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MAXIMAL OPERATORS FOR THE HOLOMORPHIC
ORNSTEIN–UHLENBECK SEMIGROUP

J. GARCÍA-CUERVA, G. MAUCERI, S. MEDA, P. SJÖGREN
and J. L. TORREA

Abstract

For each p in [1,∞) let Ep denote the closure of the region of holomorphy of the Ornstein–Uhlenbeck
semigroup {Ht : t > 0} on Lp with respect to the Gaussian measure. Sharp weak type and strong type
estimates are proved for the maximal operator f 7→ H∗pf = sup{|Hzf| : z ∈ Ep} and for a class of related
operators. As a consequence, a new and simpler proof of the weak type 1 estimate is given for the
maximal operator associated to the Mehler kernel.

1. Introduction

In this paper we investigate the boundedness on Lp spaces of a class of maximal
operators associated to the holomorphic Ornstein–Uhlenbeck semigroup on finite-
dimensional Euclidean space. We shall be working with the Gaussian measure γ
on Rd whose density with respect to Lebesgue measure is γ0(x) = π−d/2e−|x|2 . The
Ornstein–Uhlenbeck semigroup is the symmetric diffusion semigroup {Ht : t > 0}
on (Rd, γ) whose integral kernel ht(x, y) with respect to the Gaussian measure
is the Mehler kernel; see (2.2). The function t 7→ ht has analytic continuation
to a distribution-valued function z 7→ hz , which is holomorphic in Re z > 0 and
continuous in Re z > 0. Let {Hz : Re z > 0} denote the corresponding family of
continuous operators from D(Rd) to D′(Rd).

J. P. Epperson proved in [2] that the operatorHz extends to a bounded operator
on Lp(γ) if and only if z is in the closed iπ-periodic set Ep defined by

{x+ iy ∈ C : | sin y| 6 tanφp sinh x}, φp = arccos |2/p− 1|. (1.1)

The map z 7→ Hz from Ep to the space of bounded operators on Lp(γ) is continuous
in the strong operator topology and its restriction to the interior of Ep is analytic.

The aim of this paper is to analyse the boundedness properties in Lp(γ) of the
maximal operator

H∗pf(x) = sup
z∈Ep

|Hzf(x)|.

By the Banach principle (see [5]), it is well known that this maximal operator is
a key tool to investigate the almost everywhere convergence of Hzf to Hz0

f as
z tends to z0, for f in Lp(γ). We remark that, in particular, H∗1 is the maximal
operator for the Mehler kernel, which is known to be of weak type 1 and of strong
type p for each p > 1. The strong type result for this case is a consequence of the

Received 8 September 2001.

2000 Mathematics Subject Classification 42B25, 47D03.

The authors have received support from the European Commission via the TMR Harmonic Analysis
network.



220 j. garcía-cuerva et al.

Littlewood–Paley–Stein theory for diffusion semigroups [9]; the weak type estimate
is due to B. Muckenhoupt [7] in the one-dimensional case and to P. Sjögren [8] in
higher dimensions. A different proof of the higher-dimensional result has been given
by T. Menárguez, S. Pérez and F. Soria [6]. As part of our more general results, we
shall give another, simpler proof of this result (see Theorems 3.2 and 4.3 below).

For 1 < p 6 2 we shall prove that the operator H∗p is of strong type q for each q
in (p, p′), but not of weak type p.

By the periodicity properties of the semigroupHz , we may restrict the parameter
z to the set Fp = {z ∈ Ep : 0 6 Im z 6 π/2}. In our analysis we use a change of
variables τ introduced in [3]; see (2.6). With this change of variables, the set Fp∪{∞}
is the image of the sector Sφp = {ζ ∈ C : |ζ| 6 1, 0 6 arg ζ 6 φp} and the kernel of
the operator Hτ(ζ) is described by a simpler formula; see (2.7). Hence we are led to
study the maximal operator

sup
ζ∈Sφp

|Hτ(ζ)f(x)|. (1.2)

As in previous papers on the subject (see for instance [3, 4, 6, 8]), the positive
results are proved by decomposing the operator into a ‘local’ part, given by a kernel
living close to the diagonal, and the remaining or ‘global’ part. The local part can
be controlled by the maximal operator associated to the Euclidean heat semigroup.
The global part is bounded by an integral operator with positive kernel.

The failure of the strong type estimate at the end point p, for 1 < p 6 2, is only
due to the behaviour of the Mehler kernel hτ(ζ) when ζ approaches the point eiφp on
the boundary of Sφp . We remark that at this point the operatorHτ(ζ) is isometrically

equivalent to the Fourier transform from Lp(dx) to Lp
′
(dx).

Therefore it is natural to investigate the smaller maximal operator defined by
taking in (1.2) the supremum only over the set obtained by deleting from Sφp a small
neighbourhood of eiφp . We shall prove, again with the method described above, that
for each p in (1, 2) this smaller operator is of weak type p, but not of strong type
p. For p = 2 we prove a comparison result with the Schrödinger maximal operator,
which allows us to prove the failure of the weak type 2 estimate by using a result of
Carleson [1]; see Theorem 5.3.

The paper is organized as follows. In Section 2 we recall some basic properties of
the Ornstein–Uhlenbeck semigroup and we summarize our results. In Section 3 we
estimate the local parts and in Section 4 the global parts of the maximal operators.
Negative results will be proved in Section 5.

2. Preliminaries and statement of results

The Ornstein–Uhlenbeck semigroup on Rd is the family of operators {Ht : t > 0}
defined on test functions by

Htf(x) =

∫
ht(x, y) f(y)dγ(y), ∀ t > 0,

(2.1)

H0f(x) = f(x),

where

ht(x, y) = (1− e−2t)−d/2 exp

(
1

2

1

et + 1
|x+ y|2 − 1

2

1

et − 1
|x− y|2

)
(2.2)
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Figure 1. The region Ep; the darker area is Fp.

is the Mehler kernel with respect to the Gaussian measure. Using (2.1) and (2.2),
it is easy to see that the Ornstein–Uhlenbeck semigroup has analytic continuation
to a family {Hz : Re z > 0} of continuous operators from D(Rd) to D′(Rd) such
that

Hz+iπf(x) =Hzf(−x), Hzf(x) =Hzf(x). (2.3)

By [2] the operator Hz extends to a bounded operator on Lp(γ), 1 6 p 6 ∞,
if and only if z is in the set Ep, defined in (1.1), in which case it is a con-
traction. The set Ep is a closed iπ-periodic subset of the right half-plane. Note
that if 1/p + 1/p′ = 1 then Ep = Ep′ , and that Ep ⊂ Eq if 1 < p < q < 2. In
particular E1 is the union of the rays {t + ikπ : t > 0}, k ∈ Z, and E2 =
{z : Re z > 0}.

To investigate the boundedness of the maximal operatorH∗p on Lq(γ), 1 6 q 6 ∞,
we may restrict the parameter z to the set Fp = {z ∈ Ep : 0 6 Im z 6 π/2}. Indeed,
define the maximal operator Mp by

Mpf(x) = sup
z∈Fp

|Hzf(x)|.

By (2.3) the operators H∗p and Mp on Lq(γ) are simultaneously of weak or strong
type. More generally, we shall consider the family of maximal operators Mp,σ

defined as follows. Let zp denote the point on the boundary of Fp whose imaginary
part is π/2, that is, zp = 1/2

(| log(p− 1)|+ iπ
)
. For each σ, 0 6 σ < |zp|, let

Fp,σ = {z ∈ Fp : |z − zp| > σ}. Define

Mp,σf(x) = sup
z∈Fp,σ

|Hzf(x)|.

ThusMp =Mp,0. Since F1 = R+, the operatorM1 is the Mehler maximal operator.
We now state our main results. Note that Mp,σ =Mp′ ,σ because Ep = Ep′ . Thus we
only need to study the boundedness of Mp,σ for 1 6 p 6 2.
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Theorem 2.1. The following hold:
(1) The operator M1 is of weak type 1 and of strong type q for every q in (1,∞].
(2) Let 1 < p < 2. Then Mp is of strong type q whenever p < q < p′, but it is not

of weak type p. For d 6 2 the operator Mp is of weak type p′.
(3) If 1 < p < 2 and 0 < σ < |zp|, the operator Mp,σ is of weak type p and p′, but

not of strong type p.
(4) The operators M2 and M2,σ with 0 < σ < π/2 are not of weak type 2.

Remark 2.2. We do not know if Mp is of weak type p′ for d > 3. It is also an
open question whetherMp,σ is of strong type p′. (These questions have recently been
settled by P. Sjögren, who proved that for 1 < p < 2 the operator Mp,σ is of weak
type p′, but not of strong type p′.)

Our method consists in decomposing the operator in a ‘local’ part, given by a
kernel living close to the diagonal, and the remaining or ‘global’ part. To this end
consider the set

L =

{
(x, y) ∈ Rd ×Rd : |x− y| 6 1 ∧ 1

|x+ y|
}
,

and denote by G its complement. We shall call L and G the ‘local’ and the ‘global’
region, respectively. The local and the global parts of the operatorsMp,σ are defined
by

Mloc
p,σf(x) = sup

z∈Fp,σ

∣∣∣∣∫ hz(x, y)χ
L
(x, y)f(y)dγ(y)

∣∣∣∣ (2.4)

Mglob
p,σ f(x) = sup

z∈Fp,σ

∣∣∣∣∫ hz(x, y)χ
G
(x, y)f(y)dγ(y)

∣∣∣∣ , (2.5)

where χ
L

and χ
G

are the characteristic functions of the sets L and G, respectively.
Clearly

Mp,σf(x) 6Mloc
p,σf(x) +Mglob

p,σ f(x).

We shall prove separately the boundedness of Mloc
p,σ and Mglob

p,σ . To estimate the
Mehler kernel, both in the local and in the global region, it is convenient to simplify
its expression by means of a change of variables in the complex parameter z. We
denote by τ : {ζ ∈ C : |ζ| 6 1, | arg ζ| 6 π/2} −→ C ∪ {∞} the function

τ(ζ) =

 log
1 + ζ

1− ζ if ζ 6= 1

∞ if ζ = 1,
(2.6)

where the logarithm is real when its argument is positive. It is straightforward to
check that τ is a homeomorphism of its domain onto the halfstrip {z ∈ C : Re z >
0, | Im z| 6 π/2} ∪ {∞}, mapping the sector Sφp = {ζ ∈ C : |ζ| 6 1, 0 6 arg ζ 6 φp}
onto the set Fp ∪ {∞}, the point eiφp to the point zp and the interval [0, 1] to [0,∞].
Moreover, if ζ 6= 1,

hτ(ζ)(x, y) = (4ζ)−d/2(1 + ζ)d exp

( |x|2 + |y|2
2

− 1

4

(
ζ|x+ y|2 +

1

ζ
|x− y|2

))
. (2.7)

We define also h∞(x, y) = 1, for all x, y.
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3. Estimate of Mloc
p,σ

In this section we shall prove that Mloc
p,σ is of weak type 1 and of strong type q

for each q in (1,∞]. Since Mloc
p,σ 6Mloc

p,0 = Mloc
p , it is enough to consider the latter

operator.

Lemma 3.1. For every p in [1, 2), there exists a constant C such that for all t in
(0, 1] and all (x, y) in the local region L

sup
|φ|6φp

|hτ(teiφ)(x, y)| 6 C t−d/2e|y|2 exp

(
−cosφp

4t
|x− y|2

)
.

Proof. By (2.7)

|hτ(teiφ)(x, y)| 6 C t−d/2 exp

( |x|2 + |y|2
2

− cosφ

4

(
t|x+ y|2 +

1

t
|x− y|2

))
. (3.1)

Since |x|2 6 1 + |y|2 in the local region L, the desired estimate follows if we majorize
e(|x|2+|y|2)/2 by C e|y|2 and the exponential of −(cosφ/4)t|x+ y|2 by 1 in (3.1). q

Theorem 3.2. For each p in [1, 2) the operator Mloc
p is of weak type 1 and strong

type q whenever 1 < q 6 ∞.

Proof. By Lemma 3.1, one has for each f > 0

Mloc
p f(x) 6 C sup

t>0
t−d/2

∫
e− cosφp(|x−y|2/4t) χL(x, y) f(y)dy

=Wf(x),

say. Thus Mloc
p is bounded on L∞(γ). It remains only to prove that it is also of

weak type 1. Since the operator W is of weak type 1 with respect to Lebesgue
measure and its kernel is supported in the local region L, the conclusion follows by
well-known arguments (see for instance [4, Section 3]). q

4. Estimate of Mglob
p,σ

In this section we shall estimate the global maximal operators Mglob
p,σ , 1 6 p < 2,

σ > 0. Our estimates will be based on the following inequality, which is a straight-
forward consequence of (2.7)

sup
|φ|6φp

|hτ(teiφ)(x, y)| 6 C t−d/2 e(|x|2+|y|2)/2−(cosφp/4)(t|x+y|2+(1/t)|x−y|2) (4.1)

for all t in (0, 1] and all (x, y) in Rd ×Rd. We give first two different expressions of
the right-hand side of this inequality. Consider the quadratic form

Qt(x, y) = |(1 + t)x− (1− t)y|2.
It is straightforward to check that

t|x+ y|2 +
1

t
|x− y|2 =

1

t
Qt(x, y)− 2|x|2 + 2|y|2

=
1

t
Q−t(x, y)− 2|y|2 + 2|x|2.
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Since cosφp = 2/p− 1, it follows that

exp

( |x|2 + |y|2
2

− cosφp
4

(
t|x+ y|2 +

1

t
|x− y|2

))

= exp

( |x|2
p

+
|y|2
p′
− cosφp

4t
Qt(x, y)

)
(4.2)

= exp

( |x|2
p′

+
|y|2
p
− cosφp

4t
Q−t(x, y)

)
. (4.3)

For every x in Rd let G(x) denote the x-section of the global region G, that is, the
set {y : (x, y) ∈ G}. With δ > 0 we set

J±(x, t) =

∫
G(x)

exp

(
−δ
t
Q±t(x, y)

)
dy. (4.4)

Lemma 4.1. Let θ = θ(x, y) denote the angle between the non-zero vectors x and y.
Then for each δ > 0, the following hold:

(i) There exists a constant C such that

sup
0<t61

t−d/2 exp

(
−δ
t
Qt(x, y)

)
6 C[(1 + |x|)d ∧ (|x| sin θ)−d].

(ii) For each p in (1,∞) and each η in (0, 1), there exists a constant C such that

sup
0<t61−η

t−pd/2 exp

(
−δ
t
Q±t(x, y)

)
J
p/p′
± (x, t) 6 C[(1 + |x|)d ∧ (|x| sin θ)−d].

Remark 4.2. If d = 1 then sin θ = 0 and (1 + |x|)d ∧ (|x| sin θ)−d should be inter-
preted as (1 + |x|)d.

Proof of Lemma 4.1. We claim that for each η in (0, 1) there exists a positive
constant c such that for all non-zero x, y and all t > −1 + η

Qt(x, y) > c|x|2 sin2 θ (4.5)

and for all (x, y) and t such that (x, y) ∈ G and |t| < (1 + |x|)−2/8

Qt(x, y) > c
1

(1 + |x|)2
. (4.6)

Assuming this claim for the moment, we prove the lemma. To obtain (i), we observe
that by (4.5)

t−d/2 exp

(
−δ
t
Qt(x, y)

)
6 C(|x| sin θ)−d (4.7)

for all t > 0. It remains to estimate the left-hand side of (4.7) by C(1 + |x|)d. If
t > (1 + |x|)−2/8, it is enough to majorize the exponential by 1. In the opposite case,
we observe that by (4.6)

t−d/2 exp

(
−δ
t
Qt(x, y)

)
6 C(1 + |x|)d

as desired. Next we prove (ii). Performing the change of variables (1+t)x−(1−t)y = z
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in J+ and (1− t)x− (1 + t)y = z in J−, we see that

J
p/p′
± (x, t) 6 C

(
td/2

(1∓ t)d
)p/p′

6 Ctpd/(2p
′), (4.8)

since 1∓ t > η. Thus by (4.5) and (4.8)

t−pd/2 exp

(
−δ
t
Q±t(x, y)

)
J
p/p′
± (x, t) 6 C(|x| sin θ)−d. (4.9)

It remains to estimate the left-hand side of (4.9) by C(1 + |x|)d. If t > (1 + |x|)−2/8 it
is enough to majorize the exponential by 1 and to apply (4.8). In the opposite case,
we observe that by (4.6)

J
p/p′
± (x, t) 6 C

(∫
|z|>c(1+|x|)−1

e−c|z|2/tdz
)p/p′

6 C tpd/(2p
′)(√t(1 + |x|))pm/p′

for any m > 0. We choose m = dp′/p and get t−pd/2Jp/p
′

± (x, t) 6 C(1+ |x|)d, as desired.

We must finally prove the claim. To obtain (4.5), it is enough to minorize
|(1 + t)x − (1 − t)y| by the length of the projection of (1 + t)x on the hyperplane
orthogonal to y. For (4.6), we first verify that for x, y ∈ G

|x− y| > 1
2
(1 + |x|)−1. (4.10)

When |y| > 1 + |x|, this follows from |x− y| > 1. If |y| < 1 + |x|, one has |x+ y| 6
2(1 + |x|), and so min(1, |x+ y|−1) > 1

2
(1 + |x|)−1. Since (x, y) ∈ G, this implies (4.10).

To obtain (4.6), observe that |t| 6 (1 + |x|)−2/8 implies that 1 − t > 7/8 and so
|(1+ t)x− (1− t)y| = |(1− t)(x−y)+2tx| > 7

16
(1+ |x|)−1− 1

4
(1+ |x|)−1 > 3

16
(1+ |x|)−1.

This completes the proof of the claim and of the lemma. q

We prove first thatMglob
1 =Mglob

1,0 is of weak type 1. The result is well known (see
[6, 8]), but the proof we give here is new and simpler.

Theorem 4.3. The operatorMglob
1 is of weak type 1 and of strong type q for every

q in (1,∞].

Proof. Since the operator Mglob
1 is obviously bounded on L∞(γ), we only need

to prove that it is of weak type 1. Using (4.1), (4.2) and Lemma 4.1(i), we see that
Mglob

1 is controlled by the operator

Tf(x) = e|x|2
∫

(1 + |x|)d ∧ (|x| sin θ)−d f(y)dγ(y),

where θ = θ(x, y) is the angle between the vectors x and y. Therefore the theorem is
an immediate consequence of the following lemma. q

Lemma 4.4. Let θ = θ(x, y) denote the angle between the vectors x and y. The
operator

Tf(x) = e|x|2
∫

(1 + |x|)d ∧ (|x| sin θ)−d f(y)dγ(y)

is of weak type 1.
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Proof. Assume that ‖f‖1 = 1. Choose C0 so large that λ > C0 implies that the
positive root r0 of the equation

er
2

0 (1 + r0)d = λ

is greater than 1. Fix λ > 0 and let E be the level set {x :Tf(x) > λ}. To prove that
there exists a constant C > 0 such that γ(E) 6 Cλ−1, we can assume that λ > C0,
since otherwise the trivial estimate γ(E) 6 γ(Rd) will do. SinceTf(x) 6 e|x|2 (1+|x|)d,
we see that E does not intersect the ball {|x| < r0}. We need only consider the
intersection of the set E with the ring R = {r0 6 |x| 6 2r0}. Indeed, the elementary
fact that

∫∞
R
e−ρ2

ρd−1 dρ ∼ e−R2

Rd−2 for R > 1 implies that

γ{|x| > 2r0} 6 Ce−4r2
0 rd−2

0 6 Ce−r2
0 (1 + r0)−d = Cλ−1.

Write x = ρx′ with ρ > 0 and |x′| = 1, and let dx′ be the area measure on Sd−1.
If d = 1 then S0 = {−1, 1} and dx′ is the sum of unit point masses at −1 and 1. We
let E ′ denote the set of x′ ∈ Sd−1 for which there exists a ρ ∈ [r0, 2r0] with ρx′ ∈ E.
For x′ ∈ E ′ we let r(x′) be the smallest such ρ. Then Tf(r(x′)x′) = λ by continuity,
and this implies that

er(x
′)2

r−d0

∫
r2d

0 ∧ (sin θ)−df(y)dγ(y) ∼ λ. (4.11)

Clearly

γ(E ∩ R) 6

∫
E′
dx′
∫ 2r0

r(x′)
e−ρ2

ρd−1 dρ 6 C

∫
E′
e−r(x′)2

rd−2
0 dx′.

Combining this with (4.11), we get

γ(E ∩ R) 6 Cλ−1r−2
0

∫
E′
dx′
∫
r2d

0 ∧ (sin θ)−df(y) dγ(y).

It is now enough to change the order of integration and observe that∫
Sd−1

r2d
0 ∧ (sin θ)−d dx′ 6 Cr2

0

to obtain the desired estimate of γ(E). q

Now we turn to study the global parts of the operators Mp and Mp,σ . First we
need a lemma. For each η in [0, 1), consider the maximal operator

Ap,ηf(x) = sup
0<t61−η

t−d/2
∫
G(x)

e(|x|2+|y|2)/2 e−(cosφp/4)(t|x+y|2+(1/t)|x−y|2) f(y)dγ(y). (4.12)

Lemma 4.5. Suppose that 1 < p < 2. Then the following hold:
(i) If η > 0 the operator Ap,η is of weak type p and p′.
(ii) The operator Ap,0 is of strong type q whenever p < q < p′.

Proof. We shall prove that there exists a constant C such that for each f > 0

Ap,ηf(x) 6 C min(|Tfp(x)|1/p, |Tfp′(x)|1/p′),
whence (i) will follow, by Lemma 4.4. By (4.2)

Ap,ηf(x) = sup
0<t61−η

t−d/2e|x|2/p
∫
G(x)

exp

(
−δ
t
Qt(x, y)

)
f(y) e−|y|2/p dy,
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where δ is a positive constant which depends on p. Applying Hölder’s inequality, we
see that the right-hand side is bounded by

sup
0<t61−η

t−d/2e|x|2/p
(∫

G(x)

exp

(
−δ
t
Qt(x, y)

)
fp(y)dγ(y)

)1/p

J
1/p′
+ (x, t),

where J+(x, t) is defined in (4.4). Thus, by Lemma 4.1(ii),

Ap,ηf(x) 6 Ce|x|2/p
(∫

G(x)

(1 + |x|)d ∧ (|x| sin θ)−d fp(y)dγ(y)

)1/p

= C (Tfp(x))1/p .

To prove the inequality Ap,ηf(x) 6 C(Tfp′(x))1/p′ we observe that, by (4.3),

Ap,ηf(x) = sup
0<t61−η

t−d/2e|x|2/p′
∫
G(x)

exp

(
−δ
t
Q−t(x, y)

)
f(y) e−|y|2/p′dy.

The rest of the proof is similar.
Next we prove (ii). Fix r in (p, p′). Then λ = cosφp/cosφr > 1 and

cosφp

(
t|x+ y|2 +

1

t
|x− y|2

)
= λ cosφr

(
t|x+ y|2 +

1

t
|x− y|2

)

= cosφr

(
λ2 t

λ
|x+ y|2 +

λ

t
|x− y|2

)

> cosφr

(
t

λ
|x+ y|2 +

λ

t
|x− y|2

)
.

Thus

Ap,0f(x) 6 sup
0<t61

t−d/2
∫
G(x)

e(|x|2+|y|2)/2e−(cosφr/4)((t/λ)|x+y|2+(λ/t)|x−y|2) f(y)dγ(y)

= λd/2Ar,1−1/λf(x).

Hence, by (i), the operator Ap,0 is of weak type r and of weak type r′ for each r in
(p, p′). Therefore, by interpolation, it is of strong type q whenever p < q < p′. q

Theorem 4.6. Suppose that 1 < p < 2, 0 < σ < |zp|. Then the following hold:
(i) Mglob

p is of strong type q whenever p < q < p′.
(ii) Mglob

p,σ is of weak type p and p′.

Proof. We prove first that Mglob
p is of strong type q whenever p < q < p′. Since

the transformation τ, defined in (2.6), maps the sector Sφp onto the set Fp,

Mglob
p f(x) 6 sup

0<t61

∫
G(x)

sup
|φ|6φp

|hτ(teiφ)(x, y)|f(y)dγ(y)

for each f > 0. Thus, by (4.1) and (4.12)

Mglob
p f(x) 6 CAp,0f(x).

The conclusion follows by Lemma 4.5(ii).
Next we prove thatMglob

p,σ is of weak type p and p′. The function τ maps the point

eiφp to the point zp. Since τ′(eiφp) 6= 0, for each σ > 0 there exists a small η > 0 such
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that the set Fp,σ is contained in the τ-image of the union of the two sets Sφp−η and
Tp,η = {ζ ∈ Sφp : |ζ| 6 1− η}. Let Bp,η denote the operator defined by

Bp,ηf(x) = sup
0<t61

∫
G(x)

sup
|φ|6φp−η

|hτ(teiφ)(x, y)|f(y)dγ(y).

Hence, for each non-negative function f,

Mglob
p,σ f(x) 6 sup

ζ∈Tp,η

∣∣∣∣∫
G(x)

hτ(ζ)(x, y)f(y)dγ(y)

∣∣∣∣
+ sup

ζ∈Sφp−η

∣∣∣∣∫
G(x)

hτ(ζ)(x, y)f(y)dγ(y)

∣∣∣∣
6 CAp,ηf(x) +Bp,ηf(x).

By Lemma 4.5(i) the operator Ap,η is of weak type p and p′. We claim that the
operator Bp,η is of strong type p and p′. Indeed let r ∈ (1, p) be such that φr = φp−η.
Then, by (4.1) and (4.12)

Bp,ηf(x) 6 CAr,0f(x).

By Lemma 4.5(ii) the latter operator is of strong type q whenever r < q < r′. This
concludes the proof of the theorem. q

To complete the proof of the positive results of Theorem 2.1, it remains to prove
the following theorem.

Theorem 4.7. If d 6 2 and 1 < p < 2, the operator Mglob
p is of weak type p′.

Proof. By Theorem 4.6 we only need to prove that for any fixed σ, with 0 < σ <

|zp|, the operator Np,σ =Mglob
p −Mglob

p,σ is of weak type p′. Now

Np,σf(x) 6 sup
1−σ6t61

∫
G(x)

sup
|φ|6φp

|hτ(teiφ)(x, y)| f(y)dγ(y).

Write f(y) = g(y) exp(|y|2/p′). Then ‖f‖Lp′ (γ) = ‖g‖Lp′ (dx). By using (4.1), the identities
1/p− 1/2 = 1/2− 1/p′ = (cosφp)/2 and a little algebra, we obtain

Np,σf(x) 6 C(σ) e|x|2/p′ sup
1−σ6t61

∫
kp(t, x, y) g(y)dy,

where

kp(t, x, y) = exp

(
−cosφp

4

[(√
t− 1√

t

)
x+

(√
t+

1√
t

)
y

]2
)
.

The function y 7→ kp(t, x, y) is in Lp(dy), uniformly with respect to t and x. Hence

Np,σf(x) 6 C e|x|2/p′ ‖g‖Lp′ (dy) = C e|x|2/p′ ‖f‖Lp′ (γ).
The conclusion follows since, for d 6 2, the function x 7→ e|x|2/p′ is in Lp

′ ,∞(γ). q



the holomorphic ornstein–uhlenbeck semigroup 229

5. Negative results

In this section we shall prove that Mp,σ , 0 < σ < |zp|, is unbounded on Lp(γ),
1 6 p < 2, and that M2 is not of weak type (2, 2). We shall also prove that Mp is
not of weak type p.

For each σ, 0 < σ < |zp|, the set Fp,σ contains an arc {τ(teiφp) : α 6 t 6 β}, with
0 < α < β < 1. Thus the maximal operator Mp,σ is bounded from below by the
operator

f 7→ Mp,α,βf = sup
α6t6β

|Hτ(teiφp )f|.
To prove that Mp,σ is unbounded on Lp(γ), 1 6 p < 2, we shall prove the following
sharper result.

Theorem 5.1. The operator Mp,α,β is unbounded on Lp(γ), 1 6 p < 2, for each
0 < α < β < 1.

Proof. By restricting the operator to functions which depend only on the first
variable in Rd, one sees that it suffices to consider the one-dimensional case d = 1.
Let Up be the isometry f 7→ fγ1/p of Lp(γ) onto Lp(dx). We shall prove that the

operator M̃p,α,β = UpMp,α,β U−1
p is unbounded on Lp(dx). Note that by (2.7)

M̃p,α,βg(x) > C sup
α6t6β

∣∣∣∣∫ exp(qteiφp (x, y)) g(y)dy

∣∣∣∣ ,
where

qζ(x, y) =
x2 + y2

2
− 1

4 (ζ(x+ y)2 + ζ−1(x− y)2)− x2/p− y2/p′

= 1
2 cosφp(y

2 − x2)− 1
4 (ζ(x+ y)2 + ζ−1(x− y)2)

and C is a positive constant which depends on α and β. Fix a smooth function φ

such that φ(0) = 1 and the support of φ is contained in the interval [−1, 1]. For
y0 > 2 and 1/p′ < δ < 1/p let g(y) = |y − y0|−δφ(y − y0).

Consider first the case 1 < p < 2, that is, 0 < φp < π/2. We shall prove that there
exist positive constants c, C1 < C2 such that, if y0 is large and x ∈ [C1y0, C2y0], then

|M̃p,α,βg(x)| > cyδ−1
0 . (5.1)

Hence ‖M̃p,α,βg‖Lp(dx) > Cy
δ−1/p′
0 . Since ‖g‖Lp(dx) 6 C , the unboundedness of M̃p,α,β

on Lp(dx) will follow if we let y0 tend to infinity.
To prove (5.1), define t(x) = (y0 − x)/(y0 + x) and choose two constants C1 and

C2 such that (1− β)(1 + β)−1 6 C1 < C2 6 (1− α)(1 + α)−1. Then α 6 t(x) 6 β for
all x ∈ [C1y0, C2y0]. Let Q(x, y) = qt(x)eiφp (x, y). Then

|M̃p,α,βg(x)| > c
∣∣∣∣∫ expQ(x, y) g(y)dy

∣∣∣∣ . (5.2)

Write Q(x, y) = R(x, y) + iI(x, y), R, I real. The functions R and I are quadratic
polynomials in y. Let

R(x, y) = a0(x) + a1(x)(y − y0) + a2(x)(y − y0)2, (5.3)

I(x, y) = b0(x) + b1(x)(y − y0) + b2(x)(y − y0)2 (5.4)
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be their expansions in powers of y − y0. We claim that

a0 = a1 = b0 = 0, b1(x) = x sinφp (5.5)

and there exists a positive constant C such that

|a2(x)|+ |b2(x)| 6 C, (5.6)

for all x in [C1y0, C2y0]. The claim can be proved by using the fact that ak(x) and
bk(x), k = 0, 1, 2, are the real and the imaginary parts, respectively, of

1

k!
∂ky qζ(x, y)

∣∣
ζ=t(x)eiφp ,y=y0

.

Now we observe that, by (5.3) and (5.4),∣∣∣∣∫ expQ(x, y) g(y)dy

∣∣∣∣ =

∣∣∣∣∫ eib1(x)u|u|−δΦ(x, u)du

∣∣∣∣ , (5.7)

where

Φ(x, u) = exp[(a2(x) + ib2(x))u2]φ(u).

Using (5.6) and the fact that φ is supported in [−1, 1], it is easy to see that the
function u 7→ Φ(x, u) satisfies the estimates

‖∂2
uΦ(x, ·)‖1 + ‖Φ(x, ·)‖Hs

2
6 C, (5.8)

uniformly for x in [C1y0, C2y0]. Here Hs
2 denotes the Sobolev space of any order

s > 0 and C may depend on s. To finish the proof of the theorem we need the
following lemma.

Lemma 5.2. Suppose that 0 < δ < 1. Let Φ be a function in C∞c (R). Then for any
ξ in R \ {0} ∫

eiξu|u|−δΦ(u)du = CδΦ(0) |ξ|δ−1 + Eδ(ξ,Φ),

where Cδ is a positive constant and

|Eδ(ξ,Φ)| 6 C(δ, s) |ξ|δ−2(‖Φ′′‖1 + ‖Φ‖Hs
2
)

for every s > 3/2.

Proof. The integral to be evaluated is (2π)−1 times the value at −ξ of the
convolution of the Fourier transform of the function Φ and that of the distribution
|y|−δ , which is C|ξ|δ−1, for some positive constant C = C(δ). Thus∫

eiξu|u|−δΦ(u)du = C

∫
|ξ + η|δ−1Φ̂(η)dη

= CΦ(0) |ξ|δ−1 + Eδ(ξ,Φ),

where

Eδ(ξ,Φ) = C

∫
(|ξ + η|δ−1 − |ξ|δ−1)Φ̂(η)dη.

To estimate Eδ(ξ,Φ) we split the integral into the sum of an integral over the set
|η| 6 |ξ|/2 and an integral over the set |η| > |ξ|/2. The first integral is bounded in
absolute value by

C|ξ|δ−2

∫
|ηΦ̂(η)|dη 6 C(δ, s) |ξ|δ−2 ‖Φ‖Hs

2
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for every s > 3/2. The integral over the set |η| > |ξ|/2 is bounded in absolute value
by

C

∫
|η|>|ξ|/2

|ξ + η|δ−1|Φ̂(η)|dη + Cδ |ξ|δ−1

∫
|η|>|ξ|/2

|Φ̂(η)|dη.
Fix γ with δ < γ < 2. The first summand is majorized by

C(δ, γ) |ξ|γ−2

∫
|η|>|ξ|/2

|ξ + η|δ−1 |η|−γ |η2Φ̂(η)|dη

6 C(δ, γ) |ξ|γ−2

∫
|η|>|ξ|/2

|ξ + η|δ−1 |η|−γdη max
η
|η2Φ̂(η)|

6 C(δ, γ) |ξ|δ−2 ‖Φ′′‖1.

The second summand is majorized by 2C |ξ|δ−2 ‖ηΦ̂‖1 6 2C(δ, s) |ξ|δ−2‖Φ‖Hs
2

for all
s > 3/2. q

We can now finish the proof of the theorem. Because of (5.5), (5.7), (5.8) and
Lemma 5.2, there exists a positive constant C such that∣∣∣∣∫ expQ(x, y) g(y)dy

∣∣∣∣ = C|x|δ−1 + O(|x|δ−2), (5.9)

as y0 → ∞, uniformly for x in [C1y0, C2y0]. The desired estimate (5.1) follows from
(5.2) and (5.9). Thus the proof of the theorem for 1 < p < 2 is complete.

It remains to consider the case p = 1. We observe that in this case φp = 0 and Q
is real. The estimate (5.6) is still true, but now b1, b2 vanish identically. Hence (5.7)
becomes ∣∣∣∣∫ expQ(x, y) g(y)dy

∣∣∣∣ =

∫
exp(a2(x)u2) |u|−δ φ(u)du.

Since the support of φ is contained in [−1, 1], by (5.2) and (5.6), there exists a
positive constant C such that for y0 large

|M̃1,α,βg(x)| > C
for all x in [C1y0, C2y0]. The unboundedness of M̃1,α,β on L1(dx) follows by com-

paring the L1(dx) norms of M̃1,α,βg and g when y0 tends to infinity. This concludes
the proof of the theorem. q

Theorem 5.3. The operator M2,σ is not of weak type (2, 2).

Proof. As in the proof of Theorem 5.1, we may reduce the problem to the one-
dimensional case. The set E2 contains the imaginary axis. Thus it is enough to prove
that there exists a continuous function f with compact support such that

lim sup
t→0+

∣∣∣∣∫ hit(x, y) f(y)dγ(y)

∣∣∣∣ = ∞
for all x in R. Since τ−1(it) = i tan(t/2), by (2.7)

hit(x, y) = (4i tan(t/2))−1/2(1 + i tan(t/2))e(x2+y2)/2

× exp

(
− i

4

(
tan(t/2)(x+ y)2 − (x− y)2

tan(t/2)

))
.
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By a result of Carleson [1], there exists a continuous function with compact support g
such that

lim sup
t→0+

t−1/2

∣∣∣∣∫ ei(x−y)2/t g(y)dy

∣∣∣∣ = ∞ (5.10)

for all x in R. Set f(y) = g(y)ey
2/2. Then∫

hit(x, y) f(y)dγ(y) = ex
2/2(4i tan(t/2))−1/2

∫
ei(x−y)2/ tan(t/2) g(y)dy + O(t1/2)

as t→ 0+, for each x in R. The conclusion follows from (5.10). q

Next we prove that Mp is not of weak type p for 1 < p 6 2. Since we already
know that M2,σ is not of weak type 2 and M2f > M2,σf for each non-negative
function f, we only need to consider the case 1 < p < 2. The maximal operator Mp

is bounded from below by the operator

f 7→ Np,εf = sup
1−ε6t<1

|Hτ(teiφp )f|

for any ε ∈ [0, 1]. Therefore it suffices to prove the following result.

Theorem 5.4. The operator Np,ε is not of weak type p for any p in (1, 2] and ε

in (0, 1).

Proof. As in the proof of the previous theorem, it suffices to consider the one-
dimensional case. Let Up be as in the proof of Theorem 5.1. We shall prove that

the operator Ñp,ε =Np,εU−1
p is unbounded from Lp(dx) to Lp,∞(γ). We claim that

for each choice of x0, y0, with x0 sufficiently large and y0 > xδ0 , δ > 1, there is a
function g such that ‖g‖Lp(dx) 6 C(y0/x0)1/2p and

|Ñp,εg(x)| > Cex2
0/p

(
y0

x0

)1/2

∀ x ∈
[
x0, x0 +

1

x0

]
.

Assuming this claim for the moment, we complete the proof. Seeking a contradiction,
we assume that the operator is of weak type p. Then

e−x2
0

x0
6 C γ

([
x0, x0 +

1

x0

])

6 C γ

{
x : |Ñp,εg(x)| > Cex2

0/p

(
y0

x0

)1/2
}

6 C e−x2
0

(
y0

x0

)−p/2
‖g‖pp

6 C e−x2
0

(
y0

x0

)(1−p)/2
.

Choosing y0 = xδ0, with δ > (p+ 1)/(p− 1) and letting y0 tend to infinity, we reach
a contradiction.
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It remains to prove the claim. Arguing as in the proof of Theorem 5.1, one sees
that for any function g in Lp(dx)

|Ñp,εg(x)| > C ex
2/p sup

1−ε6t61

∣∣∣∣∫ exp(qteiφp (x, y)) g(y)dy

∣∣∣∣ ,
with qζ as in that proof and C = C(ε) > 0. Let x 7→ t(x) be a measurable function,
to be chosen later, such that 1 − ε 6 t(x) < 1 for all x in [x0, x0 + 1/x0]. Define
Q(x, y) = qt(x)eiφp (x, y). Then for all x in

[
x0, x0 + 1/x0

]
|Ñp,εg(x)| > Cex2

0/p

∣∣∣∣∫ expQ(x, y) g(y)dy

∣∣∣∣ . (5.11)

As in the proof of Theorem 5.1, we write Q(x, y) = R(x, y) + iI(x, y), R, I real,
and we consider the expansions

R(x, y) = a0(x) + a1(x)(y − y0) + a2(x)(y − y0)2

I(x, y) = b0(x) + b1(x)(y − y0) + b2(x)(y − y0)2

of R, I in powers of y − y0. Next we choose t(x) so that b1(x) = x0sinφp. Since

b1(x) = − sinφp
2

[(
t(x)− 1

t(x)

)
y0 +

(
t(x) +

1

t(x)

)
x

]
,

this choice yields

t(x) =

√
y2

0 + x2
0 − x2 − x0

y0 + x
.

A lengthy but straightforward computation shows that if x ∈ [x0, x0 +1/x0], y0 > xδ0,
δ > 1, then

t(x) =
y0 − x0

y0 + x0
+ O(1/(x0y0))

a0(x) = O(1)

a1(x) = O(1/y0)

a2(x) = O(x2
0/y

2
0)

b1(x) = x0 sinφp

b2(x) = sinφp
x0

y0
+ O((x0/y0)3) + O(1/(x0y0)),

(5.12)

as x0 →∞. Thus 1− ε 6 t(x) < 1 for x0 sufficiently large. Let g be the function
defined by

g(y0 + u) = χ

((
x0

y0

)1/2

u

)
exp(−iux0 sinφp),

where χ is the characteristic function of the interval [−1, 1]. Then ‖g‖Lp(dx) =
(y0/x0)1/2p and∣∣∣∣∫ exp 2(x, y) g(y)dy

∣∣∣∣ =

(
y0

x0

)1/2

ea0(x)

∣∣∣∣∫ 1

−1

e(a1(x)(y0/x0)1/2v+(a2(x)+ib2(x))(y0/x0)v2)dv

∣∣∣∣ .
By the asymptotic estimates (5.12), if x0 is sufficiently large and y0 > xδ0 , δ > 1,
there exists a positive constant c such that the right-hand side is bounded from
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below by c(y0/x0)1/2 for all x in x ∈ [x0, x0 + 1/x0]. By (5.11) this completes the
proof of the claim and of the theorem. q
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