
On the existence of principal values for the
Cauchy integral on weighted Lebesgue spaces

for non-doubling measures.
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Abstract

Let T be a Calderón-Zygmund operator in a “non-homogeneous”
space (X, d, µ), where, in particular, the measure µ may be non-
doubling. Much of the classical theory of singular integrals has been
recently extended to this context by F. Nazarov, S. Treil and A. Vol-
berg and, independently by X. Tolsa. In the present work we study
some weighted inequalities for T?, which is the supremum of the trun-
cated operators associated with T . Specifically, for 1 < p < ∞, we
obtain sufficient conditions for the weight in one side, which guarantee
that another weight exists in the other side, so that the corresponding
Lp weighted inequality holds for T?. The main tool to deal with this
problem is the theory of vector-valued inequalities for T? and some re-
lated operators. We discuss it first by showing how these operators are
connected to the general theory of vector-valued Calderón-Zygmund
operators in non-homogeneous spaces, developed in our previous pa-
per [GM]. For the Cauchy integral operator C, which is the main
example, we apply the two-weight inequalities for C? to characterize
the existence of principal values for functions in weighted Lp.
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1 Introduction.

A non-homogeneous space (X, d) will be a separable metric space endowed
with a non-negative “n-dimensional” Borel measure µ, that is,

µ(B(x, r)) ≤ rn, for all x ∈ X, r > 0,

where B(x, r) = {y ∈ X : d(x, y) ≤ r} and n is a fixed positive number (not
necessarily an integer).

Definition 1.1 A bounded linear operator T on L2(µ) is said to be a Calde-
rón-Zygmund operator with “n-dimensional” kernel K if for every f ∈ L2(µ),

Tf(x) =

∫
X
K(x, y) f(y) dµ(y), for µ-almost every x ∈ X \ supp f,

where, for some A > 0, δ > 0, K : X× X −→ C satisfies

(i) |K(x, y)| ≤ A

d(x, y)n
, for all x 6= y;

(ii) |K(x, y) − K(x′, y)|, |K(y, x) − K(y, x′)| ≤ A
d(x, x′)δ

d(x, y)n+δ
whenever x,

x′, y ∈ X and d(x, y) ≥ 2 d(x, x′).

For such a T , we define the maximal operator associated with it as follows:

T?f(x) = sup
r>0

|Trf(x)| = sup
r>0

∣∣∣ ∫
X\B(x,r)

K(x, y) f(y) dµ(y)
∣∣∣.

This kind of operators have been introduced by [NTV2], where strong and
weak type estimates for them as well as for the corresponding maximal op-
erators have been obtained. The main example is the Cauchy integral C
given by the “1-dimensional” kernel K(z, ξ) = 1

z−ξ ; where the metric space

is C endowed with some measure which has linear growth (that is, n = 1)
and such that this operator is bounded in L2(µ). This kind of measures has
been characterized in [To1]. The existence of the principal value is treated
in [To2]. Many references about the development of the Cauchy integral
and other topics related with it can be found in [Da2], [Da1], [Chr], [Mur],
[MMV]. About the boundedness on L2(µ) of these Calderón-Zygmund op-
erators, the reader is also referred to [NTV1] and for the special case of the
Cauchy integral to [Ver].
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In our previous work [GM], we were concerned with the following problem:
for 1 < p < ∞, find conditions on 0 ≤ v < ∞ µ-a.e. (resp. u > 0 µ-a.e.)
such that∫

X
|Tf(x)|p u(x) dµ(x) ≤

∫
X
|f(x)|p v(x) dµ(x), for f ∈ Lp(v) = Lp(v dµ),

holds for some u > 0 µ-a.e. (resp. 0 ≤ v <∞ µ-a.e.).
We introduced there the classes of weights Dp and Zp, 1 < p <∞, which

were defined by

Dp =
{

0 ≤ w <∞ µ-a.e. :

∫
X
w(x)1−p′ (1 + d(x, x0))

−np′ dµ(x) <∞
}

Zp =
{
w > 0 µ-a.e. :

∫
X
w(x) (1 + d(x, x0))

−n p dµ(x) <∞
}
.

for some x0 ∈ X. Note that these classes of weights do not depend on the
point x0 and that this definition becomes simpler for finite diameter spaces.
By using vector-valued methods we obtained in that work, that the answer
to this problem is v ∈ Dp (resp. u ∈ Zp). For the case of Cauchy integral
operator, we even obtained the necessity of these classes.

The aim of the present work is to extend these results to the maximal
operator associated with T . We shall prove that these classes are sufficient
to have the desired inequality when we replace T by T?. As in [GM], the
main tool will be the vector-valued theory developed there. We shall see
that, after some modifications, the maximal operator fits into that theory.
This will allow us to obtain some vector-valued inequalities which will be the
key to cope with the weighted inequalities.

For the case of the Cauchy integral operator further consequences will be
obtained. We shall be able to prove some results about the existence of prin-
cipal values on weighted Lebesgue spaces. Namely, we obtain the equivalence
of the existence of principal values, the finiteness almost everywhere of the
supremum of the truncated Cauchy integrals, some two-weight inequalities
and the fact that one of the weights belongs to the corresponding class. The
main result, which is proved in Section 4, is:

Theorem 1.2 Let µ be a “1-dimensional” measure in C such that the Cau-
chy integral operator C is bounded on L2(µ). Take 1 < p <∞ and let v be a
µ-a.e. positive measurable function such that v ∈ L1

loc(µ). Then the following
statements are equivalent:

(a) v ∈ Dp.
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(b) There exists a µ-a.e. positive measurable function u, such that,∫
C
|Cf(z)|p u(z) dµ(z) ≤ C

∫
C
|f(z)|p v(z) dµ(z), for any f ∈ Lp(v).

(c) There exists a µ-a.e. positive measurable function u, such that,∫
{z∈C:|Cf(z)|>λ}

u(z) dµ(z) ≤ C

λp

∫
C
|f(z)|p v(z) dµ(z),

for any f ∈ Lp(v), λ > 0.

(d) There exists a µ-a.e. positive measurable function u, such that,∫
C
(C?f(z))p u(z) dµ(z) ≤ C

∫
C
|f(z)|p v(z) dµ(z), for any f ∈ Lp(v).

(e) There exists a µ-a.e. positive measurable function u, such that,∫
{z∈C:C?f(z)>λ}

u(z) dµ(z) ≤ C

λp

∫
C
|f(z)|p v(z) dµ(z),

for any f ∈ Lp(v), λ > 0.

(f) If f ∈ Lp(v), the principal value

lim
ε→0

Cεf(z) = lim
ε→0

∫
ε<|z−ξ|< 1

ε

f(ξ)

z − ξ
dµ(ξ)

exists for µ-a.e. z ∈ C.

(g) If f ∈ Lp(v), then C?f <∞ µ-a.e..

Note that we have introduced here a slightly different type of truncated
integrals Cε and we have denoted by C? the supremum of them when 0 < ε <
1. The same equivalences for C? will be also obtained.

The plan of the paper is the following. Section 2 is devoted to prove
vector-valued inequalities for the maximal operator. To do this we shall
handle some “smooth” version of it which will be a vector-valued Calderón-
Zygmund operator. In Section 3 we obtain the sufficiency of the classes of
weights for the problem we are dealing with. Finally, in Section 4 we prove
the main result.
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2 Vector-valued inequalities for maximal op-

erators.

Let A, B be a couple of Banach spaces, and denote by L(A,B) the set of
bounded operators from A to B. Roughly speaking, K : X× X −→ L(A,B)
is a vector-valued “n-dimensional” Calderón-Zygmund kernel if it verifies (i)
and (ii) (of Definition 1.1) but with the L(A,B)-norm instead of the com-
plex modulus. In the same manner, T is a vector-valued Calderón-Zygmund
operator if it is given by one of these kernels away from the support of the
functions and if it extends to a bounded operator between L2

A(µ) and L2
B(µ).

For the precise definition and more details, the reader is referred to [GM].
The classical theory for these operators can be found in [BCP], [RRT] and
[GR].

In [GM], we proved that these operators satisfy the same inequalities as
the “scalar” ones treated in [NTV2]. That is, they are bounded from L1

A(µ)
to L1,∞

B (µ) and from LpA(µ) to LpB(µ), for 1 < p <∞. Besides, that result had
an immediate self-improvement: with no extra hypothesis the operator can
be extended to sequence-valued functions. The concrete result we obtained
there, is as follows:

Theorem 2.1 Let T be a vector-valued Calderón-Zygmund operator and take
q, 1 < q <∞. Then

(i) T is bounded from L1
`qA

(µ) to L1,∞
`qB

(µ), that is,

µ

{
x :

{∑
j

‖Tfj(x)‖qB
} 1

q
> λ

}
≤ C

λ

∫
X

{∑
j

‖fj(x)‖qA
} 1

q
dµ(x).

(ii) T is bounded from Lp
`qA

(µ) to Lp
`qB

(µ), for 1 < p <∞, that is,∥∥∥∥{∑
j

‖Tfj‖qB
} 1

q

∥∥∥∥
Lp(µ)

≤ C

∥∥∥∥{∑
j

‖fj‖qA
} 1

q

∥∥∥∥
Lp(µ)

.

In what follows T will be a (scalar) Calderón-Zygmund operator with “n-
dimensional” kernel K (see Definition 1.1). For such a T recall the definition
of the maximal operator associated with it,

T?f(x) = sup
r>0

|Trf(x)| = sup
r>0

∣∣∣ ∫
X\B(x,r)

K(x, y) f(y) dµ(y)
∣∣∣,

which can be viewed as a vector-valued operator. First observe that it is
enough to take the supremum just over Q+, the set of positive rationals.
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Next consider the `∞(Q+)-valued operator defined by T̃ f(x) = {Trf(x)}r∈Q+ .

That is, we choose A = C and B = `∞(Q+). The kernel will be K̃(x, y) =
{χX\B(x,r)(y)K(x, y)}r∈Q+ taken like an element of L(C, `∞(Q+)) = `∞(Q+).
However it will not be a Calderón-Zygmund kernel, since in general condition
(ii) is not satisfied. This happens because we are cutting off with character-
istic functions which give us a “rough kernel”. Then we can not obtain, in
a straightforward way, vector-valued inequalities —like in Theorem 2.1— for
the operator T?. We avoid this problem by introducing a smooth approxi-
mation to the characteristic function. When we will estimate the difference
between the smooth operator and the previous one, the following version of
the Hardy-Littlewood maximal function will be needed:

M̂f(x) = sup
r>0

1

rn

∫
B(x,r)

|f(y)| dµ(y).

For this operator we observe the same behaviour as for T?, although we can
look at this operator under a vector-valued point of view, the kernel does
not verify, in general, condition (ii). So, it will not be a Calderón-Zygmund
operator and we have to get a smooth version of it.

To be more precise, take ϕ, ψ ∈ C1([0,∞)), such that,

χ[0,1](t) ≤ ϕ(t) ≤ χ[0,2](t) and χ[1,∞)(t) ≤ ψ(t) ≤ χ[ 1
2
,∞)(t).

Let us consider the following “smooth” version of the maximal function M̂:

Mϕf(x) = sup
r>0

1

rn

∫
X
ϕ
(d(x, y)

r

)
|f(y)| dµ(y).

Then, M̂f(x) ≤ Mϕf(x) ≤ 2n M̂f(x). On the other hand it is also clear

that M̂f(x) ≤ 3n M̃f(x), where

M̃f(x) = sup
r>0

1

µ(B(x, 3 r))

∫
B(x,r)

|f | dµ

is the maximal operator considered in [NTV2]. The boundedness of M̃
(which is proved there, as an easy consequence of Vitali covering theorem)

allows us to obtain that the operators M̂ and Mϕ are of weak type (1, 1)
and strong type (p, p), for 1 < p ≤ ∞. For the maximal operator associated
with T , we perform the regularization given by

Tψ,?f(x) = sup
r>0

∣∣∣ ∫
X
ψ

(d(x, y)
r

)
K(x, y) f(y) dµ(y)

∣∣∣.
6



Hence, by using the properties of K,

|Tψ,?f(x)− T?f(x)| ≤ 2nAM̂f(x) ≤ 2nAMϕf(x). (1)

This estimate gives the boundedness of Tψ,? in L2(µ), because Mϕ is boun-
ded and, as it is proved in [NTV2], T? is also continuous in this space. On
the other hand, (1) leads to

T?f(x) ≤ Tψ,?f(x) + 2nAMϕf(x), (2)

which will be useful to get vector-valued inequalities for T?, once we have
proved these inequalities for the “smooth” operators Tψ,? and Mϕ.

The next step is to prove that these two operators are in fact vector-
valued Calderón-Zygmund operators. Then, after using the self-improvement
(Theorem 2.1) we can extend them to sequence spaces.

Theorem 2.2 Under the previous assumptions, Tψ,? and Mϕ can be viewed
as vector-valued Calderón-Zygmund operators. Therefore these operators,
and, consequently, also T? will be of weak type (1, 1) and strong type (p, p), for
1 < p <∞ —for T? these estimates were proved in [NTV2]—. Furthermore,
if 1 < q <∞, the following vector-valued inequalities hold

(i) Tψ,?, Mϕ and T? are bounded from L1
`q(µ) to L1,∞

`q (µ).

(ii) Tψ,?, Mϕ and T? are bounded from Lp`q(µ) to Lp`q(µ), for 1 < p <∞.

Proof. Note that by (2) we only have to get these inequalities for Tψ,? and
Mϕ. For the first one, by the monotone convergence theorem, it is enough
to consider the `∞(J)-valued operator

T Jψ f(x) = {Tψ,rf(x)}r∈J =
{∫

X
ψ

(d(x, y)
r

)
K(x, y) f(y) dµ(y)

}
r∈J

,

with J ⊂ Q+ finite, and to obtain boundedness properties independently of
J . We choose A = C and B = `∞(J). The a priori estimate of the operator
is obtained by using that Tψ,? is continuous in L2(µ),

‖T Jψ f‖L2
`∞(J)

(µ) ≤ ‖Tψ,?f‖L2(µ) ≤ C ‖f‖L2(µ),

where C is independent of J . This operator is given by the kernel

KJ
ψ(x, y) =

{
ψ

(d(x, y)
r

)
K(x, y)

}
r∈J

∈ L(C, `∞(J)) = `∞(J).
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The properties of K and the assumptions on ψ yield that KJ
ψ is a Calderón-

Zygmund kernel with constants which do not depend on J . Thus, T Jψ is a
vector-valued Calderón-Zygmund operator such that every constant involved
is independent of the chosen subset J . So, by the observations above and
by the vector-valued Theorem obtained in [GM], we conclude that Tψ is
continuous from L1(µ) to L1,∞

`∞ (µ) and from Lp(µ) to Lp`∞(µ), 1 < p < ∞.
Or equivalently, that Tψ,? is of weak type (1, 1) and strong type (p, p) for
1 < p <∞. Furthermore, by using the self-improvement (Theorem 2.1), for
1 < q <∞ we have

Tψ : L1
`q(µ) −→ L1,∞

`q`∞
(µ),

Tψ : Lp`q(µ) −→ Lp
`q`∞

(µ), 1 < p <∞,

which, indeed, are the desired inequalities for Tψ,?.
ForMϕ, we can also take the supremum over Q+. For some finite J ⊂ Q+,

define the `∞(J)-valued operator

T Jϕ f(x) = {Tϕ,rf(x)}r∈J =
{ 1

rn

∫
X
ϕ
(d(x, y)

r

)
f(y) dµ(y)

}
r∈J

.

Take the Banach spaces A = C and B = `∞(J). Observe that

‖T Jϕ f‖L2
`∞(J)

(µ) ≤ ‖Mϕf‖L2(µ) ≤ C ‖f‖L2(µ),

where the constant C does not depend on J . The kernel of T Jϕ is

KJ
ϕ(x, y) =

{ 1

rn
ϕ
(d(x, y)

r

)}
r∈J

∈ L(C, `∞(J)) = `∞(J).

The properties of ϕ imply that it is a Calderón-Zygmund kernel. Thus, T Jϕ is
a vector-valued Calderón-Zygmund operator and, moreover, every constant
involved is independent of J . Just as before, if we evaluate this operator on
|f | and we use the monotone convergence theorem, we obtain the desired
inequalities for Mϕ. 2

Consider the `∞(J)-valued operator defined by T̃ Jf(x) = {Trf(x)}r∈J ,
for J ⊂ Q+ finite. Theorem 2.2 guarantees that T̃ J is continuous from L1(µ)
to L1,∞

`∞(J)(µ), and from Lp(µ) to Lp`∞(J)(µ), 1 < p < ∞. Moreover, when

these spaces are `q-valued (1 < q < ∞), the corresponding vector-valued
inequalities hold (see Theorem 2.2). In fact, each estimate is uniform in J .

The adjoint operator of T is T ∗, whose kernel is K∗(x, y) = K(y, x). For
f = {fr}r∈J , we define

T̂ Jf(x) =
∑
r∈J

T ∗
r fr(x) =

∑
r∈J

∫
X\B(x,r)

K(y, x) fr(y) dµ(y).
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Then, it is clear that the adjoint of T̂ J is T̃ J and that T̂ J is bounded between
L2
`1(J)(µ) and L2(µ) with constant independent of J . It will not be a Calderón-

Zygmund operator, because the kernel does not satisfy the “smoothness”
condition (ii). Then, by using the functions ψ, ϕ, define

T̂ Jψ f(x) =
∑
r∈J

T ∗
ψ,rfr(x) =

∑
r∈J

∫
X
ψ

(d(x, y)
r

)
K(y, x) fr(y) dµ(y).

Just as we did in (1), we can estimate

|T̂ Jψ f(x)− T̂ Jf(x)| ≤ 2nA T̂ Jϕ (|f |)(x), (3)

where, for g = {gr}r∈J , |g| = {|gr|}r∈J and

T̂ Jϕ g(x) =
∑
r∈J

Tϕ,rgr(x) =
∑
r∈J

1

rn

∫
X
ϕ
(d(x, y)

r

)
gr(y) dµ(y).

Observe that the adjoint operator of T̂ Jϕ is T Jϕ . Then, we obtain that T̂ Jϕ is
bounded from L2

`1(J)(µ) to L2(µ) independently of J . On the other hand,

by means of (3) we can see that T̂ Jψ is continuous from L2
`1(J)(µ) to L2(µ)

uniformly in J . But, it is also true that

|T̂ Jf(x)| ≤ |T̂ Jψ f(x)|+ 2nA T̂ Jϕ (|f |)(x), (4)

and this inequality allows us to get vector-valued estimates for T̂ J , once we
have proved them for the other two operators. The next result will be a
consequence of Theorem 2.2.

Corollary 2.3 Under the previous hypotheses T̂ Jψ and T̂ Jϕ are vector-valued
Calderón-Zygmund operators. Consequently for 1 < p, q <∞, we obtain that
these two operators together with T̂ J are continuous between the following
spaces:

(i) L1
`1(J)(µ) −→ L1,∞(µ); Lp`1(J)(µ) −→ Lp(µ).

(ii) L1
`q
`1(J)

(µ) −→ L1,∞
`q (µ); Lp

`q
`1(J)

(µ) −→ Lp`q(µ).

Furthermore, every boundedness does not depend on J .

Proof. By the vector-valued results in [GM] and Theorem 2.1, it is enough

to check that T̂ Jψ and T̂ Jϕ are vector-valued Calderón-Zygmund operators.
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For the first one, the kernel is K̂J
ψ(x, y) = KJ

ψ(y, x) ∈ L(`1(J),C) = `∞(J).

Since, we proved in Theorem 2.2 that KJ
ψ , satisfies (i), (ii), then K̂J

ψ also does
with the Banach spaces A = `1(J), B = C. For the other operator the kernel

is K̂J
ϕ(x, y) = KJ

ϕ(x, y) ∈ L(`1(J),C) = `∞(J). We showed in Theorem 2.2

that this kernel verifies the required hypotheses; as a consequence, T̂ Jϕ will be
a vector-valued Calderón-Zygmund operator (here we also have the previous
Banach spaces). 2

Remark 2.4 In the last result, there is no dependence on J , so by taking
finite subsets J ↗ Q+, the limit operator T̂ does not depend on this sequence.
This new operator acts continuously between the previous spaces with `1(Q+)

instead of `1(J). Moreover, the restriction of T̂ to a `1(Q+)-valued sequence

with a finite number of non-zero coordinates can be written as T̂ J for some
J .

3 Two-weight inequalities for T?.

If 1 < p <∞, consider the two-weight inequality for T?:∫
X
(T?f(x))p u(x) dµ(x) ≤

∫
X
|f(x)|p v(x) dµ(x), (5)

for f ∈ Lp(v) = Lp(v dµ) and u, v µ-a.e. positive functions. Throughout this
section we shall be concerned with the following problem:

Find conditions on 0 ≤ v < ∞ µ-a.e. (resp. u > 0 µ-a.e.) such
that (5) is satisfied by some u > 0 µ-a.e. (resp. 0 ≤ v < ∞
µ-a.e.).

This problem has been previously studied in [GM] for T . We would like
to follow those ideas to conclude similar results for T?. As there, we shall
need the following theorem, proved in [FT], which establishes the relationship
between vector-valued inequalities and weights (for closely related results see
[GR] pp. 549–554).

Theorem 3.1 Let (Y, dν) be a measure space; F, G Banach spaces, and
{Ak}k∈Z a sequence of pairwise disjoint measurable subsets of Y such that
Y =

⋃
k Ak. Consider 0 < s < p < ∞ and T a sublinear operator which

satisfies the following vector-valued inequality∥∥∥∥{∑
j

‖Tfj‖pG
} 1

p

∥∥∥∥
Ls(Ak,d ν)

≤ Ck

{∑
j

‖fj‖pF
} 1

p
, k ∈ Z, (6)

10



where, for every k ∈ Z, Ck only depends on F, G, p and s. Then, there exists
a positive function u(x) on Y such that{∫

Y
‖Tf(x)‖pG u(x) dν(x)

} 1
p ≤ C‖f‖F,

where C depends on F, G, p and s. Moreover, given a sequence of positive
numbers {ak}k∈Z with

∑
k a

p
k <∞, and σ =

(
p
s

)′
, u(x) can be found in such

a way that ‖u−1 χAk
‖Lσ−1(Ak,dµ) ≤ (a−1

k Ck)
p.

In our context (Y, dν) = (X, dµ) which is a σ-finite measure space. Then, a
simple argument shows that the weight u can be also taken so that u < ∞
µ-a.e..

Given 1 < p < ∞ and some x0 ∈ X, remember the definition of the
classes of weights in X:

Dp =
{

0 ≤ w <∞ µ-a.e. :

∫
X
w(x)1−p′ (1 + d(x, x0))

−n p′ dµ(x) <∞
}

Zp =
{
w > 0 µ-a.e. :

∫
X
w(x) (1 + d(x, x0))

−np dµ(x) <∞
}
.

Note that these classes of weights do not depend on the point x0.

Remark 3.2 In the case that the diameter of the space is finite, there exists
R such that X ⊂ B(x0, R) and so µ(X) ≤ Rn < ∞. Thus, the previous
classes can be given by the equivalent definition:

Dp =
{

0 ≤ w <∞ µ-a.e. :

∫
X
w(x)1−p′ dµ(x) <∞

}
Zp =

{
w > 0 µ-a.e. :

∫
X
w(x) dµ(x) <∞

}
.

If the support of the measure is a bounded set, by restricting the whole space
to this set, we are in the previous case.

In the next result we prove the vector-valued inequalities which will be
needed to apply theorem 3.1.

Proposition 3.3 Take 0 < s < 1 < p < ∞ and v ∈ Dp. Then, if the
diameter of X is infinite, we have

(i)

∥∥∥∥{∑
j

(T?fj)
p
} 1

p

∥∥∥∥
Ls(Sk,d µ)

≤ Cs,p 2
k n
s

{∑
j

‖fj‖pLp(v dµ)

} 1
p
,
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(ii)

∥∥∥∥{∑
j

|T̂ fj|p
} 1

p

∥∥∥∥
Ls(Sk,d µ)

≤ Cs,p 2
k n
s

{∑
j

‖fj‖pLp

`1(Q+)
(v dµ)

} 1
p
,

for k = 0, 1, . . ., where S0 = {x : d(x, x0) ≤ 1} and Sk = {x : 2k−1 <
d(x, x0) ≤ 2k}, for k = 1, 2, . . .. Otherwise,

(i) ′
∥∥∥∥{∑

j

(T?fj)
p
} 1

p

∥∥∥∥
Ls(µ)

≤ Cs,p

{∑
j

‖fj‖pLp(v dµ)

} 1
p
,

(ii) ′
∥∥∥∥{∑

j

|T̂ fj|p
} 1

p

∥∥∥∥
Ls(µ)

≤ Cs,p

{∑
j

‖fj‖pLp

`1(Q+)
(v dµ)

} 1
p
.

Proof. The proof is similar to what we did for T in [GM]. First, we work in
the case when X has infinite diameter. Fix k ≥ 0 and set Bk+1 = B(x0, 2

k+1).
We decompose every function f = f ′ + f ′′ = f χBk+1

+ f χX\Bk+1
. Then, for

x ∈ Sk, since v ∈ Dp, it follows

T?f
′′(x) ≤

∫
X\Bk+1

A

d(x, y)n
|f(y)| dµ(y)

≤ 4nA

∫
X
(1 + d(y, x0))

−n |f(y)| v(y)
1
p v(y)−

1
p dµ(y)

≤ 4nA
{∫

X
|f(y)|p v(y) dµ(y)

} 1
p
{∫

X

v(y)1−p′

(1 + d(y, x0))n p
′ dµ(y)

} 1
p′

≤ C ‖f‖Lp(v dµ).

Due to the fact that µ(Sk) ≤ µ(Bk) ≤ 2k n, we prove∥∥∥∥{∑
j

(T?f
′′
j )p

} 1
p

∥∥∥∥
Ls(Sk,dµ)

≤ C 2
k n
s

{∑
j

‖fj‖pLp(v dµ)

} 1
p
.

On the other hand, since 0 < s < 1, by Kolmogorov inequality (see [GR] p.
485) and Theorem 2.2, we can obtain∥∥∥∥{∑

j

(T?f
′
j)
p
} 1

p

∥∥∥∥
Ls(Sk,dµ)

≤ Cs µ(Sk)
1
s
−1

∥∥∥∥{∑
j

(T?f
′
j)
p
} 1

p

∥∥∥∥
L1,∞(Sk,dµ)

≤ C µ(Sk)
1
s
−1

∫
Bk+1

{∑
j

|fj(x)|p
} 1

p
v(x)

1
p v(x)−

1
p dµ(x)

≤ C µ(Sk)
1
s
−1

{∑
j

‖fj‖pLp(v dµ)

} 1
p
{∫

Bk+1

v(x)1−p′ dµ(x)
} 1

p′

≤ C 2
k n
s

{∑
j

‖fj‖pLp(v dµ)

} 1
p
.
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The last inequality holds because 1
s
− 1 > 0 and v ∈ Dp. Thus, collecting

these estimates we finish (i).
For the other operator we use the same approach, but according to Re-

mark 2.4, it is enough to prove that, for any finite J ⊂ Q+, the inequality
holds for T̂ J uniformly in J . If f = {fr}r∈J , for x ∈ Sk, we observe that

|T̂ Jf ′′(x)| ≤
∑
r∈J

|T ∗
r f

′′
r (x)| ≤

∫
X\Bk+1

A

d(y, x)n
‖f(y)‖`1(J) dµ(y),

and it can be proved just as before∥∥∥∥{∑
j

|T̂ Jf ′′j |p
} 1

p

∥∥∥∥
Ls(Sk,dµ)

≤ C 2
k n
s

{∑
j

‖fj‖pLp

`1(J)
(v dµ)

} 1
p
.

On the other hand, since 0 < s < 1 and repeating the previous computations,∥∥∥∥{∑
j

|T̂ Jf ′j|p
} 1

p

∥∥∥∥
Ls(Sk,dµ)

≤ Cs µ(Sk)
1
s
−1

∥∥∥∥{∑
j

|T̂ Jf ′j|p
} 1

p

∥∥∥∥
L1,∞(Sk,dµ)

≤ C µ(Sk)
1
s
−1

∫
Bk+1

{∑
j

‖fj(x)‖p`1(J)

} 1
p
v(x)

1
p v(x)−

1
p dµ(x)

≤ C 2
k n
s

{∑
j

‖fj‖pLp

`1(J)
(v dµ)

} 1
p

by Kolmogorov inequality (see [GR] p. 485) and Corollary 2.3. Then collect-
ing both estimates we conclude (ii). In order to deal with the finite diameter
case, since the measure of the space is finite, we do not have to decompose
the functions, we only follow the ideas we have used for the functions f ′j (for
a similar reasoning and more details see [GM]). 2

With these vector-valued inequalities, we are able to prove the following
result.

Theorem 3.4 Take p, 1 < p < ∞. If u ∈ Zp (resp. v ∈ Dp), then there
exists some weight 0 < v < ∞ µ-a.e. (reps. 0 < u < ∞ µ-a.e.) such that
(5) holds. Moreover, v (resp. u) can be found in such a way that vα ∈ Zp
(resp. uα ∈ Dp), provided that 0 < α < 1.

Proof. First, we shall prove the case v ∈ Dp for infinite diameter spaces.
Take 0 < α < 1 and q = 1 + α (p′ − 1). Then 1 < q < p′ and we can
find s, 0 < s < 1, such that σ =

(
p
s

)′
> q. We use Theorem 3.1 with

13



(Y, dν) = (X, dµ), F = Lp(v dµ), G = C, {Ak}k = {Sk}∞k=0, Ck = C 2
k n
s

and with the sublinear operator T?. Part (i) of Proposition 3.3 leads to the
vector-valued inequality (6). Then, there exists a weight u such that (5)

holds. Furthermore, u can be taken so that ‖u−1‖Lσ−1(Sk,dµ) ≤ C (a−1
k 2

k n
s )p,

with ak > 0 and
∑
apk < ∞. From this point, we only have to repeat the

corresponding proof in [GM] to obtain that uα ∈ Dp. When the space we
are concerned with, has finite diameter, it is easier because we do not have
to decompose the space. For more details see that reference.

To get the other case we proceed as follows. Call ũ = u1−p′ and r = p′.
Since u ∈ Zp, then ũ ∈ Dp′ = Dr. For a fixed 0 < α < 1, we have
q = 1 + α (r′ − 1) and thus 1 < q < r′. We find 0 < s < 1, such that
σ =

(
r
s

)′
> q. If the space has finite diameter, we use Theorem 3.1 with

(Y, dν) = (X, dµ), F = Lr`1(Q+)(ũ dµ), G = C, {Ak}k = {Sk}∞k=0, Ck = C 2
k n
s

and with the operator T̂ . The vector-valued inequality (6) arises from part
(ii) of Proposition 3.3. Therefore, we know that there exists some weight ṽ
such that ∫

X
|T̂ f(x)|r ṽ(x) dµ(x) ≤ C

∫
X
‖f(x)‖r`1(Q+) ũ(x) dµ(x). (7)

Moreover, like in [GM], ṽ can be found such that ṽα ∈ Dr. Take v so that
ṽ = v1−p′ , then vα ∈ Zp. For the finite diameter case we proceed analogously
and again it is easier because we do not need to decompose the space.

We want to come back to T?. We restrict `1(Q+) with the aim of having
only a finite number of non-zero coordinates. Take some finite set J ⊂ Q+.
For f = {fr}r∈J define f̃ = {f̃r}r∈Q+ , where f̃r = fr if r ∈ J and 0 otherwise.
Inequality (7) applied to these sequences and Remark 2.4 allow us to observe
that ∫

X
|T̂ Jf(x)|r ṽ(x) dµ(x) =

∫
X
|T̂ f̃(x)|r ṽ(x) dµ(x)

≤ C

∫
X
‖f̃(x)‖r`1(Q+) ũ(x) dµ(x) = C

∫
X
‖f(x)‖r`1(J) ũ(x) dµ(x).

By a duality argument and by recalling that r = p′, this is equivalent to∫
X
‖T̃ Jf(x)‖p`∞(J) u(x) dµ(x) ≤ C

∫
X
|f(x)|p v(x) dµ(x).

Besides ‖T̃ Jf(x)‖`∞(J) = T J? f(x) and the monotone convergence theorem
leads to (5). 2
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4 Cauchy integral operator.

For a non-negative Borel measure µ in the complex plane C, the Cauchy
integral operator of a compactly supported function f ∈ Lp(µ), 1 ≤ p ≤ ∞,
is defined as

Cf(z) = Cµf(z) =

∫
C

f(ξ)

z − ξ
dµ(ξ), for µ-a.e. z ∈ C \ supp f.

Note that, in general, this definition makes no sense when z ∈ supp f . This
fact leads to consider the truncated Cauchy integrals Cε and try to find
the boundedness of these operators uniformly in ε. In [To1], necessary and
sufficient conditions on the measure µ are given to ensure that the truncated
Cauchy integrals are uniformly bounded in L2(µ). About the existence of the
principal value, in [To2] it is obtained that the boundedness of the Cauchy
integral operator in L2(µ) is a sufficient condition in order to have that for
compactly supported functions in C1, Cεf(z) converges for µ-a.e. z ∈ C
as ε goes to zero. By using that this space is densely contained in Lp(µ),
1 ≤ p < ∞ and the continuity in these spaces of C? which is obtained in
[NTV2] and in [To2], it follows that for f ∈ Lp(µ), 1 ≤ p <∞, the principal
value

lim
ε→0

Cεf(z) = lim
ε→0

∫
|z−ξ|>ε

f(ξ)

z − ξ
dµ(ξ)

exist for µ-a.e. z ∈ C. Then we can define, at least almost everywhere, the
Cauchy integral operator. It is clear that this “new” definition agrees with
the definition away from the support.

We have a metric space C with the euclidean metric and µ any “1-
dimensional” measure for which the Cauchy integral operator is bounded
in L2(µ). First, we can observe that this operator falls within the framework
of theory developed in [NTV2]: the Cauchy integral operator is defined for
compactly supported functions in L2(µ) by means of the “1-dimensional”
Calderón-Zygmund kernel K(z, ξ) = 1

z−ξ . A bounded extension to the whole

L2(µ) arises from the existence of the principal value and the boundedness
of C?. Then we can apply the results we have obtained to get vector-valued
inequalities for C?. By Theorem 2.2, the following result is established.

Theorem 4.1 Under the above assumptions and for 1 < p, q <∞ we have

(i) µ

{
z ∈ C :

{∑
j

(C?fj(z))q
} 1

q
> λ

}
≤ C

λ

∫
C

{∑
j

|fj(z)|q
} 1

q
dµ(z).

(ii)

∥∥∥∥{∑
j

(C?fj)q
} 1

q

∥∥∥∥
Lp(µ)

≤ C

∥∥∥∥{∑
j

|fj|q
} 1

q

∥∥∥∥
Lp(µ)

.
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In this framework, for 1 < p <∞, the classes of weights will be

Dp =
{

0 ≤ w <∞ µ-a.e. :

∫
C
w(z)1−p′ (1 + |z|)−p′ dµ(z) <∞

}
Zp =

{
w > 0 µ-a.e. :

∫
C
w(z) (1 + |z|)−p dµ(z) <∞

}
.

If the measure has bounded support, these classes admit the equivalent def-
inition given in Remark 3.2. In fact, several results will be easier when this
happens. For w ≥ 0 µ-a.e. we denote w(A) =

∫
A
w(z) dµ(z), for any mea-

surable set A ⊂ C.
As a consequence of Theorem 3.4 we obtain:

Corollary 4.2 Let 1 < p < ∞. If u ∈ Zp (resp. v ∈ Dp), then there exists
a weight v (resp. u) such that∫

C
|C?f(z)|p u(z) dµ(z) ≤ C

∫
C
|f(z)|p v(z) dµ(z), for any f ∈ Lp(v dµ).

Moreover, v (resp. u) can be taken in such a way that vα ∈ Zp (resp. uα ∈
Dp), provided that 0 < α < 1.

For a fixed v ∈ Dp, with v ∈ L1
loc(µ), it follows that there exists another

weight u such that the previous inequality holds. The density of continuous
functions with compact support in the space Lp(v) and standard arguments
yield the existence of the principal value

lim
ε→0

Cεf(z) = lim
ε→0

∫
|z−ξ|>ε

f(ξ)

z − ξ
dµ(ξ)

µ-almost everywhere for any f ∈ Lp(v). Besides it is clear that C?f is µ-
a.e. finite for each f ∈ Lp(v). So, the existence of this principal value and
the finiteness of this maximal operator follow from the conditions on v. A
natural question is whether a converse result can be obtained. The answer
is affirmative, that is, the existence of the principal value or the finiteness
almost everywhere of C? for any function of this weighted space imply that v
is in Dp. We shall introduce some notation before proving these equivalence.

Let us define a new maximal operator

C?f(z) = sup
0<ε<1

|Cεf(z)| = sup
0<ε<1

∣∣∣ ∫
ε<|z−ξ|< 1

ε

f(ξ)

z − ξ
dµ(ξ)

∣∣∣.
If f is a compactly supported continuous function,

|Cεf(z)− Cεf(z)| ≤
∣∣∣ ∫

|z−ξ|> 1
ε

f(ξ)

z − ξ
dµ(ξ)

∣∣∣ ≤ ε ‖f‖L1(µ) −→ 0, as ε→ 0.
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Then,
∃ lim
ε→0

Cεf(z) ⇐⇒ ∃ lim
ε→0

Cεf(z), (8)

and, if one of them exists, we get that both limits are equal. On the other
hand, if f is such that C?f(z) <∞, then for 0 < ε < 1,

|Cεf(z)| ≤ |Cεf(z)|+ |C 1
ε
f(z)| ≤ 2 C?f(z),

and therefore
C?f(z) ≤ 2 C?f(z). (9)

Lemma 4.3 Take 1 < p <∞ and 0 < v <∞ µ-a.e. a measurable function.

(i) If v1−p′ ∈ L1
loc(µ) and f ∈ Lp(v) = Lp(v dµ), then for 0 < ε < 1, Cεf

makes sense because it is defined by means of an absolutely convergent
integral.

(ii) Assume that for any f ∈ Lp(v) and for any z outside of a set of µ-
measure zero, we have some 0 < εz < 1 in such a way that Cεf(z)
exists for 0 < ε < εz, that is,∫

ε<|z−ξ|< 1
ε

|f(ξ)|
|z − ξ|

dµ(ξ) <∞, for 0 < ε < εz.

Then, v1−p′ ∈ L1
loc(µ).

Proof. For (i) it is enough to observe that∫
ε<|z−ξ|< 1

ε

|f(ξ)|
|z − ξ|

dµ(ξ) ≤ 1

ε

∫
|ξ|< 1

ε
+|z|

|f(ξ)| v(ξ)
1
p v(ξ)−

1
p dµ(ξ)

≤ 1

ε
‖f‖Lp(v)

( ∫
|ξ|< 1

ε
+|z|

v(ξ)1−p′ dµ(ξ)
) 1

p′
<∞. (10)

Fix f ∈ Lp(v) and z0 ∈ suppµ. For k = 1, 2, . . . set Bk = B(z0, 2
−k)

and Sk = Bk \ Bk+1. Then, there exists k0 ≥ 1 such that µ(Sk0) > 0. The
function f χBk0

∈ Lp(v). By hypothesis we have a zero measure set E, such
that, for z ∈ C \ E, we can find εz, with∫

C
|f(ξ)|χF ε

z
(ξ) <∞, where F ε

z = {ξ ∈ Bk0 : ε < |z − ξ| < ε−1},
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for 0 < ε < εz. Since µ(Sk0) > 0, µ(Bk0+3) > 0 and µ(E) = 0, we can
find z1 ∈ Bk0+3 \ E and z2 ∈ Sk0 \ E. Take 0 < ε0 < min{εz1 , εz2 , 2−k0−3}
and set F1 = F ε0

z1
, F2 = F ε0

z2
. Then we know that f χF1 , f χF2 ∈ L1(µ) and

hence f χF1
⋃
F2 does. For ξ ∈ Bk0 , since z1 ∈ Bk0+3 ⊂ Bk0 , we observe that

|z1 − ξ| ≤ 1 < ε−1
0 , and therefore

F1 =
{
ξ ∈ Bk0 : ε0 < |z1 − ξ| < 1

ε0

}
= {ξ ∈ Bk0 : |z1 − ξ| > ε0}.

Since z2 ∈ Bk0 , we can also obtain that F2 = {ξ ∈ Bk0 : |z2− ξ| > ε0}. Then
F1

⋃
F2 = Bk0 and f χF1

⋃
F2 = f χBk0

∈ L1(µ). In short, for any z0 ∈ suppµ

there exists rz0 > 0 such that f χB(z0,rz0 ) ∈ L1(µ). Then a compactness
argument shows that for any compact K, f χK ∈ L1(µ), and it follows that
Lp(v) ⊂ L1

loc(µ). Thus, the linear operator

PK : Lp(v) −→ L1(µ)
f 7−→ f χK

is well defined. By using closed graph theorem and the fact that 0 < v <∞
µ-a.e., it is easy to see that PK is also bounded. On the other hand

‖χK‖Lp′ (v1−p′ ) = ‖χK v−
1
p‖Lp′ (µ) = sup

‖f‖Lp(µ)=1

∣∣∣ ∫
C
χK v

− 1
p f dµ

∣∣∣
≤ sup

‖f‖Lp(µ)=1

‖PK(v−
1
p f)‖L1(µ) ≤ ‖PK‖Lp(v)−→L1(µ) <∞.

Therefore χK ∈ Lp
′
(v1−p′) and, since this argument is valid for every compact,

we conclude that v1−p′ ∈ L1
loc(µ). 2

Next, we can prove the result we have announced in Section 1.

Proof of Theorem 1.2 Implications (b) =⇒ (c), (d) =⇒ (e) are trivial.
On the other hand, (a) ⇐⇒ (b) is one of the results we proved in [GM]. In
order to prove (a) =⇒ (d), it is enough to use Corollary 4.2 and (9). The
other implications will be obtained as follows:

(e) =⇒ (f), (f) =⇒ (g), (g) =⇒ (a) and (c) =⇒ (a).

(e) =⇒ (f) The inequality of (e) says that the operator C? : Lp(v) −→
Lp,∞(u) is bounded. Moreover, by (8), we know that for a continuous func-
tion f with compact support, the principal value limε→0 Cεf exists µ-a.e..
Since v ∈ L1

loc(µ), the space of continuous functions with compact support is
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densely contained in Lp(v). These things allow us to conclude that for any
f ∈ Lp(v), this principal value exists µ-almost everywhere.

(f) =⇒ (g) Fix f ∈ Lp(v). We are under the hypotheses of Lemma 4.3 (ii),

then v1−p′ ∈ L1
loc(µ). This allows us to use (10). Take some z ∈ C in such

a way that the limit exists, then we have some ε0, 0 < ε0 < 1, such that
sup0<ε≤ε0 |C

εf(z)| <∞. Furthermore, if ε0 ≤ ε < 1, by (10) we observe

|Cεf(z)| ≤ 1

ε0

‖f‖Lp(v)

( ∫
|ξ|< 1

ε0
+|z|

v(ξ)1−p′ dµ(ξ)
) 1

p′
= C(f, z, ε0) <∞,

and therefore C?f(z) <∞ for µ-a.e. z ∈ C.

(g) =⇒ (a) First, since the assumptions in (ii) of Lemma 4.3 are fulfilled

with εz = 1, we obtain that v1−p′ ∈ L1
loc(µ) and we can use (10). We would

like to apply Nikishin theorem (see [GR] p. 536) and we have to check that C?
is continuous in measure. Decompose C as C =

⋃∞
j=1B(0, j). Fix 0 < ε < 1.

For f ∈ Lp(v) we know that Cεf ∈ L0(µ), the space of all µ-measurable
functions. We want to show that

Cε : Lp(v) −→ L0(µ) is continuous in measure,

and, in order to do that, it is enough to see that for each j ≥ 1, Φj(λ) −→ 0,
as λ→∞, where

Φj(λ) = sup
‖f‖Lp(v)=1

µ{z ∈ B(0, j) : |Cεf(z)| > λ}.

For ‖f‖Lp(v) = 1, by using (10) we get

|Cεf(z)| ≤ 1

ε

( ∫
|ξ|< 1

ε
+j

v(ξ)1−p′ dµ(ξ)
) 1

p′
= C(ε, j) <∞

for µ-a.e. z ∈ B(0, j). Then Φj(λ) = 0 for λ > C(ε, j), and thus Cε is
continuous in measure. By means of (10), we observe that the mapping
ε 7−→ Cεf(z) is continuous from the right for each f ∈ Lp(v). Consequently,
C? is the supremum of certain operators, which are continuous in measure,
over a countable set, Q+, and it is µ-almost everywhere finite for f ∈ Lp(v).
Then by Banach continuity principle, (see [GR] p. 529),

C? : Lp(v) −→ L0(µ) is continuous in measure.
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Now, Nikishin theorem (see [GR] p. 536) guarantees the existence of a mea-
surable µ-a.e. positive function u, such that,∫

{z∈C:C?f(z)>λ}
u(z) dµ(z) ≤

(
‖f‖Lp(v)

λ

)q

, f ∈ Lp(v), λ > 0

where q = min{p, 2}. But, if f is continuous with compact support, Cεf −→
Cf µ-a.e. as ε → 0, and, in particular, |Cf(z)| = | limε→0 Cεf(z)| ≤ C?f(z)
for µ-a.e. z ∈ C. This fact, together with the inequality supplied by Nikishin
theorem and a density argument, allows us to extend C to the whole Lp(v)
verifying ∫

{z∈C:|Cf(z)|>λ}
u(z) dµ(z) ≤

(
‖f‖Lp(v)

λ

)q

, (11)

for f ∈ Lp(v), λ > 0. We want to obtain conditions on u, v from this weak
type inequality. We will do it by using the ideas of [GM]. First, we shall see
that for any z0 ∈ suppµ, a radius rz0 > 0 can be found in order to ensure∫

B(z0,rz0 )

u(z) dµ(z) <∞. (12)

We shall use the notation Bk and Sk introduced in the proof of Lemma 4.3.
For z = z1 + i z2, we write |z|∞ = max{|z1|, |z2|}. Define

F1 = {z ∈ C : |z − z0|∞ = z1 − z0
1}, F2 = {z ∈ C : |z − z0|∞ = z2 − z0

2},
F3 = {z ∈ C : |z − z0|∞ = z0

1 − z1}, F4 = {z ∈ C : |z − z0|∞ = z0
2 − z2}.

There is some k0 ≥ 0 such that Sk0 has positive measure. Assume for instance
that µ(Sk0 ∩ F1) > 0. We have some measurable set A ⊂ Sk0

⋂
F1 such

that µ(A) > 0 and v(A) < ∞. Hence, just as in [GM], if z ∈ Bk0+2,
|C(χA)(z)| ≥ |Re (C(χA)(z))| ≥ CA > 0. For 0 < λ0 < CA, we use (11) to
obtain∫

Bk0+2

u(z) dµ(z) ≤
∫
{z∈C:|C(χA)(z)|>λ0}

u(z) dµ(z) ≤ 1

λq0
v(A)

q
p <∞,

and it may be sufficient to take rz0 = 2−k0−2. By a compactness argument,
(12) yields that u ∈ L1

loc(µ), and in particular, u is a finite µ-a.e. function.
(In addition, we can also prove that u ∈ Zq+γ for any γ > 0, but this will
not be needed in what follows).

In order to obtain conditions on v, we shall “dualize” (11). By Kol-
mogorov inequality (see [GR] p. 485), for 1 < r < q, we have

sup
E

1

u(E)
1
r
− 1

q

( ∫
E

|Cf |r u dµ
) 1

r ≤ Cr,q ‖Cf‖Lq,∞(u dµ) ≤ C ‖f‖Lp(v), (13)
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where the supremum is taken over all measurable sets with 0 < u(E) < ∞.
Let A be a measurable set which verifies

µ(A) <∞, 0 < u(A) <∞ and

∫
A

u1−r′ dµ <∞. (14)

Then,

‖C(χA)‖Lp′ (v1−p′ ) = ‖C(χA) v−
1
p‖Lp′ (µ) = sup

g

∣∣∣ ∫
C
C(χA) v−

1
p g dµ

∣∣∣, (15)

where the supremum is taken over all continuous functions with compact
support and ‖g‖Lp(µ) = 1. Fix such a g. As µ(A) <∞, we have χA ∈ Lp(µ)

and thus C(χA) belongs to this space. Besides, v−
1
p g ∈ Lp′(µ) since v1−p′ ∈

L1
loc(µ). We can use the adjoint operator C∗ = −C to obtain∣∣∣ ∫

C
C(χA) v−

1
p g dµ

∣∣∣ =
∣∣∣ ∫

C
χA C∗(v−

1
p g) dµ

∣∣∣ ≤ ∫
C
χA |C(v−

1
p g)| dµ

≤
( ∫

A

|C(v−
1
p g)|r u dµ

) 1
r
( ∫

A

u−
r′
r dµ

) 1
r′

≤ C u(A)
1
r
− 1

q

( ∫
A

u1−r′ dµ
) 1

r′
,

where (13) has been used. Therefore, we have

‖C(χA)‖Lp′ (v1−p′ ) ≤ C u(A)
1
r
− 1

q

( ∫
A

u1−r′ dµ
) 1

r′
. (16)

By means of this inequality, we are going to see that v ∈ Dp. For i = 1, . . . , 4
set Ei by putting z0 = 0 in the definition of Fi. Since we know that v1−p′ is
locally integrable, we only have to find Ri > 0 such that∫

Ei\B(0,Ri)

v(z)1−p′

(1 + |z|)p′
dµ(z) <∞. (17)

If suppµ
⋂
Ei is a bounded set, it might be enough to enlarge sufficiently Ri.

Otherwise, we shall do the case i = 1 and in the other regions the proof goes
analogously. We can find R1 > 0 such that µ(B(0, R1/2)

⋂
E1) > 0. Then,

since 0 < u <∞ µ-a.e., there exists a measurable set A ⊂ B(0, R1/2)
⋂
E1 so

that (14) holds and thus the right hand side of (16) is finite. Moreover, if z ∈
E1 \B(0, R1), like in [GM], it can be proved |C(χA)(z)| ≥ |Re (C(χA)(z))| ≥
C

1+|z| > 0. Therefore, we get∫
C
|C(χA)(z)|p′ v(z)1−p′ dµ(z) ≥ Cp′

∫
E1\B(0,R1)

v(z)1−p′

(1 + |z|)p′
dµ(z),
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and consequently (17) holds for i = 1. As we have observed before, this fact
allows us to obtain that v ∈ Dp.

(c) =⇒ (a) Now, this implication is a consequence of the previous one. Ob-

serve that the inequality of (c) is (11) with q = p. From this inequality we
can obtain as before that u is a finite µ-a.e. function. However, in the previ-
ous reasoning, we knew that v1−p′ ∈ L1

loc(µ) and this allowed us to “dualize”
(11). Since, now this condition about v is not assumed, we have to modify
this argument. By decomposing the space in the dyadic level sets where
2j ≤ v(z) < 2j+1 and since 0 < v < ∞ µ-a.e., we can prove that boundedly
supported functions in Lp(µ)

⋂
Lp(v−1)

⋂
L∞(µ) are dense in Lp(µ). From

this, the supremum in (15) can be taken over all these functions. We can use
the adjoint operator to get (16) for any measurable set verifying (14) with
q = p and 1 < r < p. Then, (17) holds and we only have to prove that
v1−p′ is locally integrable. For any z0 ∈ suppµ, we have some k0 ≥ 0 such
that Sk0 has positive measure. Suppose for example that µ(Sk0

⋂
F1) > 0.

Since 0 < u < ∞ µ-a.e., there is a measurable set A ⊂ Sk0
⋂
F1 such that

(14) holds. Then the right hand side of (16) is finite. Moreover like in the
reasoning we did for u, we obtain that

Cp′

A

∫
B(z0,rz0 )

v(z)1−p′ dµ(z) ≤
∫

C
|C(χA)(z)| v(z)1−p′ dµ(z) <∞.

where rz0 = 2−k0−2. A compactness argument yields that v1−p′ ∈ L1
loc(µ) and

therefore v ∈ Dp. 2

Remark 4.4 We should mention that (f) and (g) can also be obtained from
(a) by the results of [To2]. Namely, if R > 0, f ∈ Lp(v) and v ∈ Dp, by
Hölder’s inequality one obtains that∫

|ξ|>2R

|f(ξ)|
|z − ξ|

dµ(ξ) <∞, for every z ∈ B(0, R). (18)

On the other hand, Lp(v) ⊂ L1
loc(µ) and so f χB(0,2R) ∈ L1(µ). Thus, [To2]

yields the existence of the principal value

lim
ε→0

Cε(f χB(0,2R))(z), for µ-almost every z ∈ B(0, R). (19)

Let us put Cεf(z) = Cε(f χC\B(0,2R))(z) + Cε(f χB(0,2R))(z). For the first
term, by (18), we can prove that there exists the limit as ε goes to 0 and the
supremum for 0 < ε < 1 is finite, both facts for every z ∈ B(0, R). The
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second term is handled by realizing that, for ε small enough, it is actually
Cε(f χB(0,2R))(z). By (19) we obtain de existence of the limit and the finite-
ness of the supremum for µ-almost everywhere z ∈ B(0, R). Thus, it is clear
that (f) and (g) hold.

Next, we want to see that we can replace C? by C?. For 0 < ε < 1, the fact
that Cεf(z) exists only can mean that the integrand is a function in L1(µ).
However, for Cεf(z), ε > 0, since we have only truncated the integral near
z and not at infinity, two interpretations are possibly: either the integrand
belongs to L1(µ), or the integral at infinity is in fact a principal value. Since
the second one is weaker, we assume that the existence of Cεf(z), ε > 0,
means

∃ lim
r→∞

∫
ε<|z−ξ|<r

f(ξ)

z − ξ
dµ(ξ),

and in this case, we write Cεf(z) for this limit. Observe that the existence
of each integral only admits one interpretation:∫

ε<|z−ξ|<r

∣∣∣∣ f(ξ)

z − ξ

∣∣∣∣ dµ(ξ) <∞.

Corollary 4.5 The statements of Theorem 1.2 are also equivalent to the
following:

(d) ′ There exists a µ-a.e. positive measurable function u, such that,∫
C
(C?f(z))p u(z) dµ(z) ≤ C

∫
C
|f(z)|p v(z) dµ(z), for any f ∈ Lp(v).

(e) ′ There exists a µ-a.e. positive measurable function u, such that,∫
{z∈C:C?f(z)>λ}

u(z) dµ(z) ≤ C

λp

∫
C
|f(z)|p v(z) dµ(z),

for any f ∈ Lp(v), λ > 0.

(f) ′ If f ∈ Lp(v), the principal value

lim
ε→0

Cεf(z) = lim
ε→0

∫
|z−ξ|>ε

f(ξ)

z − ξ
dµ(ξ)

exists for µ-a.e. z ∈ C.

(g) ′ If f ∈ Lp(v), then C?f <∞ µ-a.e..
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Proof. By Corollary 4.2, we know that (a) =⇒ (d) ′. It is clear that (d) ′ =⇒
(e) ′. We can prove that (e) ′ =⇒ (f) ′ just as the corresponding implication of
Theorem 1.2. On the other hand, (d) ′ =⇒ (g) ′ since u > 0 µ-a.e.. Moreover,
(g)′ =⇒ (g) follows from (9). Therefore, we shall finish if we see that (f)′ =⇒
(f).

Fix f ∈ Lp(v), and take z0 such that Cεf(z0) converges as ε goes to 0.
This implies in particular the existence of ε0, 0 < ε0 < 1, for which Cεf(z0)
makes sense if 0 < ε ≤ ε0. Given δ > 0, there exists η0, 0 < η0 < ε0, such
that

|Cε1f(z0)− Cε2f(z0)| =
∣∣∣ ∫

ε1<|z0−ξ|≤ε2

f(ξ)

z0 − ξ
dµ(ξ)

∣∣∣ < δ

2
, (20)

for 0 < ε1 < ε2 ≤ η0. On the other hand, since Cε0,rf(z0) converges as r goes
to infinity, we can find R0 such that, if 0 < R0 < r2 < r1, we have∣∣∣ ∫

r2≤|z0−ξ|<r1

f(ξ)

z0 − ξ
dµ(ξ)

∣∣∣ = |Cε0,r1f(z0)− Cε0,r2f(z0)| <
δ

2
. (21)

Set η = min{η0, R
−1
0 }. If 0 < ε1 < ε2 < η we can use (20), and (21) holds

with r1 = ε−1
1 , r2 = ε−1

2 . Thus,

|Cε1f(z0)− Cε2f(z0)|

≤
∣∣∣ ∫

ε1<|z0−ξ|≤ε2

f(ξ)

z0 − ξ
dµ(ξ)

∣∣∣ +
∣∣∣ ∫

1
ε2
≤|z0−ξ|< 1

ε1

f(ξ)

z0 − ξ
dµ(ξ)

∣∣∣
<

δ

2
+
δ

2
= δ.

Since δ > 0 is arbitrary, it follows that Cεf(z0) converges as ε → 0, and we
have (f). 2
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