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Abstract

We give a characterization of weighted Hardy spaces Hp(w), valid
for a rather large collection of wavelets, 0 < p ≤ 1, and weights w
in the Muckenhoupt class A∞. We improve the previously known
results and adopt a systematic point of view based upon the theory
of vector-valued Calderón-Zygmund operators. Some consequences
of this characterization are also given, like the criterion for a wavelet
to give an unconditional basis and a criterion for membership into
the space from the size of the wavelet coefficients.

1 Introduction.

Although many of the results that we obtain in this paper can be proved
in higher dimensions, we shall always work in R for simplicity. Our weights
will belong to the class A∞, which is the union of the classes Aq, 1 ≤ q <∞.
A weight w ≥ 0 belongs to the class Aq for a given q, 1 < q <∞, if

(Aq)

(
1

|I|

∫
I

w(x) dx

) (
1

|I|

∫
I

w(x)−
1

q−1 dx

)q−1

≤ C,
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with C finite independent of the interval I. The class A1 is defined by letting
q −→ 1, that is,

(A1)

(
1

|I|

∫
I

w(x) dx

)
‖w−1‖L∞(I) ≤ C,

with C finite independent of the interval I.
These classes were introduced by Muckenhoupt in [Muc] and their theory

was further developed in [CF] (see also [GR]). We shall always assume
w ∈ A∞ and define

qw = inf{q > 1 : w ∈ Aq},

the critical index of w.
We shall be concerned with the weighted Hardy spacesHp(w), 0 < p ≤ 1,

which we define by means of their atomic characterization as follows.

Definition 1.1 Given a weight w in A∞, 0 < p ≤ 1 and 1 < q ≤ ∞, a
(p, q)-atom with respect to w will be a function a satisfying the following
three conditions:

i) supp a ⊂ I, where I is a bounded interval in R.

ii)

‖a‖Lq(w) ≤

{
w(I)

1
q
− 1

p if q <∞,

w(I)−
1
p if q = ∞,

where w(I) =

∫
I

w(x) dx.

iii)

∫
R
xk a(x) dx = 0, 0 ≤ k ≤ Np(w) =

[
qw
p

]
− 1.

We will simply speak of p-atoms when q = ∞. These p-atoms are the
basic building blocks of the Hardy spaces.

Definition 1.2 Let w ∈ A∞ be a weight and let 0 < p ≤ 1. A tempered
distribution f ∈ S ′ belongs to Hp(w) if and only if f can be written as a
series

f =
∑
j

λj aj converging in S ′,(1)
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where each aj is a p-atom with respect to w and∑
j

|λj|p <∞.(2)

Moreover, by setting ‖f‖pHp(w) to be the infimum of the sums (2) over all

decompositions (1), one obtains the p-norm for this space.

Remark 1.3 These spaces can be defined in terms of (p, q)-atoms obtaining
equivalent p-norms (see [Gar] and [ST]).

Given ϕ, we define the square function

G(f)(x) =
{∑
j∈Z

|ϕ2−j ∗ f(x)|2
} 1

2
,

where ϕ2−j(x) = 2j ϕ(2j x). We are interested in the boundedness of this
operator between Hp(w) and Lp(w), 0 < p ≤ 1. By using the ideas of
[BCP], [RRT] and also [GR], this square function fits into the theory of
vector-valued Calderón-Zygmund operators. In Section 2 we shall put into a
vectorial context the results about Calderón-Zygmund operators that appear
in [GK1]. Then, we apply these results to the square function G to conclude
the boundedness between these spaces (Section 3).

An orthonormal wavelet shall be a function ψ ∈ L2(R) such that the
system

ψj,k(x) = 2
j
2 ψ(2j x− k), j, k ∈ Z,

is an orthonormal basis for L2(R). Next, we define the operator

Wψf =
{ ∑
j,k∈Z

|〈f, ψj,k〉|2 2j χ[2−j k,2−j (k+1)]

} 1
2

=
{ ∑
j,k∈Z

|〈f, ψj,k〉|2 |Ij,k|−1 χIj,k

} 1
2
,

where Ij,k = [2−j k, 2−j (k+1)]. Denoting by D the set of all dyadic intervals
Ij,k, with j, k ∈ Z, and letting ψIj,k

= ψj,k, we can also write

Wψf =
{∑
I∈D

|〈f, ψI〉|2 |I|−1 χI

} 1
2
.
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We devote Section 4 to prove that, for 0 < p ≤ 1, w ∈ A∞ and ψ an
orthonormal wavelet in certain regularity class —depending on the value of
p and the critical index of w—, the following inequalities hold

c ‖f‖pHp(w) ≤ ‖Wψf‖pLp(w) ≤ C ‖f‖pHp(w),

for all f ∈ Hp(w).

When the wavelet has compact support and comes from an MRA, the
characterization was obtained in [Wu] for A∞ weights. In that paper, the
author deals with a maximal operator, related with the scale function of the
MRA, and uses good-λ inequalities to compare it with Wψ, what leads to
the desired characterization. In this work, we not only improve the result
of Wu, extending the class of the wavelets for which the characterization
holds, but also the result is obtained by using a different approach, based
on vector-valued analysis. These ideas come from [HW], where a similar
characterization of the space H1(R) is given.

Finally, in Section 5, some consequences of the characterization are given.
We study when the wavelets give unconditional bases for the weighted Hardy
spaces. The history of this topic goes as follows. B. Maurey [Mau] proved
that H1 has an unconditional basis and L. Carleson [Car] gave an explicit
unconditional basis. The fact that the Franklin system is an unconditional
basis for this space was proved by P. Wojtaszczyk [Woj]. These construc-
tions can be found in [Mey]. The spline bases in the unweighted Hardy
spaces are treated in [Str], [CC] and [SS], after the previous works [Ci1],
[Ci2], [Boc]. While [GK1] and [GK1] handle the weighted case.

Besides, we show how the operator Wψ provides a criterion for member-
ship into these spaces from the size of the wavelet coefficients.

2 Vector-valued operators on weighted Har-

dy spaces.

[BCP] and [RRT] are the main sources of the vector-valued Calderón-Zyg-
mund theory. Another reference is [GR]. During this section we want to
put the results of [GK1], about the boundedness of the Calderón-Zygmund
operators in weighted Hardy spaces, into the framework of the vector-valued
theory.
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A, B will be Banach spaces and L(A,B) will denote the set of bounded
linear operators from A to B. As in the scalar context, we can also define
weighted Hardy spaces of Banach-space-valued distributions. In this case
we shall only use p-atoms.

Definition 2.1 Given a weight w in A∞ and 0 < p ≤ 1, an A-valued
p-atom with respect to w will be a measurable function

a : R −→ A,

that verifies:

i) supp a ⊂ I, where I is a bounded interval in R.

ii) ‖a‖L∞A ≤ w(I)−
1
p .

iii)

∫
R
xk a(x) dx = 0, 0 ≤ k ≤ Np(w) =

[
qw
p

]
− 1.

Definition 2.2 Let w ∈ A∞ be a weight and let 0 < p ≤ 1. We shall say
that f ∈ L(S, A) belongs to Hp

A(w) if and only if f can be written as a series

f =
∑
j

λj aj converging in L(S, A),(3)

where each aj is an A-valued p-atom with respect to w and∑
j

|λj|p <∞.(4)

We shall denote by ‖f‖p
Hp

A(w)
the infimum of the sums (4) over all decompo-

sitions (3). This infimum will be the p-norm for this space.

Definition 2.3 Let T be a linear operator mapping every function in L∞A
with compact support to a measurable B-valued function and let

K : R \ {0} −→ L(A,B)

be measurable and locally integrable outside the origin. Suppose that the
following two conditions hold:
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i) For each f ∈ L∞A with compact support, and for almost every x /∈
supp f

Tf(x) =

∫
R
K(x− y)f(y) dy.

ii) T extends to a bounded operator from LrA to LrB, for some 1 < r ≤ ∞.

Then, we shall say that T is a vector-valued Calderón-Zygmund op-
erator (V.V.C-Z.O) with kernel K.

Definition 2.4 Let K be the kernel of a V.V.C-Z.O Given γ ∈ R, γ > 0,
we shall say that K is a γ-regular vector-valued kernel if the following two
conditions are satisfied:

‖K(x)‖L(A,B) ≤
C

|x|
, ∀x 6= 0(5)

and for every j, 0 ≤ j < γ, and every x 6= 0, there exist am(x) ∈ L(A,B),
0 ≤ m ≤ j, such that

Px(y) =

j∑
m=0

am(x) ym

verifies

‖K(x− y)− Px(y)‖L(A,B) ≤ C
|y|min{γ,j+1}

|x|1+min{γ,j+1} , |x| > 2 |y|.(6)

Remark 2.5 In the above definition the “coefficient” a0(x) must be K(x).
So, the condition (6) when j = 0 will be

‖K(x− y)−K(x)‖L(A,B) ≤ C
|y|min{γ,1}

|x|1+min{γ,1} , |x| > 2 |y|.

Thus, if T is a V.V.C-Z.O with kernel K γ-regular, for some γ > 0, we will
have that T is bounded from LqA(w) to LqB(w), for 1 < q < ∞ and w ∈ Aq
(see [RRT] or [GR]).

Remark 2.6 If 0 < γ < γ′ and K is γ′-regular, then K is also γ-regular.
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We shall denote by [γ]− the unique integer such that γ − 1 ≤ [γ]− < γ.
Actually, [γ]− coincides with the integer part function [γ] except at the
integers, where we have modified it to make it continuous from the left.

We want to study when a V.V.C-Z.O with regular kernel is bounded
from Hp

A(w) to LpB(w). The polynomials appearing in the definition of γ-
regularity will play the role of Taylor’s polynomials. This fact is the main
tool in the next theorem.

Theorem 2.7 Let T be a V.V.C-Z.O with kernel K γ-regular. Let f be an
L∞A function supported in the bounded interval I with centre x0 such that∫

R
xk f(x) dx = 0 0 ≤ k < γ.

Then, for almost every x 6∈ I2, the 2-dilate of I with the same centre, we
have that

‖Tf(x)‖B ≤ C

(
|I|

|x− x0|

)1+γ

‖f‖L∞A .

Proof. For almost every x /∈ I2, we have

Tf(x) =

∫
I

K(x− y)f(y) dy =

∫
I

(K(x− y)− Px−x0(y − x0))f(y) dy,

where Px−x0 is the polynomial in Definition 2.4 with j = [γ]−, which has
degree less or equal than [γ]− and so the integral of Px−x0 times f is 0. By
using (6) we get

‖Tf(x)‖B ≤ C

(
|I|

|x− x0|

)1+γ

‖f‖L∞A .

2

Corollary 2.8 Let T be a V.V.C-Z.O with kernel K γ-regular. Let f ∈ L∞A
supported in the interval I with centre x0 and with moments vanishing up
to order N . Then, for almost every x /∈ I2,

‖Tf(x)‖B ≤ C

(
|I|

|x− x0|

)1+min{N+1,γ}

‖f‖L∞A .
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Proof. When min{γ,N + 1} = γ, f has moments vanishing up to order
strictly less than γ and the above theorem provides the result. In the other
case, min{γ,N + 1} = N + 1, K is N + 1-regular and the conclusion of the
previous theorem holds with N + 1 in place of γ. 2

Proposition 2.9 Let T be a V.V.C-Z.O with kernel K γ-regular. Let w be
a weight in A∞ and f an A-valued p-atom with respect to w supported in
the interval I. Suppose that 0 < p ≤ 1 is such that qw

p
< 1 + γ. Then∫

R\I2
‖Tf(x)‖pB w(x) dx ≤ C,

with C independent of f .

Proof. Let x0 be the centre of the interval I and N = Np(w) =
[
qw
p

]
− 1.

By hypothesis, we know that qw
p
< 1 + γ. So, 1 + min{N + 1, γ} > qw

p
. By

using the previous corollary, we have

‖Tf(x)‖B ≤ C

(
|I|

|x− x0|

)1+min{N+1,γ}

‖f‖L∞A , for a.e.x /∈ I2.

Setting q = p (1 + min{N + 1, γ}) > qw, we obtain∫
R\I2

‖Tf(x)‖pB w(x) dx ≤ C |I|q ‖f‖pL∞A

∫
R\I2

1

|x− x0|q
w(x) dx

≤ C w(I) ‖f‖pL∞A ,

where the last inequality holds because w ∈ Aq. Since f is an A-valued
p-atom, we obtain the desired inequality. 2

Theorem 2.10 Let T be a V.V.C-Z.O with kernel K γ-regular. If 0 <
p ≤ 1 and w is a weight in the class A∞, with critical index qw verifying
qw
p
< 1 + γ, then T is bounded from Hp

A(w) to LpB(w).

Proof. Let f be an A-valued p-atom with respect to w. It is enough to
prove that we have ∫

R
‖Tf(x)‖pB w(x) dx ≤ C,

8



with C finite independent of f . If f is supported in the interval I, by using
Proposition 2.9, we know that the last inequality holds when we integrate
outside of I2. So we need a similar estimate over I2. Letting q > qw ≥ 1,
w ∈ Aq and T is bounded from LqA(w) to LqB(w) (see Remark 2.5). Since
q
p
≥ q > 1, we can use Hölder’s inequality to get∫

I2
‖Tf(x)‖pB w(x) dx =

∫
I2
‖Tf(x)‖pB w(x)

p
q w(x)1− p

q dx

≤
{∫

R
‖Tf(x)‖qB w(x) dx

} p
q
w(I2)1− p

q

≤ C
{∫

I

‖f(x)‖qAw(x) dx
} p

q
w(I)1− p

q

≤ C ‖f‖pL∞A w(I)
p
q w(I)1− p

q ≤ C.

2

3 Application: The square function.

We consider the square function

G(f)(x) =
{∑
j∈Z

|ϕ2−j ∗ f(x)|2
} 1

2
,

where ϕ2−j(x) = 2j ϕ(2j x). The vectorial point of view will allow us to
apply the results of the previous section in order to establish the bound-
edness of G in weighted Hardy spaces. As in [GR] —pages 505-506— and
in [RRT], the `2(Z)-valued operator associated is Tf = {ϕ2−j ∗ f}j∈Z, with
kernel K(x) = {ϕ2−j(x)}j∈Z as an element of `2(Z) (there exists an isometry
between L(C, `2(Z)) and `2(Z)). Let us see what hypothesis we must require
about ϕ so that the kernel will be regular.

First we want that ϕ ∈ L1(R) and∑
j∈Z

|ϕ̂(2−j ξ)|2 ≤ C, for a.e.ξ ∈ R.(7)

Under these conditions, we get the continuity of T from L2(R) to L2
`2(Z)(R),

or equivalently, that G is bounded in L2(R). The following lemma, that is
essentially proved in [GR] —pages 505-507—, guarantees that (7) holds.
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Lemma 3.1 Let ϕ ∈ L1(R) with

ϕ̂(0) =

∫
R
ϕ(x) dx = 0.

Suppose that there exist α, β > 0 such that

|ϕ(x)| ≤ C

(1 + |x|)1+α
, x ∈ R(8)

and ∫
R
|ϕ(x+ h)− ϕ(x)| dx ≤ C |h|β, h ∈ R.(9)

Then (7) holds.

We want to set some conditions about ϕ in order to conclude the regu-
larity of the associated kernel.

Definition 3.2 Let γ > 0, we will say that ϕ ∈ L1(R) is a γ-regular func-
tion when

ϕ̂(0) =

∫
R
ϕ(x) dx = 0;

and there exists α > 0 such that, for every x ∈ R,

|Djϕ(x)| ≤ C

(1 + |x|)1+j+α
, 0 ≤ j < γ.(10)

Moreover, if γ − 1 ≤ j < γ, it also satisfies

|Djϕ(x− y)−Djϕ(x)| ≤ C
|y|γ−j

(1 + |x|)1+γ+α
, |x| > 2 |y|.(11)

Remark 3.3 If 0 < γ < γ′ and ϕ is γ′-regular, then ϕ is also γ-regular.

With this definition one can prove that every regular function gives an
associated regular kernel.

Proposition 3.4 Let γ > 0 and ϕ ∈ L1(R) be a γ-regular function. Then
K = {ϕ2−j}j∈Z is a γ-regular vector-valued kernel and (7) holds.
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Proof. We want to apply Lemma 3.1. The condition (8) is the same as
(10) with j = 0. Because ϕ ∈ L1(R), the inequality (9) is trivial for |h| ≥ 1.
On the other hand, when |h| ≤ 1, setting δ = min{1, γ}, we know that ϕ is
δ-regular, so that

|ϕ(x− y)− ϕ(x)| ≤ C
|y|δ

(1 + |x|)1+δ+α
, |x| > 2 |y|.

This implies that∫
R
|ϕ(x+ h)− ϕ(x)| dx =

∫
|x|>2 |h|

+

∫
|x|≤2 |h|

≤ C (|h|δ + |h|) ≤ C |h|min{1,δ},

where we estimate the first integral by using the above condition and the
second observing that ϕ is bounded. By applying now Lemma 3.1, we obtain
(7). To prove the condition (5), by homogeneity, it is enough to deal with
the case 1 < |x| ≤ 2 and to establish∑

m∈Z

|x|2 |ϕ2−m(x)|2 =
∑
m∈Z

|2m x|2 |ϕ(2m x)|2 ≤ C.

The terms corresponding to m ≥ 0 are estimated by using (10) with j = 0
and the remaining ones by using the boundedness of ϕ. For 0 ≤ j < γ we
consider the operators {am(x)}jm=0 ∈ L(C, `2(Z)) ≡ `2(Z), defined by

am(x) =
{ 1

m!
2nDmϕ(2n x) (−2n)m

}
n∈Z

,

which give

Px(y) =

j∑
m=0

am(x) ym =
{ j∑
m=0

1

m!
Dmϕ2−n(x) (−y)m

}
n∈Z

.

When j = [γ]−, 1 < |x| ≤ 2 and |x| > 2 |y|, by using (11) and Taylor’s
theorem, we get

∣∣∣ϕ2−n(x− y)−
j∑

m=0

1

m!
Dmϕ2−n(x) (−y)m

∣∣∣ ≤ C |y|γ 2n (γ+1)

(1 + 2n)1+γ+α
.
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Then

‖K(x− y)− Px(y)‖2
`2(Z) ≤ C |y|2 γ

∑
n∈Z

22n (γ+1)

(1 + 2n)2 (1+γ+α)
≤ C |y|2 γ

≤ C

(
|y|γ

|x|1+γ

)2

.

In the general case, |x| > 2 |y|, we can put x = 2k x′, k ∈ Z, with 1 < |x′| ≤
2. So, by setting y = 2k y′, we have

‖K(x− y)− Px(y)‖2
`2(Z) = 2−2 k ‖K(x′ − y′)− Px′(y

′)‖2
`2(Z)

≤ 2−2 k C

(
|y′|γ

|x′|1+γ

)2

= C

(
|y|γ

|x|1+γ

)2

.

Thus, we have obtained (6) for this j = [γ]−. When 0 ≤ j < γ − 1, ϕ will
be (j + 1)-regular and the previous inequality holds with j + 1 instead of γ,
that is, we have (6). 2

With the above result, one can conclude the boundedness of the square
function G in the weighted Hardy spaces.

Corollary 3.5 Let ϕ ∈ L1(R) be a γ-regular function. If 0 < p ≤ 1 and w
is a weight in the class A∞ with critical index qw, qw

p
< 1 + γ, then

G(f) =
{∑
j∈Z

|ϕ2−j ∗ f |2
} 1

2

is bounded from Hp(w) to Lp(w).

Proof. Proposition 3.4 says that T is a V.V.C-Z.O with kernel K γ-regular.
Then, by using Theorem 2.10 we know that T is continuous between Hp

C(w)
and Lp`2(Z)(w), or equivalently, G is bounded from Hp(w) to Lp(w). 2

Remark 3.6 If ϕ ∈ L1(R) is γ-regular, for some γ > 0, the square function
G will be bounded in Lq(w) for 1 < q <∞ and w ∈ Aq (see Remark 2.5).
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4 Characterization.

First we define the regularity class with which we obtain the desired char-
acterization.

Definition 4.1 Let α ≥ 1. We shall say that ϕ belongs to the regularity
class Rα if ϕ ∈ C [α] and there exist C, r, ε > 0 such that

(i)

∫
R
xn ϕ(x) dx = 0 for all 0 ≤ n ≤ [α]− 1.

(ii) |ϕ(x)| ≤ C

(1 + |x|)1+[α]+r
for all x ∈ R.

(iii) |Dnϕ(x)| ≤ C

(1 + |x|)α+ε
for all x ∈ R and 0 ≤ n ≤ [α].

We will prove the following theorem.

Theorem 4.2 Let ψ ∈ Rα be an orthonormal wavelet, α ≥ 1. If 0 < p ≤ 1
and w is a weight in A∞ with critical index qw verifying qw

p
≤ α, then there

exist two constants 0 < c ≤ C <∞ such that

c ‖f‖pHp(w) ≤ ‖Wψf‖pLp(w) ≤ C ‖f‖pHp(w),(12)

for all f ∈ Hp(w). In other words, the mapping

Hp(w) −→ [0,∞)
f 7−→ ‖Wψf‖pLp(w)

is a p-norm equivalent to ‖ · ‖pHp(w).

Remark 4.3 In [Wu], by using different methods, the previous characteri-
zation was proved for compactly supported wavelets coming from an MRA.

We prove the characterization in three steps.

Theorem 4.4 For 0 < p ≤ 1, ψ ∈ L1(R) a band-limited γ-regular function
and w ∈ A∞ a weight with critical index qw, qw

p
< 1 + γ, there exists a

constant 0 < C <∞ such that

‖Wψf‖pLp(w) ≤ C ‖f‖pHp(w), for all f ∈ Hp(w) ∩ L2(R).
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Theorem 4.5 Let α ≥ 1 and suppose that ϕ, ψ ∈ Rα with ϕ an orthonor-
mal wavelet. If 0 < p ≤ 1 and w ∈ A∞ has critical index qw, with qw

p
≤ α,

then there exists a constant 0 < C <∞ such that

‖Wψf‖pLp(w) ≤ C ‖Wϕf‖pLp(w), for all f ∈ L2(R).

Theorem 4.6 Let w ∈ A∞ be a weight with critical index qw. If 0 < p ≤ 1
and ψ ∈ C1 is a compactly supported orthonormal wavelet which satisfies∫

R
xn ψ(x) dx = 0, 0 ≤ n ≤ Np(w) =

[
qw
p

]
− 1.

Then, there exists a constant C, 0 < C <∞, such that for every f ∈ L2(R)
with Wψf ∈ Lp(w), it follows that f ∈ Hp(w) and

‖f‖pHp(w) ≤ C ‖Wψf‖pLp(w).

Proof of Theorem 4.2. By density, it is enough to prove (12) for func-
tions f in Hp(w) ∩ L2(R). By choosing ϕ1 ∈ Rα a band-limited γ-regular
wavelet (for some γ such that 1 + γ > qw

p
), we can use Theorems 4.4 and

4.5 concluding

‖Wψf‖pLp(w) ≤ C ‖Wϕ1f‖
p
Lp(w) ≤ C ‖f‖pHp(w).

Finally, we take a compactly supported orthonormal wavelet ϕ2 ∈ Rα and
by using Theorems 4.5, 4.6 we obtain

‖f‖pHp(w) ≤ C ‖Wϕ2f‖
p
Lp(w) ≤ C ‖Wψf‖pLp(w).

2

Remark 4.7 Following the same ideas, we can extend Theorem 4.6 for
generic orthonormal wavelets in Rα, qw

p
≤ α. We should only take a com-

pactly supported wavelet in Rα and apply Theorems 4.5 and 4.6.

4.1 Proof of Theorem 4.4.

We need the following proposition:
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Proposition 4.8 Let 0 < p ≤ 1, ϕ ∈ L1(R) be a band-limited γ-regular
function and w ∈ A∞ be a weight with critical index qw that verifies qw

p
<

1 + γ. Given λ > qw
p
, there exists 0 < Cλ <∞ such that∥∥∥∥{∑
j∈Z

|ϕ∗∗j,λf |2
} 1

2

∥∥∥∥p
Lp(w)

≤ Cλ ‖f‖pHp(w)

for all f ∈ Hp(w) ∩ L2(R), where

(ϕ∗∗j,λf)(x) = sup
y∈R

|(ϕ2−j ∗ f)(x− y)|
(1 + 2j |y|)λ

.

Proof. Because of Corollary 3.5, the above conditions guarantee that
‖G(f)‖pLp(w) ≤ C ‖f‖pHp(w). Also G is bounded in L2(R). So, for every

j ∈ Z, we have ϕ2−j ∗ f ∈ L2(R). If M denotes the Hardy-Littlewood
maximal function and we use a result in [HW] —page 271—, we obtain

(ϕ∗∗j,λf)(x) ≤ Cλ

[
M(|ϕ2−j ∗ f |

1
λ )(x)

]λ
,

for all λ > 0 and, in particular, for λ > qw
p

. In this case, λ > 1, λ p > 1,
w ∈ Aλ p. So, the weighted vectorial inequality for the Hardy-Littlewood
maximal function, proved in [AJ], is used to obtain∥∥∥∥{∑

j∈Z

|ϕ∗∗j,λf |2
} 1

2

∥∥∥∥p
Lp(w)

≤ C

∥∥∥∥{∑
j∈Z

[
M(|ϕ2−j ∗ f |

1
λ )

]2λ} 1
2 λ

∥∥∥∥λ p
Lλ p(w)

≤ C

∥∥∥∥{∑
j∈Z

|ϕ2−j ∗ f |2
} 1

2 λ

∥∥∥∥λ p
Lλ p(w)

= C ‖G(f)‖pLp(w) ≤ C ‖f‖pHp(w).

2

Now we can prove Theorem 4.4. If f ∈ Hp(w) ∩ L2(R) we have∣∣〈f, ψj,k〉∣∣ = 2
j
2

∣∣∣∫
R
f(x)ψ(2j x− k) dx

∣∣∣ = 2−
j
2

∣∣(ψ̃2−j ∗ f
)
(2−j k)

∣∣
≤ 2−

j
2 sup
y∈Ij,k

∣∣(ψ̃2−j ∗ f
)
(y)

∣∣,
15



where ψ̃(x) = ψ(−x) and Ij,k = [2−j k, 2−j(k+ 1)]. Fixing j ∈ Z, for almost
every x ∈ R,∑

k∈Z

|〈f, ψj,k〉|2 2j χIj,k
(x) ≤

∑
k∈Z

{
sup
y∈Ij,k

|(ψ̃2−j ∗ f)(y)|
}2

χIj,k
(x)

≤
∑
k∈Z

{
sup

|z|≤2−j

|(ψ̃2−j ∗ f)(x− z)|
}2

χIj,k
(x)

=

{
sup

|z|≤2−j

|(ψ̃2−j ∗ f)(x− z)|
(1 + 2j|z|)λ

(1 + 2j|z|)λ
}2

≤ 22λ
[
(ψ̃∗∗j,λf)(x)

]2

,

for every λ > 0. Choosing λ > qw
p

, the previous proposition leads to

‖Wψf‖pLp(w) =

∥∥∥∥{ ∑
j,k∈Z

|〈f, ψj,k〉|2 2jχIj,k

} 1
2

∥∥∥∥p
Lp(w)

≤ C

∥∥∥∥{∑
j∈Z

|ψ̃∗∗j,λf |2
} 1

2

∥∥∥∥p
Lp(w)

≤ C ‖f‖pHp(w).

2

4.2 Proof of Theorem 4.5.

The following lemma establishes a result in the direction of those obtained
in [HW] —pages 272-276—.

Lemma 4.9 Let r ≥ ε > 0 and α ≥ 1. Suppose that g and h satisfy

(i) |Dng(x)| ≤ C

(1 + |x|)α+ε
for all x ∈ R and 0 ≤ n ≤ [α];

(ii)

∫
R
xn h(x) dx = 0 for all 0 ≤ n ≤ [α]− 1;

(iii) |h(x)| ≤ C

(1 + |x|)1+[α]+r
for all x ∈ R.

Then, for every j, k, l,m ∈ Z with j ≤ l, we have

|(gj,k ∗ hl,m)(x)| ≤ C 2(j−l) ([α]+ 1
2
)

(1 + 2j |x− 2−j k − 2−lm|)α+ε
∀x ∈ R.

16



Proof. Since (gj,k ∗ hl,m)(x) = (g0,0 ∗ hl−j,0)(2j x− k− 2j−lm), it is enough
to consider the case j = k = m = 0 and l ≥ 0. Set N = [α]− 1 and

E1 = {y ∈ R : |y − x| ≤ 3},

E2 = {y ∈ R : |y − x| > 3 and |y| ≤ 1

2
|x|},

E3 = {y ∈ R : |y − x| > 3 and |y| > 1

2
|x|}.

By (ii), we can subtract the N -degree Taylor’s polynomial. So, we get

|(g0,0 ∗ hl,0)(x)| =
∣∣∣∣ ∫

R

{
g(y)−

N∑
n=0

1

n!
Dng(x) (y − x)n

}
hl,0(x− y) dy

∣∣∣∣
≤

{ ∫
E1

+

∫
E2

+

∫
E3

} {∣∣∣g(y)− N∑
n=0

1

n!
Dng(x) (y − x)n

∣∣∣ · |hl,0(x− y)|
}
dy

= I + II + III.

For y ∈ E1, we use (i) with n = N + 1,

∣∣∣g(y)− N∑
n=0

1

n!
Dng(x) (y − x)n

∣∣∣ ≤ C

(1 + |z|)α+ε
|y − x|N+1,

where z lies between x and y. Since |x− y| < 3,

1 + |x| ≤ 1 + |x− z|+ |z| ≤ 4 + |z| ≤ 4 (1 + |z|).

Thus, by using (iii)

I ≤ C
2

l
2

(1 + |x|)α+ε

∫
E1

|y − x|N+1 1

(1 + 2l |x− y|)2+N+r
dy

≤ C
2−l (

1
2
+N+1)

(1 + |x|)α+ε

∫ ∞

0

tN+1

(1 + t)2+N+r
dt ≤ C

2−l (
1
2
+[α])

(1 + |x|)α+ε
.

If y ∈ E2, then 1
2
|x| ≤ |x− y| ≤ 3

2
|x| and

4 |x− y| = |x− y|+ 3 |x− y| > 3 +
3

2
|x| > 1 + |x|.

17



Thus, 1 + 2l |x− y| ≥ 2l |x− y| ≥ 2l−2 (1 + |x|). By (i) and (iii) we obtain

II ≤ C

∫
E2

{ 1

(1 + |y|)α+ε
+

N∑
n=0

|x− y|n

(1 + |x|)α+ε

} 2
l
2

(1 + 2l |x− y|)2+N+r
dy

≤ C
2−l (

3
2
+N+r)

(1 + |x|)2+N+r

{∫
E2

1

(1 + |y|)α+ε
dy +

|x|N

(1 + |x|)α+ε

∫
|y|≤ 1

2
|x|

1 dy
}

≤ C
2−l (

3
2
+N+r)

(1 + |x|)2+N+r

{
1 +

|x|N+1

(1 + |x|)α+ε

}
≤ C

2−l (
1
2
+N+1)

(1 + |x|)α+r

≤ C
2−l (

1
2
+[α])

(1 + |x|)α+ε
,

where we have needed that l ≥ 0 and r ≥ ε > 0.

Finally, if y ∈ E3, 1 + |x| ≤ 1 + 2 |y| ≤ 2 (1 + |y|). Hence,

III ≤ C

∫
E3

{ 1

(1 + |y|)α+ε
+

N∑
n=0

|x− y|n

(1 + |x|)α+ε

} 2
l
2

(1 + 2l |x− y|)2+N+r
dy

≤ C
2

l
2

(1 + |x|)α+ε

∫ ∞

3·2l

(2−l t)N

(1 + t)2+N+r
2−l dt ≤ C

2−l (
1
2
+N+1)

(1 + |x|)α+ε
2−l r

≤ C
2−l (

1
2
+[α])

(1 + |x|)α+ε
,

where we have used (i), (iii) and the fact that r, l ≥ 0. 2

By using this lemma an the relation between the dot product (in L2(R))
and the convolution of functions, we can prove the following estimates.

Lemma 4.10 Let ψ, ϕ ∈ Rα, α ≥ 1. There exists ε > 0 such that, if
j, k, l,m ∈ Z, we have

(i) |〈ψj,k, ϕl,m〉| ≤ C
2(l−j) ([α]+ 1

2
)

(1 + 2l|2−j k − 2−lm|)α+ε
for l ≤ j,

(ii) |〈ψj,k, ϕl,m〉| ≤ C
2(j−l) ([α]+ 1

2
)

(1 + 2j|2−lm− 2−j k|)α+ε
for l ≥ j.

The following lemma is implicitly proved in [HW] —pages 277-279—.
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Lemma 4.11 Given α ≥ 1, ε > 0 and 1 ≤ r < α+ε, there exists a constant
C such that, for all sequences {sj,k : j, k ∈ Z} of complex numbers and all
x ∈ Ij,k = [2−j k, 2−j (k + 1)],

(i)
∑
m∈Z

|sl,m|
(1 + 2l |2−j k − 2−lm|)α+ε

≤ C
{
M

(∑
m∈Z

|sl,m|
1
r χIl,m

)
(x)

}r

if l ≤ j.

(ii)
∑
m∈Z

|sl,m|
(1 + 2j |2−lm− 2−j k|)α+ε

≤ C 2(l−j) r
{
M

(∑
m∈Z

|sl,m|
1
r χIl,m

)
(x)

}r

if l ≥ j.

We shall prove the comparison result, Theorem 4.5. Since ϕ is an orthonor-
mal wavelet, we can write

ψj,k =
∑
l,m∈Z

〈ψj,k, ϕl,m〉ϕl,m in L2(R).

Hence,

Wψf(x) =
{ ∑
j,k∈Z

∣∣∣ ∑
l,m∈Z

〈f, ϕl,m〉 〈ψj,k, ϕl,m〉
∣∣∣2 2j χIj,k

(x)
} 1

2
(13)

≤
{ ∑
j,k∈Z

|B1(j, k)|2 2jχIj,k
(x)

} 1
2

+
{ ∑
j,k∈Z

|B2(j, k)|2 2jχIj,k
(x)

} 1
2
,

where
B1(j, k) =

∑
l≤j

∑
m∈Z

. . . and B2(j, k) =
∑
l>j

∑
m∈Z

. . .

We set N = [α]− 1. For B1, by using Lemma 4.10 part (i) and Lemma 4.11
part (i) with r such that 1 ≤ qw

p
< r < α+ ε, we obtain, for all x ∈ Ij,k,

|B1(j, k)| ≤ C
∑
l≤j

∑
m∈Z

|〈f, ϕl,m〉|
2(l−j) (N+ 3

2
)

(1 + |2l−j k −m|)α+ε

≤ C
∑
l≤j

2(l−j) (N+ 3
2
)
[
M

(∑
m∈Z

|〈f, ϕl,m〉|
1
r χIl,m

)
(x)

]r
.
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But we know that {Ij,k}k∈Z is an almost partition of R and therefore∥∥∥∥{ ∑
j,k∈Z

|B1(j, k)|2 2j χIj,k

} 1
2

∥∥∥∥p
Lp(w)

≤ C

∥∥∥∥{∑
j∈Z

{∑
l≤j

2(l−j) (N+1)
[
M

(∑
m∈Z

|〈f, ϕl,m〉|
1
r 2

l
2 r χIl,m

)]r }2} 1
2

∥∥∥∥p
Lp(w)

= C

∥∥∥∥{∑
j∈Z

∣∣∣ ∑
l∈Z

aj−l bl

∣∣∣2} 1
2

∥∥∥∥p
Lp(w)

,

when we set

aj =

{
2−j (N+1) if j ≥ 0,
0 if j < 0,

and bl =
[
M

(∑
m∈Z

|〈f, ϕl,m〉|
1
r 2

l
2 r χIl,m

)
(x)

]r
.

By using Young’s inequality for convolutions,{∑
j∈Z

∣∣∣ ∑
l∈Z

aj−l bl

∣∣∣2} 1
2

=
∥∥∥{aj} ∗ {bl}∥∥∥

`2
≤

∥∥∥{aj}∥∥∥
`1

∥∥∥{bl}∥∥∥
`2
.

But ‖{aj}‖`1 ≤ C because N +1 > 0. Thus, the weighted vectorial inequal-
ity for the Hardy-Littlewood maximal function (2r > 1, p r > qw ≥ 1 and
so w ∈ Ap r) is used to get∥∥∥∥{ ∑

j,k∈Z

|B1(j, k)|2 2j χIj,k

} 1
2

∥∥∥∥p
Lp(w)

(14)

≤C
∥∥∥∥{∑

l∈Z

[
M

(∑
m∈Z

|〈f, ϕl,m〉|
1
r 2

l
2 r χIl,m

)]2 r} 1
2 r

∥∥∥∥p r
Lp r(w)

≤C
∥∥∥∥{∑

l∈Z

[∑
m∈Z

|〈f, ϕl,m〉|
1
r 2

l
2 r χIl,m

]2 r} 1
2 r

∥∥∥∥p r
Lp r(w)

= C ‖Wϕf‖pLp(w).

For B2 we follow the steps of B1. By using part (ii) of Lemmas 4.10, 4.11
with r such that

1 ≤ qw
p
< r < min{[α] + 1, α+ ε} = min{N + 2, α+ ε}.

we obtain∥∥∥∥{ ∑
j,k∈Z

|B2(j, k)|2 2j χIj,k

} 1
2

∥∥∥∥p
Lp(w)

≤ C

∥∥∥∥{∑
j∈Z

∣∣∣ ∑
l∈Z

aj−l bl

∣∣∣2} 1
2

∥∥∥∥p
Lp(w)

,
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where

aj =

{
2j (N+2−r) if j < 0,
0 if j ≥ 0,

and bl =
[
M

(∑
m∈Z

|〈f, ϕl,m〉|
1
r 2

l
2 r χIl,m

)
(x)

]r
.

We use again Young’s inequality for convolutions, but ‖{aj}‖`1 ≤ C because
N+2−r > 0. As in the case of B1 we can apply the result of [AJ] obtaining∥∥∥∥{ ∑

j,k∈Z

|B2(j, k)|2 2j χIj,k

} 1
2

∥∥∥∥p
Lp(w)

≤ C ‖Wϕf‖pLp(w).(15)

Finally, collecting (13), (14), (15) and using the fact that ‖ · ‖pLp(w) is a
p-norm, we conclude the desired inequality. 2

4.3 Proof of Theorem 4.6.

In order to prove the left-hand side of the inequality (12), we need to obtain
a characterization result on Lq(w) for q large enough. This fact will allow us
to establish that some atoms, very close to the wavelets, are actually Hp(w)-
atoms. The proof of the new characterization is a suitable modification of
the case of weighted Hardy spaces.

Proposition 4.12 If 1 < q < ∞, w ∈ Aq, γ > 0, ϕ ∈ L1(R) is a band-
limited γ-regular function and λ ≥ 1, there exists 0 < Cλ <∞ such that∥∥∥∥{∑

j∈Z

|ϕ∗∗j,λf |2
} 1

2

∥∥∥∥
Lq(w)

≤ Cλ ‖f‖Lq(w)

for all f ∈ Lq(w) ∩ L2(R).

Proof. We follow the steps of Proposition 4.8. Since λ ≥ 1, we have
λ q ≥ q and so, w ∈ Aλ q. This fact allow us to use the weighted vectorial
inequality for Hardy-Littlewood maximal function. To finish the proof we
should observe that the square function is bounded in Lq(w) (see Remark
3.6). 2

Now, we can obtain the right-hand side inequality in Lq(w) repeating
the steps of Theorem 4.4.
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Theorem 4.13 For 1 < q < ∞, w ∈ Aq, γ > 0 and ψ ∈ L1(R) a band-
limited γ-regular function, there exists a constant C, 0 < C < ∞, such
that

‖Wψf‖Lq(w) ≤ C ‖f‖Lq(w), for all f ∈ Lq(w) ∩ L2(R).

Besides, we have a comparison result.

Theorem 4.14 Let ϕ, ψ ∈ R1 with ϕ an orthonormal wavelet. For 1 <
q <∞ and w a weight in Aq we have

‖Wψf‖Lq(w) ≤ C ‖Wϕf‖Lq(w), for all f ∈ L2(R).

Proof. We follow the proof of the Hardy spaces case putting q in place of
p. Here, N will be 0 and in both estimates of B1, B2 we will take r = 1.
We can apply the result of [AJ], because w ∈ Aq, and the desired inequality
is obtained. 2

By using the ideas of the proof of Theorem 4.2 we can get the next result.

Theorem 4.15 Let ψ ∈ R1 be an orthonormal wavelet. If 1 < q <∞ and
w is a weight in Aq, we have

‖Wψf‖Lq(w) ≤ C ‖f‖Lq(w), for all f ∈ Lq(w).

The reverse inequality can be proved by using a duality argument.

Theorem 4.16 Let ψ ∈ R1 be an orthonormal wavelet. If 1 < q <∞ and
w is a weight in Aq we have

c ‖f‖Lq(w) ≤ ‖Wψf‖Lq(w) ≤ C ‖f‖Lq(w),

for all f ∈ Lq(w). In other words, the mapping

Lq(w) −→ [0,∞)
f 7−→ ‖Wψf‖Lq(w)

is a norm equivalent to ‖ · ‖Lq(w).
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Proof. It is enough to obtain the left-hand side inequality for a dense class
of functions. For f ∈ L2(R), we define the vector-valued operator

Tψf =
{
〈f, ψj,k〉 2

j
2 χIj,k

}
j,k∈Z

.

Then Wψf =
(
Tψf · Tψf

) 1
2
, where · denotes the dot product in `2(Z× Z).

Since ψ is an orthonormal wavelet we have∫
R
Tψf(x) · Tψf(x) dx = ‖Wψf‖2

L2(R) =
∑
j,k∈Z

|〈f, ψj,k〉|2 = ‖f‖2
L2(R).

By using polarization and Cauchy-Schwarz’s inequality, we obtain that for
all f, g ∈ L2(R),∣∣∣ ∫

R
f(x) g(x) dx

∣∣∣ ≤ ∫
R
|Tψf(x) · Tψg(x)| dx ≤

∫
R
Wψf(x)Wψg(x) dx.

By taking f ∈ Lq(w) ∩ L2(R) and using Hölder’s inequality we prove

‖f‖Lq(w) = sup

{∣∣∣ ∫
R
f(x) g(x) dx

∣∣∣ : g ∈ L2(R), ‖g‖
Lq′ (w

− q′
q )
≤ 1

}
≤ sup

{
‖Wψf‖Lq(w) ‖Wψg‖

Lq′ (w
− q′

q )
: g ∈ L2(R), ‖g‖

Lq′ (w
− q′

q )
≤ 1

}
.

But w ∈ Aq if and only if w− q′
q ∈ Aq′ . So, by Theorem 4.15 we obtain

‖Wψg‖
Lq′ (w

− q′
q )
≤ C ‖g‖

Lq′ (w
− q′

q )
≤ C.

2

Once we have the characterization for the weighted Lebesgue spaces, we
can define some special atoms. We will work with compactly supported
wavelets.

Definition 4.17 Let 0 < p ≤ 1, w ∈ A∞ and ψ ∈ C1 be a compactly
supported orthonormal wavelet with moments vanishing up to order Np(w) =
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[
qw
p

]
− 1. For q > 1, we shall say that a ∈ L2(R) is a (p, q;ψ)-atom with

respect to w if there exists a dyadic interval R such that

a =
∑
I ⊂ R
I ∈ D

aI ψI and ‖Wψa‖Lq(w) =

∥∥∥∥{∑
I⊂R

|aI |2 |I|−1 χI

} 1
2

∥∥∥∥
Lq(w)

≤ w(R)
1
q
− 1

p .

It is at this point where the characterization of the weighted Lebesgue
spaces plays an important role.

Lemma 4.18 In the above conditions, if a is a (p, q;ψ)-atom with respect
to w and q > qw ≥ 1, there exists a constant 0 < σ <∞, independent of a,
such that a is σ times a (p, q)-atom with respect to w.

Proof. The interval R will have the form R = [2−j0 k0, 2
−j0 (k0 + 1)], for

some j0, k0 ∈ Z. Assume suppψ ⊂ [a, b]. For I = Ij,k dyadic we set

I[a, b] = Ij,k[a, b] = [2−j (k + a), 2−j (k + b)].

Then, suppψI ⊂ I[a, b] ⊂ R̃ = R[−|a|, 1 + |b|] for all I ⊂ R, and so
supp a ⊂ R̃. As q > qw then w ∈ Aq. Besides, ψ ∈ R1 and Theorem 4.16
can be used to obtain∫

R
|a(x)|q w(x) dx ≤ C1 ‖Wψa‖qLq(w) ≤ C1w(R)1− q

p .

But w ∈ Aq and R ⊂ R̃, so we know that w(R) ≥ (Cw (1+ |a|+ |b|))−q w(R̃).
Therefore,∫

R
|a(x)|q w(x) dx ≤ C1

(Cw (1 + |a|+ |b|))q (1− q
p
)
w(R̃)1− q

p = σq w(R̃)1− q
p .

Finally, a has vanishing moments up to order Np(w), because ψ does. Set-
ting ã = a/σ we conclude that ã is a (p, q)-atom with respect to w. 2

Now, we can prove Theorem 4.6. For every k ∈ Z set Ωk = {x ∈ R :
Wψf(x) > 2k}. As p > 0, we have

‖Wψf‖pLp(w) = p

∫ ∞

0

λp−1w({x ∈ R : Wψf(x) > λ}) dλ.
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The integrand is a non-increasing function of λ. By taking the partition
of (0,∞) based on the intervals [2k, 2k+1), with k ∈ Z, and considering the
lower Riemann sum we obtain

‖Wψf‖pLp(w) ≥ 2−1 p
∑
k∈Z

2k pw(Ωk).(16)

Let

Bk =
{
I ∈ D : w(I∩Ωk) ≥

1

2
w(I), w(I∩Ωk+1) <

1

2
w(I)

}
and D̃ =

⋃
k∈Z

Bk.

Then, for every I ∈ D̃, there exists a unique k ∈ Z such that I ∈ Bk. Also,
due to the nesting property of dyadic intervals, for every I ∈ Bk there exists
a unique maximal interval Ĩ ∈ Bk such that I ⊂ Ĩ. Let {Ĩ ik : i ∈ ∆k} be the
collection of all such maximal dyadic intervals in Bk. We have obtained a
partition of D̃,

D̃ =
⋃
k∈Z

Bk =
⋃
k

⋃
i∈∆k

{I : I ⊂ Ĩ ik, I ∈ Bk}.

Let us analyze those intervals that do not belong to D̃. If 〈f, ψI〉 6= 0, there

exists k0 ∈ Z such that |〈f, ψI〉| |I|−
1
2 ≥ 2k0 . For x ∈ I, Wψf(x) ≥ 2k0 .

Then I ⊂ Ωk0 and so w(I ∩Ωk0) = w(I) ≥ w(I)/2. Also, Wψf ∈ Lp(w) and
then w(Ωk) ↘ 0 as k −→∞. By using these facts and the nesting property
of the level sets Ωk, we can conclude that there is an integer k1 such that
I ∈ Bk1 ⊂ D̃. That is, the coefficients of the intervals I ∈ D \ D̃ are zero.
Moreover, as f ∈ L2(R), the representation

f =
∑
j,k∈Z

〈f, ψj,k〉ψj,k =
∑
I∈D

〈f, ψI〉ψI =
∑
I∈D̃

〈f, ψI〉ψI

converges in L2(R) and so in the distribution sense. Then it can be expressed
as

f =
∑
k∈Z

∑
i∈∆k

{∑
I ⊂ Ĩi

k
I ∈ Bk

〈f, ψI〉ψI
}
,(17)

in the distribution sense. We want to prove that this series can be rearranged
to obtain an atomic decomposition. Letting q > qw, we define

λ(k, i) = w(Ĩ ik)
1
p
− 1

q

∥∥∥∥{∑
I ⊂ Ĩi

k
I ∈ Bk

|〈f, ψI〉|2 |I|−1 χI

} 1
2

∥∥∥∥
Lq(w)

,
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and

a(k,i) =


1

λ(k, i)

∑
I ⊂ Ĩi

k
I ∈ Bk

〈f, ψI〉ψI if λ(k, i) 6= 0,

0 if λ(k, i) = 0.

Since Ĩ ik is a dyadic interval and

‖Wψa(k,i)‖Lq(w) = w(Ĩ ik)
1
q
− 1

p ,

every a(k,i) will be a (p, q;ψ)-atom with respect to w. As q > qw, Lemma
4.18 guarantees that every a(k,i) will be a multiple of a (p, q)-atom with
respect to w. Then (17) can be written as

f =
∑
k∈Z

∑
i∈∆k

λ(k, i) a(k,i) in S ′.(18)

We want to estimate the sum
∑

k∈Z
∑

i∈∆k
|λ(k, i)|p. Let n ∈ Z such that

2n ≥ q. By using Hölder’s inequality for 2n
q

, it follows that∥∥∥∥{∑
I ⊂ Ĩi

k
I ∈ Bk

|〈f, ψI〉|2 |I|−1 χI

} 1
2

∥∥∥∥q
Lq(w)

≤
( ∫ {∑

I ⊂ Ĩi
k

I ∈ Bk

|〈f, ψI〉|2 |I|−1 χI(x)
}n

w(x) dx

) q
2n

w(Ĩ ik)
1− q

2 n .

Then,∫ {∑
I ⊂ Ĩi

k
I ∈ Bk

. . .
}n

w(x) dx =
∑

I1, . . . , In ⊂ Ĩi
k

I1, . . . , In ∈ Bk

( n∏
j=1

|〈f, ψIj〉|2 |Ij|−1
)
w(I1 ∩ . . . ∩ In).

But the dyadic intervals have the property that their intersection is, either
the empty set, or else some of them. Moreover, if I ∈ Bk, w(I \ Ωk+1) =
w(I)− w(I ∩ Ωk+1) >

1
2
w(I). Since all the Ij’s belong to Bk, we obtain

w(I1 ∩ . . . ∩ In) ≤ 2w
(
(I1 ∩ . . . ∩ In) \ Ωk+1

)
.
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Therefore,∫ {∑
I ⊂ Ĩi

k
I ∈ Bk

. . .
}n

w(x) dx ≤ 2

∫
Ĩi
k\Ωk+1

{∑
I ⊂ Ĩi

k
I ∈ Bk

. . .
}n

w(x) dx

≤ 2

∫
Ĩi
k\Ωk+1

[Wψf(x)]2nw(x) dx ≤ 2 · (2k+1)2nw(Ĩ ik),

because outside of Ωk+1 we have Wψf(x) ≤ 2k+1. Then,∑
k∈Z

∑
i∈∆k

|λ(k, i)|p ≤
∑
k∈Z

∑
i∈∆k

w(Ĩ ik)
1− p

q

(
2q

2 n+1
2 n 2k q w(Ĩ ik)

) p
q

≤ 2p
2 n+1
2 n

∑
k∈Z

∑
i∈∆k

2k pw(Ĩ ik).

Since Ĩ ik ∈ Bk, w(Ĩ ik) ≤ 2w(Ĩ ik ∩ Ωk) and the Ĩ ik are disjoint. It follows that∑
k∈Z

∑
i∈∆k

|λ(k, i)|p ≤ 2p
2 n+1
2 n 2

∑
k∈Z

2k p
∑
i∈∆k

w(Ĩ ik ∩ Ωk)

≤ 2p
2 n+1
2 n

+1
∑
k∈Z

2k pw(Ωk) ≤ C ‖Wψf‖pLp(w),

where the last inequality is consequence of (16). That way has proved that
(18) is an atomic decomposition of f in terms of (p, q)-atoms with respect
to w, so f ∈ Hp(w) and

‖f‖pHp(w) ≤ C
∑
k∈Z

∑
i∈∆k

|λ(k, i)|p ≤ C ‖Wψf‖pLp(w).

2

5 Further results.

Some further consequences are obtained from the characterizations.

5.1 Unconditional Bases.

Lemma 5.1 Let ψ ∈ Rα be an orthonormal wavelet, α ≥ 1, 0 < p ≤ 1 and
w ∈ A∞ with critical index satisfying qw

p
≤ α. Then, for all I ∈ D we have
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i) ψI ∈ Hp(w).

ii) The functional ψ∗I defined by ψ∗I (f) = 〈f, ψI〉 belongs to (Hp(w))∗.

Proof. By taking f = ψI ∈ L2(R), we have that Wψ(ψI) ∈ Lp(w) and,
according with Remark 4.7, this guarantees that ψI ∈ Hp(w). The second
part is proved by using Theorem 4.2 and observing that

|〈f, ψI〉| ≤
|I| 12

w(I)
1
p

‖Wψf‖Lp(w) ≤ C
|I| 12

w(I)
1
p

‖f‖Hp(w).

2

Theorem 5.2 If 0 < p ≤ 1, ψ is an orthonormal wavelet in Rα, α ≥ 1,
and w ∈ A∞ has critical index qw, qw

p
≤ α, then the system

B = {ψI : I ∈ D}

is an unconditional basis for Hp(w).

Proof. The previous lemma says that B ⊂ Hp(w) and, since ψ is an
orthonormal wavelet, the system

B∗ = {ψ∗I : I ∈ D} ⊂ (Hp(w))∗

is a biorthogonal system of B. Also, for Ω ⊂ D finite and θ = {θI}I∈D a
sequence of ±1’s we have

‖SΩ,θf‖pHp(w) =
∥∥∥∑
I∈Ω

θI 〈f, ψI〉ψI
∥∥∥p
Hp(w)

≤ C ‖Wψ(SΩ,θf)‖pLp(w)

= C

∥∥∥∥{∑
I∈Ω

|θI 〈f, ψI〉|2 |I|−1 χI

} 1
2

∥∥∥∥p
Lp(w)

≤ C ‖Wψf‖pLp(w) ≤ C ‖f‖pHp(w).

So the partial sum operators and the modified partial sum operators with
any sequence of signs are uniformly bounded in Hp(w). Thus, we should
prove that, for every f ∈ Hp(w), its wavelet expansion converges. But
since Wψf ∈ Lp(w), the series appearing in the operator converges almost
everywhere, because all the terms are positive. By using the dominated
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convergence theorem, we obtain that Wψ(f − SΩf) −→ 0 as Ω ↗ D in
Lp(w). Theorem 4.2 leads to

f =
∑
I∈D

〈f, ψI〉ψI in Hp(w).

2

By using the characterization of weighted Lebesgue spaces, we can prove,
very much as in the previous result, the following theorem.

Theorem 5.3 Let ψ ∈ R1 be an orthonormal wavelet, 1 < q < ∞ and
w ∈ Aq. Then, the system

B = {ψI : I ∈ D}

is an unconditional basis for Lq(w).

Remark 5.4 The last two results appear in [GK1] when the wavelets are
splines. In fact, an m-spline wavelet belongs to Rα for m ≤ α < m + 1.
Related topics can be found in [GK2].

5.2 Membership criterion.

We have proved that Wψ gives a p-norm for Hp(w). We ask if this new
p-norm provides a criterion for membership in this space. As in [Mey] —
page 144— if we take the distribution f ≡ 1, we obtain that Wψf ≡ 0 (the
wavelet has integral 0), but f /∈ Hp(w). This fact leads to restrict the class
of distributions in which we can apply the criterion.

Theorem 5.5 For 0 < p ≤ 1, ψ ∈ Rα an orthonormal wavelet, α ≥ 1, and
w ∈ A∞ with critical index such that qw

p
≤ α, the following properties hold:

(a) If β = {βI}I∈D is a sequence of complex numbers with

Wψβ =
{∑
I∈D

|βI |2 |I|−1 χI

} 1
2 ∈ Lp(w),

there exists f ∈ Hp(w) such that

f =
∑
I∈D

βI ψI in Hp(w), and βI = 〈f, ψI〉.
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(b) If f ∈ S ′ with Wψf ∈ Lp(w) and

f =
∑
I∈D

〈f, ψI〉ψI in S ′,

then f ∈ Hp(w) and the wavelet expansion converges in Hp(w).

Proof. The part (b) is a consequence of (a): it is only necessary to use the
uniqueness of limits and the fact that the convergence in Hp(w) is stronger
than the convergence in the distribution sense. For (a), we have Wψβ ∈
Lp(w) and all the terms appear in the series are positive, so

{Wψβ(x)}2 =
∑
I∈D

|βI |2 |I|−1 χI(x) a.e.x ∈ R.

By using the dominated convergence theorem, we can obtain that the tail
converges to 0 in L

p
2 (w). Via Theorem 4.2, the partial sum operator (of the

wavelet expansion) is a Cauchy sequence in Hp(w). But Hp(w) is complete,
so there exists f ∈ Hp(w) such that

f =
∑
I∈D

βI ψI en Hp(w).

On the other hand, ψI ∈ (Hp(w))∗ and it follows that βI = 〈f, ψI〉. 2

Again, we can obtain a similar result in Lq(w), 1 < q <∞.

Theorem 5.6 Let ψ ∈ R1 be an orthonormal wavelet, 1 < q < ∞ and
w ∈ Aq. Then,

(a) For β = {βI}I∈D a sequence of complex numbers with

Wψβ =
{∑
I∈D

|βI |2 |I|−1 χI

} 1
2 ∈ Lq(w),

there exists f ∈ Lq(w) such that

f =
∑
I∈D

βI ψI in Lq(w), and βI = 〈f, ψI〉.

(b) If f ∈ S ′ with Wψf ∈ Lq(w) and

f =
∑
I∈D

〈f, ψI〉ψI in S ′,

then f ∈ Lq(w) and the wavelet expansion converges in Lq(w).
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