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Introduction

If 16 p6 2 and p0 ¼ p=ðp� 1Þ denotes the conjugate exponent of p, the classical
Hausdor.--Young inequality establishes the boundedness of the Fourier transform
from LpðRÞ into Lp 0 ðRÞ. Its proof is obtained by complex interpolation between
the obvious case p ¼ 1 and the case p ¼ 2 given by Plancherel’s theorem. In the
same spirit, in 1958 Kunze applied new techniques of non-commutative integration
introduced by Dixmier [6] and Segal [23, 24] to study this inequality on locally
compact unimodular groups; see [15]. In particular, for a compact not-necessarily-
abelian group G, he proved the boundedness of the Fourier transform from LpðGÞ
to Lp 0 ð bGGÞ. That is,

�X
�2Gb d�kbffð�Þkp 0

Sp 0
d�

�1=p 0

6

�ð
G
jfðgÞjp d
ðgÞ

�1=p

for 1 < p6 2;

with the obvious modi>cations for p ¼ 1. Here � 2 bGG denotes an irreducible unitary

representation of G, d� is the degree of �, Sp 0
n stands for the ðn 
 nÞ-dimensional

Schatten class of exponent p0, and 
 is the Haar measure of G normalized so that


ðGÞ ¼ 1. On the other hand, Peetre presented in 1969 the >rst work [19] analyzing

the Hausdor.--Young inequality for Banach-valued functions f : R! B. In this

case, the validity of the inequality for some >xed p depends on the Banach space B.

This leads to the notion of Fourier type of a Banach space with respect to a locally

compact abelian group, introduced by Milman in [17]. The theory of Fourier type

with respect to locally compact abelian groups was further developed by several

authors; see [1, 3, 4, 10, 11, 14].
However, as far as we know, in the non-commutative setting there is no

analogous theory of Fourier type described in the literature. Our aim is to >ll this
gap. Namely, to analyze the validity of Kunze’s results for vector-valued functions. In
this work we investigate the validity of the Hausdor.--Young inequality for vector-
valued functions de>ned on a compact group. As can be seen throughout the paper,
compactness is an essential assumption in many of the results we present here. For
a non-commutative compact group G, the vector-valued Fourier transform must
be de>ned for irreducible unitary representations � 2 bGG and its values are vector-
valued matrices. Therefore, just to start talking about the Hausdor.--Young
inequality, one has to be able to de>ne norms for vector-valued matrices. By
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Ruan’s theorem [22], this matricial structure leads us to consider an operator space
structure on the vector space in which we are taking values. It appears clear that, in
order to develop a theory of Fourier type in this context, we shall need to take values
in operator spaces rather than Banach spaces. This crucial point is obviously at
the root of the notion of Fourier type.

To conclude, we would like to point out that the theory initiated in this paper
has been further developed in [12] and [13]. Roughly speaking, the paper [12] deals
with the sharpness of Theorems 6.5 and 6.8 for compact semisimple Lie groups; see
x 6 for more on this topic. On the other hand, the notions of Fourier type and cotype
of an operator space with respect to a compact group are extended in [13] to the
more general setting of type and cotype with respect to a ‘quantized orthonormal
system’. This contains, for instance, the non-commutative versions of Rademacher
or Gauss type and cotype. All this is used in [13] to obtain an operator space version
of Kwapie�nn’s theorem [16] characterizing Hilbert spaces by means of vector-valued
orthogonal series.

The organization of the paper is as follows. In x 1 we recall the notions of operator
space theory and vector-valued Schatten classes that will be used in the sequel. In
x 2 we de>ne the Fourier transform on compact groups for vector-valued functions.
We also study the spaces Lp

Eð bGGÞ, where the Fourier transform takes values. Some
results for which we have not found any reference have been proved for
completeness. In particular, Proposition 2.4 and Corollary 2.5 are especially
relevant since they show that the spaces L1E ð bGGÞ and L1

Eð bGGÞ behave with respect to
the minimal and projective tensor products as the classical L1E and L1

E do with
respect to Grothendieck’s tensor norms. Sections 3 and 4 are mainly devoted to
showing that the notions of Fourier type and cotype are well de>ned, and also to
proving some basic properties. Section 4 is especially far from the commutative
theory since, as we show there, when dealing with abelian groups the notion of
Fourier cotype reduces to the notion of Fourier type with respect to the dual group. In
x 5, given an operator space E, we investigate the Fourier type and cotype of some
general operator spaces related to E such as subspaces, duals, interpolated spaces,
etc. Finally, in x 6, we investigate the main examples, that is, Lebesgue spaces and
Schatten classes. In particular, for the vector-valued ones we prove some quantized
Minkowski inequalities that we shall need.

Acknowledgement. We thank Gilles Pisier for some useful comments.

1. Operator spaces and Schatten classes

The basic theories behind this paper are the theory of operator spaces and the
subsequent theory of vector-valued Schatten classes. The reader is referred to [8] and
[21] for a basic background on these topics and their connection with the present
work. We begin with a brief summary of the results of operator space theory that
will be used in the sequel.

(a) De�nition of operator space. We will denote by BðHÞ the space of bounded
linear operators on some Hilbert space H. For our purposes an operator space E
can be de>ned as a closed subspace of BðHÞ. Given an operator space E � BðHÞ
we write MnðEÞ for the space Mn � E of n 
 n matrices with entries in E and with
the norm imposed by the natural embedding of Mn � E into Bðl2HðnÞÞ. Here l2HðnÞ
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denotes the Hilbert space of all H-valued n-tuples with its natural inner product.
On the other hand, given a vector space E and a collection of norms k � kn on the
spaces Mn � E, one can impose some extra conditions to obtain what is called an
operator space matrix norm or operator space structure on E; see [8, Chapter 2].
One of the main results of the theory is the abstract characterization of operator
spaces given by Ruan in [22]. Ruan’s theorem can be rephrased by saying that for
any operator space structure on a vector space E, there exists a unique Hilbert
space H such that the norm from the operator space structure on Mn � E coincides
with the norm induced by the space Bðl2HðnÞÞ.

(b) Complete boundedness. A linear mapping between operator spaces
u : E1 ! E2 is said to be completely bounded if the members of the family of
maps IMn

� u : MnðE1Þ !MnðE2Þ satisfy

kukcb ¼ sup
n> 1

kIMn
� ukBðMnðE1Þ;MnðE2ÞÞ <1:

We write cbðE1; E2Þ for the Banach space of completely bounded maps from E1 to
E2 with the cb-norm. Let u 2 cbðE1; E2Þ. We say that u is a complete isometry if
the mappings IMn

� u are isometries for all n> 1. Similarly u is called completely
contractive if kukcb 6 1. We also say that u is a complete isomorphism if it is a
completely bounded linear isomorphism whose inverse is also completely bounded.
Finally u is a completely isometric isomorphism if it is also a complete isometry.

(c) Duality. Ruan’s theorem was used by Blecher and Paulsen in [2] and by
E.ros and Ruan in [7] to get a duality theory in the category of operator spaces. It was
shown that, by imposing on Mn � cbðE1; E2Þ the norm induced by cbðE1;MnðE2ÞÞ,
we obtain an operator space structure on cbðE1; E2Þ. In particular, we have an
operator space structure on the dual space E � ¼ cbðE;CÞ. This notion of duality
behaves as Banach space duality in many senses. For instance, it can be proved
that the natural isometric inclusion E � E �� is a complete isometry.

(d) Tensor products. We are interested in two tensor norms that will be used
repeatedly in this paper. Given two operator spaces E1 � BðH1Þ and E2 � BðH2Þ
we de>ne their minimal tensor product E1 �min E2 by the natural embedding of
E1 � E2 into BðH1 �2 H2Þ, where �2 stands for the Hilbertian tensor product. The
minimal tensor product plays the role of the injective tensor product of Banach
spaces in the category of operator spaces. Similarly, there exists an analog for
operator spaces of the projective tensor product. It is denoted by E1 �^ E2 and it
was introduced in [2] and [7] independently. The tensor products �min and �^ are
associative and commutative. We now list some other properties which we will use
in the sequel with no further reference:

E1 �^ E2 �! E1 �min E2 is a complete contraction;

E�1 �min E2 �! cbðE1; E2Þ is a complete isometry;

E1 �min E2 �! cbðE�1 ; E2Þ is a complete isometry;

ðE1 �^ E2Þ� �! cbðE1; E
�
2Þ is a completely isometric isomorphism.

(e) Complex interpolation. Let fE0; E1g be a compatible couple of Banach
spaces in the sense of complex interpolation. Let us suppose that E0 and E1
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have an operator space structure. In [20] Pisier showed that, if E� denotes the
interpolation space ½E0; E1��, one can de>ne an operator space structure on E� by
imposing on Mn � E� the norm of the Banach space ½MnðE0Þ;MnðE1Þ��. He also
proved the analog for operator spaces of the classical interpolation result for Banach
spaces. Namely, if we assume that u : E0 þ E1 ! F0 þ F1 satis>es the inequalities
kukcbðE0;F0Þ6C0 and kukcbðE1;F1Þ6C1, then for 0 < � < 1 we have the estimate

kukcbðE�;F�Þ6C1��
0 C�

1 :

We now recall the de>nition and the main properties of the Schatten classes. The
non-commutative analog of the n-dimensional Lebesgue space l pðnÞ is the Schatten
class Sp

n which is de>ned as the space Mn of n 
 n complex matrices with the
norm given by

(a) kAkS p
n
¼ ðtr jAjpÞ1=p, if 16 p <1,

(b) kAkS1n ¼ supfkAxkl 2ðnÞ : kxk‘ 2ðnÞ6 1g, if p ¼ 1.
Now we present the vector-valued Schatten classes Sp

n ðEÞ, introduced by Pisier
in [21]. The point here is that the space E where we take values has to be an
operator space. If p ¼ 1, we have, by de>nition, S1n ¼ Bðl2ðnÞÞ and so we obtain
a natural operator space structure for S1n . We de>ne S1n ðEÞ as the operator space
S1n �min E. It is obvious that MnðEÞ and S1n ðEÞ coincide. In what follows we shall

write S1n ðEÞ for MnðEÞ. If p ¼ 1, the duality S1
n ¼ ðS1n Þ� gives a natural operator

space structure on S1
n. We set S1

nðEÞ ¼ S1
n �^ E. Finally, since the identity mapping

S1
nðEÞ ! S1n ðEÞ is contractive, we de>ne the classes Sp

n ðEÞ by means of complex
interpolation. Namely, Sp

n ðEÞ ¼ ½S1n ðEÞ; S1
nðEÞ�1=p. The next theorem summarizes

some properties of the vector-valued Schatten classes that will be used repeatedly
throughout the paper; see [21, Chapter 1].

Remark 1.1. In the same fashion, it is possible to de>ne a natural operator
space structure on the Bochner--Lebesgue spaces; see [21, Chapter 2].

THEOREM 1.2 (Pisier). The vector-valued Schatten classes satisfy the
following properties.

1. The cb-norm. Let E1 and E2 be operator spaces and let 16 p61. Then
the cb-norm of any linear mapping u : E1 ! E2 is given by

kukcb ¼ sup
n> 1

kIMn
� ukBðS p

n ðE1Þ;S p
n ðE2ÞÞ:

2. Duality. Let 16 p61 and let p0 denote the conjugate exponent of p. The

map A 2 Sp 0
n ðE �Þ 7! trðA � Þ 2 Sp

n ðEÞ� is completely isometric.
3. Complex interpolation. Let 16 p0, p1 61 and 0 < � < 1 and assume

that fE0; E1g is a compatible couple of operator spaces. Then, letting
p�1� ¼ ð1� �Þp�10 þ �p�11 , we have

½Sp0
n ðE0Þ; Sp1

n ðE1Þ�� ¼ Sp�
n ðE�Þ:

4. Ordered norms. Let 16 p1 6 p2 61. Then the identity map

Sp1
n ðEÞ �! Sp2

n ðEÞ
is a contraction.
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5. Fubini type theorems. Let 16 p61 and let n1; n2; n> 1. Then, we have,
completely isometrically,

Sp
n1
ðSp

n2
ðEÞÞ ’ Sp

n2
ðSp

n1
ðEÞÞ and Sp

n ðLp
EðLÞÞ ’ Lp

S p
n ðE Þ

ðLÞ:

2. Vector-valued Fourier transform

We assume the reader is familiar with the language of non-commutative abstract
harmonic analysis on compact groups. In any case all the results we use here can
be found in [9]. In what follows we shall assume that G is a compact Hausdor.
topological group endowed with its Haar measure 
 normalized so that 
ðGÞ ¼ 1.
The mapping � : G! UðCd�Þ will denote an irreducible unitary representation of

G of degree d�. That is, � 2 bGG where the symbol bGG stands for the dual object of G.

DEFINITION 2.1. Given an operator space E, f 2 L1
EðGÞ and � 2 bGG, the vector-

valued Fourier coe*cient of f at � is de>ned as the operator

bffð�Þ ¼ ð
G
fðgÞ�ðgÞ� d
ðgÞ 2 BðCd� ; E d�Þ:

We interpret this operator-valued integral in the weak sense. That is, given an
orthonormal basis fv1; v2; . . . ; vd�g of C

d� and u 2 C
d� , we de>ne the jth component

of bffð�Þu, with respect to that basis, by the following element of E:ð
G
fðgÞh�ðgÞ�u; vji d
ðgÞ:

Since �ðgÞ is unitary, it follows that the vector-valued Fourier coeMcients are well
de>ned for all f in L1

EðGÞ. Once we have >xed the basis of Cd� , we can identify
BðCd� ; E d�Þ with the space Md� � E. This leads us to write the Fourier transform
operator FG;E, in the form

FG;E : L1
EðGÞ �!

Y
�2GbMd� � E:

The >rst step in studying the Hausdor.--Young inequality is to >nd a natural
Lp-norm for this Cartesian product, which we denote by MEð bGGÞ.
DEFINITION 2.2. Let E be an operator space and 16 p <1. The spaces

Lp
Eð bGGÞ are de>ned as follows:

Lp
Eð bGGÞ ¼

�
A 2 MEð bGGÞ : kAkL p

E
ðGbÞ ¼

�X
�2Gbd�kA

�kp
S p
d�
ðE Þ

�1=p

<1
�
;

L1E ð bGGÞ ¼
�
A 2 MEð bGGÞ : kAkL1E ðGbÞ ¼ sup

�2Gb kA�kS1
d�
ðEÞ <1

�
:

We write Lpð bGGÞ for the case E ¼ C. Note that we require the vector space E to
be an operator space. This condition is necessary since we are making use of the
spaces Sp

n ðEÞ; see Pisier’s monograph [21] for more on this topic. The family of

spaces Lp
Eð bGGÞ is a particular case of a bigger family of spaces studied in [21,

Chapter 2], the spaces ‘pð
; fEigÞ. This remark allows us to provide the spaces
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Lp
Eð bGGÞ with the natural operator space structure induced by ‘pð
; fEigÞ. We now

summarize the main properties of these spaces.

(a) Duality. Let 16 p <1 and let p0 be the conjugate exponent of p. Then the
following map is a completely isometric isomorphism:

A 2 Lp 0

E � ð bGGÞ 7�!X
�2Gb d� trðA�� Þ 2 Lp

Eð bGGÞ�:
(b) Complex interpolation. Let 16 p0; p1 61. Assume that fE0; E1g is a

compatible couple of operator spaces. Then fLp0
E0
ð bGGÞ;Lp1

E1
ð bGGÞg is also a compatible

couple and, for 0 < � < 1 and p�1� ¼ ð1� �Þp�10 þ �p�11 , we have

½Lp0
E0
ð bGGÞ;Lp1

E1
ð bGGÞ�� ¼ Lp�

E�
ð bGGÞ:

(c) Ordered norms. The embedding Lp1
E ð bGGÞ ! Lp2

E ð bGGÞ is contractive whenever
16 p1 6 p2 61.

(d) Fubini type theorems. Let 16 p61 and let n> 1. Then the following are
completely isometric isomorphisms:

Sp
n ðLp

Eð bGGÞÞ ’ Lp
S p
n ðE Þ

ð bGGÞ and Lp
L p
E
ðLÞð bGGÞ ’ Lp

L p
E
ðGbÞðLÞ:

We now present a couple of results concerning these spaces for which we have
not found any reference. These will be especially useful in the study of the Fourier
cotype; see for instance the proof of Proposition 4.3. We >rst need a technical result,
which is an inequality of H€oolder type.

LEMMA 2.3. Let E be an operator space, n1; n2 > 1 and 16 p61. Let us
consider A 2Mn1

� E and Bij 2Mn1
for 16 i; j6n2. Then

kðtrðABijÞÞkS1
n2
ðEÞ6 kAkSp 0

n1
ðEÞkðBijÞkS p

n1
ðS1

n2
Þ:

Proof. If akl and b
ij
kl denote the entries ofA andBij respectively, then we can write

ðtrðABijÞÞ ¼
Xn1

k;l¼1
ðbijlkÞ � akl 2Mn2

� E:

Hence, recalling the completely isometric isomorphism from cbðS1
n; E

�Þ onto
ðS1

n �^ EÞ� given by OðA� eÞ ¼ PðAÞðeÞ, we obtain

kðtrðABijÞÞkS1
n2
ðE Þ ¼ sup

kPk
cbðS1n2

;E �Þ 6 1

				 Xn1

k;l¼1
½PðbijlkÞ�ðaklÞ

				
¼ sup
kPk

cbðS1n2
;E �Þ 6 1

j trðCAÞj

6 kAk
Sp 0
n1
ðEÞ sup

kPk
cbðS1n2

;E �Þ 6 1

kCkS p
n1
ðE �Þ

6 kAk
Sp 0
n1
ðEÞkðBijÞkS p

n1
ðS1

n2
Þ;

where C ¼ ½IMn1
� P�ðBijÞ 2Mn1

� E �. This completes the proof. �
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For >xed �0 2 bGG and 16 i0; j0 6 d�0 , we de>ne Mð�0; i0; j0Þ 2 MCð bGGÞ by the
relations Mð�0; i0; j0Þ�ij ¼ #��0#ii0#jj0 .

PROPOSITION 2.4. The following is a completely isometric isomorphism:

Q : L1E ð bGGÞ �! cbðL1ð bGGÞ; EÞ;
A 7�!

X
�2Gb d� trðA�� Þ:

Proof. We just need to show that Q is an isometric isomorphism, since we
have the natural isometric isomorphisms

S1n ðL1E ð bGGÞÞ  L1S1n ðE Þð bGGÞ and cbðL1ð bGGÞ; S1n ðEÞÞ  S1n ðcbðL1ð bGGÞ; EÞÞ:
(1) Q is a contraction. By expressing the cb-norm in terms of the Schatten class

S1, we have

kQðAÞk
cbðL1ðGbÞ;EÞ6 sup

n> 1

�X
�2Gb d�kðtrðA�B�

ijÞÞkS 1
n ðE Þ : kðBijÞkS 1

nðL1ðGbÞÞ6 1

�
:

But Lemma 2.3 with p ¼ 1 givesX
�2Gbd�kðtrðA

�B�
ijÞÞkS 1

nðEÞ6
X
�2Gb d�kA�kS1

d�
ðE ÞkðB�

ijÞkS1
d�n

6 kAkL1E ðGbÞkðBijÞkS 1
n ðL1ðGbÞÞ:

(2) Q is an isometry. For >xed � 2 bGG, we de>ne Bð�; i; jÞ to be the element of

L1ð bGGÞ given by d�1� Mð�; j; iÞ and we denote by Bð�Þ the matrix with entries Bð�; i; jÞ
where 16 i; j6 d�. Due to the natural complete isometry L1ð bGGÞ ! cbðL1ð bGGÞ;CÞ, it
is not diMcult to check that kBð�Þk

S1
d�
ðL1ðGbÞÞ ¼ 1. Since this works for any � 2 bGG,

we get

kQðAÞk
cbðL1ðGbÞ;EÞ> sup

�2Gb k½IMd�
� QðAÞ�ðBð�ÞÞkS1

d�
ðEÞ ¼ kAkL1E ðGbÞ:

(3) Q is surjective. Let P 2 cbðL1ð bGGÞ; EÞ. Then we de>ne A 2MEð bGGÞ by
the relation

A� ¼ d�1� ðPðMð�; j; iÞÞÞ; where � 2 bGG:

The de>nition of A gives rise to the following expression:

PðBÞ ¼
X
�2Gb

Xd�
i;j¼1

b�ijPðMð�; i; jÞÞ ¼
X
�2Gb d� trðA�B�Þ

where b�ij are the entries of B�. Therefore it suMces to check that A 2 L1E ð bGGÞ. But
following the notation of Step (2), we obtain

kA�kS1
d�
ðE Þ ¼ d�1� kðPðMð�; j; iÞÞÞkS1

d�
ðE Þ

6 kPk
cbðL1ðGbÞ;EÞkBð�ÞkS1

d�
ðL1ðGbÞÞ6 kPkcbðL1ðGbÞ;EÞ:

Since P 2 cbðL1ð bGGÞ; EÞ, we have a uniform upper bound. �

The space L1E ð bGGÞ behaves with respect to the minimal tensor product as L1E ðLÞ
does with respect to the injective tensor product in the category of Banach spaces.

Namely, as a consequence of Proposition 2.4, we see that L1ð bGGÞ �min E ,!L1E ð bGGÞ
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is a complete isometry. The space L1
Eð bGGÞ behaves in the same fashion with respect

to the projective tensor product.

COROLLARY 2.5. The identity L1ð bGGÞ �^ E ! L1
Eð bGGÞ is completely isometric.

Proof. By [8, Proposition 3.2.2] it suMces to check that the adjoint mapping
is a complete isometric isomorphism. But Proposition 2.4 gives the chain

L1
Eð bGGÞ� ’ L1E � ð bGGÞ ’ cbðL1ð bGGÞ; E �Þ ’ ðL1ð bGGÞ �^ EÞ�

of completely isometric isomorphisms. This completes the proof. �

For the sake of completeness we introduce the space C0ð bGG;EÞ. It is de>ned as
the collection of those A 2 L1E ð bGGÞ satisfying the following condition:

for all " > 0 we have kA�kS1
d�
ðEÞ < " except for finitely many � 2 bGG:

As a subspace of L1E ð bGGÞ this space inherits a natural operator space structure. The
only two results about the spaces Lp

Eð bGGÞ that fail at p ¼ 1 are the density of

Lpð bGGÞ � E in Lp
Eð bGGÞ and duality: the predual of L1

E � ð bGGÞ is not L1E ð bGGÞ. However,

it is easy to see the density of C0ð bGGÞ � E in C0ð bGG;EÞ. On the other hand, the dual

of C0ð bGG;EÞ is completely isomorphic to L1
E � ð bGGÞ.

PROPOSITION 2.6. The following is a completely isometric isomorphism:

Q : L1
E � ð bGGÞ �! C0ð bGG;EÞ�;

A 7�!
X
�2Gb d� trðA� � Þ:

Proof. Taking into account the natural isometric isomorphisms given by

S1
nðL1

E � ð bGGÞÞ  L1
S1n ðEÞ� ð bGGÞ and C0ð bGG; S1n ðEÞÞ�  S1

nðC0ð bGG;EÞ�Þ;
it is enough to see that Q is an isometric isomorphism. We prove this fact in
several steps.

(1) Q is a contraction. This is an obvious consequence of the duality action on
the Schatten classes Sp

n ðEÞ:
kQðAÞk

C0ðGb;EÞ� 6 sup
kBkC0ðĜG;EÞ 6 1

X
�2Gb d�j trðA�B�Þj

6 sup
kBkC0ðĜG;EÞ 6 1

X
�2Gb d�kA�kS1

d�
ðE �ÞkB�kS1

d�
ðE Þ

6 kAkL1
E � ðGbÞ:

(2) Q is an isometry. Let A 2 L1
E � ð bGGÞ. For all " > 0 there exists a >nite set

IA;" � bGG such that X
� =2 IA;"

d�kA�kS1
d�
ðE �Þ <

1
2 ":

Furthermore, for all � 2 bGG there exists B�
" 2 S1d� ðEÞ of norm 1 such that

trðA�B�
" Þ > kA�kS1

d�
ðE �Þ �

"=2

jIA;"jmax�2IA;" d�
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where jIA;"j denotes the number of elements of IA;". Let C" be the element of
C0ð bGG;EÞ of norm 1 de>ned by C�

" ¼ B�
" if � 2 IA;" and C�

" ¼ 0 otherwise. This
step is completed by taking " arbitrarily small in the expression

kQðAÞk
C0ðGb;EÞ� >

				X
�2Gb d� trðA�C�

" Þ
				 > kAkL1

E � ðGbÞ � ":

(3) Q is surjective. Let P 2 C0ð bGG;EÞ�. Then we de>neA 2ME � ð bGGÞ by the relation
A� ¼ d�1� ðPðMð�; j; iÞ � � ÞÞ; for � 2 bGG:

As in Proposition 2.4, it can be shown that P ¼ QðAÞwithA 2 L1
E � ð bGGÞ. �

3. Fourier type

Let E be an operator space and let 16 p6 2. Given f 2 LpðGÞ and e 2 E it is

obvious that the Fourier transform of f � e coincideswith bff � e. Thus, theHausdor.--
Young inequality for compact groups (see [15] or Lemma 5.1 below) provides the

relation FG;EðLpðGÞ � EÞ � Lp 0 ð bGGÞ � E. This motivates the following de>nition.

DEFINITION 3.1. Let 16 p6 2 and let p0 be the conjugate exponent of p. We
say that the operator space E has Fourier type p with respect to the compact group
G if the Fourier transform FG;E : LpðGÞ � E ! Lp 0 ð bGGÞ � E can be extended to a
completely bounded operator

Q1
G;E; p : L

p
EðGÞ �! Lp 0

E ð bGGÞ:
In that case, we shall denote by C1pðE;GÞ the cb-norm of Q1

G;E; p.

Remark 3.2. If the compact group G is also abelian, there already exists a
notion (introduced by Milman in [17]) of Fourier type of a Banach space with
respect to G. The only di.erence with Milman’s notion is that here we require the
extended operator to be completely bounded, while in the commutative setting only
the boundedness of this operator is required.

The >rst natural question that arises after the de>nition of Fourier type is if
the extension of FG;E is always the natural one. That is, let us suppose that the
operator space E has Fourier type p with respect to G. Then we wonder whether
Q1
G;E; pðfÞ ¼ FG;EðfÞ for all f 2 Lp

EðGÞ.

LEMMA 3.3. We have kbff kL1E ðGbÞ6 kf kL1
E
ðGÞ for all f 2 L1

EðGÞ.

Proof. Since E is an operator space we have E � BðHÞ for some Hilbert space
H. Hence, if h ¼ ðh1; h2; . . . ; hd�Þ 2 ‘2Hðd�Þ, we can write

kbffð�ÞkS1
d�
ðEÞ ¼ kbffð�ÞkBð‘2Hðd�ÞÞ

6 sup
khk

‘2Hðd�Þ
6 1

�Xd�
i¼1


ð
G

����fðgÞ
�Xd�

j¼1
�jiðgÞhj

�����
H
d
ðgÞ

�2�1=2

:
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Applying the Minkowski inequality for integrals we get

kbffð�ÞkS1
d�
ðE Þ6 sup

khk
‘2Hðd�Þ

6 1

ð
G
kfðgÞkE

�Xd�
i¼1

����Xd�
j¼1

�jiðgÞhj
����2
H

�1=2

d
ðgÞ:

Therefore we just need to check the inequality

sup
khk

‘2Hðd�Þ
6 1

�Xd�
i¼1

����Xd�
j¼1

�jiðgÞhj

����2
H

�1=2

6 1

for all � 2 bGG and almost all g 2 G. But this is a simple consequence of the unitarity
of �ðgÞ for any g 2 G. This completes the proof. �

PROPOSITION 3.4. Let E be an operator space having Fourier type p with
respect to G. Then Q1

G;E; pðfÞ ¼ FG;EðfÞ for all f 2 Lp
EðGÞ.

Proof. Let ffng1n¼1 � LpðGÞ � E be a sequence convergent to f in the norm of
Lp
EðGÞ. Then, applying Lemma 3.3, we have

kQ1
G;E; pðfÞ � FG;EðfÞkL1E ðGbÞ6 kQ1

G;E; pðf � fnÞkL1E ðGbÞ þ kFG;Eðfn � fÞkL1E ðGbÞ
6 kQ1

G;E; pðf � fnÞkLp 0
E
ðGbÞ þ kFG;Eðfn � fÞkL1E ðGbÞ

6 C1pðE;GÞkf � fnkLp
E
ðGÞ þ kfn � f kL1

E
ðGÞ

6 ðC1pðE;GÞ þ 1Þkf � fnkLp
E
ðGÞ:

The result follows by taking the limit in n. This completes the proof. �

As is well known, every Banach space has Fourier type 1 in the sense of Milman
[17]. In the following result, which extends Lemma 3.3, we show that every operator
space has Fourier type 1.

PROPOSITION 3.5. We have C11ðE;GÞ ¼ 1 for every pair ðE;GÞ.

Proof. Let us denote by maxB the operator space which results when we impose
on the Banach space B its max quantization; see [8, Chapter 3] for the details. Let
E1 and E2 be operator spaces. Then the natural identi>cation

cbððmaxBÞ �^ E1; E2Þ ’ BðB; cbðE1; E2ÞÞ;
given by Oðb� e1Þ ¼ PðbÞðe1Þ, is a completely isomorphic isomorphism. This follows
by the factorization

cbððmaxBÞ �^ E1; E2Þ ’ cbðmaxB; cbðE1; E2ÞÞ ’ BðB; cbðE1; E2ÞÞ
which is composed of completely isometric isomorphisms; see [8, Chapters 3, 7].
Therefore, since the space L1

EðGÞ can be rewritten as maxL1ðGÞ �^ E, we get

C11ðE;GÞ ¼ sup
kf k

L1ðGÞ 6 1

kbff � � kcbðE;L1E ðGbÞÞ6 sup
kf k

L1ðGÞ 6 1

kbffkL1ðGbÞ ¼ 1

by the Hausdor.--Young inequality on compact groups; see [15] or Lemma 5.1 below.
Recall that the supremum is attained by taking f to be the constant function 1.
This completes the proof. �
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Remark 3.6. There exists an alternative approach to this result using similar
arguments to those employed in the proof of Proposition 4.3.

The following corollary exhibits the Fourier type as a stronger condition on
the pair ðE;GÞ as the exponent p approaches 2. Its proof follows by means of
Proposition 3.5 and the complex interpolation method.

COROLLARY 3.7. Let 16 p1 6 p2 6 2 and assume that the operator space E
has Fourier type p2 with respect to G. Then E has Fourier type p1 with respect to
G. Moreover we have C1p1ðE;GÞ6 C1p2ðE;GÞp

0
2=p

0
1 .

A vector-valued version of the Riemann--Lebesgue lemma on compact groups
follows easily from Proposition 3.5 and the scalar result.

COROLLARY 3.8. We have FG;EðL1
EðGÞÞ � C0ð bGG;EÞ for every operator

space E.

4. Fourier cotype

If G is a locally compact abelian group, the Fourier inversion theorem asserts
that any f 2 L1ðGÞ such that bff 2 L1ð bGGÞ can be recovered as

fðgÞ ¼ bbffbffðg�1Þ for almost every g 2 G:

Furthermore, if G is compact, one can conclude that the operators F�1G and F
Gb

are essentially the same via the topological isomorphism fromG onto its bidual, given

by the Pontrjagin duality theorem. In the vector-valued context this means that, in
order to study the operator F�1G;E, it suMces to study the Fourier transform F

Gb;E.
For this reason we do not >nd the concept of Fourier cotype in commutative theory.

However, for a non-commutative compact group G, the Fourier inversion theorem
and the Pontrjagin duality theorem are no longer valid since the dual object bGG is not

even a group. These considerations explain why the study of the inverse operator

F�1G;E should not be a trivial consequence of the analysis of the operator FG;E.

Let E be an operator space and 16 p6 2. Arguing as in x 3, we can deduce the
relation F�1G;EðLpð bGGÞ � EÞ � Lp 0 ðGÞ � E. This follows from Kunze’s result for the
inverse Fourier transform on compact groups (see [15] or Lemma 5.1 below). This
motivates the following de>nition.

DEFINITION 4.1. Let 16 p6 2 and let p0 be the conjugate exponent of p. We
say that the operator space E has Fourier cotype p0 with respect to the compact

group G if the operator F�1G;E : Lpð bGGÞ � E ! Lp 0 ðGÞ � E can be extended to a
completely bounded operator

Q2
G;E; p 0 : Lp

Eð bGGÞ �! Lp 0

E ðGÞ:

In that case, we shall denote by C2p 0 ðE;GÞ the cb norm of Q2
G;E; p 0 .

Remark 4.2. Now it is obvious that, for compact abelian groups, the notion
of Fourier cotype is the completely bounded version of Milman’s notion of Fourier
type with respect to the dual group bGG.
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Plancherel’s theorem for compact groups gives an explicit formula for the action
of F�1G on L2ð bGGÞ and, by the natural embeddings, also on Lpð bGGÞ for 16 p6 2. It
is obvious that this formula remains valid if we take tensor products. Namely,
given 16 p6 2, the action of the operator F�1G;E on Lpð bGGÞ � E is given by

A 2 Lpð bGGÞ � E 7�!
X
�2Gb d� trðA��ð�ÞÞ 2 Lp 0 ðGÞ � E:

Therefore, if we want our de>nition of Fourier cotype to be natural, we need
aMrmative answers for the following questions.

(a) Does the operator Q2
G;E; p 0 preserve the given explicit formula? That is, if

the operator space E has Fourier cotype p0 with respect to G, we ask whether for
all A 2 Lp

Eð bGGÞ we have

Q2
G;E; p 0 ðAÞ ¼

X
�2Gb d� trðA��ð�ÞÞ:

If A 2 Lp
Eð bGGÞ, it has a countable support IA ¼ f�kg1k¼1 � bGG. Then we de>ne An 2

Lpð bGGÞ � E by the relations A�
n ¼ A� if � ¼ �k for 16 k6n and A�

n ¼ 0 otherwise.
Denoting

f ¼
X
�2Gb d� trðA��ð�ÞÞ and fn ¼

X
�2Gb d� trðA�

n�ð�ÞÞ

we obtain

kQ2
G;E; p 0 ðAÞ � f k

Lp 0
E
ðGÞ6 kQ

2
G;E; p 0 ðA� AnÞkLp 0

E
ðGÞ þ kf � fnkLp 0

E
ðGÞ

6C2
p 0 ðE;GÞkA� AnkL p

E
ðGbÞ þ kf � fnkLp 0

E
ðGÞ:

The >rst term of the sum is arbitrarily small as n tends to in>nity. For the second
term it is not diMcult to check that the sequence ffng1n¼1 is Cauchy. Thus,
replacing this sequence if necessary by an appropriate subsequence, we can assume
that kfn2

� fn1
k
Lp 0
E
ðGÞ < 2�m for all n1; n2 >m. Hence

kf � fnkLp 0
E
ðGÞ6

X1
k¼nþ1

kfk � fk�1kLp 0
E
ðGÞ <

X1
k¼n

1

2k

and Q2
G;E; p 0 ðAÞ ¼

P
�2Gb d� trðA��ð�ÞÞ as we wanted.

(b) Does the operator Q2
G;E; p 0 coincide with the inverse of the vector-valued

Fourier transform? That is, if the operator space E has Fourier cotype p0 with
respect to G, we ask whether, for all A 2 Lp

Eð bGGÞ, we have

FG;E " Q2
G;E; p 0 ðAÞ ¼ A:

Using the same notation as above we just need to see that bff ¼ A. Given � 2 bGG we
take n� to be the smallest positive integer satisfying � 6¼ �k for k>n�. Then it is

obvious that bffð�Þ � A� ¼ ðbff � bffnÞð�Þ for all n>n� and therefore it is enough to
estimate the entries of that matrix. Namely,

kððbff � bffnÞð�ÞÞijkE 6

ð
G
kðf � fnÞðgÞkEj�jiðgÞj d
ðgÞ

6 kf � fnkLp 0
E
ðGÞk�jikLpðGÞ6 C2p 0 ðE;GÞkA� AnkL p

E
ðGbÞ

which is arbitrarily small for large n.
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PROPOSITION 4.3. We have C21ðE;GÞ ¼ 1 for every pair ðE;GÞ.

Proof. By Property 1 of Theorem 1.2 and a density argument, we have to see
that for all n> 1, any family of vectors Aij 2 L1ð bGGÞ � E and almost all g 2 G,
we have ����

�X
�2Gb d� trðA�

ij�ðgÞÞ
�����

S1n ðE Þ
6 kðAijÞkS1n ðL1

EðGbÞÞ:
If we consider a vector A 2 L1

Eð bGGÞ as an element of cbðL1ð bGGÞ; EÞ by the relation

B 2 L1ð bGGÞ 7�!X
�2Gb d� trðA�B�Þ 2 E

then it is easy to see that, for Bg 2 L1ð bGGÞ de>ned by B�
g ¼ �ðgÞ, we have����

�X
�2Gb d� trðA�

ij�ðgÞÞ
�����

S1n ðE Þ
¼

����
�X

�2Gbd� trðA
�
ij � ÞðBgÞ

�����
S1n ðE Þ

6

����
�X

�2Gbd� trðA
�
ij � Þ

�����
cbðL1ðGbÞ;S1n ðEÞÞ

6 kðAijÞkS1n ðL1ðGbÞ�^EÞ
where the last inequality follows from the complete contraction given by

L1ð bGGÞ �^ E �!L1ð bGGÞ �min E �! cbðL1ð bGGÞ; EÞ:
Finally, we get the desired relation by Corollary 2.5. We have shown that
C21ðE;GÞ6 1. The reverse inequality follows from Corollary 5.3 below. �

COROLLARY 4.4. Let 16 p1 6 p2 6 2 and assume that the operator space E
has Fourier cotype p02 with respect to G. Then E has Fourier cotype p01 with respect
to G. Moreover we have C2p 0

1
ðE;GÞ6 C2p 0

2
ðE;GÞp

0
2=p

0
1 .

5. Duality, cb-distance and some other topics

Let E be an operator space. The aim of this section is to study the Fourier type
and cotype of some operator spaces related to E. We begin by stating the scalar-
valued Hausdor.--Young inequality. Recall that we write SAA to denote F�1G ðAÞ.

LEMMA 5.1 (Hausdor.--Young inequality). Let 16 p6 2 and let p0 be the
conjugate exponent of p.

1. If f 2 LpðGÞ, then bff 2 Lp 0 ð bGGÞ and kFGkcbðLpðGÞ;Lp 0 ðGbÞÞ ¼ 1.

2. If A 2 Lpð bGGÞ, then SAA 2 Lp 0 ðGÞ and kF�1G k
cbðL pðGbÞ;Lp 0 ðGÞÞ ¼ 1.

Note that this statement of the inequality goes a bit further than Kunze’s original
result since we are asserting that the Fourier transform is not only bounded but
completely bounded. The proof is straightforward; >rst one checks that FG is a
complete contraction from L1ðGÞ into L1ð bGGÞ. But, since L1ðGÞ is equipped with
its max operator space structure, the cb-norm coincides with the operator norm; see
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[8, Chapter 3]. The same argument works to see that the inverse Fourier transform
is a complete contraction from L1ð bGGÞ to L1ðGÞ, now that L1ðGÞ is equipped
with its min operator space structure. These facts can also be justi>ed as simple
consequences of Propositions 3.5 and 4.3. Second, from the Plancherel theorem for
compact groups, it is easy to check that FG is a complete isometric isomorphism
from L2ðGÞ onto L2ð bGGÞ. By complex interpolation the general case is obtained and
the fact that the cb-norm of the Fourier transform is not smaller than 1 for any
16 p6 2 can be checked by testing with the constant function 1.

5.1. Basic results

We begin with the simplest case, namely, the Fourier type and cotype of the
subspaces of E. The following result is a trivial consequence of Property 1 of
Theorem 1.2.

PROPOSITION 5.2. Let F be a closed subspace of E. Then we have the estimates
C1pðF;GÞ6 C1pðE;GÞ and C2q 0 ðF;GÞ6 C2q 0 ðE;GÞ for any 16 p; q6 2.

COROLLARY 5.3. We have C1pðE;GÞ> 1 and C2q 0 ðE;GÞ> 1 for any 16 p; q6 2.

Now we consider complex interpolation of operator spaces. The proof of the
next result is also straightforward.

PROPOSITION 5.4. Let 16 p0; p1 6 2 and assume that fE0; E1g is compatible
for complex interpolation. Then

C1p�ðE�;GÞ6 C1p0ðE0; GÞ1��C1p1ðE1; GÞ�

for p�1� ¼ ð1� �Þp�10 þ �p�11 . A similar result holds for the Fourier cotype.

5.2. Duality

The following theorem can be rephrased by saying that Fourier type and cotype
are dual notions.

THEOREM 5.5. Let E be an operator space, and let 16 p6 2 with p0 its
conjugate exponent. Then

(1) E has Fourier type p with respect to a compact group G if and only if E �

has Fourier cotype p0 with respect to G;
(2) E has Fourier cotype p0 with respect to a compact group G if and only if

E � has Fourier type p with respect to G.
Moreover, we have C1pðE;GÞ ¼ C2p 0 ðE �; GÞ and C1pðE �; GÞ ¼ C2p 0 ðE;GÞ.

Proof. We just prove the equality C1pðE;GÞ ¼ C2p 0 ðE �; GÞ since the proof of
the second identity is essentially the same. The case p ¼ 1 follows from
Propositions 3.5 and 4.3; thus we assume that 1 < p6 2.

Step 1: C1pðE;GÞ> C2p 0 ðE �; GÞ. By a density argument and Property 1 of Theorem
1.2 we just need to check that the inequality����

�X
�2Gb d� trðA�

ij�ð�ÞÞ
�����

Sp 0
n ðLp 0

E � ðGÞÞ
6 C1pðE;GÞkðAijÞkSp 0

n ðL p

E � ðGbÞÞ
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holds for any family Aij 2 Lpð bGGÞ � E � (with 16 i; j6n) and all n> 1. But we
have the completely isometric isomorphism Sp 0

n ðLp 0

E � ðGÞÞ ’ Lp 0

S p
n ðEÞ�

ðGÞ. So for all
" > 0 there exists f " 2 Lp

S p
n ðE Þ

ðGÞ of norm 1 such that����
�X

�2Gbd� trðA
�
ij�ð�ÞÞ

�����
Sp 0
n ðLp 0

E � ðGÞÞ

6 ð1þ "Þ
				
ð
G
tr


�X
�2Gb d� trðA�

ij�ðgÞÞ
�
ðf "

ijðgÞÞ
�
d
ðgÞ

				
and where f "

ij, the entries of f
", belong to LpðGÞ � E. If we denote by I the integral

over G written above, then we would like to prove that

I ¼
Xn
i;j¼1

X
�2Gb d�

ð
G
htrðA�

ij�ðgÞÞ; f "
jiðgÞi d
ðgÞ:

Taking into account the facts that Aij 2 Lpð bGGÞ � E � and f "
ij 2 LpðGÞ � E it suMces

to show that the expressions

I1 ¼
ð
G

X
�2Gbd� trðA

��ðgÞÞfðgÞ d
ðgÞ;

I2 ¼
X
�2Gb d�

ð
G
trðA��ðgÞÞfðgÞ d
ðgÞ

coincide for all A 2 Lpð bGGÞ and all f 2 LpðGÞ. But this is an easy computation
which we leave to the reader. In summary we obtain����

�X
�2Gb d� trðA�

ij�ð�ÞÞ
�����

Sp 0
n ðLp 0

E � ðGÞÞ

6 ð1þ "Þ
				 Xn
i;j¼1

X
�2Gb d�

ð
G
htrðA�

ij�ðgÞÞ; f "
jiðgÞi d
ðgÞ

				
¼ ð1þ "Þ

				 Xn
i;j¼1

X
�2Gb d� trðhA�

ij;
d*ðf "

jiÞ*ðf "
jiÞð�ÞiÞ

				
¼ ð1þ "Þj tr½ðAijÞð d*ðf "

ijÞ*ðf "
ijÞ Þ�j

where *ðfÞðgÞ ¼ fðg�1Þ. This step is concluded by the following inequality:

j tr½ðAijÞð d*ðf "
ijÞ*ðf "
ijÞ Þ�j6 kðAijÞkSp 0

n ðL p

E � ðGbÞÞkð d*ðf "
ijÞ*ðf "
ijÞ ÞkS p

n ðLp 0
E
ðGbÞÞ

6 C1pðE;GÞkðAijÞkSp 0
n ðL p

E � ðGbÞÞkf "kS p
n ðLp

E
ðGÞÞ:

Step 2: C1pðE;GÞ6 C2p 0 ðE �; GÞ. By the same reasons as those given in Step 1, it
suMces to check that

kðbffijÞkSp 0
n ðLp 0

E
ðGbÞÞ6 C2p 0 ðE �; GÞkðfijÞkSp 0

n ðLp
E
ðGÞÞ

for any family fij 2 LpðGÞ � E (with 16 i; j6n ) and all n> 1. Given " > 0, the
complete isometry

Sp 0

n ðLp 0

E ð bGGÞÞ ’ Lp 0

Sp 0
n ðEÞ

ð bGGÞ
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provides the existence of A" 2 Lp
S p
n ðE �Þð bGGÞ of norm 1 such that

kðbffijÞkSp 0
n ðLp 0

E
ðGbÞÞ6 ð1þ "Þ

				X
�2Gb d� tr½ðA";�

ij Þðbffijð�ÞÞ�
				;

where A"
ij, the entries of A", belong to Lpð bGGÞ � E �. If S denotes the sum written

above, then we can argue as in Step 1 to obtain

S ¼
Xn
i;j¼1

ð
G

�X
�2Gb d� trðA";�

ij �ðgÞ
�Þ; fjiðgÞ

�
d
ðgÞ:

Therefore

kðbffijÞkSp 0
n ðLp 0

E
ðGbÞÞ6 ð1þ "Þ

				 Xn
i;j¼1

ð
G
hF�1G;E � ðA"

ijÞðgÞ; fjiðg�1Þi d
ðgÞ
				

¼ ð1þ "Þj tr½ðF�1G;E � ðA"
ijÞÞð* ðfijÞÞ�j

6 ð1þ "ÞkF�1G;E � ðA"ÞkS p
n ðLp

E
ðGÞ�ÞkðfijÞkSp 0

n ðLp
E
ðGÞÞ

¼ ð1þ "ÞkF�1G;E � ðA"Þk
S p
n ðLp 0

E � ðGÞÞ
kðfijÞkSp 0

n ðLp
E
ðGÞÞ

6 ð1þ "ÞC2p 0 ðE �; GÞkðfijÞkSp 0
n ðLp

E
ðGÞÞ:

The proof is completed by taking " arbitrarily small. �

Remark 5.6. There exists another possible approach to this result. Namely,
E has Fourier type p if and only if the corresponding Fourier transform operator
is completely bounded. But then, by [8, Proposition 3.2.2], the adjoint operator is
also completely bounded with the same cb-norm. Moreover, it can be checked that
the adjoint coincides with the inverse of the Fourier transform for functions taking
values in E �. This gives the >rst equality of Theorem 5.5. The second equality
follows in a similar fashion.

COROLLARY 5.7. We have

C1pðE;GÞ ¼ C1pðE ��; GÞ and C2p 0 ðE;GÞ ¼ C2p 0 ðE ��; GÞ:

5.3. The cb-distance

There exists a natural analog in the category of operator spaces of the Banach--
Mazur distance, due to Pisier. It is called the cb-distance and it is de>ned by

dcbðE1; E2Þ ¼ inffkukcbðE1;E2Þku
�1kcbðE2;E1Þg

where the in>mum runs over all complete isomorphisms u : E1 ! E2.

THEOREM 5.8. Let E1 and E2 be operator spaces and let G be a compact
group. Then the following inequalities hold for 16 p6 2:

C1pðE2; GÞ6 dcbðE1; E2ÞC1pðE1; GÞ;
C2p 0 ðE2; GÞ6 dcbðE1; E2ÞC2p 0 ðE1; GÞ;
C1pðE2; GÞ6 dcbðE1; E

�
2ÞC2p 0 ðE1; GÞ;

C2p 0 ðE2; GÞ6 dcbðE1; E
�
2ÞC1pðE1; GÞ:
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Proof. The last two inequalities follow from the >rst two plus duality. Let us
assume that the >rst inequality holds; then the second inequality is also an
immediate consequence of Theorem 5.5:

C2p 0 ðE2; GÞ ¼ C1pðE�2 ; GÞ6 dcbðE�1 ; E�2ÞC1pðE�1 ; GÞ
¼ dcbðE�1 ; E�2ÞC2p 0 ðE1; GÞ ¼ dcbðE1; E2ÞC2p 0 ðE1; GÞ

where we have applied the identity kukcbðE1;E2Þ ¼ ku
�kcbðE�2 ;E�1Þ to justify the equality

dcbðE�1 ; E�2Þ ¼ dcbðE1; E2Þ; see [8] for details. Therefore we will have >nished if
we prove the validity of the >rst inequality. For that it suMces to see that

kðbffijÞkSp 0
n ðLp 0

E2
ðGbÞÞ6 kukcbku�1kcbC1pðE1; GÞkðfijÞkSp 0

n ðLp
E2
ðGÞÞ

for any family fij 2 LpðGÞ � E2 (with 16 i; j6n), any complete isomorphism
u : E1 ! E2 and all n> 1. But

kðbffijÞkSp 0
n ðLp 0

E2
ðGbÞÞ ¼

�X
�2Gb d�kðbffijð�ÞÞkp 0

Sp 0
d�n
ðE2Þ

�1=p 0

6 kukcb
�X

�2Gb d�kðIMd�n
� u�1Þðbffijð�ÞÞkp 0

Sp 0
d�n
ðE1Þ

�1=p 0

¼ kukcbkðFG;E1
ððILpðGÞ � u�1ÞðfijÞÞÞkLp 0

S
p 0
n ðE1Þ

ðGbÞ
6 kukcbC1pðE1; GÞkððILpðGÞ � u�1ÞðfijÞÞkSp 0

n ðLp
E1
ðGÞÞ

6 kukcbC1pðE1; GÞkILpðGÞ � u�1kcbkðfijÞkSp 0
n ðLp

E2
ðGÞÞ

¼ kukcbku�1kcbC1pðE1; GÞkðfijÞkSp 0
n ðLp

E2
ðGÞÞ:

This completes the proof. �

We recall here that, if OSn denotes the class of all n-dimensional operator spaces,
Pisier proved the estimate dcbðE;OHnÞ6

ffiffiffi
n

p
for any operator space E 2 OSn.

Here OHn denotes the n-dimensional operator Hilbert space OH; see [20]. Therefore,
by taking E1 ¼ l2ðnÞ in Theorem 5.8 and invoking the results of the next section,
we get the following result.

COROLLARY 5.9. We have C12ðE;GÞ; C22ðE;GÞ6 ffiffiffi
n

p
for any E 2 OSn.

6. Basic examples

We study here the Fourier type and cotype of Lebesgue spaces, Schatten classes
and their vector-valued versions. We start by stating some inequalities of Minkowski
type in the operator space setting.

If 16 p1 6 p2 61 and the measure spaces ðL1;M1; +1Þ and ðL2;M2; +2Þ are
,->nite, then the classical Minkowski inequality for integrals asserts that the
natural map

Lp1
Lp2 ðL2ÞðL1Þ �! Lp2

Lp1 ðL1ÞðL2Þ

is contractive. The same happens if our functions f : L1 
 L2 ! E take values in
a Banach space E. We are interested in the complete boundedness of this operator
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and some others in which we replace the Lebesgue spaces LpðLÞ by the Schatten
classes Sp

n . For this purpose, by complex interpolation, it suMces to check the cases
p1 ¼ p2 and ðp1; p2Þ ¼ ð1;1Þ. The >rst case follows from the Fubini type results
stated in Theorem 1.2. The second case reduces to seeing that the natural map

E1 �^ ðE2 �min E3Þ �! ðE1 �^ E2Þ �min E3

is a complete contraction. The proof of this result can be found in [8, Theorem
8.1.10]. In summary we can state the following results.

THEOREM 6.1 (Quantized Minkowski inequalities). Let us consider an
operator space E and let 16 p1 6 p2 61.

1. Lebesgue spaces. Let ðL1;M1; +1Þ and ðL2;M2; +2Þ be ,-�nite measure
spaces. Then the following natural map is a complete contraction:

Lp1
L

p2
E
ðL2Þ
ðL1Þ �! Lp2

L
p1
E
ðL1Þ
ðL2Þ:

2. Schatten classes. Let k1; k2 > 1. Then the following natural map is a complete
contraction:

Sp1
k1
ðSp2

k2
ðEÞÞ �! Sp2

k2
ðSp1

k1
ðEÞÞ:

3. Combined results. Let ðL;M; +Þ be a measure space and k> 1. Then the
following natural maps are complete contractions:

Sp1
k ðL

p2
E ðLÞÞ �! Lp2

S
p1
k
ðE ÞðLÞ and Lp1

S
p2
k
ðE ÞðLÞ �! Sp2

k ðL
p1
E ðLÞÞ:

Remark 6.2. The arguments sketched above in order to prove Theorem 6.1
need extra hypotheses. A di.erent proof, without those unnecessary hypotheses,
can be found in the thesis [18] of the second-named author.

In the study of the Fourier type of a Banach space with respect to a locally
compact abelian group, Andersson [1] gave the following version of Minkowski
inequality for regular measures. We recall that our notion of regular measure is the
same as the one given in [5].

PROPOSITION 6.3 (Andersson). Let 16 p1 6 p2 <1 and assume that
ðL1;M1; +1Þ and ðL2;M2; +2Þ are regular measure spaces. Let us denote by H the
space of functions f : L1 
 L2 ! C such that jfj is bounded lower semicontinuous
and kf!2

kLp1 ðL1Þ is bounded in L2. Then the following natural map is contractive:

Lp1
Lp2 ðL2ÞðL1Þ \H �! Lp2

Lp1 ðL1ÞðL2Þ \H:

Let us note that if ðL;M; +Þ denotes a regular measure space and we take
L1 ¼ G and L2 ¼ L in Proposition 6.3 then the space CcðG 
 LÞ of continuous
functions with compact support, de>ned onG 
 L and with values in C, is contained
in the space H. Hence, by the density of CcðG 
 LÞ in Lp1

Lp2 ðLÞðGÞ and Lp2
Lp1 ðGÞðLÞ,

we deduce that the natural map

Lp1
Lp2 ðLÞðGÞ �! Lp2

Lp1 ðGÞðLÞ

is a contraction whenever 16 p1 6 p2 <1. Then, by the same arguments as we
gave in the proof of Theorem 6.1, we conclude that we have in fact a complete
contraction. Furthermore, the same happens if we take L1 ¼ L and L2 ¼ G.
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Therefore we have shown the validity of the following result, which we enunciate
for vector-valued functions since its proof is analogous.

LEMMA 6.4. Let 16 p1 6 p2 <1 and assume that E is an operator space, G
is a compact group, and ðL;M; +Þ is a regular measure space. Then the following
natural maps are complete contractions:

Lp1
L

p2
E
ðLÞðGÞ �! Lp2

L
p1
E
ðGÞðLÞ and Lp1

L
p2
E
ðGÞðLÞ �! Lp2

L
p1
E
ðLÞðGÞ:

THEOREM 6.5. Let 16 p; q6 2 and assume that E is an operator space
having Fourier type p and Fourier cotype q 0 with respect to a compact group G.
Let ðL;M; +Þ be a regular or ,-�nite measure space. Then

(1) Lr
EðLÞ has Fourier type p with respect to G for all p6 r6 p0,

(2) Ls
EðLÞ has Fourier cotype q 0 with respect to G for all q6 s6 q 0.

Moreover, C1pðLr
EðLÞ; GÞ ¼ C1pðE;GÞ and C2q 0 ðLs

EðLÞ; GÞ ¼ C2q 0 ðE;GÞ.

Proof. We start by proving the relation C1pðLr
EðLÞ; GÞ ¼ C1pðE;GÞ. For p ¼ 1

we just need to apply Proposition 3.5. Thus we assume that 1 < p6 2. The
inequality C1pðLr

EðLÞ; GÞ> C1pðE;GÞ follows from Proposition 5.2 and, by complex
interpolation, it then suMces to see that C1pðLr

EðLÞ; GÞ6 C1pðE;GÞ for r ¼ p and
r ¼ p0. For r ¼ p we observe that the natural map

Lp

Lp 0
E
ðGbÞðLÞ �! Lp 0

Lp
E
ðLÞð bGGÞ

is a complete contraction. The proof of this fact is similar to that of Theorem 6.1.
In particular, we have

kðbffijÞkS p
n ðLp 0

L
p
E
ðLÞ
ðGbÞÞ6 kðbffijÞkLp

S
p
n ðL

p 0
E
ðGbÞÞðLÞ6 C1pðE;GÞkðfijÞkS p

n ðLp

L
p
E
ðLÞ
ðGÞÞ:

For r ¼ p0 we use Theorem 6.1 or Lemma 6.4, depending on the measure space
ðL;M; +Þ, to get the desired relation:

kðbffijÞkSp 0
n ðLp 0

L
p 0
E
ðLÞ
ðGbÞÞ6 C1pðE;GÞkðfijÞkLp 0

S
p 0
n ðL p

E
ðGÞÞ
ðLÞ

6 C1pðE;GÞkðfijÞkSp 0
n ðLp

L
p 0
E
ðLÞ
ðGÞÞ:

The proof of the inequality C2q 0 ðLs
EðLÞ; GÞ6 C2q 0 ðE;GÞ is analogous. �

Remark 6.6. The proof of Theorem 6.5 for scalar-valued Lebesgue spaces is
much simpler. Namely, one only has to see that L2ðLÞ has Fourier type 2 and then the
result follows by duality and complex interpolation with the trivial cases p ¼ 1
and p ¼ 1. But the case p ¼ 2 is a simple consequence of Plancherel’s theorem on
compact groups.

It is well known that the dual of Lp
EðLÞ is not in general Lp 0

E � ðLÞ. However it
is so when the dual E � possesses the Radon--Nikodym property RNP. In [21],
Pisier developed an operator space version of the Radon--Nikodym property which
he called ORNP. The following corollary, which is a very simple consequence of
Theorems 5.5 and 6.5, shows that both spaces have the same Fourier type and
cotype even if E � does not satisfy the ORNP.
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COROLLARY 6.7. Let 16 p; q6 2 and assume that E is an operator space
having Fourier type p and Fourier cotype q 0 with respect to a compact group G.
Let ðL;M; +Þ be a regular or ,-�nite measure space. Then we have

(1) C1qðLs
EðLÞ�; GÞ ¼ C1qðLs 0

E � ðLÞ; GÞ for all q6 s6 q 0,

(2) C2p 0 ðLr
EðLÞ�; GÞ ¼ C2p 0 ðLr 0

E � ðLÞ; GÞ for all p6 r6 p0.

We now study the Fourier type and cotype of Schatten classes. We will denote by
Sp the in>nite-dimensional Schatten class of exponent p. The de>nition and
properties of the vector-valued version of S p are similar to the >nite-dimensional case;
see [21, Chapter 1]. We omit the proof of the following result since the arguments
needed can be found in the proof of Theorem 6.5.

THEOREM 6.8. Let 16 p; q6 2 and assume that E is an operator space having
Fourier type p and Fourier cotype q 0 with respect to a compact group G. Then

(1) SrðEÞ has Fourier type p with respect to G for all p6 r6 p0,
(2) SsðEÞ has Fourier cotype q 0 with respect to G for all q6 s6 q 0.

Moreover, C1pðSrðEÞ; GÞ ¼ C1pðE;GÞ and C2q 0 ðSsðEÞ; GÞ ¼ C2q 0 ðE;GÞ.

Remark 6.9. We already know that the Fourier type and cotype become
stronger conditions on the pair ðE;GÞ as p and p0 approach 2. This gives rise
to the notions of sharp Fourier type and cotype exponents. The problem of >nding
the sharp exponents of a given operator space is highly non-trivial even for the
simplest case of Lebesgue spaces or Schatten classes. Part of this problem is solved in
[12]. Namely, if 16 p6 2 and ðL;M; +Þ is not the union of >nitely many +-atoms,
then we show that LpðLÞ has sharp Fourier type p with respect to any compact
semisimple Lie group. By duality we also see that Lp 0 ðLÞ has sharp Fourier cotype
p0 for those groups. By the nature of L and Proposition 5.2, we have

C1qðLpðLÞ; GÞ> lim
n!1

C1qðl pðnÞ; GÞ

for 16 p < q6 2. Moreover, Theorem 5.8 gives C1qðl pðnÞ; GÞ6n1=p�1=q. The main
result of [12] asserts that there exists a positive constant KðG; qÞ, such that

KðG; qÞn1=p�1=q
6 C1qðl pðnÞ; GÞ6n1=p�1=q

for all n> 1 and any compact semisimple G. The constant KðG; qÞ can be de>ned as

KðG; qÞ ¼ inf
n> 1

sup

� kbffkLq 0 ðGbÞ
kf kLqðGÞ

: f central; f 2 LqðGÞ; suppðfÞ � Un

�

where fUn : n> 1g denotes a neighborhood basis at the identity ofG. The interesting
point lies in the inequality KðG; qÞ > 0 which constitutes a local variant of the
Hausdor.--Young inequality onG with parameter q. The proof obtained for this local
inequality is based upon the semisimplicity of G since it uses the very well-developed
theory of representations on such groups. The need to use these algebraic techniques
forced us to present the proof of this result in a separate work; see [12].
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