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Let # be the Gauss measure on Rd and L the Ornstein�Uhlenbeck operator,
which is self adjoint in L2(#). For every p in (1, �), p{2, set ,p*=arc sin |2�p&1|
and consider the sector S,*p

=[z # C : |arg z|<,p*]. The main result of this paper is

that if M is a bounded holomorphic function on S,*p
whose boundary values on �S,*p

satisfy suitable Ho� rmander type conditions, then the spectral operator M(L)
extends to a bounded operator on L p(#) and hence on Lq(#) for all q such that
|1�q&1�2|�|1�p&1�2|. The result is sharp, in the sense that L does not admit a
bounded holomorphic functional calculus in a sector smaller than S,*p
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We consider the Gauss measure on Rd, i.e., the probability measure #
with density

#0(x)=?&d�2 exp(&|x|2)

with respect to Lebesgue measure. The Ornstein�Uhlenbeck operator

& 1
2 2+x } {

is essentially self-adjoint in L2(#); we denote by L its self-adjoint extension.
The spectrum of L is N=[0, 1, ...]. Let [Pn]n # N be the spectral resolution
of the identity for which

Lf = :
�

n=0

nPn f \f # Dom(L).

It is well known [B] that if p is in (1, �) and n is in N, then Pn extends
to a bounded operator on L p(#). Furthermore, if p is in [1, �), the projec-
tion P0 extends to a nontrivial contraction operator on L p(#).

For each t>0, the Ornstein�Uhlenbeck semigroup Ht is defined by

Ht f = :
�

n=0

e&tnPn f \f # L2(#).

It is known that [Ht]t�0 extends to a markovian semigroup, which has
been the object of many studies, both in the finite and in the infinite-dimen-
sional case. A good reference about the Ornstein�Uhlenbeck semigroup is
[B] (see also [Me]), where additional references can be found. In this
paper we shall consider only the finite-dimensional case. Some results
involving maximal operators and Riesz transforms associated to this
semigroup are described in the survey [Sj].

Suppose that M: N � C is a bounded sequence. By the spectral theorem,
we may form the operator M(L), defined by

M(L) f = :
�

n=0

M(n) Pn f \f # L2(#);

clearly M(L) is bounded on L2(#). We call M(L) the spectral operator
associated to the spectral multiplier M.

The purpose of this paper is to develop a functional calculus for L, i.e.,
to find sufficient conditions on the spectral multiplier M for the spectral
operator M(L), initially defined in L2(#) & L p(#), to extend to a bounded
operator on L p(#), for some p in (1, �).

On the one hand, we show that if p{2, then there is no reasonable non-
holomorphic functional calculus in L p(#) for L. In particular, we prove
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that there is no analogue of the classical Ho� rmander multiplier theorem in
this context. In fact, for each p{2 there exists a spectral multiplier Mp ,
such that Mp(L) does not extend to a bounded operator on L p(#), and
which is the restriction of a function, also denoted by Mp , analytic in a
neighbourhood of R+, that satisfies the conditions

sup
*>0

|* j D jMp(*)|<� \j # N.

On the other hand, it follows from an abstract result of Stein [S, Chap. 4]
that if M: N � C is a bounded sequence and there exists a holomorphic
function M� of Laplace transform type, such that

M� (k)=M(k), k=1, 2, 3, ...,

then M(L) extends to an operator bounded on L p(#) for every p in (1, �).
Notice that we do not impose any restriction on M(0). Since P0 is bounded
on L p(#), the operator M(L) is bounded on L p(#) if and only if M(L)&
M(0) P0 is. This has recently been improved by Garc@� a-Cuerva et al.
[GMST], who showed that M(L) is also of weak type (1, 1) under the
same assumptions.

Furthermore, if we fix p in (1, �), it is interesting to determine the ``min-
imal regularity conditions'' on M which imply that M(L) is bounded on
L p(#). These conditions are sometimes best expressed in terms of Banach
spaces of holomorphic functions. If � # (0, ?), we denote by S� the open
sector

[z # C : |arg z|<�],

and by H�(S�) the space of bounded holomorphic functions on S� .
A consequence of an abstract result of Cowling [C, Theorem 2] is that
if �>? |1�q&1�2|, M: N � C is a bounded sequence and there exists M�
in H�(S�) such that

M� (k)=M(k), k=1, 2, 3, ...,

then M(L) extends to a bounded operator on Lq(#).
In this paper we improve this result for the (finite-dimensional)

Ornstein�Uhlenbeck operator, by showing that analyticity in a smaller
sector suffices to give bounded operators on L p(#).

The problem of the existence of a nonholomorphic functional calculus
for generators of Markov semigroups has attracted considerable attention
in recent years. So far, only a few examples have been understood, see, for
instance Christ and Mu� ller [ChM] and Hebisch [H].
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For the statement of our main result, we need the following notation.
Suppose that J is a nonnegative integer and that � # (0, ?�2). We denote by
H�(S� ; J ) the Banach space of all M in H �(S�) for which there exists a
constant C such that

(1) sup
R>0

|
2R

R
|* j D jM(e\i�*)|2 d*

*
�C2 \j # [0, 1, ..., J],

endowed with the norm

&M&�; J=inf[C: (1) holds].

Condition (1) is called a Ho� rmander condition of order J [Ho� ]. Note that
(1) implies that supz # S�

|M(z)|�2C, if J>0.
Our main result is the following

Theorem 1. Suppose that 1<p<� and p{2, and set ,p*=arc sin
|2�p&1|. Let M: N � C be a bounded sequence and assume that there exists
a bounded holomorphic function M� in S,p*

such that

M� (k)=M(k), k=1, 2, 3, ... .

Then the following hold:

(i) if M� # H�(S,p*
; 4), then M(L) extends to a bounded operator on

L p(#) and hence on Lq(#) for all q such that |1�q&1�2|�|1�p&1�2|;

(ii) if M� # H�(S,p*
) and |1�q&1�2|<|1�p&1�2|, then M(L) extends

to a bounded operator on Lq(#).

The next result shows that in Theorem 1, the size of the region of
holomorphy, measured by the aperture of the cone, cannot be reduced.

Theorem 2. Let p and ,p* be as in Theorem 1. If �<,p* , there exists a
function M which decays exponentially at infinity and belongs to H�(S� ; J )
for every positive integer J, such that M(L) does not extend to a bounded
operator on L p(#).

We remark that Theorem 1 may be sharpened by means of spaces
H�(S,p*

; J ) with nonintegral J.
A significant feature of Theorem 1 is that the number of derivatives on

M required in (i) is independent of the dimension d. However, our
estimates depend strongly on d, so that our methods fail to give a multi-
plier result for the infinite dimensional Ornstein�Uhlenbeck operator. Note
that Cowling's result holds in the infinite-dimensional case too. We recall
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that other important operators related to the Ornstein�Uhlenbeck semi-
group, such as the Riesz transforms, have L p(#) bounds independent of the
dimension. The reader is referred to the elegant analytic proof of Pisier [Pi].

Theorems 1 and 2 are proved in Section 3. The main ingredient of the
proof of Theorem 1 will be an estimate

(2) _(L+=I)iu_p�C(1+|u| )5�2 e,p* |u| \= # (0, 1] \u # R,

where _ }_p denotes the operator norm on L p(#) and C>0 is a constant.
This will be combined with an abstract multiplier result for generators of
holomorphic semigroups, which is a variant of an earlier result of Meda
[M, Theorem 4] (see also [CM, Theorem 2.1]). The abstract multiplier
result is proved in Section 2. The estimate (2) will be obtained as an easy
consequence of Propositions 3.1 and 3.2, which contain norm estimates
concerning two auxiliary operators, J p, iu(L+=I) and K p, iu(L+=I),
introduced at the beginning of Section 3. The norm estimates for
J p, iu(L+=I), in turn, hinge on pointwise estimates off the diagonal for
the distributional kernels of the complex powers of the resolvent operator
(L+=I)&1. This analysis is rather technical and occupies Sections 4
and 5.

One of the main ingredients of our approach is a careful analysis of the
complex time Ornstein�Uhlenbeck semigroup. The notation and some
preliminary results concerning the Ornstein�Uhlenbeck semigroup are
contained in Section 1.

Maximal estimates for the complex Ornstein�Uhlenbeck semigroup will
appear in a forthcoming paper.

1. NOTATION AND PRELIMINARY RESULTS

We shall consider L p spaces both with respect to Lebesgue measure and
Gauss measure, which we denote by L p(Rd) and L p(#), respectively.

Suppose that M is a continuous linear operator from C �
c (Rd) into dis-

tributions. By the Schwartz kernel theorem there is a unique distribution
mS # D$(Rd_Rd) such that

(M,, �) Rd=(mS , ��,) R2d \,, � # C �
c (Rd),

where ( }, } ) Rd and ( } , } ) R2d denote the pairings between test functions and
distributions in Rd and in R2d, respectively. We call the distribution
(1�#&1

0 ) mS the kernel of M and denote it by m. The justification for this

417THE ORNSTEIN�UHLENBECK OPERATOR



notation is that if mS is locally integrable, then M may be represented as
an integral operator with kernel m with respect to the Gauss measure.
Indeed,

M,(x)=|
Rd

mS(x, y) ,( y) dy=|
Rd

m(x, y) ,( y) d#( y) \, # C �
c (Rd).

If M is a bounded operator on L2(#), then it maps C �
c (Rd) functions con-

tinuously into distributions, so that we may consider its kernel. In par-
ticular, if Rz�0, we denote by hz the kernel of the operator Hz spectrally
defined by

Hz f = :
�

n=0

e&znPn f \f # L2(#);

hz is called the Mehler kernel and is given by the smooth function

(3)hz(x, y)=(1&e&2z)&d�2

_exp _1
2

1
ez+1

|x+ y| 2&
1
2

1
ez&1

|x& y| 2& \x, y # Rd,

if z � i?Z. For k in Z, the distribution hik? is defined by

(hik? , ,) =|
Rd

,(x, (&1)k x) exp( |x|2) dx \, # C �
c (Rd_Rd).

It is easy to check that [hz]Rz�0 is an analytic family of distributions, and
that [Hz]Rz�0 is an analytic family of continuous operators from C �

c (Rd)
to D$(Rd). In particular, if , # C �

c (Rd) and k # Z we have that Hik? ,(x)=
,((&1)k x) . Further properties of [Hz]Rz�0 are contained in Proposi-
tion 1.1 below. For every p in (1, �), p{2, set ,p=arc cos |2�p&1|, and
denote by Ep the set

[x+iy # C : |sin y|�(tan ,p) sinh x];

see Fig 1. If p=2, define ,p to be ?�2 and Ep to be S� ?�2 . The set Ep is a
closed ?i-periodic subset of the right half-plane. The rays [0, e\i,p�) are
contained in Ep and are tangent to the boundary of Ep at the origin. Note
that if 1�p+1�p$=1, then Ep=Ep$ , and that Ep /Eq if 1<p<q<2.
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FIGURE 1

Proposition 1.1. Suppose that 1�p��. The following hold:

(i) the semigroup [Ht]t�0 is markovian;

(ii) if t>0 and 1<p<2, then Ht is bounded from L p(#) to L2(#) if
and only if t� &log - p&1, in which case it is a contraction;

(iii) the operator Hz extends to a bounded operator on Lp(#) if and
only if z # Ep , in which case it is a contraction. Furthermore, the map z [ Hz

from Ep to the Banach algebra of bounded operators on L p(#) is continuous
in the strong operator topology, and its restriction to the interior of Ep is
analytic.

This result is well known. In particular, (ii) is due to Nelson [N], and
(iii) to Epperson [E]. The reader is referred to [B] for (i) and more on
the Ornstein�Uhlenbeck semigroup.

Positive constants are denoted either by c or by C; these may differ from
one occurrence to another. The expression

A(t)tB(t) \t # D,
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where D is some subset of the domains of A and of B, means that there
exist constants C and C$ such that

C |A(t)|�|B(t)|�C$ |A(t)| \t # D.

2. AN ABSTRACT HO� RMANDER TYPE MULTIPLIER THEOREM

In this section we prove a result concerning the existence of a bounded
holomorphic functional calculus for infinitesimal generators of symmetric
contraction semigroups. We shall use this result in Section 3 in our study
of the Ornstein�Uhlenbeck operator.

Let X be a _-finite measure space and G a positive linear operator on
L2(X ), possibly unbounded, but with dense domain. Let [E*] be the
spectral resolution of the identity for which

Gf =|
�

0
* dE* f \f # Dom(G).

For every positive real number t, we define the operator Tt by

Tt f =|
�

0
e&t* dE* f \f # L2(X ).

We assume that each Tt has the contraction property

&Tt f &p�& f &p \f # L2(X ) & L p(X )

whenever 1�p��. A semigroup [Tt]t�0 with the above properties is
called a symmetric contraction semigroup, and G will be called the
infinitesimal generator of [Tt]t�0 . Note that in many texts on semigroups,
the generator of the semigroup is &G instead of G.

Let M be a complex-valued, Borel measurable function on R+. The
multiplier operator M(G) is then defined on a suitable subspace of L2(X ) by

M(G) f =|
�

0
M(*) dE* f.

By spectral theory, if M is bounded, then M(G) is bounded on L2(X ). An
important problem is to find conditions on M (and on the semigroup), so
that the operator M(G) extends to a bounded operator on L p(X ) for some
p # (1, �).
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Recall that the Mellin transform Mf of a function f # L1(R+, d*�*) is
defined by

Mf (u)=|
�

0
f (*) *&iu d*

*
\u # R.

Let M be a complex-valued, Borel measurable function on R+. Given a
positive integer N, we denote by MN : R+_R+ � C the function defined by

MN(t, *)=(t*)N exp(&t*) M(*),

and by MMN(t, } ) the Mellin transform of MN(t, } ).
If T is a bounded linear operator on L p(X ), we denote by _T_p its

operator norm.

Theorem 2.1. Let G be the infinitesimal generator of a symmetric
contraction semigroup and assume that the spectral projection E0 is trivial.
Suppose that 1<p<� and that M is a Borel measurable function on R+.
If for some positive integer N

|
�

&�
sup
t>0

|MMN(t, u)| _Giu_p du<�,

then M(G) extends to a bounded operator on L p(X ).

This result was proved by Meda [M, Theorem 1]. A more elegant proof
of the same result, due to Cowling and Meda, is in [CM, Theorem 2.1].

Suppose that M # H�(S�). It is well known that M admits a bounded
extension, also denoted by M, to S� � . For |%|��, let M% : R+ � C denote
the function defined by

M% (*)=M(ei%*) .

Suppose that J is a positive integer. We say that M% satisfies a Ho� rmander
condition of order J if there exists a constant C such that

sup
R>0

|
2R

R
|* j D jM% (*)| 2 d*

*
�C2 \j # [0, 1, ..., J].

The smallest constant C for which this inequality holds is called the
Ho� rmander J-constant of M% , and is denoted by &M%&Ho� rm J . Clearly, if M
is in H�(S� ; J ) , then

&M&�; J=max(&M�&Ho� rm J , &M&�&Ho� rm J).
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We now state the main result of this section. Its proof is a slight
modification of the proof of [M, Theorem 4]. Our result is related to a
previous result of Cowling et al. [CDMY, Theorem 5.4] on the H� func-
tional calculus for a certain class of operators acting on Banach spaces.

Theorem 2.2. Let G be the infinitesimal generator of a symmetric con-
traction semigroup and assume that E0=0. Suppose that 1<p<� and that
there exist positive constants C and _, and a constant % # (0, ?�2) such that

_Giu_p�C(1+|u| )_ exp(% |u| ) \u # R.

If J>_+1 and M # H�(S% ; J ), then M(G) extends to a bounded operator
on L p(X ), and

_M(G)_p�C &M&%; J .

Proof. We show that M satisfies the hypotheses of Theorem 2.1.
Let � be a C �

c (R) function supported in [1�2, 2] and such that

:
�

k=&�

�(2k*)=1 \* # R+.

Observe that

MMN(t, u)=|
�

0
(t*)N e&t* M(*) *&iu d*

*

=e(iN+u) % |
�

0
(t*)N exp(&e i%t*) M% (*) *&iu d*

*

by Cauchy's integral theorem. A change of variables (t*=v) shows that

e&%u MMN(t, u)=eiN% tiu |
�

0
vN&iu exp(&ei%v) M% (v�t)

dv
v

=eiN% t iu :
�

k=&�
|

�

0
vN&iu exp(&e i%v) M% (v�t) �(2kv)

dv
v

.

The rest of the proof is a trivial modification of the proof of [M,
Theorem 4]. We omit the details. K

In view of the application to the Ornstein�Uhlenbeck semigroup, we
need a version of Theorem 2.2 for generators of symmetric contraction
semigroups whose spectral projection E0 need not be trivial. This is the
content of the next corollary.
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Corollary 2.3. Let G be the generator of the symmetric contraction
semigroup [Tt]. Suppose that 1<p<� and that there exist positive
constants C and _, and a constant % # (0, ?�2) such that

_(G+=I) iu_p�C(1+|u| )_ exp(% |u| ) \= # (0, 1] \u # R.

Let M: [0, �) � C be a bounded Borel measurable function and suppose
that there exists M� # H�(S% ; J ) for some J>_+1 such that

M� (*)=M(*) \* # R+.

Then M(G) extends to a bounded operator on L p(X ), and

_M(G)_p�C( |M(0)|+&M&%; J) .

Proof. It is immediate to check that G+=I is the infinitesimal generator
of the symmetric contraction semigroup [e&=tTt] t�0 and that its spectrum
is contained in [=, �). Therefore, we may apply Theorem 2.2 and deduce
that there exists a constant C such that

_M� (G+=I)_p�C &M� &%; J .

By spectral theory

(4) E0 f = lim
t � �

Tt f \f # L2(X ).

Since Tt is a contraction on L p(X ), it follows that E0 is contractive on
L p(X ) for every p in [1, �). Consequently, I&E0 is bounded on L p(X ),
so that

(5) _(I&E0) M� (G+=I)_p�C &M� &%; J .

Observe that for every =>0

M� (G+=I) f =M� (=) E0 f +|
�

0+
M� (*+=) dE* f \f # L2(X ).

Thus, if =k � 0+

(I&E0) M� (G+=k I) f =|
�

0+
M� (*+=k) dE* f

� |
�

0+
M� (*) dE* f

=M(G) f &M(0) E0 f \f # L2(X ),
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whence (I&E0) M� (G+=k I) converges to M(G)&M(0) E0 in the strong
operator topology of L p(X ) by (5). Therefore (5) implies that

_M(G)&M(0) E0_p�C &M� &%; J ,

and finally that

_M(G)_p�|M(0)|+C &M� &%; J ,

as required. K

Remark 2.4. Suppose that the symmetric contraction semigroup [Tt]
preserves the class of real functions (in particular, this holds if [Tt] is a
submarkovian semigroup). Assume that for some p in (1, 2) there exist
positive constants C and _, and a constant % # (0, ?�2) such that

(6) _(G+=I)&iu_p�C (1+u)_ exp(%u) \= # (0, 1] \u # R+.

We claim that

(6$) _(G+=I)&iu_p�C (1+|u| )_ exp(% |u| ) \= # (0, 1] \u # R

and that an estimate similar to this holds, with p replaced by its conjugate
index p$.

Indeed, since [Tt] preserves the class of real functions, the same holds
for its infinitesimal generator G and for the spectral projections [E*].
Therefore E* f=E* f� , whence

(G+=I) iu f== iuE0 f+|
�

0+
(*+=) iu dE* f

==&iuE0 f� +|
�

0+
(*+=)&iu dE* f�

=(G+=I)&iu f� \f # L2(X ).

If f # L2(X ) & L p(X ), then (6) implies that for all v # R+

&(G+=I) iv f &p=&(G+=I) iv f &p

=&(G+=I)&iv f� &p

�C(1+v)_ exp(%v) & f &p \= # (0, 1];

a density argument then shows that (6$) holds for all u # R.
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Furthermore, for every f # L2(X ) & L p(X ) and every g # L2(X ) & L p$(X )

((G+=I) iu f, g)=( f, ((G+=I) iu)C g)

=( f, (G+=I)&iu g),

where ( } , } ) denotes the inner product in L2(#) and C the Hilbert space
adjoint. We have proved that for every u # R the operator (G+=I) iu

extends to a bounded operator on L p(X ). It follows that for every u # R the
operator (G+=I)&iu extends to a bounded operator on L p$(X), as
required to finish the proof of the claim.

3. THE MAIN RESULT

In this section we prove our main result, Theorem 1, modulo two
propositions. Theorem 2 is also proved. The strategy for part (i) of
Theorem 1 is to show that if 1<p<2

_(L+=I)&iu_p�C(1+u)5�2 exp(,p*u) \= # (0, 1] \u # R+,

and then to apply Remark 2.4 and Corollary 2.3.
First we need a little more notation. We denote by {: (C"R) _

(&1, 1) � C the transformation

{(`)=log
1+`
1&`

,

where log w is real when w>0. It is straightforward to check that { is a
biholomorphic transformation of (C"R) _ (&1, 1) onto the strip [z # C :
|Im z|<?]. In particular, if 1<p<2, then { maps S,p

"[1, �) onto the
interior of Ep & [z # C : |Im z|<?] and the ray [0, ei,p�) onto �Ep &

[z # C : 0�Im z<?].
Observe that if z={(`), then

1&e&2z=
4`

(1+`)2 ,
1
2

1
ez+1

=
1
4

&
`
4

, and &
1
2

1
ez&1

=
1
4

&
1
4`

.

From Mehler's formula (3) for the heat kernel, we deduce immediately that

(7) h{(`)(x, y)=
(1+`)d

(4`)d�2 exp _ |x|2+|y| 2

2
&

1
4

(` |x+ y|2+`&1 |x& y|2)& .

If z and w are complex numbers, we denote by [z, w] the closed segment
in the complex plane joining z and w. We denote by zp the point {(ei,p�2) ,
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which is in �Ep , by :p* the set {([0, ei,p�2]) , and by :p the regular curve
t [ ei,pt, 0�t�1�2. Further, ;p* will denote the union of the segment
[zp , ei,p] and the ray [e i,p, ei,p�), and ;p a piecewise regular curve with
range ;p*.

For every complex number w such that Rw>0, we define the functions
J p, w: R+ � C and K p, w: R+ � C by

J p, w(*)=
1

1(w) |
:p

zw e&*z dz
z

and

K p, w(*)=
1

1(w) |
;p

zw e&*z dz
z

.

Observe that the function w [ K p, w(*) is entire. The function w [ J p, w(*)
is analytic in the half plane Rw>0. A complex integration by parts shows
that if Rw>0

(8) J p, w(*)=
*

1(w+1) |:p

zw e&*z dz+
zw

p exp(&zp*)

1(w+1)
.

The right hand side is analytic in the half plane Re w>&1. We shall use
(8) to define J p, w(*) for &1<Re w�0. In particular, J p, w(*) is defined for
w # iR.

For every =>0 we define the operators J p, w(L+=I) and K p, w(L+=I)
by the formulae

J p, w(L+=I) f = :
�

n=0

J p, w(n+=) Pn f and

K p, w(L+=I) f = :
�

n=0

K p, w(n+=) Pn f,

on their natural domains. It is easy to show (see the proof of Theorem 1(i)
below) that if u # R

(L+=I)&iu f =J p, iu(L+=I) f +K p, iu(L+=I) f \f # L2(X ).

Thus, we are led to the problem of finding L p(#) estimates for J p, w

(L+=I) and K p, w(L+=I). Our main results concerning J p, w(L+=I)
and K p, w(L+=I) are Proposition 3.1 and Proposition 3.2 below. The
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proof of Proposition 3.1, which is quite technical and requires a detailed
analysis of the kernel of J p, w(L+=I), will be given in Section 5.

Proposition 3.1. Suppose that 1<p<2. Then there exists C such that

_J p, iu(L+=I)_p�C(1+u)5�2 e,p*u \u # R+ \= # (0, 1].

Proposition 3.2. Suppose that 1<p<2. Then there exists C such that

_(I&P0) K p, iu(L+=I)_p�C(1+u)1�2 e,p*u \u # R+ \= # R+.

Proof. Define tp=&log - p&1. We claim that there exists C such that

_(I&P0) e&=z Hz_ p�C min(1, e&(Re z&tp)) \z # Ep .

Indeed, on the one hand Proposition 1.1(iii) and the boundedness of
I&P0 in L p(#) imply that

_(I&P0) e&=zHz_p�C _e&=zHz_p�C \z # Ep .

On the other hand, if Re z�tp , then

&(I&P0) e&=zHz f &p�&Hz(I&P0) f &2

=&HRe z(I&P0) f &2

=\ :
�

n=1

e&2(Re z&tp+tp) n &Pn f &2
2+

1�2

�e&(Re z&tp) &Htp
(I&P0) f &2

�e&(Re z&tp) &(I&P0) f &p

�C e&(Re z&tp) & f &p \f # L p(#) & L2(#).

The first inequality follows from Ho� lder's inequality and the fact that
#(Rd)=1, the second is a consequence of spectral theory, the third follows
from the hypercontractivity of Ht (Proposition 1.1(ii)) and the fourth from
the boundedness of I&P0 on L p(#). A density argument then shows that
_(I&P0) e&=zHz_p�C e&(Rz&tp), as required to finish the proof of the
claim.

Recall that for every s # R, |1(s+iu)|t |u| s&1�2 e&? |u|�2 as |u| tends to �.
Observe that

|ziu|�e&,p u \z # ;p* \u # R+,
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because arg z�,p for every z in ;p*. Thus,

}}} 1
1(&iu) |

;p

z iu e&=z(I&P0) Hz
dz
z }}}p

�C } 1
1(&iu) } |;p

|ziu| min(1, e&(Re z&tp))
|dz|
|z|

�C (1+u)1�2 e,p*u,

as required. K

Now we prove our main result, Theorem 1, which we restate for the
reader's convenience.

Theorem 1. Suppose that 1<p<� and p{2, and set ,p*=arc sin
|2�p&1|. Let M: N � C be a bounded sequence and assume that there exists
a bounded holomorphic function M� in S,p*

such that

M� (k)=M(k), k=1, 2, 3, ... .

Then the following hold:

(i) if M� # H�(S,p*
; 4), then M(L) extends to a bounded operator on

L p(#) and hence on Lq(#) for all q such that |1�q&1�2|�|1�p&1�2|;

(ii) if M� # H�(S,p*
) and |1�q&1�2|<|1�p&1�2|, then M(L) extends

to a bounded operator on Lq(#).

Proof. We first prove (i). By duality we may assume that 1<p<2.
Suppose that Rw>0. Recall the following classical formula

*&w=
1

1(w) |
�

0
tw e&t* dt

t
\*>0.

By Cauchy's integral theorem applied to the analytic function z [ zw&1 e&*z,

*&w=
1

1(w) |
:p+;p

zw e&*z dz
z

=J p, w(*)+K p, w(*).
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If Re w�0 we interpret this formula by analytic continuation. Then, by
spectral theory,

(L+=I)&iu=P0(L+=I)&iu+(I&P0)(L+=I)&iu

=P0(L+=I)&iu+(I&P0) J p, iu(L+=I)

+(I&P0) K p, iu(L+=I) \u # R+.

If f is in L2(#) and hence in L p(#), then by spectral theory and the fact that
_P0_p=1

&P0(L+=I)&iu f &p=&=&iu P0 f &p=&P0 f &p�& f &p \u # R.

A density argument then shows that

_P0(L+=I)&iu_p�1 \u # R+ \= # (0, 1].

Since I&P0 is bounded on L p(#), by Proposition 3.1 we have that

_(I&P0) J p, iu(L+=I)_p�C (1+u)5�2 e,p*u \u # R+ \= # (0, 1].

Finally, Proposition 3.2 implies

_(I&P0) K p, iu(L+=I)_p�C (1+u)1�2 e,p*u \u # R+ \= # (0, 1].

Therefore, we may conclude that

_(L+=I)&iu_ p�C (1+u)5�2 e,p*u \u # R+ \= # (0, 1].

Then (i) follows from Corollary 2.3 and Remark 2.4.
We now prove (ii). Since M� # H�(S,p*

), then by Cauchy's integral
theorem it is in H�(S�q

; J ) for any nonnegative integer J and for any q
such that |1�q&1�2|<|1�p&1�2|. Then by (i) (with q instead of p) M(L)
extends to a bounded operator on Lq(#), as required.

The proof of Theorem 1 is complete. K

Proof of Theorem 2. Suppose that �<&<,p* and that $>0. We define
M&, $ by

M&, $(z)=exp[&$ei(?�2&&)z] .

Clearly, M&, $ is in H�(S&), hence in H�(S� ; J ) for every nonnegative
integer J by the Cauchy integral theorem. The corresponding spectral
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operator is the operator H$e i (?�2&&) . If $ is sufficiently small, the point
$ei(?�2&&) is not in Ep , so that H$e i (?�2&&) is unbounded on L p(#), by Proposi-
tion 1.1(iii).

Theorem 2 is proved. K

4. ESTIMATES FOR SOME KERNELS

Suppose that =>0, 1<p<2 and w is a complex number. Let
rp, w

= : Rd_Rd � C be defined by

r p, w
= (x, y)=

1
1(w) |

:p

zw e&=z hz(x, y)
dz
z

, x{ y,

and r p, w
= (x, x)=0. It is not hard to prove that this integral is absolutely

convergent. We omit this verification, as it is implicit in Proposition 4.1
below. Note that the change of variables z={(`) and formula (7) for the
Mehler kernel show that

(9) r p, w
= (x, y)=

e( |x|2+|y|2)�2

2d 1(w) |
{&1 b :p

{(`)w&1 (1+`)d

`d�2e={(`)

_e&(` |x+ y|2+` &1 |x& y|2)�4 {$(`) d`.

The function r p, w
= agrees with the kernel of the operator J p, w(L+=I)

off the diagonal (see Proposition 5.2 below). In this section we prove
pointwise estimates for r p, w

= , which will be crucial for the study of the
operator J p, w(L+=I) we shall perform in Section 5. In Proposition 4.1 we
show that r p, w

= satisfies standard estimates in a convenient neighbourhood
of the diagonal of Rd_Rd. Define the local region by

L=[(x, y) # Rd_Rd : |x& y|�min(1, |x+ y|&1)] .

Pointwise estimates in the complement of L are proved in Proposition 4.3.

Proposition 4.1. Suppose that 1<p<2 and that N>0 is an integer.
Then there exists C such that for every = # (0, 1], and every complex number
w with &N�Rw�d�2&1�N, the following hold:

(i) if (x, y) # Rd_Rd then

|r p, w
= (x, y)�C

e&,p Im w

|1(w)|
e( |x|2+ | y|2)�2 |x& y|2Re w&d;
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(ii) if (x, y) is in the local region L, and x{ y, then

|{xr p, w
= (x, y)|+|{y r p, w

= (x, y)|

�C
e&,p Im w

|1(w)|
e( |x|2+| y|2)�2 |x& y| 2 Re w&d&1.

Proof. We assume that x{ y, because otherwise the conclusion is
obvious. We shall need the integral I(x, y; w, k), k # R, defined by

|
{&1 b :p

{(`)w&1 (1+`)d

`k e={(`) e&(` |x+ y|2+`&1 |x& y|2)�4 {$(`) d`.

We parametrise {&1 b :p by `=ei,p t, where t is in [0, 1�2]. Since

} {(`)w&1 (1+`)d

`ke={(`) {$(`) }�C e&,p Im w t Re w&k&1

by elementary complex analysis, we obtain that

|I(x, y; w, k)|�C e&,p Im w|
1�2

0
tRe w&k e&cos ,p |x& y|2�4t dt

t

=C
4k&Re we&,p Im w

(cos ,p)k&Re w |x& y|2 Re w&2k

_|
�

cos ,p |x& y|2�2
vk&Re w e&v dv

v

e&,p Im w |x& y|2 Re w&2k if Re w<k
�C {e&,p Im w(1+|log |x& y| | ) if Re w=k

e&,p Im w if Re w>k.

Since Rw<d�2 by hypothesis, we deduce from (9) that

|r p, w
= (x, y)|�C

e( |x|2+| y|2)�2

|1(w)|
|I(x, y; w, d�2)|

�C
e( |x|2+| y|2)�2

|1(w)|
e&,p Im w |x& y| 2 Re w&d,

as required to prove (i).
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To prove (ii), it suffices to estimate {xr p, w
= , because r p, w

= is symmetric. By
differentiating (9) under the integral sign, it is easy to check that

{xr p, w
= (x, y)=x r p, w

= (x, y)+
e( |x|2+| y|2)�2

2d 1(w)
{xI(x, y; w, d�2),

and that

{xI(x, y; w, d�2)=&1
2 (x+ y) I(x, y; w, d�2&1)

& 1
2 (x& y) I(x, y; w, d�2+1).

We remark that if (x, y) # L, and x{ y, then

|x|= 1
2 |x& y+x+ y|� 1

2 ( |x& y|+|x+ y| )�|x& y|&1,

so that max( |x|, |x+ y| )�|x& y|&1. Thus, from the estimates for I proved
above we deduce that

|{xI(x, y; w, d�2)|�
1

2 |x& y|
|I(x, y; w, d�2&1)|

+
1
2

|x& y| |I(x, y; w, d�2+1)|

�Ce&,p Im w |x& y| 2 Re w&d&1 \(x, y) # L.

Consequently,

|{xr p, w
= (x, y)�|x& y| &1 |r p, w

= (x, y)|

+
e( |x|2+| y|2)�2

2d |1(w)|
|{xI(x, y; w, d�2)|

�C
e&,p Im w

|1(w)|
e( |x|2+| y|2)�2 |x& y|2 Re w&d&1 \(x, y) # L,

as required. K

We now estimate r p, iu
= , u # R, off the local region. A similar analysis may

be carried out for r p, w
= for all complex w. We need a little more notation.

Suppose that a is in R+ and that b�0. Let Fa, b : R+ � C be defined by

Fa, b(s)=&a(s+s&1&2)+iab(s&1&s) .
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Various estimates for r p, w
= will involve integrals of exp(Fa, b) for different

values of the parameters a, b and w. We study such integrals in the following
technical lemma, which will be used in Proposition 4.3.

Lemma 4.2. Suppose that $, } and N are in R+. Then there exists C
(depending on $, } and N ) such that the following hold

(i) for every a # R+, every b�0, every complex number & with
|Re &|�N, and every _�$>1�2 such that a_�}

} |
1�2

0
s& eFa, b (s�_) ds

s }�C (a_)&1 e&2(1&1�2$)2 a_;

(ii) for every a # [}, �), every b # [0, N ], every complex number &
with |Re &|�N and every _ # (0, $)

} |
1�2

0
s& eFa, b (s�_) ds

s }�{C(1+|Im &| ) _Re & a&1�2

C(1+|Im &| ) _Re & (ab)&1

if b=0
if b>0.

Proof. For notational convenience we write F instead of Fa, b and $$
instead of 1�(2$) during this proof.

We first prove (i). It is easy to check that if v is in (0, $$], then
Re F(v)�&(1&$$)2 a�v. Since s�_ is in (0, $$],

} |
1�2

0
s& eF(s�_) ds

s }�|
1�2

0
sRe & eRe F(s�_) ds

s

�|
1�2

0
sRe & e&(1&$$)2 a_�s ds

s

=((1&$$)2 a_)Re & |
�

2(1&$$)2 a_
v&Re & e&v dv

v

t(a_)&1 e&2(1&$$)2 a_,

as required to prove (i).
We now prove (ii). Without loss of generality, we may assume that

$>1�2. Clearly,

} |
1�2

0
s& eF(s�_) ds

s }� } |
_�2$

0
s&eF(s�_) ds

s }+ } |
1�2

_�2$
s&eF(s�_) ds

s } .
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Arguing much as in the proof of (i), we see that

(10) } |
_�2$

0
s&eF(s�_) ds

s }�|
_�2$

0
sRe & eRe F(s�_) ds

s

�|
_�2$

0
sRe & e&(1&$$)2 a_�s ds

s

=((1&$$)2 a_)Re & |
�

2$(1&$$)2 a
v&Re & e&v dv

v

�C_Re &a&1e&2$(1&$$)2 a.

By changing variables, we get

} |
1�2

_�2$
s&eF(s�_) ds

s }=_Re & } |
1�2_

$$
v&eF(v) dv

v } .
We claim that there exists C such that

(11) } |
1�2_

$$
v&eF(v) dv

v }�{C(1+|&| ) a&1�2

C(1+|&| )(ab)&1

if b=0
if b>0.

Assuming the claim, we immediately get (ii) from (10) and (11).
We now prove the claim, considering the two cases 1�(4&1�$)�_�$

and _<1�(4&1�$) separately.
Suppose first that 1�(4&1�$)�_�$. By the mean value theorem, we

may write v&&1=1+R(v; &), where

|R(v; &)|�C(1+|&| ) |v&1| \v # [$$, 2&$$].

Correspondingly, we write

|
1�2_

$$
v&eF(v) dv

v
=|

1�2_

$$
eF(v) dv+|

1�2_

$$
R(v; &) eF(v) dv.

If v is in [$$, 2&$$], then RF(v)=&a((v&1)2�v)�&a((v&1)2�(2&$$)).
Therefore,

} |
1�2_

$$
R(v, &) eF(v) dv }�C(1+|&| ) |

2&$$

$$
|v&1| e&a(v&1)2�(2&$$) dv

=2C(1+|&| )(2&$$) a&1 |
(1&$$) - a�(2&$$)

0
ve&v2

dv

�C(1+|Im &| )(1+a)&1.
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We now estimate �1�2_
$$ eF(v) dv. If b=0, then

|
1�2_

$$
eF(v) dv�|

2&$$

$$
e&a(v&1)2�(2&$$) dv

=2 \2&$$
a +

1�2

|
(1&$$) - a�(2&$$)

0
e&s2

ds

�C (1+a)&1�2.

If b>0, an integration by parts shows that

|
1�2_

$$
eF(v) dv=|

1�2_

$$
eRe F(v) ei Im F(v) dv

=
eF(v)

i Im F $(v) }
_�2

$$

+i |
1�2_

$$ \Re F $(v)
Im F $(v)

&
Im F"(v)

(Im F $(v))2+ eF(v) dv.

Since Im F $(v)=&ab(1+v&2) , Im F"(v)=2abv&3 and Re F $(v)=
a(v&2&1) ,

} |
1�2_

$$
eF(v) dv }�C(ab)&1\1+a |

2&$$

$$
|v&1| eRe F(v) dv+ .

We have already shown that the last integral is bounded by C (1+a)&1.
Thus, we may conclude that

} |
1�2_

$$
eF(v) dv }�C(ab)&1,

as required to finish the proof of the claim in the case where
1�(4&1�$)�_�$.

We now consider the case where _<1�(4&1�$). Clearly,

} |
1�2_

$$
v& eF(v) dv

v }� } |
2&$$

$$
v&eF(v) dv

v }+ } |
1�2_

2&$$
v&eF(v) dv

v } .
From (11) (with _=1�(4&1�$)) we see that

} |
2&$$

$$
v&eF(v) dv

v }�{C(1+|Im &| ) a&1�2

C(1+|Im &| )(ab)&1

if b=0
if b>0.
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Since v [ Re F(v)�v is decreasing in [1, �), we have that Re F(v)�
&(1&$$)2 av�(2&$$)2 on [2&$$, �), and so

} |
1�2_

2&$$
v& eF(v) dv

v }�|
1�2_

2&$$
vRe &eRe F(v) dv

v

_|
�

2&$$
vRe & e&(1&$$)2 av�(2&$$)2 dv

v

=\(1&$$)2 a
(2&$$)2 +

&Re &

|
�

(1&$$)2 a�(2&$$)
sRe & e&s ds

s

ta&1 e&(1&$$)2 a�(2&$$),

as required to finish the proof of the claim and of the lemma. K

We now estimate r p, iu
= off the local region L. We call the complementary

set of L the global region and denote it by G. Explicitly,

G=[(x, y) # Rd_Rd : |x& y|>min(1, |x+ y|&1)] .

For 0<'<1, let D' be defined by

D'=[(x, y) # Rd_Rd : |x& y|<' |x+ y|].

Proposition 4.3. Suppose that 1<p<2 and that 0<'<1. Then there
exists C such that for every = # (0, 1] and every u # R+ the following hold:

(i) for every (x, y) # G & D'

|r p, iu
= (x, y)|�C(1+u)2 e&,pu

|1(iu)|
|x+ y|d�2&1

|x& y|d�2+1 \1+
|x& y|3�2

|x+ y| 1�2+
_e( |x|2+| y|2&(cos ,p) |x& y| |x+ y| )�2;

(ii) for 1�2<'<1 and for every (x, y) # G"D'

|r p, iu
= (x, y)|�C(1+u)

e&,p u

1(iu)
e&+ |x& y|2

|x& y| 2

_e( |x|2+| y|2&(cos ,p) |x& y| |x+ y| )�2,

where +=(1&1�2')2 (cos ,p)�2.

Proof. We consider (9). By elementary complex analysis

{(`) iu&1 (1+`)d

`d�2e={(`) {$(`)=2iu `iu&d�2&1+R(`; iu, =),
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where the remainder R satisfies the estimate

|R(`; iu, =)|�C(1+u) e&,pu |`| &d�2 \` # {&1(:p* ) ,

for some C independent of u. Then, we may write

(12) r p, iu
= (x, y)=

e( |x|2+| y|2)�2

2d&iu 1(iu)
A(x, y; iu)+

e( |x|2+| y|2)�2

2d 1(iu)
B(x, y; iu),

where

A(x, y; iu)=|
{&1 b :p

`iu&d�2&1 e&(` |x+ y|2+`&1 |x& y|2)�4 d`

and

B(x, y; iu)=|
{&1 b :p

R(`; iu, =) e&(` |x+ y|2+`&1 |x& y|2)�4 d`.

We parametrise {&1 b :p by `=ei,pt, where 0�t�1�2. It is easy to check
that

& 1
4 (` |x+ y| 2+`&1 |x& y|2=&a(t�_+_�t)+iab(_�t&t�_)

=Fa, b(t�_)&2a,

where a=(cos ,p) |x+ y| |x& y|�4, b=tan ,p , _=|x& y|�|x+ y| and Fa, b

is as in Lemma 4.2. A simple computation shows that

(13) A(x, y; iu)=ei,p(iu&d�2) e&2a |
1�2

0
tiu&d�2 eFa, b(t�_) dt

t
,

and similarly that

(14) |B(x, y; iu)|�|
{&1 b :p

|R(`; iu, =)| e&Re(` |x+ y|2+`&1 |x& y|2)�4 d`

�C(1+u) e&,pu e&2a |
1�2

0
t1&d�2 eFa, 0(t�_) dt

t
.

We now prove (i). We claim that if (x, y) # G & D', then |x& y| |x+ y|>1.
Indeed, if min(1, |x+ y|&1)=|x+ y| &1, then |x& y| |x+ y|>1. If, instead,
min(1, |x+ y|&1)=1, then |x+ y|�1, and |x& y|>1 because (x, y) # G.
Thus,

|x+ y|�1<|x& y|<' |x+ y|,
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which contradicts '<1, and the claim is proved. Consequently, a�(cos ,p)�4.
We may apply Lemma 4.2(ii) (with }=(cos ,p)�4, &=iu&d�2 and $=')
to estimate the absolute value of the integral in (13) and (with the same
values of } and $, but with &=1&d�2 and b=0) to estimate the last
integral in (14). We obtain that

|A(x, y; iu)|�C(1+u) e&,p u |x+ y| d�2&1

|x& y| d�2+1 e&(cos ,p) |x+ y| |x& y|�2,

and that

|B(x, y; iu)�C(1+u)2 e&,pu |x+ y|d�2&3�2

|x& y|d�2&1�2 e&(cos ,p) |x+ y| |x& y|�2.

By combining these estimates for A(x, y; iu) and B(x, y; iu) with (12), we
obtain the required estimates for r p, iu

= in the region G & D'.
We now prove (ii). We claim that if (x, y) # G & (D')c, then |x& y|2�'.

Indeed,

|x& y|�min(1, |x+ y|&1)�min(1, ' |x& y|&1).

Then either ' |x& y|&1>1, so that |x& y|>1, or ' |x& y|&1�1, so that
|x& y|>' |x& y|&1, i.e., |x& y|2�', as required to prove the claim. Now,
_�' and a_=(cos ,p) |x& y| 2�4>'(cos ,p)�4. Therefore, we may apply
Lemma 4.2(i) (with }='(cos ,p)�4, &=iu&d�2 and $=') to estimate the
absolute value of the integral in (13) and (with the same values of } and
$, but with &=1&d�2) to estimate the last integral in (14). We obtain that

|A(x, y; iu)|�Ce&,pu |x& y|&2

_e&(cos ,p) |x+ y| |x& y|�2&(1&1�2')2 cos ,p |x& y|2�2,

and that

|B(x, y; iu)|�C(1+u) e&,pu |x& y| &2

_e&(cos ,p) |x+ y| |x& y|�2&(1&1�2')2 cos ,p |x& y|2�2.

By combining these estimates with (12), we obtain the required estimates
for r p, iu

= in the region G"D'.
The proof of the proposition is complete. K

The next proposition gives a condition which implies that an integral
operator with kernel supported in the global region G is bounded on L p(#).
A related result, due to S. Pe� rez, is in [P, p. 71].
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If E/Rd_Rd, we denote by Ex its x-section, i.e., the set [ y # Rd :
(x, y) # E ].

Proposition 4.4. Suppose that 1<p<�, |1�r&1�2|�|1�p&1�2|,
0<'<1, +>0 and m: Rd_Rd � C is measurable. The following hold:

(i) if for every (x, y) # D'

|m(x, y)|�C
|x+ y|d�2&1

|x& y|d�2+1 \1+
|x& y|3�2

|x+ y|1�2+ e( |x|2+| y|2)�2&|1�p&1�2| |x& y| |x+ y|,

then the integral operator M1 defined by

M1,(x)=|
Gx & Dx

'
m(x, y) ,( y) d#( y) \, # C �

c (Rd)

extends to a bounded operator on Lr (#);

(ii) if for every (x, y) # (D')c

|m(x, y)|�C
e&+ |x& y|2

|x& y| 2 e( |x|2+| y|2)�2&|1�p&1�2| |x& y| |x+ y|,

then the integral operator M2 defined by

M2,(x)=|
Gx"Dx

'
m(x, y) ,( y) d#( y) \, # C �

c (Rd)

extends to a bounded operator on Lr (#).

Proof. We fix r such that |1�r&1�2|�|1�p&1�2|. Let Ur : Lr (Rd) �
Lr (#) denote the invertible isometry defined by

Ur f =#&1�r
0 f \f # Lr (Rd).

We prove (i). We need to show that the operator U&1
r M1 Ur , whose

kernel with respect to Lebesgue measure is (#1�r
0 �#1�r$

0 ) m/G , extends to a
bounded operator on Lr (Rd). We define qr : Rd_Rd � R by

qr (x, y)= } 1r&
1
2 } | |x| 2&| y| 2|& } 1p&

1
2 } |x+ y| |x& y|.

Note that

#0(x)1�r #0( y)1�r$ e( |x|2+| y|2)�2&|1�p&1�2| |x& y| |x+ y|�eqr(x, y).
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Since qr�qp , our hypotheses imply that

#1�r
0 (x) |m(x, y)| #1�r$

0 ( y)�C
|x+ y|d�2&1

|x& y|d�2+1 \1+
|x& y|3�2

|x+ y|1�2+ eqp(x, y)

\(x, y) # D'.

We claim that

(15) sup
x # R d |Gx & Dx

'

|x+ y|d�2&1

|x& y|d�2+1 \1+
|x& y|3�2

|x+ y|1�2+ eqp(x, y) dy<�.

If the claim holds, then by symmetry (15) holds with the role of x and y
interchanged, so that

sup
x # R d |

Gx & Dx
'
#1�r

0 (x) |m(x, y)| #1�r$
0 ( y) dy

+ sup
y # R d |Gy & Dy

'
#1�r

0 (x) |m(x, y)| #1�r$
0 ( y) dx<�.

Hence U&1
r M1 Ur extends to a bounded operator on L1(Rd) and on

L�(Rd). By interpolation, U&1
r M1Ur extends to a bounded operator on

Lr (Rd), as required.
To complete the proof of (i), it remains to prove (15). We denote by

B(z, r) the Euclidean ball centered at z and with radius r. It is
straightforward to check that for every x in Rd"[0] the set D'

x is the ball
B(((1+'2)�(1&'2)) x, (2'�(1&'2)) |x| ) . Thus, if (x, y) # D'

(16) | y|�
1+'
1&'

|x|.

Moreover, x+ y is in the ball centered at (2�(1&'2)) x and of radius
(2'�(1&'2)) |x|, so that

(17)
2

1+'
|x|�|x+ y|�

2
1&'

|x|.

Note that Gx & D'
x is nonempty if and only if |x|>c for some positive c.

It is easy to check that there exists a constant a>0 such that for every x
in Rd we have that Gx �[ y # Rd : | y&x|�a�(1+|x| )].

We treat the cases where d=1 and d>1 separately.
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If d=1, then qp=0. In view of the remarks above

|
Gx & Dx

'
( |x+ y| &1�2 |x& y| &3�2+|x+ y|&1) dy

�C |x|&1�2 |
Gx & Dx

'
|x& y|&3�2 dy+C |x| &1 |

Gx & Dx
'
dy

�C |x|&1�2 |
(1+')�(1&') |x|

a�(1+|x| )
r&3�2 dr+C |x| &1 |

(1+')�(1&') |x|

a�(1+|x| )
dr

�C,

as required.
Suppose now that d>1. We need to estimate qp on Gx & D'

x . By
combining (16) and (17), we obtain that

| | y|2&|x|2|+|x& y| |x+ y|�|x& y| ( |x|+| y|+|x+ y| )

�
4

1&'
|x& y| |x|.

If x{0, let ?x : Rd � Rd denote the orthogonal projection onto the hyper-
plane of Rd orthogonal to x. Since | | y|2&|x|2|2&|x& y|2 |x+ y|2=
&4 |x|2 |?x( y)|2, we see that

| | y2|&|x|2|&|x& y| |x+ y|=&4
|x|2 |?x( y)| 2

| | y|2&|x|2|+|x& y| |x+ y|

�('&1)
|x| |?x( y)2|

|x& y|
.

Therefore,

|
Gx & Dx

'

|x+ y|d�2&1

|x& y|d�2+1 eqp (x, y) dy

�C |x|d�2&1 |
Gx & Dx

'

e('&1) |x| |?x ( y)|2�|x& y|
|x& y| d�2+1 dy.

We pass to polar coordinates around x, i.e., we write y=x+r|, where r
is in R+ and |||=1; the right hand side in the last inequality is bounded
by

C |x|d�2&1 |
Sd&1

d_(|) |
(1+')�(1&') |x|

a�(1+|x|)
rd�2&1 exp \('&1)

|x| |?x(x+r|)|2

r + dr
r

.
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We observe that |?x(x+r|)|2=r2 |?x(|)|2, change variables by letting
|x| |?x(|)|2 r=v in the inner integral, and obtain for d>2

|
Gx & Dx

'

|x+ y|d�2&1

|x& y| d�2+1 eqp (x, y) dy

�C |
S d&1

d_(|) |?x(|)| 2&d |
(1+')�(1&') |x|2 |?x(|)|2

a |x| |?x(|)|2�(1+|x| )
vd�2&1 e('&1) v dv

v

�C |
[ |?x(|)|<1�|x|]

|?x(|)| 2&d ( |x| |?x(|)| )d&2 d_(|)

+C |
[ |?x(|)|�1�|x|]

|?x(|)| 2&d d_(|)

�C,

since here |x|>c. For d=2 we get

|
Gx & Dx

'

|x+ y| d�2&1

|x& y|d�2+1 eqp(x, y) dy

�C |
Sd&1

d_(|) |
(1+')�(1&') |x|2 |?x(|)|2

a |x| |?x(|)|2�(1+|x| )
e('&1) v dv

v

�C |
Sd&1

d_(|) |
�

c |?x(|)|2
e('&1) v dv

v

�C |
Sd&1

log \1+
1

|?x(|)|+ d_(|)

�C.

Analogously, we may prove that

sup
x # R d |

Gx & Dx
'

|x+ y|d�2&3�2

|x& y|d�2&1�2 eqp(x, y) dy<�,

as required to finish the proof of (15) and of (i).
We now prove (ii). By arguing as in the proof of (i), we may reduce the

problem to showing that

(18) sup
x # R d |

Gx"Dx
'

1
|x& y2|

eqp (x, y)&+ |x& y|2
dy<�.
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We observe that |x& y|�c for y in Gx"D'
x . Since qp�0, (18) is easily

proved.
The proof of the proposition is now complete. K

5. ANALYSIS OF J p, w (L+=I)

In Lemma 5.1 below we prove estimates for _J p, w(L+=I)_2 when
Rw�0. We denote by j p, w

= the kernel of J p, w(L+=I). In Proposition 5.2,
we shall prove that the distribution j p, w

= agrees off the diagonal with the
function r p, w

= from Section 4. It follows that j p, w
= is locally integrable for

Re w>0, and if Re w=0 its singular support is contained in the diagonal
of Rd_Rd. The main result concerning J p, w(L+=I) is Proposition 3.1.

Lemma 5.1. Suppose that 1<p<2 and that N # R+. Then there exists C
such that for every = # R+ and for every w with 0�Rw�N

_J p, w(L+=I)_2�C
e&,p Im w

|1(1+w)|
.

Moreover, let u be in R"[0]. Then J p, w(L+=I) converges to J p, iu(L+=I)
in the strong operator topology of L2(#) as w tends to iu in S?�2 .

Proof. Note that arg z�,p and |z|�C for every z in :p*. Thus,
|zw |�|z|Re w e&,p Im w, and we deduce from (8) that for *>0

|J p, w(*)|�C
e&,p Im w

|1(1+w)| \e&Re zp*+* |
:p

|z| Re w e&* Re z |dz|+ .

We claim that

* |
:p

|z| Re w e&*Rz |dz|�C
*

(1+*)1+Re w .

Indeed,

* |
:p

|z| Re w e&* Re z |dz|�C * |
1

0
tRe w e&*t dt,

and considering separately the cases *�1 and *>1, one easily verifies the
claim.
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Thus, there exists C such that for every w with 0�Rw�N

|J p, w(*)|�C
e&,p Im w

|1(1+w)| \e&Re zp*+
*

(1+*)1+Re w+ \*>0.

The required estimate for _J p, w(L+=I)_2 follows from this by spectral
theory.

We already know that J p, w(*) is holomorphic in w near iu, and a routine
computation shows that J p, w(*)&J p, iu(*) is uniformly bounded as w tends
to iu within S?�2 .

&J p, w(L+=I) f &J p, iu(L+=I) f &2
2

= :
�

n=1

|J p, w(n+=)&J p, iu(n+=)|2 &Pn f &2
2 � 0,

as required to finish the proof of the lemma. K

Proposition 5.2. Suppose that 1<p<2 and that = # R+.

(i) If Rw>0, then the distribution j p, w
= is the locally integrable

function r p, w
= .

(ii) If u # R"[0] and 8 # C �
c (Rd_Rd), then

( (1�#0 ) j p, iu
= 8) =J p, iu(=) |

R d
8(x, x) dx

+||
R d_Rd

(8(x, y)&8(x, x)) r p, iu
= (x, y) dx d#( y).

In particular, j p, iu
= agrees with r p, iu

= off the diagonal.

Proof. We first prove (i). For every pair of functions , and � in L2(#)

(J p, w(L+=I) ,, �)= :
�

n=0

J p, w(n+=)(Pn,, �)

= :
�

n=0

1
1(w) |

:p

zwe&(n+=) z dz
z

(Pn,, �),

where ( } , } ) denotes the inner product in L2(#). Since ��
n=0 |(Pn,, �)|�

&,&2 &�&2 and

} 1
1(w) |

:p

zwe&(n+=) z dz
z }�C(w) |

:p

|z| Re w&1 |dz|<�,
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we may interchange the order of summation and integration to get

(J p, w(L+=I) ,, �)=
1

1(w) |:p

dz
z

zwe&=z :
�

n=1

e&nz (Pn ,, �)

=
1

1(w) |
:p

dz
z

zw e&=z ||
Rd_R d

hz(x, y)

_,( y) �(x) d#(x) d#( y).

Suppose now that , and � are in C �
c (Rd). From formula (7) for the

Mehler kernel, we deduce that

sup
z # :p*

&hz(x, } )&L1(#)= sup
` # [0, e i,p�2]

&h{(`)(x, } )&L1(#)

�Ce |x|2�2 sup
` # [0, e i,p�2]

|
R d

|`|&d�2

_e&cos ,p |x& y|2�4 |`| e&| y|2�2 dy

�Ce |x|2�2.

Thus, by Ho� lder's inequality,

||
R d_Rd |

:p

|zw e&=zhz(x, y) ,( y) �(x)| d#(x) d#( y)
|dz|
|z|

�&,&� |
R d

d#(x) sup
z # :p*

&hz(x, } )&1 |�(x)| |
:p

|zw|
|dz|
|z|

�C &,&� |
Rd

d#(x) e |x|2�2 |�(x)| |
:p

|zw|
|dz|
|z|

<�.

Therefore, we may interchange the order of integration and obtain that

(J p, w(L+=I) ,, �)=||
R d_Rd

r p, w
= (x, y) ,( y) �( y) d#(x) d#( y),

and finally

J p, w(L+=I) ,(x)=|
R d

r p, w
= (x, y) ,( y) d#( y),

as required.

445THE ORNSTEIN�UHLENBECK OPERATOR



We now prove (ii), and start by continuing j p, w
= analytically to the half-

plane Re w>&1�2. If Rw>0 and 8 is in C �
c (Rd_Rd), we may write

( (1�#0) j p, w
= , 8) R 2d as

(19) ||
Rd_Rd

r p, w
= (x, y)(8(x, y)&8(x, x)) dx d#( y)

+||
R d_Rd

r p, w
= (x, y) 8(x, x) dx d#( y).

Since

|8(x, y)&8(x, x)|�C |x& y|,

it follows from the pointwise estimates for r p, w
= proved in Proposition 4.1

that the first integral is absolutely convergent for Re w> &1�2 and defines
an analytic function there.

To continue analytically the second integral, observe that by the
estimates in Proposition 4.1(i) and its proof, for Re w>0

||
Rd_Rd |

:p

|zwe&=zhz(x, y) 8(x, x)| dx d#( y)
|dz|
|z|

�C e&,p Im w ||
Rd_Rd

e |x|2�2 |8(x, x)|
|x& y|d&2 Re w e&| y|2�2 dx dy.

In this double integral, we integrate first in y and obtain a continuous func-
tion of x, which is clearly in L1(Rd). Therefore, we may interchange the
order of integration in the second integral in (19) by Fubini's theorem,
integrate first in y, use the fact that �Rd hz(x, y) d#( y)=1, and obtain that

||
Rd_Rd

r p, w
= (x, y) 8(x, x) dx d#( y)=J p, w(=) |

Rd
8(x, x) dx.

The right hand side here has an analytic continuation to Re w>&1.
Thus j p, w

= can be continued to Rw>&1�2. In particular, ( (1�#0) j p, w
= ,

8) R2d tends to the right-hand side of the formula in (ii), as w � iu,
Re w>0.

The convergence in the strong operator topology from Lemma 5.1
implies that for 8 of the form ��, with ,, � # C �

0 (Rd), this limit is

( (1�#0 ) j p, iu
= , ��,)
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But two distributions in Rd_Rd which coincide on all tensor products
��, are equal.

Now (ii) follows, and the lemma is proved. K

We now prove Proposition 3.1, which we restate for the reader's con-
venience.

Proposition 3.1. Suppose that 1<p<2. Then there exists C such that

_J p, iu(L+=I)_p�C(1+u)5�2 e,p*u \= # (0, 1] \u # R+.

Proof. In this proof, C will denote a positive constant independent of
= in (0, 1]. Let . be a smooth function on Rd_Rd which vanishes off L,
is equal to 1 in

{(x, y) # Rd_Rd : |x& y|�
1

2 (1+|x|+| y| )= ,

and satisfies the estimate

(20) |{x .(x, y)|+|{y.(x, y)|�C |x& y|&1.

By Proposition 4.3 and Proposition 4.4 we see that the integral operator
with kernel (1&.) j p, iu

= (with respect to the Gauss measure) is bounded on
Lr (#) for |1�r&1�2|�|1�p&1�2|, and its operator norm is bounded by

C (1+u)2 e&,pu

|1(iu)|
\= # (0, 1] \u # R+.

Moreover, J p, iu(L+=I) is bounded on L2(#) by spectral theory
(Lemma 5.1), and

_J p, iu(L+=I)_2�C
e&,pu

|1(1+iu)|
\= # (0, 1] \u # R+.

Therefore, the integral operator with kernel .j p, iu
= (with respect to the

Gauss measure) is bounded on L2(#), and its operator norm is bounded by

Ce&,pu \(1+u)2

|1(iu)|
+

1
|1(1+iu)|+ \= # (0, 1] \u # R+.

The kernel of the same integral operator with respect to Lebesgue measure
is (1�#0 ) .j p, iu

= . We show that this kernel satisfies standard estimates.
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From Proposition 4.1(i) we deduce that for every (x, y) in L such that
x{ y,

#0( y) .(x, y) | j p, iu
= (x, y)|�C

e&,pu

|1(iu)|
e( |x|2&| y|2)�2 |x& y|&d.

Since e |x|2&| y|2 is uniformly bounded above for (x, y) in L, we may
conclude that

#0( y) .(x, y) | j p, iu
= (x, y)|�C

e&,pu

1(iu)
|x& y|&d.

The gradient of (1�#0 ) .j p, iu
= with respect to y is the sum of three terms:

(1�{y #0 ) .j p, iu
= , (1�#0 ) {y.j p, iu

= and (1�#0 ) . {y j p, iu
= . By Proposition

4.1(ii) the absolute value of the last term is bounded by

C
e&,pu

|1(iu)|
|x& y|&d&1 \(x, y) # L, x{ y.

Since

| y|�|x& y|&1 \(x, y) # L,

we deduce from Proposition 4.1(i) that

|{y#0( y)| |.j p, iu
= (x, y)|=2 | y#0( y)| |.j p, iu

= (x, y)|

�2 |x& y|&1 |#0( y) .j p, iu
= (x, y)|

�C
e&,pu

|1(iu)|
|x& y| &d&1.

By (20), the second term satisfies similar estimates.
A trivial modification of the above argument shows that

|{x [(1�#0 ) .j p, iu
= ] (x, y)|�C

e&,pu

|1(iu)|
|x& y|&d&1.

We deduce from [GMST, Theorem 3.7] that the integral operator with
kernel .j p, iu

= with respect to the Gauss measure is bounded on L p(#) and
its L p(#) operator norm is bounded by a constant times the sum of its
L2(#) operator norm and the constants appearing in the standard
estimates, i.e., by

C e&,pu \(1+u)2

|1(iu)|
+

1
|1(1+iu)|+ \= # (0, 1] \u # R+.
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Thus, we may conclude that

_J p, iu(L+=I)_p�Ce&,pu \(1+u)2

|1(iu)|
+

1
|1(1+iu)|+

\= # (0, 1] \u # R+.

From this and the asymptotics for the 1-function, we deduce that

_J p, iu(L+=I)_p�C(1+u)5�2 e(?�2&,p) u \= # (0, 1] \u # R+,

as required. K
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