Fourier type p with respect to the group Z of integers.

Bourgain [13] showed that if a Banach space X has a Fourier type p with respect
to T, then X also has the Fourier type p with respect to R. Theorem 6.6 was
completely proved in the papers [1], [28], [47] independently.

We consider some questions related to direct products of groups. Let G1, . . . , Gn
be locally compact Abelian groups and G = G1 × · · · ×Gn their direct product. If

γj ∈ Ĝj (j = 1, . . . , n), then we define a character γ on G by the formula

γ(t1, . . . , tn) =
n∏
j=1

γj(tj), (t1, . . . , tn) ∈ G. (6.20)

It is not hard to show (see [36], Ch. 6) that any character on G is of the form (6.20)
and the mapping (γ1, . . . , γn) 7→ γ given by (6.20) is a topological isomorphism of

the direct product Ĝ1 × · · · × Ĝn onto the character group Ĝ.
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Proposition 6.7. If a Banach space X has a Fourier type p (1 6 p 6 2) with
respect to each of the groups Gj (j = 1, . . . , n), then X has the Fourier type p with
respect to the direct product G = G1 × · · · ×Gn and

Cp(X,G) 6
n∏
j=1

Cp(X,Gj).

Proof. Obviously, it suffices to consider the case n = 2. Let f ∈ L1
X(G) ∩ LpX(G).

Then

f̂(γ1, γ2) =

∫∫
G

f(t1, t2)γ1(t1)γ2(t2) dt1dt2 = FG2{FG1 [f(·, t2)](γ1)}(γ2).

Using the Minkowski inequality (p′/p > 1), we obtain(∫∫
Ĝ

‖f̂(γ1, γ2)‖p
′

X dγ1dγ2

)p/p′
=

(∫
Ĝ1

dγ1

(∫
Ĝ2

∥∥FG2{FG1 [f( · , t2)](γ1)}(γ2)
∥∥p′
X
dγ2

)
dγ1

)p/p′

6 Cpp (B,G2)

(∫
Ĝ1

(∫
G2

∥∥FG1 [f( · , t2)](γ1)
∥∥p
X
dt2

)p′/p
dγ1

)p/p′

6 Cpp (X,G2)

∫
G2

(∫
Ĝ1

∥∥FG1 [f( · , t2)](γ1)
∥∥p′
X
dγ1

)p/p′
dt2

6 Cpp (X,G2)Cpp (X,G1)

∫
G2

∫
G1

∥∥f(t1, t2)
∥∥p
X
dt1 dt2.

The proposition is thereby proved.

Theorem 6.4 can be generalized to higher dimensions (the proof is similar).

Theorem 6.8. Let n ∈ N. A Banach space X has a Fourier type p with respect to
Rn if and only if X has the Fourier type p with respect to Zn. Here

Cp(X,Rn) 6 Cp(X,Zn) 6 B−np′ Cp(X,Rn).

Further, by applying Theorem 6.3, we also obtain the following results.

Theorem 6.9. Let n ∈ N. A Banach space X has a Fourier type p with respect to
Rn if and only if X has the Fourier type p with respect to Tn. Here

Cp(X,Rn) 6 Cp(X,Tn) 6 B−np′ Cp(X,Rn).

Theorem 6.10. Let n ∈ N and let X be a Banach space. Then the following three
properties are equivalent:

(1) X has a Fourier type p with respect to Tn;
(2) X has the Fourier type p with respect to Rn;
(3) X has the Fourier type p with respect to Zn.

Let us consider an interesting fact related to direct products. For some groups Γ,
the following property holds: if a Banach space X has a Fourier type p with respect
to Γ, then the constant Cp(X,Γ

N) is the same for all N .2 For the groups T and Z,

2The group R does not possess such a property, as follows from the results of Babenko [3] and
Beckner [5] (see § 1).
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this fact was proved by Andersson [1]. We shall obtain a more general result, which
implies that the above-mentioned property is also valid for the groups D and N0.

Let Γ be a discrete countable Abelian group, and let G = Γ̂ (we recall that in
this case the group G is compact). We treat elements of Γ as characters of G.
Therefore, it is natural to take multiplication as the basic group operation in Γ.
The measure of each singleton in Γ is assumed to be equal to 1.

We say that sets Ω,Ω′ ⊂ Γ are independent if for any γ, δ ∈ Ω and γ′, δ′ ∈ Ω′

the equality γγ′ = δδ′ holds if and only if γ = δ and γ′ = δ′.

Definition 6.11. A discrete countable Abelian group Γ is said to be dissipative if
for any bounded set Ω ⊂ Γ there is a set Ω′ ⊂ Γ such that

1) the sets Ω and Ω′ are independent;
2) there is a bijective mapping ψ : Ω → Ω′ such that for any set {xγ}γ∈Ω of

elements of an arbitrary Banach space X and any y > 0 one has

µG

({
t ∈ G :

∥∥∥∥∑
γ∈Ω

γ(t)xγ

∥∥∥∥ > y

})
= µG

({
t ∈ G :

∥∥∥∥∑
γ∈Ω

ψ(γ)(t)xγ

∥∥∥∥ > y

})
.

(6.21)

This definition and the Fubini theorem readily imply the following assertion.

Proposition 6.12. Let Γ and Λ be discrete countable Abelian groups. If Γ and Λ
are dissipative, then their direct product Γ× Λ is also dissipative.

Let us show that the groups Z and N0 are dissipative.
Let Ω be a bounded subset of Z. We put

m0 = 2 max
n∈Ω
|n|+ 1, Ω′ = {m0n}n∈Ω and ψ(n) = m0n (n ∈ Ω).

It is clear that Ω and Ω′ are independent (as subsets of the additive group). To
each element n ∈ Z we assign the function e2πint (0 6 t < 1); condition (6.21)
follows easily from the periodicity of these functions.

Next, let Ω be a bounded subset in N0. Let

n =
k∑
µ=1

εµ(n)2µ−1

be the binary expansion of a number n, 1 6 n < 2k. We choose a k0 such that the
inequality n < 2k0 holds for all n ∈ Ω. We define a mapping ψ as follows: if 0 ∈ Ω,
then we put ψ(0) = 0; for any n ∈ Ω, n 6= 0, we put

ψ(n) =
k∑
µ=1

εµ(n)2µ+k0 .

Let Ω′ =
{
ψ(n)

}
n∈Ω

. It is clear that ψ is a bijection and Ω,Ω′ are independent.

Furthermore, the group N0 can be identified with the Walsh sequence {wn}∞n=0 of
functions. For any n ∈ Ω (n 6= 0), we have (see (6.4))

wn(t) =
k∏
µ=1

[rµ(t)]εµ(n) and wψ(n)(t) =
k∏
µ=1

[rµ+k0+1(t)]εµ(n).

This yields (6.21).
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Theorem 6.13. Let Γ be a discrete countable dissipative Abelian group, and let
a Banach space X have a Fourier type p with respect to Γ. Then for any positive
integer N one has

Cp(X,Γ
N ) = Cp(X,Γ).

Proof. The inequality Cp(X,Γ
N ) > Cp(X,Γ) is obvious, since Γ can be viewed as

a subgroup of ΓN . For the same reason, and by virtue of Proposition 6.12, one can
see that to prove the opposite inequality it suffices to consider the case N = 2.

Let Γ × Γ = {ηk}∞k=1. By virtue of Remark 6.2, we must prove that for any
n ∈ N and any vectors x1, . . . , xn ∈ X the following inequality holds (µ ≡ µG):

(∫
G

∫
G

‖
n∑
k=1

ηk(t, s)xk‖p
′
dµ(t) dµ(s)

)1/p′

6 Cp(X,Γ)

( n∑
k=1

‖xk‖p
)1/p

. (6.22)

We have (see (6.20))

ηk(t, s) = γk(t)γ̃k(s) (γk, γ̃k ∈ Γ; t, s ∈ G). (6.23)

Let Ω be the set of all elements γk, γ̃k (k = 1, . . . , n). It follows that there is a set
Ω′ ⊂ Γ and a bijection ψ : Ω→ Ω′ such that Ω and Ω′ are independent and for any
x1, . . . , xn ∈ X one has

µ

({
s ∈ G :

∥∥∥∥ n∑
k=1

xkγ̃k(s)

∥∥∥∥ > y

})
=µ

({
s∈G :

∥∥∥∥ n∑
k=1

xkψ(γ̃k)(s)

∥∥∥∥ > y

})
(y > 0).

(6.24)
We put βk = ψ(γ̃k). Using the Fubini theorem and (6.24), we have

∫
G

∫
G

∥∥∥∥ n∑
k=1

ηk(t, s)xk

∥∥∥∥p′dµ(t) dµ(s) =

∫
G

∫
G

∥∥∥∥ n∑
k=1

γk(t)γ̃k(s)xk

∥∥∥∥p′dµ(t) dµ(s)

=

∫
G

∫
G

∥∥∥∥ n∑
k=1

γk(t)βk(s)xk

∥∥∥∥p′dµ(t) dµ(s)

=

∫
G

∫
G

∥∥∥∥ n∑
k=1

γk(t)βk(s+ t)xk

∥∥∥∥p′dµ(t) dµ(s)

=

∫
G

∫
G

∥∥∥∥ n∑
k=1

γk(t)βk(t)βk(s)xk

∥∥∥∥p′dµ(t) dµ(s)

for any x1, . . . , xn ∈ X. For a given s ∈ G, we put x′k(s) = βk(s)xk; then ‖x′k(s)‖ =
‖xk‖. Consider the integral

J(s) =

∫
G

∥∥∥∥ n∑
k=1

γk(t)βk(t)x′k(s)

∥∥∥∥p′ dt.
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The critical point is that the elements γkβk are distinct for different k: this follows
directly from the independence of the sets Ω,Ω′ and (6.23). Hence we have

J(s) 6 Cp′p (X,Γ)

( n∑
k=1

‖xk‖p
)p′/p

.

for any s ∈ G. This implies (6.22). The theorem is thereby proved.

We now can supplement the above-cited results3.

Theorem 6.14. Let a Banach space X have a Fourier type p with respect to one
of the groups T, Z, or R. Then for any positive integer n the following properties
hold:

(1) X has the Fourier type p with respect to T∞ and

Cp(X,T) = Cp(X,Tn) = Cp(X,T∞);

(2) X has the Fourier type p with respect to R∞ and

Cp(X,R∞) 6 Cp(X,T), Cp(X,R∞) 6 Cp(X,Z);

(3) X has the Fourier type p with respect to Z∞ and

Cp(X,Z) = Cp(X,Zn) = Cp(X,Z∞).

By applying Theorems 6.3 and 6.13 and also Theorem 7.15 of § 7 of the present
paper, we obtain the following result.

Theorem 6.15. If a Banach space X has a Fourier type p with respect to one of
the groups D and N0, then it also has the Fourier type p with respect to the other
group. Moreover, for any positive integer n

1) X has the Fourier type p with respect to D∞ and

Cp(X,D) = Cp(X,Dn) = Cp(X,D∞);

2) X has the Fourier type p with respect to N∞0 and

Cp(X,N0) = Cp(X,Nn0 ) = Cp(X,N∞0 ).

To conclude this section we dwell on the results of Bourgain [12] devoted to
inequalities of Hausdorff–Young type for characters of compact Abelian groups. In
the paper [12], the following theorem is proved.

3For definitions related to direct products of sequences of locally compact Abelian groups
see [36], Ch. 2, [34], § 38, [37], Ch. 6.
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Theorem 6.16. Let G be a compact Abelian group. If a Banach space X has a non-
trivial Rademacher type, then there are numbers p > 1, q <∞, and C, 0 < C <∞,

such that for any vectors x1, . . . , xn ∈ X and any characters γ1, . . . , γn ∈ Ĝ one
has (∫

G

∥∥∥∥ n∑
j=1

γj(t)xj

∥∥∥∥2

dt

)1/2

6 C
( n∑
j=1

‖xj‖p
)1/p

and ( n∑
j=1

‖xj‖q
)1/q

6 C
(∫

G

∥∥∥∥ n∑
j=1

γj(t)xj

∥∥∥∥2

dt

)1/2

.

The proof of this theorem is quite difficult. Later, Bourgain [13] obtained
stronger results for the Cantor group D and the circle T. In § 8 we give a com-
plete proof of the Bourgain theorem for the group D.

§7. Types and cotypes of Banach spaces
with respect to general orthonormal systems

7.1. Previously, we have studied the concepts of the Rademacher type and cotype
and the concept of the Fourier type and its generalization to arbitrary locally com-
pact Abelian groups. The latter generalization includes also classical orthonormal
systems such as the trigonometric system and the Walsh system. It is natural to
proceed further and to reveal the general laws that are not related to specific fea-
tures of particular systems but are inherent in each uniformly bounded orthonormal
system. The present section is devoted to this problem. The starting point of our
definitions is the Riesz theorem (Theorem 1.2).

Let (I, µ) be a measure space, and let µ(I) = 1. Further, let Φ = {ϕn}∞n=1 be an
orthonormal system of scalar (real or complex-valued) functions on I. We suppose
that the system Φ is uniformly bounded,

|ϕn(t)| 6M for all t ∈ I and all n ∈ N. (7.1)

Let X be a Banach space. For each function f ∈ L1
X(I), we denote its Fourier

coefficients by

cn(f) =

∫
I

f(t)ϕn(t) dµ, n ∈ N, (7.2)

where the integral is interpreted in the sense of Bochner. An analogue of Mercer’s
theorem holds for complex-valued functions:

If the system {ϕn} is uniformly bounded, then for any function f ∈ L1
X one has

lim
n→∞

cn(f) = 0.

The proof is similar to that for the scalar case (see [4], Russian p. 74).
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Definition 7.1. Let 1 6 p 6 2. We say that a Banach space X has a Φ-type p if
there is a constant C such that for any bounded set {xk}nk=1 of elements xk ∈ X
one has (∫

I

∥∥∥∥ n∑
k=1

ϕk(t)xk

∥∥∥∥p′ dµ)1/p′

6 C
( n∑
k=1

‖xk‖p
)1/p

. (7.3)

Remark 7.2. Let X have a Φ-type p. Then, as is easy to see, for any sequence

{xk} ∈ lpX the series
∑∞
k=1 ϕkxk converges in the norm of Lp

′

X(I), and its sum f
satisfies the inequality

‖f‖
Lp
′
X

6 C‖{xk}‖lpX . (7.4)

Moreover, for any rearrangement of its elements, this series converges in Lp
′

X to the
same sum f .

Definition 7.3. Let 1 6 p 6 2. We say that a Banach space X has a Φ-cotype p′

if there is a constant C such that for any polynomial
∑n
k=1 xkϕk with coefficients

xk ∈ X one has ( n∑
k=1

‖xk‖p
′
)1/p′

6 C
(∫

I

∥∥∥∥ n∑
k=1

xkϕk(t)

∥∥∥∥p dµ)1/p

. (7.5)

Definition 7.4. Let 1 6 p 6 2. We say that a Banach space X has a strong Φ-
cotype p′ if there is a constant C such that for any function f ∈ LpX(I) the sequence
{cn(f)} of its Fourier coefficients satisfies the inequality

( ∞∑
n=1

‖cn(f)‖p′
)1/p′

6 C
(∫

I

‖f(t)‖p dµ
)1/p

. (7.6)

Remark 7.5. The Rademacher system is denoted by R. In the case Φ = R, our
definitions are equivalent to the definitions of § 5. Further, let G be a compact
Abelian group with countable dual group Γ = {γn}∞n=1. It is easy to see that Γ
is an orthonormal system of functions on G.4 The Fourier type p (1 6 p 6 2)
of the Banach space X with respect to Γ is none other than the Γ-type p in the
sense of Definition 7.1 (see Remark 6.2). On the other hand, the Fourier type p
of the space X with respect to G means the same as the strong Γ-cotype p′ (see
Definitions 6.1 and 7.4). For example, if G = T, then the system of characters
is the trigonometric system T = {e2πint}n∈Z (t ∈ [0, 1]). The strong T -cotype p′

(1 6 p 6 2) of the Banach spaceX coincides with a Fourier type p with respect to T.
Furthermore, by Theorem 6.6, the Fourier type p with respect to T is equivalent

to the Fourier type p with respect to Z. But the group T̂ is isomorphic to Z;
therefore, by virtue of the preceding, the Fourier type p with respect to Z coincides

4By virtue of the Stone–Weierstrass theorem, ([36], Vol. 1, p. 151), the system Γ is complete
in L1(G) (for the definition see 7.2).
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with a T -type p. Thus, the T -type p and the strong T -cotype p′ (1 6 p 6 2) of
the Banach space X are equivalent to each other. A similar assertion holds for the
Walsh system; later on we shall return to these questions.

We recall that the concept of the Fourier type (with respect to R) was for the
first time introduced by Peetre [62]. Blasco and Pelczyński [9] introduced another
definition of the Fourier type p (in terms of coefficients with respect to the trigono-
metric system T ). In our terminology, this definition implies the strong T -cotype p′

and is equivalent to the Fourier type with respect to the group T. Theorem 6.5
implies the equivalence of the “continual” and “discrete” Fourier types studied in
the cited papers.

7.2. In the general case, the Φ-cotype p′ does not imply the strong Φ-cotype p′

(this question was discussed in § 5 for the Rademacher system). However, these
concepts are equivalent for any complete system Φ.

We say that Φ is a complete system in a space Lp(I) (1 6 p < ∞) if the set of
all polynomials

∑n
k=1 αkϕk with scalar coefficients is everywhere dense in Lp(I).

Lemma 7.6. Let X be a Banach space, and Φ an orthonormal system on I com-
plete in the space Lp(I) (1 6 p < ∞). Then for any function f ∈ LpX(I) and any
ε > 0 there is a polynomial ψ =

∑n
k=1 xkϕk (xk ∈ X) such that ‖f − ψ‖LpX < ε.

This assertion is obvious if f is a simple function, f =
∑N
j=1 cjχEj (cj ∈ X). It

remains to apply Lemma 2.4.

Proposition 7.7. Let Φ be a complete uniformly bounded system in Lp(I) (1 6
p 6 2). If the Banach space X has a Φ-cotype p′, then X also has the strong
Φ-cotype p′.

Proof. Let f ∈ LpX(I). For given positive integer N , we write

σN =

( N∑
k=1

‖ck(f)‖p′
)1/p′

.

Let ε > 0. By Lemma 7.6, there is a polynomial ψ =
∑n
k=1 xkϕk (xk ∈ X) such

that
‖f − ψ‖ < ε

MN1/p′

(M is the constant in (7.1)). Then

σN 6
( N∑
k=1

‖ck(ψ)‖p′
)1/p′

+ ε 6
( n∑
k=1

‖xk‖p
′
)1/p′

+ ε.

Since X has the Φ-cotype p′, we have( n∑
k=1

‖xk‖p
′
)1/p′

6 C‖ψ‖LpX 6 C
(
‖f‖LpX + ε

)
.

Thus, for any N ∈ N and any ε > 0,

σN 6 C‖f‖LpX + (C + 1)ε.

This implies (7.6). The proof of the proposition is complete.
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7.3. In Proposition 5.22 we have established a relation between the concepts of
the Rademacher type and strong cotype in terms of duality of Banach spaces. A
similar assertion for locally compact Abelian groups is contained in Theorem 6.3.
We now cite the corresponding result for general orthonormal systems. As above,
Φ is an orthonormal system on I satisfying the condition (7.1).

Theorem 7.8. Let X be a Banach space, and let 1 6 p 6 2. Then

(i) X has a Φ-type p if and only if X∗ has the strong Φ-cotype p′;
(ii) X∗ has a Φ-type p if and only if X has the strong Φ-cotype p′.

Proof. (i) Suppose that X has the Φ-type p. Let g ∈ Lp
′

X∗(I). We put

σN =

( N∑
k=1

‖ck(g)‖p
′

X∗

)1/p′

.

By virtue of Proposition 2.6, for any ε > 0 there are vectors x1, . . . , xN ∈ X such

that
(∑N

k=1 ‖xk‖p
)1/p

= 1 and

σN < (1 + ε)
N∑
k=1

〈xk, ck(g)〉.

Next, by (2.13) and (7.3) we have

N∑
k=1

〈xk, ck(g)〉 =
N∑
k=1

〈
xk,

∫
I

g(t)ϕk(t) dµ

〉
=

∫
I

〈 N∑
k=1

xk ϕk(t), g(t)

〉
dµ

6
∫
I

∥∥∥∥ N∑
k=1

xkϕk(t)

∥∥∥∥
X

‖g(t)‖X∗ dµ 6
∥∥∥∥ N∑
k=1

xkϕk

∥∥∥∥
L
p′
X

‖g‖Lp
X∗
6 C‖g‖Lp

X∗
.

It follows from the resulting estimates thatX has the strong Φ-type p. The converse
of (i) can be proved in a similar way. We obtain assertion (ii) in the same way. The
theorem is thereby proved.

Remark. Let X be a complex space. If multiplication by complex numbers in X∗

is defined by the formula

(αg)(a) = αg(a) (g ∈ X∗, a ∈ X),

then the Φ-type p of the space X is equivalent to the strong Φ-cotype p′ of the
space X∗, where Φ = {ϕn} is a system of complex conjugate functions. This is the
case indeed if Φ is the system of all characters of a compact Abelian group G. This
is also true if Φ is an arbitrary uniformly bounded orthonormal system and X is
an involution space (see [44], p. 475). We point out that no example of a system Φ
and a space X such that X has the Φ-type p, but does not have the Φ-type p, is
available to the author.
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In connection with Theorem 7.8, we point out that, generally speaking, the Φ-
cotype p′ of the space X∗ does not imply the Φ-type p of the space X; for example,
this is the case for Φ = R (see § 5).

7.4. It is obvious that each Banach space has the Φ-type 1 and the strong
Φ-cotype ∞ for any uniformly bounded orthonormal system Φ. Using interpola-
tion, we see that the properties of the Φ-type p and the strong Φ-cotype p′ become
stronger with p increasing (1 6 p 6 2).

Theorem 7.9. Let 1 < p 6 2, and let a Banach space X have the Φ-type p. Then
X has the Φ-type r for any 1 6 r < p.

Proof. Using Remark 7.2, on lpX we define a linear operator J by putting

J : {xn} 7→
∞∑
n=1

xnϕn (convergence in Lp
′

X).

By virtue of (7.4), the operator J acts boundedly from lpX into Lp
′

X(I). Let
◦
L∞X (I)

stand for the closure of the set of simple functions from L∞X (I) with respect to the
norm of this space. It readily follows from (7.1) that J acts boundedly from l1X

into
◦
L∞X (I). By Theorem 3.5, we have

[l1X , l
p
X ]θ = lrX , [Lp

′

X ,
◦
L∞X ]θ = Lr

′

X (θ = p′/r′).

Applying Theorem 3.4, we see that the operator J acts boundedly from lrX into

Lr
′

X(I). Hence, X has the Φ-type r. The proof of the theorem is complete.

We note that in the case of the Rademacher system, Theorem 7.9 readily follows
from the Jensen inequality (see Proposition 5.7). Of course, the Khinchine-Kahane
inequalities are of the first importance here; in the general case, the use of the
Jensen inequality on the right-hand side of (7.3) gives nothing.

Theorems 7.8 and 7.9 imply the following assertion.

Theorem 7.10. Let 1 < p 6 2, and let a Banach space X have the strong Φ-
cotype p′. Then for any 1 6 r < p, X has the strong Φ-cotype r′.

Naturally, to prove this theorem one can directly apply interpolation. Let F be
the operator that makes each function f ∈ L1

X(I) correspond to the sequence of

its Fourier coefficients with respect to the system Φ. We denote by
◦
l∞X the set of

all sequences {xn} ∈ l∞X with limn→∞ ‖xn‖ = 0 (this is a closed subset of l∞X ).

By Mercer’s theorem (see 7.1), the operator F acts boundedly from L1
X(I) to

◦
l∞X .

Moreover, under our hypothesis, F is a bounded operator from LpX(I) to lp
′

X . By
virtue of Theorem 3.5, we have

[L1
X , L

p
X ]θ = LrX , [lp

′

X ,
◦
l∞X ]θ = lr

′

X ,

for θ = p′/r′. It remains to apply Theorem 3.4.
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Let us note that in the case of the Rademacher system the similar assertion for
the cotype is valid and, moreover, directly follows from the Jensen inequality.

Theorems 7.9 and 7.10 can also be proved by means of real interpolation. In this
case, even stronger results can be obtained.

Theorem 7.11. Let 1 < p 6 2, and let X be a Banach space. Then

(1) if X has the Ψ-type p, then for any 1 < r < p and 1 6 s < ∞ there is a
constant K such that for each finite sequence {xk} (xk ∈ X) one has

‖f‖
Lr
′,s
X

6 K ‖{xk}‖lr,sX

(
f =

∞∑
k=1

xkϕk

)
; (7.7)

(2) if X has the strong Ψ-cotype p′, then for any 1 < r < p and 1 6 s < ∞
there is a constant K such that for each function f ∈ Lr,sX (I) one has

‖{cn(f)}‖
lr
′,s
X

6 K ‖f‖Lr,sX . (7.8)

To prove the theorem, it suffices to use the same reasoning as above and apply
Corollary 3.13 (and the remark following the corollary) and then Theorem 3.11.

By virtue of inequality (2.6), for r = s the assertions of Theorem 7.11 are stronger
than those of Theorems 7.9 and 7.10. We note that in this case inequalities (7.7)
and (7.8) acquire the form(∫ 1

0

ξr−2 f∗(ξ)r dξ

)1/r

6 K
( ∞∑
n=1

‖xn‖r
)1/r

(7.9)

and, respectively,( ∞∑
n=1

nr−2c∗n(f)r
)1/r

6 K
(∫

I

‖f(t)‖r dµ(t)

)1/r

. (7.10)

These are vector-valued analogues of the Paley inequalities (see [82], Ch. 12).
It is not hard to prove Theorem 7.11 straightforwardly by using the corresponding

estimates for rearrangements. For example, assertion (1) of this theorem readily
follows from the inequality

f∗
(

1

n

)
6M

n∑
k=1

x∗k + Cn1/p′
( ∞∑
k=n+1

(x∗k)p
)1/p

, n ∈ N, (7.11)

and from Lemma 2.3. For the scalar case, inequality (7.11) is proved in the
paper [60]; for the vector-valued case, the proof is similar.

The best possible value of type and cotype is 2 (see § 5). If H is a Hilbert space,
then for any orthonormal system Φ, H has the Φ-type 2 and Φ-cotype 2. Indeed,
by virtue of the orthogonality of the functions ϕk, we have∫

I

∥∥∥∥ n∑
k=1

ϕk(t)xk

∥∥∥∥2

H

dt =
n∑
k=1

‖xk‖2H .

In § 5 we cited the Kwapién theorem [50], by which a Banach space X that has
the R-type 2 and R-cotype 2 is isomorphic to a Hilbert space. In § 8 we shall show
that in the hypotheses of the theorem the Rademacher system can be replaced by
any uniformly bounded system Φ. In the paper [50] a similar assertion was proved
for complete systems. Namely, the following result was obtained in [50].
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Theorem 7.12. Let X be a Banach space and let {fn} be a complete orthonormal
system of functions in L2([0, 1]). The space X is isomorphic to a Hilbert space if
and only if there is a constant C > 0 such that for any n ∈ N and any vectors
x1, . . . , xn ∈ X one has

C−1
n∑
k=1

‖xk‖2 6
∫ 1

0

∥∥∥∥ n∑
k=1

fk(t)xk

∥∥∥∥2

dt 6 C
n∑
k=1

‖xk‖2.

For an arbitrary orthonormal system, this assertion does not hold (it suffices to
take any sequence {fn} of functions on [0, 1] with pairwise disjoint supports and
with ‖fn‖2 = 1).

7.5. In the case of the Rademacher system there is no relation between the
R-type and the R-cotype of a given space X (see Proposition 5.10). However,
as was already mentioned above, for the trigonometric system

T =
{
e2πint

}
n∈Z, t ∈ [0, 1],

the following theorem holds.

Theorem 7.13. A Banach space X has a T -type p (1 6 p 6 2) if and only if X
has the strong T -cotype p′.

This theorem follows from Theorem 6.6 (see Remark 7.5). Of course, we can
give a straightforward proof of Theorem 7.13 by applying the scheme of the proof
of Theorem 6.4.

Let us show that a similar assertion is valid for the Walsh system W = {wn}∞n=0.
The definition of the system is given in § 6. We write

∆
(n)
j =

(
j

2n
,
j + 1

2n

)
, 0 6 j 6 2n − 1, n = 0, 1, . . . .

For 0 6 k < 2n, the function wk(t) assumes a constant value equal to 1 or −1 on

each of the intervals ∆
(n)
j , 0 6 j < 2n; we denote this value by α

(n)
kj . The matrix

(α
(n)
kj ) of order 2n × 2n is symmetric, and its columns are pairwise orthogonal

(see [32], Ch. 1). Thus, for all t 6= i2−n (i = 0, 1, . . . , 2n) the following equalities
are valid:

wk(t) =
2n−1∑
j=0

α
(n)
kj χ∆

(n)
j

(t), 0 6 k < 2n, (7.12)

χ
∆

(n)
j

(t) = 2−n
2n−1∑
k=0

α
(n)
kj wk(t), 0 6 j < 2n. (7.13)

Theorem 7.14. A Banach space X has a W -type p (1 6 p 6 2) if and only if X
has the strong W -cotype p′.
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Proof. Let xj ∈ X (j = 0, 1, . . . , 2n − 1). For any 1 < r < ∞, by virtue of (7.13)
we have(2n−1∑

j=0

‖xj‖r
′
)1/r′

= 2n/r
′
∥∥∥∥2n−1∑
j=0

xjχ∆
(n)
j

∥∥∥∥
Lr
′
X

= 2−n/r
∥∥∥∥2n−1∑
k=0

ykwk

∥∥∥∥
Lr
′
X

, (7.14)

where yk =
∑2n−1
j=0 α

(n)
kj xj . Next, taking into account the symmetry of the matrix

(α
(n)
kj ) and (7.12), we obtain

(2n−1∑
k=0

‖yk‖r
)1/r

= 2n/r
∥∥∥∥2n−1∑
k=0

ykχ∆
(n)
k

∥∥∥∥
LrX

(7.15)

= 2n/r
∥∥∥∥2n−1∑
k=0

2n−1∑
j=0

α
(n)
kj xjχ∆

(n)
k

∥∥∥∥
LrX

= 2n/r
∥∥∥∥2n−1∑
j=0

xjwj

∥∥∥∥
LrX

.

Suppose that X has the W -type p. Then∥∥∥∥2n−1∑
k=0

ykwk

∥∥∥∥
Lp
′
X

6 C
(2n−1∑
k=0

‖yk‖p
)1/p

. (7.16)

By putting r = p, we obtain (see (7.14)–(7.16))

(2n−1∑
j=0

‖xj‖p
′
)1/p′

6 C
∥∥∥∥2n−1∑
j=0

xjwj

∥∥∥∥
LpX

.

Thus, X has the W -cotype p′, whence, by Proposition 7.7, it follows that X has
the strong W -cotype p′.

We now suppose that X has the W -cotype p′. Then(2n−1∑
k=0

‖yk‖p
′
)1/p′

6 C′
∥∥∥∥2n−1∑
k=0

ykwk

∥∥∥∥
LpX

. (7.17)

By putting r = p′, by virtue of (7.14), (7.15), and (7.17), we have

∥∥∥∥2n−1∑
j=0

xjwj

∥∥∥∥
Lp
′
X

6 C′
(2n−1∑
j=0

‖xj‖p
)1/p

.

Therefore, X has the W -type p. The theorem is thereby proved.

Let us consider the Cantor group D. Its dual group N0 can be identified with
the Walsh system W of functions. For any Banach space X, the Fourier type p
with respect to the group N0 coincides with the W -type p, and the Fourier type p
with respect to D coincides with the strong W -cotype p′ (see Remark 7.5). Thus,
we obtain the following result (see [29]).
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Theorem 7.15. Let 1 6 p 6 2. A Banach space X has the Fourier type p with
respect to the group D if and only if X has the Fourier type p with respect to the
dual group N0.

It seems interesting to obtain the description of complete uniformly bounded
orthonormal systems (compact Abelian groups), for which analogues of Theo-
rems 7.13–7.15 hold.

7.6. Let {X0,X1} be an interpolation pair of Banach spaces. Peetre [62] demon-
strated that if the spaceX0 has a Fourier type p0 and the space X1 a Fourier type p1

(1 6 p0, p1 6 2), then for any 0 < θ < 1 the space [X0,X1]θ has the Fourier type p,
where 1/p = (1 − θ)/p0 + θ/p1. A similar theorem is also valid for general ortho-
normal systems Φ satisfying condition (7.1).

Theorem 7.16. Suppose that {X0,X1} is an interpolation pair of Banach spaces,
1 6 p0, p1 6 2, 0 < θ < 1, 1/p = (1− θ)/p0 + θ/p1, and X = [X0,X1]θ. Then the
following assertions hold:

(i) if Xj has a Φ-type pj (j = 0, 1), then X has the Φ-type p;
(ii) if Xj has a strong Φ-cotype p′j (j = 0, 1), then X has the strong Φ-cotype p′.

Proof. (i) First, let p0, p1 > 1. We put Aj = l
pj
Xj

, Bj = L
p′j
Xj

(I) (j = 0, 1). It

follows from Remark 7.2 that for any sequence {xn} ∈ A0 +A1 the series

∞∑
n=1

xnϕn (7.18)

converges in the norm of the space B0 +B1. Let J be the operator that takes each
sequence {xn} ∈ A0 + A1 to the sum of the series (7.18). By virtue of (7.4), the
restriction of J to Aj is a bounded operator from Aj to Bj . By Theorem 3.4, the
operator J acts boundedly from [A0, A1]θ to [B0, B1]θ. But by Theorem 3.5,

[lp0

X0
, lp1

X1
]θ = lpX , [L

p′0
X0
, L

p′1
X1

]θ = Lp
′

X .

This proves assertion (i) (for the case p0, p1 > 1). If, for example, p1 = 1, then we

put B1 =
◦
L∞X and take into account the fact that J acts boundedly from A1 to B1

and [L
p′0
X0
,
◦
L∞X ] = Lp

′

X (see Theorem 3.5).
Assertion (ii) can be proved in a similar way.

It is clear that Theorems 7.9 and 7.10 are contained in Theorem 7.16 (for the
case X0 = X1).

We now consider the real interpolation of spaces with given types (strong cotypes).
Here things become more complicated because of the fact that, generally speak-
ing, the equality

(Lp0

X0
, Lp1

X1
)θ,r = Lp(X0,X1)θ,r

holds only for r = p (see § 3). However, the following lemma is valid [47] (where
spaces of vector-valued functions defined on an arbitrary measure space (S, ν) are
considered).
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Lemma 7.17. Let 1 < p0, p1 6 2, 0 < θ < 1, 1/p = (1− θ)/p0 + θ/p1, p 6 r 6 p′,
and X = (X0,X1)θ,r. Then for any interpolation pair {X0,X1} of Banach spaces,
the continuous embeddings

LpX ↪→
(
Lp0

X0
, Lp1

X1

)
θ,r

, (7.19)(
L
p′0
X0
, L

p′1
X1

)
θ,r

↪→ Lp
′

X (7.20)

hold.

Proof. We consider the embedding (7.19). Let us use the L-method. We put
η = θp/p1. Let f ∈ LpX . By Theorem 3.8, for any t ∈ S there is a representation of
an element f(t) ∈ X

f(t) = f0
ξ (t) + f1

ξ (t), 0 < ξ <∞,

such that

‖f(t)‖X > C
(∫ ∞

0

[
ξ−η

(
‖f0
ξ (t)‖p0

X0
+ ξ‖f1

ξ (t)‖p1

X1

)]r/p dξ
ξ

)1/r

,

where C is a positive constant. Hence, by virtue of the condition p 6 r and the
Minkowski inequality, we have

‖f‖p
LpX
> Cp

∫
S

(∫ ∞
0

[
ξ−η

(
‖f0
ξ (t)‖p0

X0
+ ξ‖f1

ξ (t)‖p1

X1

)]r/p dξ
ξ

)p/r
dν(t)

> Cp
(∫ ∞

0

ξ−ηr/p
[∫

S

(
‖f0
ξ (t)‖p0

X0
+ ξ‖f1

ξ (t)‖p1

X1

)
dν(t)

]r/p
dξ

ξ

)p/r
= Cp

(∫ ∞
0

[
ξ−η

(
‖f0
ξ ‖p0

L
p0
X0

+ ξ‖f1
ξ ‖p1

L
p1
X1

)]r/p dξ
ξ

)p/r
.

Applying Theorem 3.8 again, we obtain

‖f‖LpX > C
′‖f‖(Lp0

X0
,L
p1
X1

)θ,r
(C′ > 0).

This implies the embedding (7.19). The embedding (7.20) is obtained by analogy.
The lemma is proved.

In the discrete case S = N, the embeddings (7.19) and (7.20) are of the form

lpX ↪→ (lp0

X0
, lp1

X1
)θ,r, (7.21)

(l
p′0
X0
, l
p′1
X1

)θ,r ↪→ lp
′

X . (7.22)
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Theorem 7.18. Let {X0,X1} be an interpolation pair of Banach spaces. Suppose
that 1 < p0, p1 6 2, 0 < θ < 1, 1/p = (1 − θ)/p0 + θ/p1, p 6 r 6 p′, and
X = (X0,X1)θ,r. Then the following assertions hold:

(i) if Xj has a Φ-type pj (j = 0, 1), then X has the Φ-type p;
(ii) if Xj has a strong Φ-cotype p′j (j = 0, 1), then X has the strong Φ-cotype p′.

Proof. (i) As in the proof of Theorem 7.15, we put Aj = l
pj
Xj

, Bj = L
p′j
Xj

(I) (j =

0, 1) and define the operator J : A0 + A1 → B0 + B1 that takes each sequence
{xn} ∈ A0 +A1 to the sum of the series (7.18) (convergence in B0 +B1). By virtue
of (7.4), the restriction of J to Aj is a bounded operator from Aj to Bj (j = 0, 1).
By Theorem 3.11, the operator J acts boundedly from (A0, A1)θ,r to (B0, B1)θ,r.

But then, by virtue of (7.20) and (7.21), J is a bounded operator from lpX to Lp
′

X(I),
and so X has the Φ-type p.

Assertion (ii) is obtained similarly. The theorem is proved.

In the case of the trigonometric system, the T -type p is equivalent to the strong
T -cotype p′; these properties, in turn, are equivalent to the strong Fourier type p
in the sense of Peetre (see Remark 7.5). For Φ = T , Theorem 7.18 was obtained in
the paper [47] (in terms of the Fourier type).

7.7. Let (Ω, ν) be an arbitrary measure space. In § 4 we showed that (see Propo-
sition 4.4) the space Lp(Ω, ν) (1 < p < ∞) has the Fourier type min(p, p′). By
Remark 7.5, this implies that Lp has the T -type min(p, p′) and the strong T -cotype
max(p, p′). A similar result holds for general orthonormal systems.

Proposition 7.19. A space Lp(Ω, ν) (1 < p <∞) has the Φ-type min(p, p′) and
the strong Φ-cotype max(p, p′) for any uniformly bounded orthonormal system Φ.

Proof. As was noted in 7.4, the space L2(Ω, ν) has the Φ-type 2. Moreover, L1(Ω, ν)
has the Φ-type 1. Let 1 < p < 2. We apply the interpolation, putting θ = 2/p′. By
Theorem 3.5, Lp = [L1, L2]θ. By Theorem 7.15, this implies that Lp(Ω, ν) has the
Φ-type p. By analogy, we see that for p > 2 the space Lp(Ω, ν) has the Φ-type p′.
By virtue of the duality and Theorem 7.8, the assertion on the strong Φ-cotype
follows from the assertion on the Φ-type. The proof of the proposition is complete.

Let us note that Proposition 7.19 can readily be derived from Theorem 1.2 by
using the generalized Minkowski inequality (see the proof of Proposition 4.4).

In the general case, Proposition 7.19 cannot be strengthened. Namely, the fol-
lowing proposition holds.

Proposition 7.20. Suppose that a space Ω is not the union of finitely many
ν-atoms. Let Φ be a uniformly bounded orthonormal system on I, and let 1 6
p < s 6 2. Then

(1) the space Lp(Ω, ν) does not have the Φ-type s and does not have the T - and
W -cotype s′;

(2) the space Lp
′
(Ω, ν) does not have the T - and W -type s and does not have

the Φ-cotype s′.
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Proof. The fact that Lp(Ω, ν) does not have the Φ-type s follows from Propo-
sition 5.10 and Theorem 8.2. Furthermore, if Lp(Ω, ν) has the T -cotype s′ or,
respectively, W -cotype s′, then by Proposition 7.7 and Theorems 7.8, 7.13, 7.14 the
space Lp

′
(Ω, ν) has the T -cotype s′. But then, by Theorem 8.2, Lp

′
(Ω, ν) has the

R-cotype s′, which contradicts Proposition 5.10 (see also Remark 5.11). We obtain
assertion (1). Assertion (2) can be proved similarly.

In Proposition 7.20, the trigonometric system T or the Walsh system W cannot
be replaced by an arbitrary orthonormal system Φ (we recall that by Proposition
5.9, a space Lr(Ω, ν), 1 < r <∞, has the R-cotype max(r, 2) and R-type min(r, 2)).

In the papers [47], [28], [29] the authors show that the space Lp,r(Ω, ν)
(1 < p, r < ∞) has the Fourier type min(p, p′, r, r′). A similar result is valid
for general uniformly bounded orthonormal systems.

Proposition 7.21. Let 1 < p, r < ∞. Then the space Lp,r(Ω) has the Φ-type
min(p, p′, r, r′) and the strong Φ-cotype max(p, p′, r, r′) for any uniformly bounded
orthonormal system Φ.

Proof. For example, let 1 < p 6 2. We first suppose that p 6 r 6 p′. If p = 2, then
there is nothing to prove; therefore, we suppose that p < 2. We take 1 < p0 < p
and choose θ from the condition

1

p
=

1− θ
p0

+
θ

2
.

By virtue of Corollary 3.13, we have (Lp0 , L2)θ,r = Lp,r. Next, Lp0 has the Φ-type
p0, and L2 the Φ-type 2. Therefore, by Theorem 7.18, Lp,r has the Φ-type p. By
analogy, we see that Lp,r has the strong Φ-cotype p′.

Now let 1 < r < p 6 2. We take numbers r < p0 < p and 2 < p1 < r′. We
choose θ from the condition

1

p
=

1− θ
p0

+
θ

p1
.

Then (Lp0 , Lp1)θ,r = Lp,r (see Corollary 3.13). Here Lp0 has the Φ-type p0, and
Lp1 has the Φ-type p′1. Since p0, p

′
1 > r, we see that both of these spaces have the

Φ-type r. By applying Theorem 7.18, we see that Lp,r has the Φ-type r. Similarly,
Lp,r has the strong Φ-cotype r′. Just as in the case 1 < p 6 2, p′ < r <∞, we see
that Lp,r has the Φ-type r′ and the strong Φ-cotype r. This proves Proposition 7.21
for 1 < p 6 2.

In the case 2 < p <∞ the proof is similar.

We note that, generally speaking, the values of type and cotype given in Propo-
sition 7.21 for Lorentz spaces cannot be improved (see [20], [28], [29], [47]).

§8. Relations between types (cotypes) with respect to
the Rademacher system and other orthonormal systems

The Rademacher system is of great importance in the questions considered in
the present paper. This is partly due to the extremal properties of this system,
which we now consider.

We use the following theorem, known as the contraction principle ([43], Ch. 2).
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Theorem 8.1. Let X be a Banach space, and let f =
∑n
k=1 xkrk (xk ∈ X). If

λ = {λk}nk=1 is a set of numbers with |λk| 6 1 and fλ =
∑n
k=1 λkxkrk, then for

any 1 6 p <∞ one has

‖fλ‖LpX 6 ‖f‖LpX .

8.1. An extremal property of the Rademacher system. As above, suppose
that (I, µ) is a measure space, µ(I) = 1, and Φ = {ϕn} is an orthonormal system
on I satisfying condition (7.1).

Theorem 8.2. Let X be a Banach space, and let 1 < p 6 2. Then the following
assertions hold:

(i) if X has the Φ-type p, then X has the R-type p;
(ii) if X has the Φ-cotype p′, then X has the R-cotype p′;
(iii) if X has the strong Φ-cotype p′, then X has the strong R-cotype p′.

Proof. (i) Let us show that for any xk ∈ X (k = 1, . . . , n) and any r > 0 (see (7.1))
one has∫ 1

0

∥∥∥∥ n∑
k=1

rk(ξ)xk

∥∥∥∥r dξ 6 (2M)r
∫ 1

0

dξ

∫
I

∥∥∥∥ n∑
k=1

rk(ξ)ϕk(t)xk

∥∥∥∥r dµ(t). (8.1)

It is easy to see that there is a sequence {εk(t)} of measurable functions on I that
assume the values ±1 and are such that∣∣∣∣∫

I

εk(t)ϕk(t) dµ(t)

∣∣∣∣ > 1

2M
(k = 1, 2, . . . ) (8.2)

(we recall that the functions ϕk can assume complex values). It follows from the
symmetry of the Rademacher functions that

∫ 1

0

∥∥∥∥ n∑
k=1

rk(ξ)εk(t)ϕk(t)xk

∥∥∥∥r dξ =

∫ 1

0

∥∥∥∥ n∑
k=1

rk(ξ)ϕk(t)xk

∥∥∥∥r dξ (8.3)

for any t ∈ I. Let λk =

(∫
I

εk(t)ϕk(t) dµ

)−1

; by virtue of (8.2), |λk| 6 2M . Using

the contraction principle, we obtain

∫ 1

0

∥∥∥∥ n∑
k=1

xkrk(ξ)

∥∥∥∥r dξ 6 (2M)r
∫ 1

0

∥∥∥∥ n∑
k=1

1

λk
xkrk(ξ)

∥∥∥∥r dξ
6 (2M)r

∫ 1

0

dξ

∫
I

∥∥∥∥ n∑
k=1

rk(ξ)εk(t)ϕk(t)xk

∥∥∥∥r dµ(t).

Applying the Fubini theorem and (8.3), we obtain (8.1). Assertion (i) follows from
(8.1).
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(ii) Let xk ∈ X (k = 1, . . . , n). By virtue of (7.1) and the contraction principle,
we have ∫ 1

0

∥∥∥∥ n∑
k=1

ϕk(t)rk(ξ)xk

∥∥∥∥p dξ 6Mp

∫ 1

0

∥∥∥∥ n∑
k=1

rk(ξ)xk

∥∥∥∥p dξ (8.4)

for any t ∈ I. On the other hand, for any binary irrational ξ ∈ [0, 1], by virtue of
our condition (see (7.5)), we obtain( n∑

k=1

‖xk‖p
′
)p/p′

6 Cp
∫
I

∥∥∥∥ n∑
k=1

ϕk(t)rk(ξ)xk

∥∥∥∥p dµ(t).

If we integrate this inequality with respect to ξ and the inequality (8.4) with respect
to t and apply the Fubini theorem, then we obtain( n∑

k=1

‖xk‖p
′
)1/p′

6 C′
(∫ 1

0

∥∥∥∥ n∑
k=1

rk(ξ)xk

∥∥∥∥p dξ)1/p

.

This proves assertion (ii).

(iii) This assertion follows from (i) by virtue of duality (see Theorem 7.8).
The theorem is thereby proved.

For the trigonometric system (Φ = T ), Theorem 8.2 is proved in the papers [50]
(the case p = 2), [47], [28].

As a result, we see that the Kwapién theorem (Theorem 5.6) assumes a more
general statement.

Theorem 8.3. Let Φ be a uniformly bounded orthonormal system. A Banach
space X is isomorphic to a Hilbert space if and only if X has the Φ-type 2 and the
Φ-cotype 2.

8.2. Systems with the Sidon property. Pisier [66] proved that the Rademacher
functions in the definitions of type and cotype (see § 5) can be replaced by an
arbitrary sequence of compact Abelian group characters belonging to the Sidon set.
In particular, this is valid for any lacuna subsystem {e2πinkt} (nk ∈ N, nk+1/nk >
q > 1).

Later on, a similar assertion was proved by Pelczyński [64] for topological Sidon
sets.

An increasing sequence {λk}∞k=1 of positive real numbers is called a topological
Sidon set if there is a compact set K ⊂ R and a constant C > 0 such that for any
complex numbers α1, . . . , αn one has

n∑
k=1

|αk| 6 C sup
t∈K

∣∣∣∣ n∑
k=1

αke
iλkt

∣∣∣∣.
An important example of a topological Sidon set is any positive sequence {λk}

satisfying the Hadamard condition

λk+1/λk > q > 1 (k = 1, 2, . . . )

(see [57], p. 185).
The following theorem was proved by Pelczyński [64].
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Theorem 8.4. Let {λk} ⊂ R be a topological Sidon set, and let [a, b] ⊂ R. Then
there is a constant C > 0 depending only on λ and b−a such that for any 1 6 p <∞
and each sequence {xj}nj=1 of elements of an arbitrary Banach space X one has

C−p
∫ 1

0

∥∥∥∥ n∑
k=1

rk(ξ)xk

∥∥∥∥p dξ 6 ∫ b

a

∥∥∥∥ n∑
k=1

eiλktxk

∥∥∥∥p dt 6 Cp ∫ 1

0

∥∥∥∥ n∑
k=1

rk(ξ)xk

∥∥∥∥p dξ.
(8.5)

Proof. We use the following assertion on topological Sidon sets: for any δ > 0 there
is a constant A (depending only on λ and δ) such that for any complex numbers
α1, . . . , αn one has

n∑
k=1

|αk| 6 A sup
|t|6δ

∣∣∣∣ n∑
k=1

αke
iλkt

∣∣∣∣ (8.6)

(see [57], p. 194). We put δ = (b− a)/4.
The key idea is as follows. We fix an n ∈ N. Let ξ ∈ [0, 1] be a binary irrational

point. We consider a linear functional defined on the linear span of the system
{eiλkt}nk=1 of functions. The functional assumes the value rk(ξ) on the element eiλkt

(k = 1, . . . , n). By virtue of (8.6) and the Hahn–Banach theorem, this functional
can be extended to a bounded linear functional on C[−δ, δ], with a norm not greater
than A. Therefore, by the Riesz theorem, there is a complex Borel measure µξ on
[−δ, δ] such that ‖µξ‖ 6 A and∫ δ

−δ
eiλks dµξ(s) = rk(ξ) (k = 1, . . . , n). (8.7)

We now choose a sequence {xk}nk=1 ⊂ X and put

f(t) =
n∑
k=1

eiλktxk, fξ(t) =
n∑
k=1

rk(ξ)eiλktxk (t ∈ R).

Then, by virtue of (8.7),

f(t) =
n∑
k=1

rk(ξ)eiλktxk

∫ δ

−δ
eiλks dµξ(s) =

∫ δ

−δ
fξ(t+ s) dµξ(s).

Using the Hölder inequality and the estimate ‖µξ‖ 6 A, we obtain

‖f(t)‖p 6 Ap−1

∫ δ

−δ
‖fξ(t+ s)‖p dνξ(s),

where νξ is the variation of the measure µξ. If we integrate with respect to t and
apply the Fubini theorem, then we obtain∫ b

a

‖f(t)‖p dt 6 Ap
∫ b+δ

a−δ
‖fξ(u)‖p du. (8.8)
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Finally, integrating with respect to ξ and using the contraction principle, we obtain
the second inequality in (8.5).

To prove the first inequality in (8.5), we replace [a, b] by [a+δ, b−δ] and f by fξ.
As above (see (8.8)), we obtain∫ b−δ

a+δ

‖fξ(t)‖p dt 6 Ap
∫ b

a

‖f(u)‖p du.

It remains to apply the inequality∫ 1

0

∥∥∥∥ n∑
k=1

rk(ξ)xk

∥∥∥∥p dξ 6 ( 2

|J |

)p ∫
J

‖fξ(t)‖p dt

(J = [a + δ, b − δ]), which we obtain in the same way as (8.1). The theorem is
thereby proved.

Corollary 8.5. Let {nk} be a sequence of positive integers satisfying the condition

nk+1

nk
> λ > 1 (k = 1, 2, . . . ). (8.9)

Next, suppose that Φ = {e2πinkt}, t ∈ [0, 1], X is a Banach space, and 1 < p 6 2.
Then

(i) X has the R-type p if and only if X has the Φ-type p;
(ii) X has the R-cotype p′ if and only if X has the Φ-cotype p′;
(iii) X has the strong R-cotype p′ if and only if X has the strong Φ-cotype p′.

We note that (iii) follows from (i) and Theorem 7.8.
Corollary 8.5 is a special case of the Pisier theorem [66]. Suppose that G is a

compact Abelian group with a dual group Γ and µ is a Haar measure on G.
A subset E ⊂ Γ is called a Sidon set if there is a constant C depending only on

E such that for any continuous complex-valued function f on G for which f̂(γ) = 0
for all γ ∈ Γ \E, the following inequality holds:∑

γ∈Γ

|f̂(γ)| 6 C ‖f‖∞. (8.10)

The least constant in (8.10) is called the Sidon constant of the set E.
The following theorem was proved by Pisier [66].

Theorem 8.6. Suppose that E = {γn} ⊂ Γ is a Sidon set. Then there is a
constant C0 depending only on the Sidon constant S(E) such that for any Banach
space X, any elements x1, . . . , xN ∈ X, and any p ∈ [1,∞) one has

C−1
0

(∫ 1

0

∥∥∥∥ N∑
n=1

xnrn(ξ)

∥∥∥∥p dξ)1/p

6
(∫

G

∥∥∥∥ N∑
n=1

xnγn

∥∥∥∥p dµ)1/p

6 C0

(∫ 1

0

∥∥∥∥ N∑
n=1

xnrn(ξ)

∥∥∥∥p dξ)1/p

.
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In the paper [2], a more general assertion is proved: there is a constant C
(depending only on S(E)) such that for all α > 0

C−1

∣∣∣∣{∥∥∥∥ N∑
n=1

xnrn

∥∥∥∥ > Cα}∣∣∣∣ 6 µ({∥∥∥∥ N∑
n=1

xnγn

∥∥∥∥ > α})

6 C
∣∣∣∣{∥∥∥∥ N∑

n=1

xnrn

∥∥∥∥ > C−1α

}∣∣∣∣.
The Pisier theorem was generalized in another sense by Pelczyński [64], who

proved that if {γj} and {σj} are, respectively, sequences of characters of compact
Abelian groups G and S such that for each sequence {aj} of scalars we have∥∥∥∥ ∞∑

j=1

ajγj

∥∥∥∥
∞
�
∥∥∥∥ ∞∑
j=1

ajσj

∥∥∥∥
∞
,

then for any 1 6 p <∞ and any sequence {xj} of elements of an arbitrary Banach
space X we have ∫

G

∥∥∥∥ ∞∑
j=1

xjγj

∥∥∥∥p dµ � ∫
S

∥∥∥∥ ∞∑
j=1

xjσj

∥∥∥∥p dν.
Remark 8.7. In the above-mentioned cases, we consider character sequences that
are Sidon sets. These special sets cannot be replaced by an arbitrary orthonormal
Sidon system.

An orthonormal uniformly bounded on [0, 1] system Φ = {ϕn} of functions is
called a Sidon system if there is a constantC > 0 such that for any scalars α1, . . . , αn
one has

n∑
k=1

|αk| 6 C
∥∥∥∥ n∑
k=1

αkϕk

∥∥∥∥
∞

(8.11)

(see [45], Russian p. 327).
Important examples of Sidon systems are the Rademacher system and the system

{e2πinkt} (nk ∈ N, nk+1/nk > q > 1).
Generally speaking, from the fact that a Banach space X has the R-type p, it

does not follow that X has the Φ-type p for any Sidon system Φ. The same is true
for the cotype.

Indeed, let Ψ = {ψn} be a uniformly bounded orthonormal system on [0, 1]. We
put

ϕn(t) =

{
ψn(2t), 0 6 t < 1/2,

rn(2t− 1), 1/2 6 t 6 1.

It is clear that Φ = {ϕn} is a uniformly bounded orthonormal system on [0, 1].
Since the Rademacher system is a Sidon system, it follows that Φ is a Sidon system
(see (8.11)). At the same time, it is easy to see (taking Theorem 8.2 into account)
that for any space X the Φ-type and the Ψ-type coincide. If we take, say, X =
Lq[0, 1] (2 < q <∞) and Ψ = T , then, by Proposition 5.9, the R-type of X is equal
to 2, and the Φ-type is precisely q′, and not better (see 7.7).
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8.3. The Bourgain theorem. In § 6 we have already cited the Bourgain theo-
rem [12] for characters of compact Abelian groups. Later, in the paper [13] Bourgain
obtained stronger results (complete analogues of the Hausdorff–Young inequalities)
for the Cantor group and the circle.

As above, we denote by T and W the trigonometric system and the Walsh
system, respectively.

Bourgain [13] proved the following theorem5.

Theorem 8.8. Let a Banach space X have a non-trivial R-type. Then X has a
non-trivial T -type and a non-trivial W -type.

This theorem implies that a partial converse of Theorem 8.3 is valid for Φ = T
and Φ = W . It is not known whether a similar assertion is true for an arbitrary com-
plete uniformly bounded orthonormal system (or for an abstract compact Abelian
group).

Theorems 8.1 and 8.8 (also see Remark 7.5) yield the following assertion.

Corollary 8.9. A Banach space X has a non-trivial Rademacher type if and only
if X has a non-trivial Fourier type.

The proof of Theorem 8.8 is based on Theorem 6.16 and is long and complicated.
However, here we give the complete proof (with some simplifications) of the theorem
for a Walsh system.

Proof of Theorem 8.8 (for a Walsh system). By Corollary 5.23, if X has a non-
trivial R-type, then X has the strong R-cotype p′ for some 1 < p 6 2. This means
that there is a constant C0 such that for any function f ∈ L2

X [0, 1] its Fourier
coefficients with respect to the Rademacher system satisfy the inequality( ∞∑

n=1

‖cn(f)‖p′
)1/p′

6 C0‖f‖L2
X

(8.12)

(see Definition 5.20 and Remark 5.21).
We put

ϕ(n) = sup

(∫ 1

0

∥∥∥∥∑
k∈Λ

xkwk(u)

∥∥∥∥2

du

)1/2

,

where the upper bound is taken over all subsets Λ ⊂ N with cardinality Λ# = n
and over all xk ∈ X with ‖xk‖ 6 1.

Let us prove that

ϕ(n) 6 C0d
−1/p′2dϕ(2−d+1n) +

2d√
n
ϕ(n) (8.13)

for any d ∈ N. Using the group property of the Walsh system, we have

J ≡
(∫ 1

0

∥∥∥∥∑
k∈Λ

xkwk(u)

∥∥∥∥2

du

)1/2

=

(∫ 1

0

· · ·
∫ 1

0

(
1

d

d∑
i=1

∫ 1

0

∥∥∥∥∑
k∈Λ

wk(ti)wk(u)xk

∥∥∥∥2

du

)
dt1 · · · dtd

)1/2

.

5We say that a Banach space X has a non-trivial Φ-type if there is a p, 1 < p 6 2, such that
X has the Φ-type p.
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For each point t ∈ Id (I ≡ [0, 1]) and any k ∈ Λ, there is a point ξt,k ∈ [0, 1] such
that

wk(ti) = ri(ξt,k), i = 1, . . . , d. (8.14)

We denote by Λν(t) (t ∈ Id, ν = 0, 1, . . . , 2d − 1) the set of all k ∈ Λ such that

ξt,k ∈ ∆
(d)
ν ≡ (ν2−d, (ν + 1)2−d). Then for i = 1, . . . , d (see (8.14)) we have

∑
k∈Λ

wk(ti)wk(u)xk = 2d
2d−1∑
ν=0

∫
∆

(d)
ν

ri(ξ) dξ
∑

k∈Λν(t)

xkwk(u). (8.15)

Let f(ξ) =
∑
k∈Λν (t) xkwk(u) for ξ ∈ ∆

(d)
ν (u and t are fixed). Then f is a step

function with values in X. Here the right-hand side of (8.15) is equal to6

2d
∫ 1

0

f(ξ)ri(ξ) dξ,

where the integral is interpreted in the sense of Bochner. Therefore, by virtue
of (8.12),

( d∑
i=1

∥∥∥∥∑
k∈Λ

wk(ti)wk(u)xk

∥∥∥∥p′)2/p′

6 C2
02d

2d−1∑
ν=0

∥∥∥∥ ∑
k∈Λν (t)

xkwk(u)

∥∥∥∥2

. (8.16)

Using the Hölder inequality and integrating with respect to u, we obtain

Jd(t) ≡
1

d

d∑
i=1

∫ 1

0

∥∥∥∥∑
k∈Λ

wk(ti)wk(u)xk

∥∥∥∥2

du (8.17)

6 C2
0d
−2/p′2d

2d−1∑
ν=0

∫ 1

0

∥∥∥∥ ∑
k∈Λν (t)

wk(u)xk

∥∥∥∥2

du

6 C2
0d
−2/p′22d max

ν

(
ϕ(Λν(t)#)

)2
.

We put

Ων =
{
t ∈ Id : Λν(t)# > 2−d+1n

}
, Ω =

2d−1⋃
ν=0

Ων .

Integrating the inequality (8.16) with respect to t and using the estimate (8.17) for
t ∈ Id \ Ω, we obtain

J 6 C0d
−1/p′2dϕ(2−d+1n) +

√
mesd Ωϕ(n). (8.18)

6This representation is one of the key points of the proof.
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It remains to estimate mesd Ω. Note that, by virtue of (8.14), for any fixed
ν = 0, 1, . . . , 2d − 1 one has

2dΛν(t)# =
∑
k∈Λ

d∏
i=1

(
1 + εiwk(ti)

)
≡ fd(t1, . . . , td),

where εi is the value of the function ri in the interval ∆
(d)
ν . We obtain an estimate

of mesd Ω by using the inequality

‖fd − n‖L2(Id) 6
√

2dn. (8.19)

Indeed, it readily follows from (8.19) and the Chebyshev inequality that

mesd Ων 6 mesd
{
t ∈ Id : |2dΛν(t)# − n| > n

}
6 2d

n
,

and hence, mesd Ω 6 22d/n. By (8.18), this implies (8.13). To prove the inequal-
ity (8.19), it suffices to use Parseval’s equality and known properties of binomial
coefficients; it is easy to see that

‖fd − n‖2L2(Id) = (2d − 1)n.

Now from (8.13) we derive the existence of a constant K such that

ϕ(n) 6 Kn1−ε for all n ∈ N, ε = (8C0)−p
′
. (8.20)

We put d = [(8C0)p
′
] + 1 and choose K so that the following inequality holds:

ϕ(n) 6 Kn1−ε for n 6 4d+1.

Let n > 4d+1. Suppose that (8.20) is valid for all numbers less than n. Then, by
virtue of (8.13),

ϕ(n) 6 C0d
−1/p′2dK(2−d+1n)1−ε +

1

2
ϕ(n)

and ϕ(n) 6 Kn1−ε according to the choice of d.
We now take 1 < s < 1

1−ε . Then there is a constant A ≡ As such that for any

finite sequence {xk} ⊂ X one has∥∥∥∥∑
k

xkwk

∥∥∥∥
L2
X

6 A
(∑

k

‖xk‖s
)1/s

. (8.21)

Indeed, without loss of generality we can assume that the sum on the right-hand

side of (8.21) is equal to 1. LetDj = {k : 2−j−1 < ‖xk‖ 6 2−j}; then D#
j 6 2(j+1)s.

Consequently, by virtue of (8.20), we have∥∥∥∥∑
k

xkwk

∥∥∥∥
L2
X

6
∞∑
j=0

∥∥∥∥∑
k∈Dj

xkwk

∥∥∥∥
L2
X

6 A.
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In the same way as in Theorem 7.14, it follows from (8.21) that for any sequence
{yk}Nk=0 ⊂ X one has( N∑

k=0

‖yk‖q
)1/q

6 A
∥∥∥∥ N∑
k=0

ykwk

∥∥∥∥
L2
X

(q = s′). (8.22)

We now proceed to the second part of the proof. First, we show that for any
bounded set Λ of non-negative integers and any set {xn}n∈Λ ⊂ X of vectors with
‖xn‖ 6 1

Q ≡
(∫ 1

0

∥∥∥∥∑
n∈Λ

xnwn(t)

∥∥∥∥q dt)1/q

6 C(Λ#)1/q′ . (8.23)

We can suppose that 0 /∈ Λ and Λ# = 2k (k > 2). Starting from (6.3), for each
j = 1, . . . , 2k − 1 we denote by Pj the set of ν, 1 6 ν 6 k, such that

wj(t) =
∏
ν∈Pj

rν(t), t ∈ [0, 1]. (8.24)

We also define P0 = ∅. Using the group structure of Walsh functions (see § 6), for
any fixed vector ξ = (ξ1, . . . , ξk) ∈ Ik we make 2k shifts in the integral (8.23) with
steps tj =

∑
ν∈Pj ξν (j = 0, 1, . . . , 2k − 1). Thus we obtain7

Q = 2−k/q
(2k−1∑
j=0

∫ 1

0

∥∥∥∥∑
n∈Λ

xnwn

(
t+

∑
ν∈Pj

ξν

)∥∥∥∥q dt)1/q

6 2−k/q
(2k−1∑
j=0

∥∥∥∥∑
n∈Λ

x̃n
∏
ν∈Pj

wn(ξν)

∥∥∥∥q)1/q

,

where x̃n ≡ x̃n(ξ) = xnwn(t0(ξ)) (t0(ξ) is a point of the interval [0, 1]).
We consider a polynomial in the Walsh system:

2k−1∑
j=0

yjwj(t) ≡
2k−1∑
j=0

∑
n∈Λ

x̃n
∏
ν∈Pj

wn(ξν)rν(t).

Using (8.22) and (8.24), we have

Q 6 2−k/q
(2k−1∑
j=0

‖yj‖q
)1/q

6 A 2−k/q
(∫ 1

0

(∑
n∈Λ

∣∣∣∣2
k−1∑
j=1

∏
ν∈Pj

rν(t)wn(ξν)

∣∣∣∣)2

dt

)1/2

.

It is easy to prove by induction that

2k−1∑
j=0

∏
ν∈Pj

aν =
k∏
ν=1

(1 + aν) (aν ∈ R).

7Let us explain that, taking into account a one-to one correspondence between the Cantor
group D and the interval [0, 1], here addition is interpreted as the addition of elements of the
group D.
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Therefore,

Q 6 A 2−k/q
(∫ 1

0

(∑
n∈Λ

∣∣∣∣ ∏
ν∈Pj

(1 + rν(t)wn(ξν))

∣∣∣∣)2

dt

)1/2

.

Squaring both sides of the inequality, integrating with respect to ξ in Ik, and taking
into account the orthogonality of the functions wn, we obtain:

Q2 6 A22−2k/q22k = A222k/q′ .

Hence, inequality (8.23) is proved.
At the last stage, we use a well-known technique. Let f =

∑∞
k=0 xkwk, where

{xk} ⊂ X is a finite sequence. We put

Bj =
{
k : x∗2j+1 < ‖xk‖ 6 x∗2j

}
, j = 0, 1, . . . .

Then B#
j 6 2j−1. Let fj(t) =

∑
k∈Bj xkwk(t). By (8.23), we obtain

‖fj‖LqX 6 C 2j/q
′
x∗2j .

Therefore, for any n ∈ N we have

f∗(2−n) 6
(

2n
∫ 2−n

0

f∗(u)q du

)1/q

6 C
( n∑
j=0

2jx∗2j + 2n/q
∞∑
j=n

2j/q
′
x∗2j

)
.

It readily follows from this estimate that for any 1 < r < q′ one has

‖f‖
Lr
′,r
X

6 Cr‖{xk}‖lrX . (8.25)

By virtue of (2.6), this implies that the space X has the W -type r. The proof of
the theorem is complete.

Remark 8.10. The inequality (8.21) derived at the first stage plays an important
role in the proof. We note that by means of the same method one can prove a
similar inequality with the exponent 2 on the left-hand side of (8.21) replaced by
any exponent α > 2 (see [12]). Generally speaking, this yields the decrease of the
exponent s on the right-hand side. But the method mentioned does not allow one
to take the value s = α′ and thus complete the proof of Theorem 8.8 (for the Walsh
system).

Inequality (8.22) contains the special case of Theorem 6.16 (for the group D).
For an arbitrary compact Abelian group, Bourgain in addition uses a theorem due
to Edgar [25]. Otherwise, the proof is almost the same as in the case of a Walsh
system.

Remark 8.11. The number r in (8.27) (the W -type of the space X) is defined by
the condition

1 < r <
1

1− ε , ε = (8C0)−p
′
.
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Here p′ is the strong R-cotype of X and C0 is the corresponding constant in (8.12).
We recall that if X has non-trivial type and cotype q > 2, then X has the strong
cotype q (see § 5). Here we must note that the W -type of the space X is not
uniquely determined by its Rademacher type and cotype. Indeed, let us consider
the following example (based on a scheme due to Bourgain [13]).

Let 1 < p < 2. We say that a sequence b = {bk}∞k=0 of real numbers belongs to
the space F(Lp) if there is a function f ∈ Lp[0, 1] such that {bk} is the sequence of
its Fourier coefficients with respect to the Walsh system. We put ‖b‖F(Lp) = ‖f‖Lp.
By the Hausdorff–Young theorem, ‖b‖lp′ 6 ‖b‖F(Lp). Further, for any θ ∈ (0, 1) we
write

Xθ = [lp
′
,F(Lp)]θ.

In § 9 we shall show that the spaces lp
′

and Lp have the W -type p. Since the
space F(Lp) is isomorphic to Lp, we see that this space also has the W -type p.
Consequently, by Theorem 7.16, the space Xθ has the W -type p. Let us show
that Xθ does not have the W -type r for r > p. Assume the opposite. For each
n = 0, 1, . . . we denote by b(n) the sequence that has only one non-zero term

b
(n)
n = 1. Let fN =

∑2N−1
n=0 b(n)wn so that fN (t) = {wn(t)}2N−1

n=0 . Using the
inequality (see [79], 1.9.3)

‖fN(t)‖Xθ 6 Cθ‖fN(t)‖1−θ
lp
′ ‖fN(t)‖θF(Lp)

and applying the Hölder inequality, we obtain

‖fN‖LrXθ 6 C 2N/p
′
.

On the other hand, ‖b(n)‖Xθ = 1. Using our assumption, by which Xθ has the
W -cotype r′ and (2N−1∑

n=0

‖b(n)‖r′Xθ
)1/r′

6 C‖fN‖LrXθ ,

we obtain 2N/r
′ 6 C 2N/p

′
. This implies that r 6 p.

Furthermore, with the interpolation and reasoning similar to the above one can
obtain

pXθ =

(
1− θ

2
+
θ

p

)−1

, qXθ =

(
1− θ
p′

+
θ

2

)−1

.

As θ changes from 0 to 1, the R-type of Xθ runs from 2 to p, and the R-cotype runs
from p′ to 2. At the same time, the W -type of Xθ is p for any θ. For θ = 1/2 we
obtain the optimal values 4p/(p+ 2) of R-type and 4p′/(p′ + 2) of R-cotype; they
are self-conjugate numbers.

Let us note that a similar example for the trigonometric system is considered
in [28].
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§9. Theorems of Hardy and Paley for vector-valued functions

LetH1,at be the atomic Hardy space of 2π-periodic functions on R. The following
classical inequalities hold: if f ∈ H1,at, then

+∞∑
n=−∞

|f̂(n)|
|n|+ 1

6 c‖f‖1,at (the Hardy inequality), (9.1)

( ∞∑
k=0

|f̂(±2k)|2
)1/2

6 c‖f‖1,at (the Paley inequality), (9.2)

where the f̂(n) are the Fourier coefficients of the function f .
We consider conditions on a Banach space X under which these inequalities

remain valid for X-valued functions.
Let X be a complex Banach space. The Fourier coefficients of a 2π-periodic

function f ∈ L1
X(−π, π) are defined by the formula

f̂(n) =
1

π

∫ π

−π
f(t)e−int dt, n ∈ Z.

Let ∆ ⊂ R be an interval of length |∆| 6 2π. Each 2π-periodic function
a ∈ L∞X (R) with values in X such that

(1) a(t) = 0 for all t /∈ ∆ + 2kπ (k ∈ Z);
(2) ‖a‖L∞X 6 |∆|

−1;

(3)

∫ π

−π
a(t) dt = 0

is called an X-atom concentrated in ∆.
Each continuous function a(t) ≡ x0, where x0 ∈ X and ‖x0‖ 6 (2π)−1, is also

called an X-atom.
It is obvious that for any X-atom a one has∫ π

−π
‖a(t)‖ dt 6 1.

If a is an X-atom concentrated in the interval ∆, then, as is easy to see,

‖â(n)‖ 6 1

8π
|n| |∆| (n ∈ Z). (9.3)

We say that a 2π-periodic function f ∈ L1
X(−π, π) belongs to the atomic Hardy

space H1,at
X if there are X-atoms ak and coefficients λk ∈ C (k = 1, 2, . . . ) such that

lim
n→∞

∥∥∥∥f(t)−
n∑
k=1

λkak(t)

∥∥∥∥ = 0 for almost all t ∈ R and
∞∑
k=1

|λk| <∞. (9.4)

The norm in the space H1,at
X is defined by

‖f‖H1,at
X
≡ ‖f‖1,at = inf

∞∑
k=1

|λk|,
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where the lower bound is taken over all such representations of f . It is clear that

‖f‖L1
X
6 ‖f‖H1,at

X
for all f ∈ H1,at

X . (9.5)

On the other hand, if f ∈ LpX(−π, π) (1 < p <∞), then f ∈ H1,at
X and

‖f‖H1,at
X
6 Cp ‖f‖LpX (9.6)

(this follows from the boundedness of the maximum Hardy–Littlewood operator for
vector-valued functions (see [70]).

Fefferman proved the following theorem describing the (H1,at − l1)-multipliers
(see [73]).

Theorem 9.1. Let m = {mj}j∈Z be a sequence of complex numbers and

µ(m) ≡ sup

{ ∞∑
j=−∞

|mj f̂(j)| : ‖f‖1,at 6 1

}
, (9.7)

where the upper bound is taken over all functions f ∈ H1,at with ‖f‖1,at 6 1. Then
µ(m) <∞ if and only if

σ(m) ≡ |m0|+ sup
N>1

( ∞∑
k=1

((k+1)N−1∑
|j|=kN

|mj |
)2)1/2

<∞. (9.8)

Moreover, there is a constant C > 0 such that

C−1σ(m) 6 µ(m) 6 Cσ(m).

Note that this theorem implies inequalities (9.1) and (9.2).
It is obvious that each sequence satisfying (9.8) belongs to l2. Using the Feffer-

man duality theorem [26], we obtain the following result

Corollary 9.2. Let {mj}j∈Z be a sequence of complex numbers satisfying condi-
tion (9.8). Then the function

f(t) =
+∞∑
j=−∞

mje
ijt (9.9)

belongs to the space BMO (bounded mean oscillation).

Further, using another characterization of (H1 − l1)-multipliers ([24], p. 105),
we see that if mj > 0 (j ∈ Z), then the condition (9.8) is also necessary for the
function (9.9) to belong to BMO.

Now let 1 6 p 6 2. Following the paper [9], we denote by FMp the space of all
sequences m = {mj}+∞j=−∞ of complex numbers such that

σp(m) ≡ |m0|+ sup
N>1

( ∞∑
k=1

((k+1)N−1∑
|j|=kN

|mj |
)p)1/p

<∞. (9.10)

It is clear that FM1 = l1 and

FMp ⊂ FMr for 1 6 p < r 6 2. (9.11)

The next theorem is proved in the paper [9].
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Theorem 9.3. Let a Banach space X have a Fourier type p ∈ [1, 2]. Then there is
a constant C > 0 such that for any sequence m = {mj} ∈ FMp and any function

f ∈ H1,at
X

+∞∑
j=−∞

|mj | ‖f̂(j)‖ 6 Cσp(m)‖f‖H1,at
X

. (9.12)

Proof. It suffices to prove (9.12) in the case where f is a X-atom a concentrated
in the interval (−δ, δ) (0 < δ < π). We can only consider â(j) for positive j (since
a(−t) is also an X-atom). Thus, we must prove that

∞∑
j=1

|mj | ‖â(j)‖ 6 Cσp(m). (9.13)

We choose an integer s > 0 from the condition π 2−s−1 6 δ < π 2−s. Let N = 2s.
Then

N∑
j=1

j|mj | 6
s−1∑
k=0

2k+1
2k+1−1∑
j=2k

|mj | 6 2Nσp(m).

Therefore, by (9.3), we obtain

N−1∑
j=1

|mj | ‖â(j)‖ 6 1

2
σp(m).

Next, for any kN 6 j < (k + 1)N (k ∈ N) we have

‖â(j)‖ 6 1

N

(k+1)N−1∑
ν=kN

‖â(ν)‖+

(k+1)N−1∑
ν=kN

‖â(ν)− â(ν + 1)‖

6 N1/p−1

((k+1)N−1∑
ν=kN

‖â(ν)‖p′
)1/p′

+N1/p

((k+1)N−1∑
ν=kN

‖b̂(ν)‖p′
)1/p′

,

where b(t) = a(t)(1− e−it). Using the Hölder inequality and our assumption on X
having the Fourier type8 p, we readily obtain

∞∑
j=N

|mj | ‖â(j)‖ 6 CN1/p

(
1

N
‖a‖p + ‖b‖p

)
6 C′σp(m).

This completes the proof of (9.13).

Definition 9.4. We say that a Banach space X possesses the Hardy property if
there is a constant C > 0 such that

+∞∑
n=−∞

|f̂(n)|
|n|+ 1

6 C‖f‖H1,at
X

(9.14)

for any function f ∈ H1,at
X .

The following theorem holds.

8We recall that the Fourier type p is equivalent to the T -type p (see § 7).



502 J. Garcia-Cuerva, K. S. Kazarian, V. I. Kolyada, and J. L. Torrea

Theorem 9.5. For a Banach space X to possess the Hardy property, it is necessary
and sufficient that X have a non-trivial Rademacher type.

We recall that by Corollary 8.9 the space X has a non-trivial Rademacher type
if and only if X has a non-trivial Fourier type. The sufficiency in Theorem 9.5 (due
to Bourgain [13]) follows directly from Theorem 9.3. The proof of the necessity
reduces to the fact that the space L1(T) does not possess the Hardy property
(see [9], Proposition 2.6).

Remark 9.6. Let 1 < p 6 2. We say that a Banach space X possesses the prop-
erty (Fp) if for any sequence m ∈ FMp and any function f ∈ H1,at

X we have

{mj‖f̂(j)‖} ∈ l1. It would be interesting to give a full description of Banach spaces
that have this property. By Theorem 9.3, if X has the Fourier type p, then X also
has the property (Fp). On the other hand, in the paper [9] it is proved that if X
has the property (Fp), then X∗ has the Rademacher type p; by Proposition 5.22,
this is equivalent to the fact that X has the strong R-cotype p′. At the same time,
the Fourier type p is equivalent to the strong T -cotype p′ (see § 7). Thus, there is
a gap between necessary and sufficient conditions.

We now recall the definition of a BMOX . Let f ∈ L1
X(−π, π) be a 2π-periodic

function. We put

‖f‖∗ = sup
1

|∆|

∫
∆

‖f(t)− f∆‖ dt,

where f∆ =
1

|∆|

∫
∆

f(u) du and the upper bound is taken over all intervals ∆ ⊂ R

with |∆| 6 2π. The space BMOX consists of all functions f ∈ L1
X such that

‖f‖∗ <∞.
The Fefferman theorem on the duality between H1 and BMO holds in part for

vector-valued functions. Namely, a space BMOX∗ is isomorphic to a subspace of a
space (H1,at

X )∗ (see [9]).
However, with the use of Theorem 9.3 we easily derive an analogue of Corol-

lary 9.2.

Theorem 9.7. Let a Banach space X have a Fourier type p ∈ (1, 2]. Suppose that
a sequence {xn}n∈Z ⊂ X is such that {‖xn‖} ∈ FMp. Then the series

+∞∑
n=−∞

xne
int (9.15)

converges in Lp
′

X(−π, π) and its sum belongs to BMOX .

Proof. The first assertion follows from the fact that FMp ⊂ lp and X has the
Fourier type p.

Next, we fix an interval ∆ with |∆| 6 2π; suppose that f∆ = 0. Using the
Hahn–Banach theorem, it is easy to see that there is a strongly measurable function
g : [−π, π]→ X∗ such that for any t ∈ [−π, π]

〈f(t), g(t)〉 = ‖f(t)‖X and ‖g(t)‖X∗ = 1.
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We put

a(t) =
1

|∆|χ∆(t)[g(t)− g∆].

Then a is a X∗-atom. Here (see (2.13))

1

|∆|

∫
∆

‖f(t)‖ dt =
1

|∆|

∫
∆

〈f(t), g(t)− g∆〉 dt

=

∫ π

−π
〈f(t), a(t)〉 dt = 2π

+∞∑
n=−∞

〈xn, â(n)〉

6 2π
+∞∑

n=−∞
‖xn‖X‖â(n)‖X∗ .

Since X has the Fourier type p, we see that, by Theorem 6.3, the space X∗ also
has the Fourier type p. Therefore, by applying the inequality (9.12) we complete
the proof of the theorem.

Corollary 9.8. Let X have a non-trivial Fourier type. If xn ∈ X (n ∈ Z) and

‖xn‖ = O

(
1

|n|+ 1

)
, (9.16)

then the sum of the series (9.15) belongs to BMOX .

Indeed, it follows from (9.16) that {‖xn‖} ∈ FMp for any p ∈ (1, 2].
Below we consider classes of Banach spaces for which inequalities of Paley type

hold (see (9.2)).
We note that in inequalities of the form (9.1) or (9.2) it suffices to take only

coefficients f̂(n) for n > 0 (since if a function f ∈ H1,at, then also f(−t) ∈ H1,at,
and the H1,at-norms of these functions are equal).

We recall that a sequence {nk}k>1 of positive integers is called a λ-lacuna in the
sense of Hadamard (λ > 1) if

n1 = 1,
nk+1

nk
> λ (k = 1, 2, . . . ). (9.17)

Definition 9.9. We say that a Banach space X possesses the Pq-property
(2 6 q < ∞) if for any λ > 1 there is a constant C > 0 such that for each

λ-lacuna sequence {nk} and each function f ∈ H1,at
X one has

( ∞∑
k=1

‖f̂(nk)‖q
)1/q

6 C‖f‖H1,at
HX

. (9.18)

This concept is studied in the paper [9] for q = 2. In particular, the following
theorem is proved in [9] for q = 2; in the general case q > 2, the proof is similar.
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Theorem 9.10. A Banach space X possesses the Pq-property (2 6 q <∞) if and
only if X has the strong R-cotype q.

Proof. First we suppose that X has the strong R-cotype q. By Proposition 5.22,
this implies that X∗ has the R-type p = q′.

Let λ > 1. It suffices to prove that there is a constant Cλ such that for
any λ-lacuna sequence {nk} and any atom a concentrated in the interval (−δ, δ)
(0 < δ 6 π), the inequality ( ∞∑

k=1

‖â(nk)‖q
)1/q

6 Cλ (9.19)

is valid. Let π/nν+1 < δ 6 π/nν . Then, by virtue of (9.3) and (9.17),( ν∑
k=1

‖â(nk)‖q
)1/q

6 1

4nν

ν∑
k=1

nk 6
λ

4(λ− 1)
. (9.20)

Next, we fix a positive integer N > ν and choose vectors x∗k ∈ X∗ (ν < k 6 N) so
that the relations 〈â(nk), x∗k〉 > 0,

N∑
k=ν+1

‖x∗k‖p = 1 and

( N∑
k=ν+1

‖â(nk)‖q
)1/q

=
N∑

k=ν+1

〈â(nk), x∗k〉 (9.21)

hold. Let g(t) =
∑N
k=ν+1 x

∗
ke
inkt. We have

N∑
k=ν+1

〈â(nk), x∗k〉 =
1

2π

∫ δ

−δ
〈a(t), g(t)〉 dt

6 1

4πδ

∫ δ

−δ
‖g(t)‖X∗ dt =

1

4π

∫ π

−π
‖g(δs)‖X∗ ds.

By Theorem 8.4, there is a constant C such that the latter integral does not exceed

C

∫ 1

0

∥∥∥∥N−ν+1∑
j=1

x∗ν+jrj(τ)

∥∥∥∥
X∗

dτ.

Since X∗ has the R-type p, using (9.21) we have( N∑
k=ν+1

‖â(nk)‖q
)1/q

6 C′.

Combining this inequality with (9.20), we obtain (9.19).
Now suppose that X has the Pq-property. Let

g(t) =
N∑
k=1

x∗k e
i2kt, x∗k ∈ X∗.
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By virtue of Proposition 2.6,

‖g‖L2
X∗

= sup

∣∣∣∣∫ π

−π
〈f(t), g(t)〉 dt

∣∣∣∣,
where the upper bound is taken over all functions f ∈ L2

X with unit norm. For any
such function f , by (9.18) and (9.6) we have

∣∣∣∣∫ π

−π
〈f(t), g(t)〉 dt

∣∣∣∣ =

∣∣∣∣ N∑
k=1

〈f̂(2k), x∗k〉
∣∣∣∣

6
( N∑
k=1

‖f̂(2k)‖q
)1/q( N∑

k=1

‖x∗k‖p
)1/p

6 C
( N∑
k=1

‖x∗k‖p
)1/p

.

It follows that X∗ has the R-type p, and hence, X has the strong R-cotype q
(see Proposition 5.22). The theorem is proved.

In particular, Theorem 9.10 contains a description of Banach spaces X such that
the Paley inequality

( ∞∑
k=0

‖f̂(2k)‖2
)1/2

6 C‖f‖1,at, f ∈ H1,at
X ,

holds. These are the only spaces with the strong R-cotype 2.

In connection with the Paley inequalities (9.2), Hardy and Littlewood considered
a more general question on the description of (H1 − lq)-multipliers (2 6 q < ∞).
They proved the following theorem (see [24], p. 103).

Theorem 9.11. Let m = {mj}j>0 be a sequence of complex numbers and

2 6 q < ∞. For a sequence {mj f̂(j)} to belong to lq for each function f ∈ H1,
it is necessary and sufficient to have

N∑
k=1

kq |mk|q = O(Nq). (9.22)

We note that the Pq-property can be described equivalently in terms of multi-
pliers. Namely, it is easy to see that the following proposition holds.

Proposition 9.12. Let X be a Banach space and 2 6 q <∞. Then the following
conditions are equivalent:

(i) X has the Pq-property;

(ii) for any function f ∈ H1,at
X and any sequence {mj}j>0 satisfying (9.22), the

sequence {mj‖f̂(j)‖} belongs to lq.
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§10. Estimates for Fourier transforms of smooth functions

It is well known that additional conditions on the smoothness of a periodic
function (in an integral or uniform metric) ensure a certain degree of convergence
to zero of its Fourier coefficients. The classical result is the Bernstein theorem
(see [4], Russian p. 608):

If f ∈ Lipα (α > 1
2 ), then the Fourier series of the function f converges absolutely.

In this section we consider similar results for vector-valued functions. The results
are given in terms of Fourier transforms; it is clear that the corresponding assertions
also hold for Fourier coefficients of periodic functions.

For vector-valued functions on Rn the concepts of a modulus of continuity, gen-
eralized derivative, Sobolev and Besov spaces are defined as in the scalar case (see
§ 4).

The Fourier transform of a function f is denoted by F(f).
We start with the estimate for a rearrangement of the Fourier transform.

Lemma 10.1. Let a Banach space X have a Fourier type p ∈ [1, 2]. Then for any
function f ∈ LpX(Rn) and any r ∈ N one has

F(f)∗(t) 6 C t1/p−1ωr(f ; t−1/n)p (t > 0). (10.1)

Proof. We write

ϕ
(k)
h (x) =

r∑
j=0

(−1)r−j
(
r

j

)
f(x+ jhek) (h > 0; k = 1, . . . , n),

where the ek are the unit coordinate vectors in Rn. Let E ⊂ Rn be a set of measure
t such that

|F(f)(ξ)| > F(f)∗(t) for any ξ ∈ E.
There is a subset Q ⊂ E with |Q| > t/(2n) and an index k = k(t), 1 6 k 6 n, such
that |ξk| > t1/n/2 for all ξ ∈ Q. We have

F(ϕ
(k)
h )(ξ) = F(f)(ξ)σ(hξk), where σ(u) = (e2πiu − 1)r.

We put δ = rt−1/n. It is easy to see that

1

δ

∫ δ

0

|σ(hξk)| dh > 1

2
(ξ ∈ Q)

and

F(f)∗(t) 6 4n

t

1

δ

∫ δ

0

dh

∫
Q

|F(ϕ
(k)
h )(ξ)| dξ. (10.2)

Since X has the Fourier type p, we have∫
Q

|F(ϕ
(k)
h )(ξ)| dξ 6 |Q|1/p

(∫
Q

|F(ϕ
(k)
h )(ξ)|p′ dξ

)1/p′

6 C|Q|1/p‖ϕ(k)
h ‖p 6 Ct1/p‖ϕ

(k)
h ‖p.

By virtue of (10.2), this yields (10.1). For p = 1, the estimate (10.1) follows directly
from (10.2). The lemma is proved.

Using Lemma 10.1, we obtain a new proof of the following result [28], [47].
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Theorem 10.2. Suppose that a Banach space X has a Fourier type p ∈ [1, 2]. Let
α > 0, 1 6 θ < ∞ and 1/q = 1/p′ + α/n. Then for any function f ∈ Bαp,θ(Rn,X)

the Fourier transform F(f) belongs to Lq,θX (Rn); moreover

‖F(f)‖Lq,θX 6 C
(∫ ∞

0

[t−αωr(f ; t)p]
θ dt

t

)1/θ

(r > α, r ∈ N). (10.3)

In particular, an analogue of the Bernstein–Szasz theorem holds [75].

Corollary 10.3. If X has a Fourier type p ∈ [1, 2], then for any function

f ∈ Bn/pp,1 (Rn,X) one has ∫
Rn
|F(f)(ξ)| dξ <∞.

In the paper of König [47], for the periodic case examples are given showing
that Theorem 10.2 cannot be improved. In particular, even in the case X = C
the assertion of this theorem is optimal for Lorentz spaces. On the other hand,
the condition on the modulus of continuity cannot be weakened. This holds even
for Corollary 10.3: as was shown for n = 1 by Ul’yanov [80], for any modulus of
continuity ω(δ) such that∫ 1

0

ω(δ)

δ1+1/p
dδ =∞ (1 < p <∞)

there is an essentially unbounded function f ∈ Lp with ωp(f ; δ) = O(ω(δ)).
Further, we give the following example.

Example 10.4. Let 1 < p 6 2 and 1 < r < p. Then there is a Banach space X

such that X has the Fourier type r and there is a function f ∈ Bn/pp,1 (Rn,X) such
that ∫

Rn
|F(f)(ξ)| dξ =∞. (10.4)

Indeed, for simplicity we take n = 1 and set X = Lr
′
(R). Then X has the Fourier

type r (see Proposition 4.4). We define a function f : R→ X by the formula

f(t)(y) =
1

1 + |y| e
2πity ϕ(t),

where ϕ ∈ C∞0 (R), ϕ > 0, and

∫ 1

0

|F(ϕ)(ξ)|r′ dξ = 1. It is easy to see that for any

t ∈ R and h ∈ (0, 1] one has

‖f(t)− f(t+ h)‖X 6 Ch1−1/r′ϕ(t) + |ϕ(t)− ϕ(t+ h)|.
Therefore, f ∈ B1/p

p,1 (R,X). On the other hand,

F(f)(ξ)(y) =
1

1 + |y| F(ϕ)(ξ − y),

whence

‖F(f)(ξ)‖X >
1

ξ
for ξ > 1,

and we arrive at (10.4).

Let us next cite another useful estimate for the rearrangement of the Fourier
transform.



508 J. Garcia-Cuerva, K. S. Kazarian, V. I. Kolyada, and J. L. Torrea

Lemma 10.5. Let a Banach space X have a Fourier type 1 < p 6 2. Then for
any function f ∈ L1

X(Rn) one has(∫ t

0

(F(f)∗(u))p
′
du

)1/p′

6 t1/p′
∫ τ

0

f∗(s) ds+ C

(∫ ∞
τ

f∗(x)p ds

)1/p

(10.5)

for any t, τ > 0.

In the scalar case (p = 2), this lemma is proved in the papers [42], [60]. In
the vector case, the proof remains the same. Namely, we choose a set Q ⊂ Rn of
measure τ such that{

t : ‖f(t)‖ > f∗(τ)
}
⊂ Q ⊂

{
t : ‖f(t)‖ > f∗(τ)

}
.

Let g = fχQ, h = f − g. Then

‖g‖1 =

∫ τ

0

f∗(s) ds, ‖h‖p =

(∫ ∞
τ

f∗(s)p ds

)1/p

.

We have

F(f)∗(u) 6
∫ τ

0

f∗(s) ds+ F(h)∗(u) (u > 0).

Since X has the Fourier type p, we have (10.5).
By means of Lemma 10.5 we easily derive the following theorem, proved in

another way in [47].

Theorem 10.6. Suppose that a Banach space X has a Fourier type p0 ∈ (1, 2]. Let
r ∈ N, 1 < p < p0, and 1/q = 1/p′ + r/n. Then for any function f ∈ W r

p (Rn,X)

the Fourier transform F(f) belongs to Lq,pX (Rn), where

‖F(f)‖Lq,pX 6 c
n∑
j=1

‖Dr
jf‖LpX . (10.6)

Proof. Note that

|F(f)(ξ)| = (2π)−r|ξ|−r
( n∑
j=1

|F(gj)(ξ)|2/r
)r/2

,

where gj(x) = Dr
jf(x). Using inequalities (2.2) and (2.3), we obtain

F(f)∗(t) 6 C t−r/n
n∑
j=1

F(gj)
∗
(
t

2n

)
.

Applying Lemma 10.5 to the functions gj, we obtain(∫ t

0

[F(f)∗(u)ur/n]p
′
0 du

)1/p′

6 C
n∑
j=1

(
t1/p

′
0

∫ τ

0

g∗j (u) du+

(∫ ∞
τ

g∗ p0

j (u) du

)1/p0
)

(10.7)
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for any t, τ > 0. Using this estimate (for τ = 1/t) and Lemma 2.2, we obtain
inequality (10.6). The theorem is proved.

Remark 10.7. For p = p0, inequality (10.6) does not hold (see [47]). In this case
the estimate

‖F(f)‖
Lq,p

′
X

6 C
n∑
j=1

‖Dr
jf‖LpX (10.8)

is valid (it readily follows from (10.7) for τ = 0). This estimate cannot be improved
by substituting a smaller number for the index p′ on the left-hand side [47].

We now consider the case p = 1 in Theorem 10.6. This case is of special interest
because it is related to integrability conditions for the Fourier transform on Rn.
We note that this case is included in the statement of the corresponding theorem
in [47] (Theorem 4, p. 223); however, the proof cited in [47] does not hold for
p = 1. Moreover, Theorem 10.6 is not valid for p = n = 1. For example, it is well
known that the Fourier series of an absolutely continuous function does not have
to converge absolutely: an example is given by the function

f(x) =
∞∑
n=2

sinnx

n lnn
.

Nevertheless, for p = 1, n > 2 Theorem 10.6 is true; however, even for scalar
functions this case is much more complex (in particular, it cannot be exhausted by
applying Lemma 10.5).

The following theorem (an analogue of the Hardy inequality) holds for scalar
functions. It was proved by Bourgain [14] for the periodic case, and by Pelczyński
and Wojciechowski [65] for the Fourier transform.

Theorem 10.8. Let f ∈W r
1 (Rn) (n > 2, r ∈ N). Then∫

Rn
|F(f)(ξ)| |ξ|r−n dξ 6 C

∑
|s|=r

‖Dsf‖1. (10.9)

In [46] it was proved that a more precise inequality is valid:9

‖F(f)‖n/r,1 6 C
n∑
j=1

‖Dr
jf‖1 (1 6 r 6 n, n > 2) (10.10)

(thus, (10.6) also holds for p = 1, X = C). In [46] the author notes that the
inequality (10.10) also remains valid for functions assuming values in a Banach
space X if X has a non-trivial Fourier type 1 < p 6 2. We note that this is not
true without additional conditions on X, as is seen from the following example.

9In comparison with (10.9), there are only unmixed derivatives on the right-hand side of (10.10).
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Example 10.9. Let X = L∞(Rn), ϕ ∈ C∞0 (Rn), ϕ > 0, and F(ϕ)(0) = 1. We put

f(t)(y) =
1

1 + |y|n e
2πit·yϕ(t), f : Rn → X.

It is easy to see that f ∈Wn
1 (Rn;X). Then

F(f)(ξ)(y) =
F(ϕ)(ξ − y)

1 + |y|n .

Therefore,

‖F(f)(ξ)‖X >
F(ϕ)(0)

1 + |ξ|n =
1

1 + |ξ|n

and F(f) /∈ L1(Rn).

We now note that an analogue of Theorem 10.6 also holds for Sobolev–Liouville
fractional spaces. The spaceLαp (Rn,X) is defined as the set of all functions f : Rn→X
representable in the form of the convolution

f(x) =

∫
Rn
Gα(x− y) g(y) dy,

where g ∈ LpX(Rn) and Gα is a Bessel kernel (see [74], Ch. 5). Here, by definition,

‖f‖Lαp (Rn,X) = ‖g‖LpX .

Taking into account the fact that

F(Gα)(ξ) = (1 + 4π2|ξ|2)−α/2

and using Lemma 10.5, we readily obtain the following result.

Theorem 10.10. Suppose that a Banach space X has a Fourier type p0 ∈ (1, 2].
Let α > 0, 1 < p < p0, and 1/q = 1/p′+α/n. Then for any function f ∈ Lαp (Rn,X)

we have F(f) ∈ Lq,pX (Rn); moreover,

‖F(f)‖Lq,pX 6 C ‖f‖Lαp (Rn,X).
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[8] J. Berg and J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin–New
York 1976; Russian transl., Mir, Moscow 1980.
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