Functional Calculus for the Ornstein-Uhlenbeck Operator
José García-Cuerva
Departamento de Matemáticas, C-XV, Universidad Autónoma, ES-28049 Madrid, Spain E-mail: jose.garcia-cuerva@uam.es
\title{ Giancarlo Mauceri }
Dipartimento di Matematica, Università di Genova, via Dodecaneso 35, IT-16146 Genova, Italy E-mail: mauceri@dima.unige.it
Stefano Meda
Dipartimento di Statistica, Università di Milano-Bicocca, via Bicocca degli Arcimboldi 8, IT-20126 Milano, Italy E-mail: stemed@mate.polimi.it
\section*{Peter Sjögren}
Department of Mathematics, Chalmers University of Technology and Göteborg University, SE-412 96 Göteborg, Sweden
E-mail: peters@math.chalmers.se
and
\section*{José Luis Torrea}
Departamento de Matemáticas, C-XV, Universidad Autónoma, ES-28049 Madrid, Spain E-mail: joseluis.torrea@uam.es
Communicated by D. Sarason

Received June 15, 2000; accepted September 26, 2000

Let γ be the Gauss measure on \mathbb{R}^{d} and \mathscr{L} the Ornstein-Uhlenbeck operator, which is self adjoint in $L^{2}(\gamma)$. For every p in $(1, \infty), p \neq 2$, set $\phi_{p}^{*}=\operatorname{arc} \sin |2 / p-1|$ and consider the sector $\mathbf{S}_{\phi_{p}^{*}}=\left\{z \in \mathbb{C}:|\arg z|<\phi_{p}^{*}\right\}$. The main result of this paper is that if M is a bounded holomorphic function on $\mathbf{S}_{\phi_{p}^{*}}$ whose boundary values on $\partial \mathbf{S}_{\phi_{p}^{*}}$ satisfy suitable Hörmander type conditions, then the spectral operator $M(\mathscr{L})$ extends to a bounded operator on $L^{p}(\gamma)$ and hence on $L^{q}(\gamma)$ for all q such that $|1 / q-1 / 2| \leqslant|1 / p-1 / 2|$. The result is sharp, in the sense that \mathscr{L} does not admit a bounded holomorphic functional calculus in a sector smaller than $\mathbf{S}_{\phi_{p}^{*}}$. © 2001 Academic Press
Key Words: Ornstein-Uhlenbeck operator; functional calculus; spectral multiplier; Hörmander-Mihlin condition.

We consider the Gauss measure on \mathbb{R}^{d}, i.e., the probability measure γ with density

$$
\gamma_{0}(x)=\pi^{-d / 2} \exp \left(-|x|^{2}\right)
$$

with respect to Lebesgue measure. The Ornstein-Uhlenbeck operator

$$
-\frac{1}{2} \Delta+x \cdot \nabla
$$

is essentially self-adjoint in $L^{2}(\gamma)$; we denote by \mathscr{L} its self-adjoint extension. The spectrum of \mathscr{L} is $\mathbb{N}=\{0,1, \ldots\}$. Let $\left\{\mathscr{P}_{n}\right\}_{n \in \mathbb{N}}$ be the spectral resolution of the identity for which

$$
\mathscr{L} f=\sum_{n=0}^{\infty} n \mathscr{T}_{n} f \quad \forall f \in \operatorname{Dom}(\mathscr{L}) .
$$

It is well known [B] that if p is in $(1, \infty)$ and n is in \mathbb{N}, then \mathscr{P}_{n} extends to a bounded operator on $L^{p}(\gamma)$. Furthermore, if p is in $[1, \infty)$, the projection \mathscr{P}_{0} extends to a nontrivial contraction operator on $L^{p}(\gamma)$.

For each $t>0$, the Ornstein-Uhlenbeck semigroup \mathscr{H}_{t} is defined by

$$
\mathscr{H}_{t} f=\sum_{n=0}^{\infty} e^{-t n \mathscr{P}_{n} f} \quad \forall f \in L^{2}(\gamma) .
$$

It is known that $\left\{\mathscr{H}_{t}\right\}_{t \geqslant 0}$ extends to a markovian semigroup, which has been the object of many studies, both in the finite and in the infinite-dimensional case. A good reference about the Ornstein-Uhlenbeck semigroup is [B] (see also [Me]), where additional references can be found. In this paper we shall consider only the finite-dimensional case. Some results involving maximal operators and Riesz transforms associated to this semigroup are described in the survey $[\mathrm{Sj}]$.

Suppose that $M: \mathbb{N} \rightarrow \mathbb{C}$ is a bounded sequence. By the spectral theorem, we may form the operator $M(\mathscr{L})$, defined by

$$
M(\mathscr{L}) f=\sum_{n=0}^{\infty} M(n) \mathscr{P}_{n} f \quad \forall f \in L^{2}(\gamma) ;
$$

clearly $M(\mathscr{L})$ is bounded on $L^{2}(\gamma)$. We call $M(\mathscr{L})$ the spectral operator associated to the spectral multiplier M.

The purpose of this paper is to develop a functional calculus for \mathscr{L}, i.e., to find sufficient conditions on the spectral multiplier M for the spectral operator $M(\mathscr{L})$, initially defined in $L^{2}(\gamma) \cap L^{p}(\gamma)$, to extend to a bounded operator on $L^{p}(\gamma)$, for some p in $(1, \infty)$.

On the one hand, we show that if $p \neq 2$, then there is no reasonable nonholomorphic functional calculus in $L^{p}(\gamma)$ for \mathscr{L}. In particular, we prove
that there is no analogue of the classical Hörmander multiplier theorem in this context. In fact, for each $p \neq 2$ there exists a spectral multiplier M_{p}, such that $M_{p}(\mathscr{L})$ does not extend to a bounded operator on $L^{p}(\gamma)$, and which is the restriction of a function, also denoted by M_{p}, analytic in a neighbourhood of \mathbb{R}^{+}, that satisfies the conditions

$$
\sup _{\lambda>0}\left|\lambda^{j} D^{j} M_{p}(\lambda)\right|<\infty \quad \forall j \in \mathbb{N} .
$$

On the other hand, it follows from an abstract result of Stein [S, Chap. 4] that if $M: \mathbb{N} \rightarrow \mathbb{C}$ is a bounded sequence and there exists a holomorphic function \tilde{M} of Laplace transform type, such that

$$
\tilde{M}(k)=M(k), \quad k=1,2,3, \ldots,
$$

then $M(\mathscr{L})$ extends to an operator bounded on $L^{p}(\gamma)$ for every p in $(1, \infty)$. Notice that we do not impose any restriction on $M(0)$. Since \mathscr{P}_{0} is bounded on $L^{p}(\gamma)$, the operator $M(\mathscr{L})$ is bounded on $L^{p}(\gamma)$ if and only if $M(\mathscr{L})-$ $M(0) \mathscr{P}_{0}$ is. This has recently been improved by García-Cuerva et al. [GMST], who showed that $M(\mathscr{L})$ is also of weak type $(1,1)$ under the same assumptions.

Furthermore, if we fix p in $(1, \infty)$, it is interesting to determine the "minimal regularity conditions" on M which imply that $M(\mathscr{L})$ is bounded on $L^{p}(\gamma)$. These conditions are sometimes best expressed in terms of Banach spaces of holomorphic functions. If $\psi \in(0, \pi)$, we denote by \mathbf{S}_{ψ} the open sector

$$
\{z \in \mathbb{C}:|\arg z|<\psi\},
$$

and by $H^{\infty}\left(\mathbf{S}_{\psi}\right)$ the space of bounded holomorphic functions on \mathbf{S}_{ψ}. A consequence of an abstract result of Cowling [C, Theorem 2] is that if $\psi>\pi|1 / q-1 / 2|, M: \mathbb{N} \rightarrow \mathbb{C}$ is a bounded sequence and there exists \tilde{M} in $H^{\infty}\left(\mathbf{S}_{\psi}\right)$ such that

$$
\tilde{M}(k)=M(k), \quad k=1,2,3, \ldots,
$$

then $M(\mathscr{L})$ extends to a bounded operator on $L^{q}(\gamma)$.
In this paper we improve this result for the (finite-dimensional) Ornstein-Uhlenbeck operator, by showing that analyticity in a smaller sector suffices to give bounded operators on $L^{p}(\gamma)$.

The problem of the existence of a nonholomorphic functional calculus for generators of Markov semigroups has attracted considerable attention in recent years. So far, only a few examples have been understood, see, for instance Christ and Müller [ChM] and Hebisch [H].

For the statement of our main result, we need the following notation. Suppose that J is a nonnegative integer and that $\psi \in(0, \pi / 2)$. We denote by $H^{\infty}\left(\mathbf{S}_{\psi} ; J\right)$ the Banach space of all M in $H^{\infty}\left(\mathbf{S}_{\psi}\right)$ for which there exists a constant C such that

$$
\begin{equation*}
\sup _{R>0} \int_{R}^{2 R}\left|\lambda^{j} D^{j} M\left(e^{ \pm i \psi} \lambda\right)\right|^{2} \frac{d \lambda}{\lambda} \leqslant C^{2} \quad \forall j \in\{0,1, \ldots, J\}, \tag{1}
\end{equation*}
$$

endowed with the norm

$$
\|M\|_{\psi ; J}=\inf \{C:(1) \text { holds }\} .
$$

Condition (1) is called a Hörmander condition of order J [Н̈̈]. Note that (1) implies that $\sup _{z \in \mathbf{S}_{\psi}}|M(z)| \leqslant 2 C$, if $J>0$.

Our main result is the following
Theorem 1. Suppose that $1<p<\infty$ and $p \neq 2$, and set $\phi_{p}^{*}=\operatorname{arc} \sin$ $|2 / p-1|$. Let $M: \mathbb{N} \rightarrow \mathbb{C}$ be a bounded sequence and assume that there exists a bounded holomorphic function \tilde{M} in $\mathbf{S}_{\phi_{p}^{*}}$ such that

$$
\tilde{M}(k)=M(k), \quad k=1,2,3, \ldots
$$

Then the following hold:
(i) if $\tilde{M} \in H^{\infty}\left(\mathbf{S}_{\phi_{p}^{*}} ; 4\right)$, then $M(\mathscr{L})$ extends to a bounded operator on $L^{p}(\gamma)$ and hence on $L^{q}(\gamma)$ for all q such that $|1 / q-1 / 2| \leqslant|1 / p-1 / 2|$;
(ii) if $\tilde{M} \in H^{\infty}\left(\mathbf{S}_{\phi_{p}^{*}}\right)$ and $|1 / q-1 / 2|<|1 / p-1 / 2|$, then $M(\mathscr{L})$ extends to a bounded operator on $L^{q}(\gamma)$.

The next result shows that in Theorem 1, the size of the region of holomorphy, measured by the aperture of the cone, cannot be reduced.

Theorem 2. Let p and ϕ_{p}^{*} be as in Theorem 1. If $\psi<\phi_{p}^{*}$, there exists a function M which decays exponentially at infinity and belongs to $H^{\infty}\left(\mathbf{S}_{\psi} ; J\right)$ for every positive integer J, such that $M(\mathscr{L})$ does not extend to a bounded operator on $L^{p}(\gamma)$.

We remark that Theorem 1 may be sharpened by means of spaces $H^{\infty}\left(\mathbf{S}_{\phi_{p}^{*}} ; J\right)$ with nonintegral J.

A significant feature of Theorem 1 is that the number of derivatives on M required in (i) is independent of the dimension d. However, our estimates depend strongly on d, so that our methods fail to give a multiplier result for the infinite dimensional Ornstein-Uhlenbeck operator. Note that Cowling's result holds in the infinite-dimensional case too. We recall
that other important operators related to the Ornstein-Uhlenbeck semigroup, such as the Riesz transforms, have $L^{p}(\gamma)$ bounds independent of the dimension. The reader is referred to the elegant analytic proof of Pisier [Pi].

Theorems 1 and 2 are proved in Section 3. The main ingredient of the proof of Theorem 1 will be an estimate

$$
\begin{equation*}
\left\|\left\|(\mathscr{L}+\varepsilon \mathscr{I})^{i u}\right\|_{p} \leqslant C(1+|u|)^{5 / 2} e^{\phi_{p}^{*}|u|} \quad \forall \varepsilon \in(0,1] \quad \forall u \in \mathbb{R},\right. \tag{2}
\end{equation*}
$$

where $\|\|\cdot\|\|_{p}$ denotes the operator norm on $L^{p}(\gamma)$ and $C>0$ is a constant. This will be combined with an abstract multiplier result for generators of holomorphic semigroups, which is a variant of an earlier result of Meda [M, Theorem 4] (see also [CM, Theorem 2.1]). The abstract multiplier result is proved in Section 2. The estimate (2) will be obtained as an easy consequence of Propositions 3.1 and 3.2 , which contain norm estimates concerning two auxiliary operators, $J^{p, i u}(\mathscr{L}+\varepsilon \mathscr{I})$ and $K^{p, i u}(\mathscr{L}+\varepsilon \mathscr{I})$, introduced at the beginning of Section 3. The norm estimates for $J^{p, i u}(\mathscr{L}+\varepsilon \mathscr{I})$, in turn, hinge on pointwise estimates off the diagonal for the distributional kernels of the complex powers of the resolvent operator $(\mathscr{L}+\varepsilon \mathscr{F})^{-1}$. This analysis is rather technical and occupies Sections 4 and 5 .

One of the main ingredients of our approach is a careful analysis of the complex time Ornstein-Uhlenbeck semigroup. The notation and some preliminary results concerning the Ornstein-Uhlenbeck semigroup are contained in Section 1.

Maximal estimates for the complex Ornstein-Uhlenbeck semigroup will appear in a forthcoming paper.

1. NOTATION AND PRELIMINARY RESULTS

We shall consider L^{p} spaces both with respect to Lebesgue measure and Gauss measure, which we denote by $L^{p}\left(\mathbb{R}^{d}\right)$ and $L^{p}(\gamma)$, respectively.

Suppose that \mathscr{M} is a continuous linear operator from $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ into distributions. By the Schwartz kernel theorem there is a unique distribution $m_{S} \in \mathscr{D}^{\prime}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ such that

$$
\langle\mathscr{M} \phi, \psi\rangle_{\mathbb{R}^{d}}=\left\langle m_{S}, \psi \otimes \phi\right\rangle_{\mathbb{R}^{2 d}} \quad \forall \phi, \psi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right),
$$

where $\langle\cdot, \cdot\rangle_{\mathbb{R}^{d}}$ and $\langle\cdot, \cdot\rangle_{\mathbb{R}^{2 d}}$ denote the pairings between test functions and distributions in \mathbb{R}^{d} and in $\mathbb{R}^{2 d}$, respectively. We call the distribution $\left(1 \otimes \gamma_{0}^{-1}\right) m_{S}$ the kernel of \mathscr{M} and denote it by m. The justification for this
notation is that if m_{S} is locally integrable, then \mathscr{M} may be represented as an integral operator with kernel m with respect to the Gauss measure. Indeed,

$$
\mathscr{M} \phi(x)=\int_{\mathbb{R}^{d}} m_{S}(x, y) \phi(y) \mathrm{d} y=\int_{\mathbb{R}^{d}} m(x, y) \phi(y) \mathrm{d} \gamma(y) \quad \forall \phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right) .
$$

If \mathscr{M} is a bounded operator on $L^{2}(\gamma)$, then it maps $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ functions continuously into distributions, so that we may consider its kernel. In particular, if $\mathscr{R} z \geqslant 0$, we denote by h_{z} the kernel of the operator \mathscr{H}_{z} spectrally defined by

$$
\mathscr{H}_{z} f=\sum_{n=0}^{\infty} e^{-z n} \mathscr{P}_{n} f \quad \forall f \in L^{2}(\gamma) ;
$$

h_{z} is called the Mehler kernel and is given by the smooth function

$$
\begin{aligned}
(3) h_{z}(x, y)= & \left(1-e^{-2 z}\right)^{-d / 2} \\
& \times \exp \left[\frac{1}{2} \frac{1}{e^{z}+1}|x+y|^{2}-\frac{1}{2} \frac{1}{e^{z}-1}|x-y|^{2}\right] \quad \forall x, y \in \mathbb{R}^{d},
\end{aligned}
$$

if $z \notin i \pi \mathbb{Z}$. For k in \mathbb{Z}, the distribution $h_{i k \pi}$ is defined by

$$
\left\langle h_{i k \pi}, \phi\right\rangle=\int_{\mathbb{R}^{d}} \phi\left(x,(-1)^{k} x\right) \exp \left(|x|^{2}\right) \mathrm{d} x \quad \forall \phi \in C_{c}^{\infty}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right) .
$$

It is easy to check that $\left\{h_{z}\right\}_{\mathscr{R} \geq 0}$ is an analytic family of distributions, and that $\left\{\mathscr{H}_{z}\right\}_{\mathscr{R} z \geqslant 0}$ is an analytic family of continuous operators from $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ to $\mathscr{D}^{\prime}\left(\mathbb{R}^{d}\right)$. In particular, if $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ and $k \in \mathbb{Z}$ we have that $\mathscr{H}_{i k \pi} \phi(x)=$ $\phi\left((-1)^{k} x\right)$. Further properties of $\left\{\mathscr{H}_{z}\right\}_{\mathscr{Z} Z} \geqslant 0$ are contained in Proposition 1.1 below. For every p in $(1, \infty), p \neq 2$, set $\phi_{p}=\operatorname{arc} \cos |2 / p-1|$, and denote by \mathbf{E}_{p} the set

$$
\left\{x+i y \in \mathbb{C}:|\sin y| \leqslant\left(\tan \phi_{p}\right) \sinh x\right\} ;
$$

see Fig 1. If $p=2$, define ϕ_{p} to be $\pi / 2$ and \mathbf{E}_{p} to be $\overline{\mathbf{S}}_{\pi / 2}$. The set \mathbf{E}_{p} is a closed πi-periodic subset of the right half-plane. The rays [$0, e^{ \pm i \phi_{p \infty}}$) are contained in \mathbf{E}_{p} and are tangent to the boundary of \mathbf{E}_{p} at the origin. Note that if $1 / p+1 / p^{\prime}=1$, then $\mathbf{E}_{p}=\mathbf{E}_{p^{\prime}}$, and that $\mathbf{E}_{p} \subset \mathbf{E}_{q}$ if $1<p<q<2$.

Region E_{p}

FIGURE 1

Proposition 1.1. Suppose that $1 \leqslant p \leqslant \infty$. The following hold:
(i) the semigroup $\left\{\mathscr{H}_{t}\right\}_{t \geqslant 0}$ is markovian;
(ii) if $t>0$ and $1<p<2$, then \mathscr{H}_{t} is bounded from $L^{p}(\gamma)$ to $L^{2}(\gamma)$ if and only if $t \geqslant-\log \sqrt{p-1}$, in which case it is a contraction;
(iii) the operator \mathscr{H}_{z} extends to a bounded operator on $L^{p}(\gamma)$ if and only if $z \in \mathbf{E}_{p}$, in which case it is a contraction. Furthermore, the map $z \mapsto \mathscr{H}_{z}$ from \mathbf{E}_{p} to the Banach algebra of bounded operators on $L^{p}(\gamma)$ is continuous in the strong operator topology, and its restriction to the interior of \mathbf{E}_{p} is analytic.

This result is well known. In particular, (ii) is due to Nelson [N], and (iii) to Epperson [E]. The reader is referred to [B] for (i) and more on the Ornstein-Uhlenbeck semigroup.

Positive constants are denoted either by c or by C; these may differ from one occurrence to another. The expression

$$
A(t) \sim B(t) \quad \forall t \in \mathbf{D},
$$

where \mathbf{D} is some subset of the domains of A and of B, means that there exist constants C and C^{\prime} such that

$$
C|A(t)| \leqslant|B(t)| \leqslant C^{\prime}|A(t)| \quad \forall t \in \mathbf{D} .
$$

2. AN ABSTRACT HÖRMANDER TYPE MULTIPLIER THEOREM

In this section we prove a result concerning the existence of a bounded holomorphic functional calculus for infinitesimal generators of symmetric contraction semigroups. We shall use this result in Section 3 in our study of the Ornstein-Uhlenbeck operator.

Let X be a σ-finite measure space and \mathscr{G} a positive linear operator on $L^{2}(X)$, possibly unbounded, but with dense domain. Let $\left\{\mathscr{E}_{\lambda}\right\}$ be the spectral resolution of the identity for which

$$
\mathscr{G} f=\int_{0}^{\infty} \lambda \mathrm{d} \mathscr{E}_{\lambda} f \quad \forall f \in \operatorname{Dom}(\mathscr{G}) .
$$

For every positive real number t, we define the operator \mathscr{T}_{t} by

$$
\mathscr{T}_{t} f=\int_{0}^{\infty} e^{-t \lambda} \mathrm{~d} \mathscr{E}_{\lambda} f \quad \forall f \in L^{2}(X) .
$$

We assume that each \mathscr{T}_{t} has the contraction property

$$
\left\|\mathscr{T}_{t} f\right\|_{p} \leqslant\|f\|_{p} \quad \forall f \in L^{2}(X) \cap L^{p}(X)
$$

whenever $1 \leqslant p \leqslant \infty$. A semigroup $\left\{\mathscr{T}_{t}\right\}_{t \geqslant 0}$ with the above properties is called a symmetric contraction semigroup, and \mathscr{G} will be called the infinitesimal generator of $\left\{\mathscr{T}_{t}\right\}_{t \geqslant 0}$. Note that in many texts on semigroups, the generator of the semigroup is $-\mathscr{G}$ instead of \mathscr{G}.

Let M be a complex-valued, Borel measurable function on \mathbb{R}^{+}. The multiplier operator $M(\mathscr{G})$ is then defined on a suitable subspace of $L^{2}(X)$ by

$$
M(\mathscr{G}) f=\int_{0}^{\infty} M(\lambda) \mathrm{d} \mathscr{E}_{\lambda} f .
$$

By spectral theory, if M is bounded, then $M(\mathscr{G})$ is bounded on $L^{2}(X)$. An important problem is to find conditions on M (and on the semigroup), so that the operator $M(\mathscr{G})$ extends to a bounded operator on $L^{p}(X)$ for some $p \in(1, \infty)$.

Recall that the Mellin transform $\mathscr{M} f$ of a function $f \in L^{1}\left(\mathbb{R}^{+}, \mathrm{d} \lambda / \lambda\right)$ is defined by

$$
\mathscr{M} f(u)=\int_{0}^{\infty} f(\lambda) \lambda^{-i u} \frac{\mathrm{~d} \lambda}{\lambda} \quad \forall u \in \mathbb{R} .
$$

Let M be a complex-valued, Borel measurable function on \mathbb{R}^{+}. Given a positive integer N, we denote by $M_{N}: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{C}$ the function defined by

$$
M_{N}(t, \lambda)=(t \lambda)^{N} \exp (-t \lambda) M(\lambda)
$$

and by $\mathscr{M} M_{N}(t, \cdot)$ the Mellin transform of $M_{N}(t, \cdot)$.
If \mathscr{T} is a bounded linear operator on $L^{p}(X)$, we denote by $\|\mathscr{T}\|_{p}$ its operator norm.

Theorem 2.1. Let \mathscr{G} be the infinitesimal generator of a symmetric contraction semigroup and assume that the spectral projection \mathscr{E}_{0} is trivial. Suppose that $1<p<\infty$ and that M is a Borel measurable function on \mathbb{R}^{+}. If for some positive integer N

$$
\int_{-\infty}^{\infty} \sup _{t>0}\left|\mathscr{M} M_{N}(t, u)\right|\left\|\mathscr{G}^{i u}\right\|_{p} \mathrm{~d} u<\infty
$$

then $M(\mathscr{G})$ extends to a bounded operator on $L^{p}(X)$.
This result was proved by Meda [M, Theorem 1]. A more elegant proof of the same result, due to Cowling and Meda, is in [CM, Theorem 2.1].

Suppose that $M \in H^{\infty}\left(\mathbf{S}_{\psi}\right)$. It is well known that M admits a bounded extension, also denoted by M, to $\overline{\mathbf{S}}_{\psi}$. For $|\theta| \leqslant \psi$, let $M_{\theta}: \mathbb{R}^{+} \rightarrow \mathbb{C}$ denote the function defined by

$$
M_{\theta}(\lambda)=M\left(e^{i \theta} \lambda\right) .
$$

Suppose that J is a positive integer. We say that M_{θ} satisfies a Hörmander condition of order J if there exists a constant C such that

$$
\sup _{R>0} \int_{R}^{2 R}\left|\lambda^{j} D^{j} M_{\theta}(\lambda)\right|^{2} \frac{\mathrm{~d} \lambda}{\lambda} \leqslant C^{2} \quad \forall j \in\{0,1, \ldots, J\} .
$$

The smallest constant C for which this inequality holds is called the Hörmander J-constant of M_{θ}, and is denoted by $\left\|M_{\theta}\right\|_{\text {Hörm } J}$. Clearly, if M is in $H^{\infty}\left(\mathbf{S}_{\psi} ; J\right)$, then

$$
\|M\|_{\psi ; J}=\max \left(\left\|M_{\psi}\right\|_{\text {нörm } J},\left\|M_{-\psi}\right\|_{\text {Нörm } J}\right) .
$$

We now state the main result of this section. Its proof is a slight modification of the proof of [M, Theorem 4]. Our result is related to a previous result of Cowling et al. [CDMY, Theorem 5.4] on the H^{∞} functional calculus for a certain class of operators acting on Banach spaces.

Theorem 2.2. Let \mathscr{G} be the infinitesimal generator of a symmetric contraction semigroup and assume that $\mathscr{E}_{0}=0$. Suppose that $1<p<\infty$ and that there exist positive constants C and σ, and a constant $\theta \in(0, \pi / 2)$ such that

$$
\left\|\mathscr{G}^{i u}\right\|_{p} \leqslant C(1+|u|)^{\sigma} \exp (\theta|u|) \quad \forall u \in \mathbb{R} .
$$

If $J>\sigma+1$ and $M \in H^{\infty}\left(\mathbf{S}_{\theta} ; J\right)$, then $M(\mathscr{G})$ extends to a bounded operator on $L^{p}(X)$, and

$$
\|M(\mathscr{G})\|_{p} \leqslant C\|M\|_{\theta ; J} .
$$

Proof. We show that M satisfies the hypotheses of Theorem 2.1.
Let ψ be a $C_{c}^{\infty}(\mathbb{R})$ function supported in $[1 / 2,2]$ and such that

$$
\sum_{k=-\infty}^{\infty} \psi\left(2^{k} \lambda\right)=1 \quad \forall \lambda \in \mathbb{R}^{+} .
$$

Observe that

$$
\begin{aligned}
\mathscr{M} M_{N}(t, u) & =\int_{0}^{\infty}(t \lambda)^{N} e^{-t \lambda} M(\lambda) \lambda^{-i u} \frac{\mathrm{~d} \lambda}{\lambda} \\
& =e^{(i N+u) \theta} \int_{0}^{\infty}(t \lambda)^{N} \exp \left(-e^{i \theta} t \lambda\right) M_{\theta}(\lambda) \lambda^{-i u} \frac{\mathrm{~d} \lambda}{\lambda}
\end{aligned}
$$

by Cauchy's integral theorem. A change of variables $(t \lambda=v)$ shows that

$$
\begin{aligned}
e^{-\theta u} \mathscr{M} M_{N}(t, u) & =e^{i N \theta} t^{i u} \int_{0}^{\infty} v^{N-i u} \exp \left(-e^{i \theta} v\right) M_{\theta}(v / t) \frac{\mathrm{d} v}{v} \\
& =e^{i N \theta} t^{i u} \sum_{k=-\infty}^{\infty} \int_{0}^{\infty} v^{N-i u} \exp \left(-e^{i \theta} v\right) M_{\theta}(v / t) \psi\left(2^{k} v\right) \frac{\mathrm{d} v}{v} .
\end{aligned}
$$

The rest of the proof is a trivial modification of the proof of [M , Theorem 4]. We omit the details.

In view of the application to the Ornstein-Uhlenbeck semigroup, we need a version of Theorem 2.2 for generators of symmetric contraction semigroups whose spectral projection \mathscr{E}_{0} need not be trivial. This is the content of the next corollary.

Corollary 2.3. Let \mathscr{G} be the generator of the symmetric contraction semigroup $\left\{\mathscr{T}_{t}\right\}$. Suppose that $1<p<\infty$ and that there exist positive constants C and σ, and a constant $\theta \in(0, \pi / 2)$ such that

$$
\left\|(\mathscr{G}+\varepsilon \mathscr{I})^{i u}\right\|_{p} \leqslant C(1+|u|)^{\sigma} \exp (\theta|u|) \quad \forall \varepsilon \in(0,1] \quad \forall u \in \mathbb{R} .
$$

Let $M:[0, \infty) \rightarrow \mathbb{C}$ be a bounded Borel measurable function and suppose that there exists $\tilde{M} \in H^{\infty}\left(\mathbf{S}_{\theta} ; J\right)$ for some $J>\sigma+1$ such that

$$
\tilde{M}(\lambda)=M(\lambda) \quad \forall \lambda \in \mathbb{R}^{+} .
$$

Then $M(\mathscr{G})$ extends to a bounded operator on $L^{p}(X)$, and

$$
\|M(\mathscr{G})\|_{p} \leqslant C\left(|M(0)|+\|M\|_{\theta ; J}\right) .
$$

Proof. It is immediate to check that $\mathscr{G}+\varepsilon \mathscr{I}$ is the infinitesimal generator of the symmetric contraction semigroup $\left\{e^{-\varepsilon t} \mathscr{T}_{t}\right\}_{t \geqslant 0}$ and that its spectrum is contained in $[\varepsilon, \infty)$. Therefore, we may apply Theorem 2.2 and deduce that there exists a constant C such that

$$
\|\tilde{M}(\mathscr{G}+\varepsilon \mathscr{I})\|_{p} \leqslant C\|\tilde{M}\|_{\theta ; J} .
$$

By spectral theory

$$
\begin{equation*}
\mathscr{E}_{0} f=\lim _{t \rightarrow \infty} \mathscr{T}_{t} f \quad \forall f \in L^{2}(X) . \tag{4}
\end{equation*}
$$

Since \mathscr{T}_{t} is a contraction on $L^{p}(X)$, it follows that \mathscr{E}_{0} is contractive on $L^{p}(X)$ for every p in $[1, \infty)$. Consequently, $\mathscr{I}-\mathscr{E}_{0}$ is bounded on $L^{p}(X)$, so that

$$
\begin{equation*}
\left\|\left(\mathscr{I}-\mathscr{E}_{0}\right) \tilde{M}(\mathscr{G}+\varepsilon \mathscr{I})\right\|_{p} \leqslant C\|\tilde{M}\|_{\theta ; J} . \tag{5}
\end{equation*}
$$

Observe that for every $\varepsilon>0$

$$
\tilde{M}(\mathscr{G}+\varepsilon \mathscr{F}) f=\tilde{M}(\varepsilon) \mathscr{E}_{0} f+\int_{0^{+}}^{\infty} \tilde{M}(\lambda+\varepsilon) \mathrm{d} \mathscr{E}_{\lambda} f \quad \forall f \in L^{2}(X) .
$$

Thus, if $\varepsilon_{k} \rightarrow 0^{+}$

$$
\begin{aligned}
\left(\mathscr{I}-\mathscr{E}_{0}\right) \tilde{M}\left(\mathscr{G}+\varepsilon_{k} \mathscr{I}\right) f & =\int_{0^{+}}^{\infty} \tilde{M}\left(\lambda+\varepsilon_{k}\right) \mathrm{d} \mathscr{E}_{\lambda} f \\
& \rightarrow \int_{0^{+}}^{\infty} \tilde{M}(\lambda) \mathrm{d} \mathscr{E}_{\lambda} f \\
& =M(\mathscr{G}) f-M(0) \mathscr{E}_{0} f \quad \forall f \in L^{2}(X)
\end{aligned}
$$

whence $\left(\mathscr{I}-\mathscr{E}_{0}\right) \tilde{M}\left(\mathscr{G}+\varepsilon_{k} \mathscr{I}\right)$ converges to $M(\mathscr{G})-M(0) \mathscr{E}_{0}$ in the strong operator topology of $L^{p}(X)$ by (5). Therefore (5) implies that

$$
\left\|M(\mathscr{G})-M(0) \mathscr{E}_{0}\right\|_{p} \leqslant C\|\tilde{M}\|_{\theta ; J}
$$

and finally that

$$
\left\|\left|M(\mathscr{G})\left\|_{p} \leqslant|M(0)|+C\right\| \tilde{M} \|_{\theta ; J},\right.\right.
$$

as required.
Remark 2.4. Suppose that the symmetric contraction semigroup $\left\{\mathscr{T}_{t}\right\}$ preserves the class of real functions (in particular, this holds if $\left\{\mathscr{T}_{t}\right\}$ is a submarkovian semigroup). Assume that for some p in $(1,2)$ there exist positive constants C and σ, and a constant $\theta \in(0, \pi / 2)$ such that

$$
\begin{equation*}
\left\|(\mathscr{G}+\varepsilon \mathscr{I})^{-i u}\right\|_{p} \leqslant C(1+u)^{\sigma} \exp (\theta u) \quad \forall \varepsilon \in(0,1] \quad \forall u \in \mathbb{R}^{+} . \tag{6}
\end{equation*}
$$

We claim that

$$
\left\|(\mathscr{G}+\varepsilon \mathscr{I})^{-i u}\right\|_{p} \leqslant C(1+|u|)^{\sigma} \exp (\theta|u|) \quad \forall \varepsilon \in(0,1] \quad \forall u \in \mathbb{R}
$$

and that an estimate similar to this holds, with p replaced by its conjugate index p^{\prime}.

Indeed, since $\left\{\mathscr{T}_{t}\right\}$ preserves the class of real functions, the same holds for its infinitesimal generator \mathscr{G} and for the spectral projections $\left\{\mathscr{E}_{\lambda}\right\}$. Therefore $\overline{\mathscr{E}_{\lambda} f}=\mathscr{E}_{\lambda} \bar{f}$, whence

$$
\begin{aligned}
\overline{(\mathscr{G}+\varepsilon \mathscr{I})^{i u} f} & =\overline{\varepsilon^{i u} \mathscr{E}_{0} f}+\overline{\int_{0^{+}}^{\infty}(\lambda+\varepsilon)^{i u} \mathrm{~d} \mathscr{E}_{\lambda} f} \\
& =\varepsilon^{-i u} \mathscr{E}_{0} \bar{f}+\int_{0^{+}}^{\infty}(\lambda+\varepsilon)^{-i u} \mathrm{~d} \mathscr{E}_{\lambda} \bar{f} \\
& =(\mathscr{G}+\varepsilon \mathscr{I})^{-i u} \bar{f} \quad \forall f \in L^{2}(X) .
\end{aligned}
$$

If $f \in L^{2}(X) \cap L^{p}(X)$, then (6) implies that for all $v \in \mathbb{R}^{+}$

$$
\begin{aligned}
\left\|(\mathscr{G}+\varepsilon \mathscr{I})^{i v} f\right\|_{p} & =\left\|\overline{(\mathscr{G}+\varepsilon \mathscr{I})^{i v} f}\right\|_{p} \\
& =\left\|(\mathscr{G}+\varepsilon \mathscr{I})^{-i v} \bar{f}\right\|_{p} \\
& \leqslant C(1+v)^{\sigma} \exp (\theta v)\|f\|_{p} \quad \forall \varepsilon \in(0,1] ;
\end{aligned}
$$

a density argument then shows that (6^{\prime}) holds for all $u \in \mathbb{R}$.

Furthermore, for every $f \in L^{2}(X) \cap L^{p}(X)$ and every $g \in L^{2}(X) \cap L^{p^{\prime}}(X)$

$$
\begin{aligned}
\left((\mathscr{G}+\varepsilon \mathscr{I})^{i u} f, g\right) & =\left(f,\left((\mathscr{G}+\varepsilon \mathscr{I})^{i u}\right)^{\star} g\right) \\
& =\left(f,(\mathscr{G}+\varepsilon \mathscr{I})^{-i u} g\right),
\end{aligned}
$$

where (\cdot, \cdot) denotes the inner product in $L^{2}(\gamma)$ and ${ }^{\star}$ the Hilbert space adjoint. We have proved that for every $u \in \mathbb{R}$ the operator $(\mathscr{G}+\varepsilon \mathscr{I})^{i u}$ extends to a bounded operator on $L^{p}(X)$. It follows that for every $u \in \mathbb{R}$ the operator $(\mathscr{G}+\varepsilon \mathscr{I})^{-i u}$ extends to a bounded operator on $L^{p^{\prime}}(X)$, as required to finish the proof of the claim.

3. THE MAIN RESULT

In this section we prove our main result, Theorem 1, modulo two propositions. Theorem 2 is also proved. The strategy for part (i) of Theorem 1 is to show that if $1<p<2$

$$
\left\|(\mathscr{L}+\varepsilon \mathscr{I})^{-i u}\right\|_{p} \leqslant C(1+u)^{5 / 2} \exp \left(\phi_{p}^{*} u\right) \quad \forall \varepsilon \in(0,1] \quad \forall u \in \mathbb{R}^{+}
$$

and then to apply Remark 2.4 and Corollary 2.3.
First we need a little more notation. We denote by $\tau:(\mathbb{C} \backslash \mathbb{R}) \cup$ $(-1,1) \rightarrow \mathbb{C}$ the transformation

$$
\tau(\zeta)=\log \frac{1+\zeta}{1-\zeta}
$$

where $\log w$ is real when $w>0$. It is straightforward to check that τ is a biholomorphic transformation of $(\mathbb{C} \backslash \mathbb{R}) \cup(-1,1)$ onto the strip $\{z \in \mathbb{C}$: $|\operatorname{Im} z|<\pi\}$. In particular, if $1<p<2$, then τ maps $\mathbf{S}_{\phi_{p}} \backslash[1, \infty)$ onto the interior of $\mathbf{E}_{p} \cap\{z \in \mathbb{C}:|\operatorname{Im} z|<\pi\}$ and the ray [$0, e^{i \phi_{p}} \infty$) onto $\partial \mathbf{E}_{p} \cap$ $\{z \in \mathbb{C}: 0 \leqslant \operatorname{Im} z<\pi\}$.

Observe that if $z=\tau(\zeta)$, then

$$
1-e^{-2 z}=\frac{4 \zeta}{(1+\zeta)^{2}}, \quad \frac{1}{2} \frac{1}{e^{z}+1}=\frac{1}{4}-\frac{\zeta}{4}, \quad \text { and } \quad-\frac{1}{2} \frac{1}{e^{z}-1}=\frac{1}{4}-\frac{1}{4 \zeta}
$$

From Mehler's formula (3) for the heat kernel, we deduce immediately that

$$
\begin{equation*}
h_{\tau(\zeta)}(x, y)=\frac{(1+\zeta)^{d}}{(4 \zeta)^{d / 2}} \exp \left[\frac{|x|^{2}+|y|^{2}}{2}-\frac{1}{4}\left(\zeta|x+y|^{2}+\zeta^{-1}|x-y|^{2}\right)\right] . \tag{7}
\end{equation*}
$$

If z and w are complex numbers, we denote by $[z, w]$ the closed segment in the complex plane joining z and w. We denote by z_{p} the point $\tau\left(e^{i \phi_{p}} / 2\right)$,
which is in $\partial \mathbf{E}_{p}$, by α_{p}^{*} the set $\tau\left(\left[0, e^{i \phi_{p}} / 2\right]\right)$, and by α_{p} the regular curve $t \mapsto e^{i \phi_{p}} t, 0 \leqslant t \leqslant 1 / 2$. Further, β_{p}^{*} will denote the union of the segment $\left[z_{p}, e^{i \phi_{p}}\right]$ and the ray $\left[e^{i \phi_{p}}, e^{i \phi_{p} \infty}\right)$, and β_{p} a piecewise regular curve with range β_{p}^{*}.

For every complex number w such that $\mathscr{R} w>0$, we define the functions $J^{p, w}: \mathbb{R}^{+} \rightarrow \mathbb{C}$ and $K^{p, w}: \mathbb{R}^{+} \rightarrow \mathbb{C}$ by

$$
\begin{aligned}
& J^{p, w}(\lambda)=\frac{1}{\Gamma(w)} \int_{\alpha_{p}} z^{w} e^{-\lambda z} \frac{d z}{z} \quad \text { and } \\
& K^{p, w}(\lambda)=\frac{1}{\Gamma(w)} \int_{\beta_{p}} z^{w} e^{-\lambda z} \frac{d z}{z}
\end{aligned}
$$

Observe that the function $w \mapsto K^{p, w}(\lambda)$ is entire. The function $w \mapsto J^{p, w}(\lambda)$ is analytic in the half plane $\mathscr{R} w>0$. A complex integration by parts shows that if $\mathscr{R} w>0$

$$
\begin{equation*}
J^{p, w}(\lambda)=\frac{\lambda}{\Gamma(w+1)} \int_{\alpha_{p}} z^{w} e^{-\lambda z} \mathrm{~d} z+\frac{z_{p}^{w} \exp \left(-z_{p} \lambda\right)}{\Gamma(w+1)} . \tag{8}
\end{equation*}
$$

The right hand side is analytic in the half plane $\operatorname{Re} w>-1$. We shall use (8) to define $J^{p, w}(\lambda)$ for $-1<\operatorname{Re} w \leqslant 0$. In particular, $J^{p, w}(\lambda)$ is defined for $w \in i \mathbb{R}$.

For every $\varepsilon>0$ we define the operators $J^{p, w}(\mathscr{L}+\varepsilon \mathscr{I})$ and $K^{p, w}(\mathscr{L}+\varepsilon \mathscr{I})$ by the formulae

$$
\begin{aligned}
& J^{p, w}(\mathscr{L}+\varepsilon \mathscr{I}) f=\sum_{n=0}^{\infty} J^{p, w}(n+\varepsilon) \mathscr{P}_{n} f \quad \text { and } \\
& K^{p, w}(\mathscr{L}+\varepsilon \mathscr{I}) f=\sum_{n=0}^{\infty} K^{p, w}(n+\varepsilon) \mathscr{P}_{n} f,
\end{aligned}
$$

on their natural domains. It is easy to show (see the proof of Theorem 1(i) below) that if $u \in \mathbb{R}$

$$
(\mathscr{L}+\varepsilon \mathscr{I})^{-i u} f=J^{p, i u}(\mathscr{L}+\varepsilon \mathscr{I}) f+K^{p, i u}(\mathscr{L}+\varepsilon \mathscr{I}) f \quad \forall f \in L^{2}(X) .
$$

Thus, we are led to the problem of finding $L^{p}(\gamma)$ estimates for $J^{p, w}$ $(\mathscr{L}+\varepsilon \mathscr{I})$ and $K^{p, w}(\mathscr{L}+\varepsilon \mathscr{I})$. Our main results concerning $J^{p, w}(\mathscr{L}+\varepsilon \mathscr{I})$ and $K^{p, w}(\mathscr{L}+\varepsilon \mathscr{I})$ are Proposition 3.1 and Proposition 3.2 below. The
proof of Proposition 3.1, which is quite technical and requires a detailed analysis of the kernel of $J^{p, w}(\mathscr{L}+\varepsilon \mathscr{I})$, will be given in Section 5 .

Proposition 3.1. Suppose that $1<p<2$. Then there exists C such that

$$
\left\|J^{p, i u}(\mathscr{L}+\varepsilon \mathscr{I})\right\|_{p} \leqslant C(1+u)^{5 / 2} e_{p}^{\phi_{p}^{* u}} \quad \forall u \in \mathbb{R}^{+} \quad \forall \varepsilon \in(0,1] .
$$

Proposition 3.2. Suppose that $1<p<2$. Then there exists C such that

$$
\left\|\left(\mathscr{I}-\mathscr{P}_{0}\right) K^{p, i u}(\mathscr{L}+\varepsilon \mathscr{I})\right\|_{p} \leqslant C(1+u)^{1 / 2} e^{\phi_{p}^{*} u} \quad \forall u \in \mathbb{R}^{+} \quad \forall \varepsilon \in \mathbb{R}^{+} .
$$

Proof. Define $t_{p}=-\log \sqrt{p-1}$. We claim that there exists C such that

$$
\left\|\left(\mathscr{I}-\mathscr{P}_{0}\right) e^{-\varepsilon z} \mathscr{H}_{z}\right\| \| p C \min \left(1, e^{-\left(\operatorname{Re} z-t_{p}\right)}\right) \quad \forall z \in \mathbf{E}_{p}
$$

Indeed, on the one hand Proposition 1.1(iii) and the boundedness of $\mathscr{I}-\mathscr{P}_{0}$ in $L^{p}(\gamma)$ imply that

$$
\left\|\left(\mathscr{I}-\mathscr{P}_{0}\right) e^{-\varepsilon z} \mathscr{H}_{z}\right\|_{p} \leqslant C\left\|e^{-\varepsilon z} \mathscr{H}_{z}\right\|_{p} \leqslant C \quad \forall z \in \mathbf{E}_{p}
$$

On the other hand, if $\operatorname{Re} z \geqslant t_{p}$, then

$$
\begin{aligned}
\left\|\left(\mathscr{I}-\mathscr{P}_{0}\right) e^{-\varepsilon z} \mathscr{H}_{z} f\right\|_{p} & \leqslant\left\|\mathscr{H}_{z}\left(\mathscr{I}-\mathscr{P}_{0}\right) f\right\|_{2} \\
& =\left\|\mathscr{H}_{\operatorname{Re} z}\left(\mathscr{I}-\mathscr{P}_{0}\right) f\right\|_{2} \\
& =\left(\sum_{n=1}^{\infty} e^{-2\left(\operatorname{Re} z-t_{p}+t_{p}\right) n}\left\|\mathscr{P}_{n} f\right\|_{2}^{2}\right)^{1 / 2} \\
& \leqslant e^{-\left(\operatorname{Re} z-t_{p}\right)}\left\|\mathscr{H}_{t_{p}}\left(\mathscr{I}-\mathscr{P}_{0}\right) f\right\|_{2} \\
& \leqslant e^{-\left(\operatorname{Re} z-t_{p}\right)}\left\|\left(\mathscr{I}-\mathscr{P}_{0}\right) f\right\|_{p} \\
& \leqslant C e^{-\left(\operatorname{Re} z-t_{p}\right)}\|f\|_{p} \quad \forall f \in L^{p}(\gamma) \cap L^{2}(\gamma) .
\end{aligned}
$$

The first inequality follows from Hölder's inequality and the fact that $\gamma\left(\mathbb{R}^{d}\right)=1$, the second is a consequence of spectral theory, the third follows from the hypercontractivity of \mathscr{H}_{t} (Proposition 1.1(ii)) and the fourth from the boundedness of $\mathscr{I}-\mathscr{P}_{0}$ on $L^{p}(\gamma)$. A density argument then shows that $\left\|\mid\left(\mathscr{I}-\mathscr{P}_{0}\right) e^{-\varepsilon z} \mathscr{H}_{z}\right\|_{p} \leqslant C e^{-\left(\mathscr{A z}-t_{p}\right)}$, as required to finish the proof of the claim.

Recall that for every $s \in \mathbb{R},|\Gamma(s+i u)| \sim|u|^{s-1 / 2} e^{-\pi|u| / 2}$ as $|u|$ tends to ∞. Observe that

$$
\left|z^{i u}\right| \leqslant e^{-\phi_{p} u} \quad \forall z \in \beta_{p}^{*} \quad \forall u \in \mathbb{R}^{+},
$$

because $\arg z \geqslant \phi_{p}$ for every z in β_{p}^{*}. Thus,

$$
\begin{aligned}
& \left\|\frac{1}{\Gamma(-i u)} \int_{\beta_{p}} z^{i u} e^{-\varepsilon z}\left(\mathscr{I}-\mathscr{P}_{0}\right) \mathscr{H}_{z} \frac{\mathrm{~d} z}{z}\right\| \|_{p} \\
& \quad \leqslant C\left|\frac{1}{\Gamma(-i u)}\right| \int_{\beta_{p}}\left|z^{i u}\right| \min \left(1, e^{-\left(\operatorname{Re} z-t_{p}\right)}\right) \frac{|\mathrm{d} z|}{|z|} \\
& \quad \leqslant C(1+u)^{1 / 2} e_{p}^{\phi_{p}^{* u}},
\end{aligned}
$$

as required.
Now we prove our main result, Theorem 1, which we restate for the reader's convenience.

Theorem 1. Suppose that $1<p<\infty$ and $p \neq 2$, and set $\phi_{p}^{*}=\operatorname{arc} \sin$ $|2 / p-1|$. Let $M: \mathbb{N} \rightarrow \mathbb{C}$ be a bounded sequence and assume that there exists a bounded holomorphic function \tilde{M} in $\mathbf{S}_{\phi_{p}^{*}}$ such that

$$
\tilde{M}(k)=M(k), \quad k=1,2,3, \ldots
$$

Then the following hold:
(i) if $\tilde{M} \in H^{\infty}\left(\mathbf{S}_{\phi_{p}^{*}} ; 4\right)$, then $M(\mathscr{L})$ extends to a bounded operator on $L^{p}(\gamma)$ and hence on $L^{q}(\gamma)$ for all q such that $|1 / q-1 / 2| \leqslant|1 / p-1 / 2|$;
(ii) if $\tilde{M} \in H^{\infty}\left(\mathbf{S}_{\phi_{p}^{*}}\right)$ and $|1 / q-1 / 2|<|1 / p-1 / 2|$, then $M(\mathscr{L})$ extends to a bounded operator on $L^{q}(\gamma)$.

Proof. We first prove (i). By duality we may assume that $1<p<2$.
Suppose that $\mathscr{R} w>0$. Recall the following classical formula

$$
\lambda^{-w}=\frac{1}{\Gamma(w)} \int_{0}^{\infty} t^{w} e^{-t \lambda} \frac{\mathrm{~d} t}{t} \quad \forall \lambda>0
$$

By Cauchy's integral theorem applied to the analytic function $z \mapsto z^{w-1} e^{-\lambda z}$,

$$
\begin{aligned}
\lambda^{-w} & =\frac{1}{\Gamma(w)} \int_{\alpha_{p}+\beta_{p}} z^{w} e^{-\lambda z} \frac{\mathrm{~d} z}{z} \\
& =J^{p, w}(\lambda)+K^{p, w}(\lambda)
\end{aligned}
$$

If Re $w \leqslant 0$ we interpret this formula by analytic continuation. Then, by spectral theory,

$$
\begin{aligned}
(\mathscr{L}+\varepsilon \mathscr{I})^{-i u}= & \mathscr{P}_{0}(\mathscr{L}+\varepsilon \mathscr{I})^{-i u}+\left(\mathscr{I}-\mathscr{P}_{0}\right)(\mathscr{L}+\varepsilon \mathscr{I})^{-i u} \\
= & \mathscr{P}_{0}(\mathscr{L}+\varepsilon \mathscr{I})^{-i u}+\left(\mathscr{I}-\mathscr{P}_{0}\right) J^{p, i u}(\mathscr{L}+\varepsilon \mathscr{I}) \\
& +\left(\mathscr{I}-\mathscr{P}_{0}\right) K^{p, i u}(\mathscr{L}+\varepsilon \mathscr{I}) \quad \forall u \in \mathbb{R}^{+} .
\end{aligned}
$$

If f is in $L^{2}(\gamma)$ and hence in $L^{p}(\gamma)$, then by spectral theory and the fact that $\left\|\mid \mathscr{P}_{0}\right\|_{p}=1$

$$
\left\|\mathscr{P}_{0}(\mathscr{L}+\varepsilon \mathscr{I})^{-i u} f\right\|_{p}=\left\|\varepsilon^{-i u} \mathscr{P}_{0} f\right\|_{p}=\left\|\mathscr{P}_{0} f\right\|_{p} \leqslant\|f\|_{p} \quad \forall u \in \mathbb{R} .
$$

A density argument then shows that

$$
\left\|\mathscr{P}(\mathscr{L}+\varepsilon \mathscr{I})^{-i u}\right\|_{p} \leqslant 1 \quad \forall u \in \mathbb{R}^{+} \quad \forall \varepsilon \in(0,1] .
$$

Since $\mathscr{I}-\mathscr{P}_{0}$ is bounded on $L^{p}(\gamma)$, by Proposition 3.1 we have that

$$
\left\|\left(\mathscr{I}-\mathscr{P}_{0}\right) J^{p, i u}(\mathscr{L}+\varepsilon \mathscr{I})\right\|_{p} \leqslant C(1+u)^{5 / 2} e^{\phi_{p}^{*} u} \quad \forall u \in \mathbb{R}^{+} \quad \forall \varepsilon \in(0,1] .
$$

Finally, Proposition 3.2 implies

$$
\left\|\left(\mathscr{I}-\mathscr{P}_{0}\right) K^{p, i u}(\mathscr{L}+\varepsilon \mathscr{I})\right\|_{p} \leqslant C(1+u)^{1 / 2} e^{\phi_{p}^{*} u} \quad \forall u \in \mathbb{R}^{+} \quad \forall \varepsilon \in(0,1] .
$$

Therefore, we may conclude that

$$
\left\|(\mathscr{L}+\varepsilon \mathscr{I})^{-i u}\right\| \| p \leqslant C(1+u)^{5 / 2} e^{\phi_{p}^{* u}} \quad \forall u \in \mathbb{R}^{+} \quad \forall \varepsilon \in(0,1] .
$$

Then (i) follows from Corollary 2.3 and Remark 2.4.
We now prove (ii). Since $\tilde{M} \in H^{\infty}\left(\mathbf{S}_{\phi_{p}^{*}}\right)$, then by Cauchy's integral theorem it is in $H^{\infty}\left(\mathbf{S}_{\psi_{q}} ; J\right)$ for any nonnegative integer J and for any q such that $|1 / q-1 / 2|<|1 / p-1 / 2|$. Then by (i) (with q instead of p) $M(\mathscr{L})$ extends to a bounded operator on $L^{q}(\gamma)$, as required.

The proof of Theorem 1 is complete.
Proof of Theorem 2. Suppose that $\psi<v<\phi_{p}^{*}$ and that $\delta>0$. We define $M_{v, \delta}$ by

$$
M_{v, \delta}(z)=\exp \left[-\delta e^{i(\pi / 2-v)} z\right] .
$$

Clearly, $M_{v, \delta}$ is in $H^{\infty}\left(\mathbf{S}_{v}\right)$, hence in $H^{\infty}\left(\mathbf{S}_{\psi} ; J\right)$ for every nonnegative integer J by the Cauchy integral theorem. The corresponding spectral
operator is the operator $\mathscr{H}_{\delta^{i(\pi / 2-v)}}$. If δ is sufficiently small, the point $\delta e^{i(\pi / 2-v)}$ is not in \mathbf{E}_{p}, so that $\mathscr{H}_{\delta e^{i(\pi / 2-v)}}$ is unbounded on $L^{p}(\gamma)$, by Proposition 1.1(iii).

Theorem 2 is proved.

4. ESTIMATES FOR SOME KERNELS

Suppose that $\varepsilon>0, \quad 1<p<2$ and w is a complex number. Let $r_{\varepsilon}^{p, w}: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{C}$ be defined by

$$
r_{\varepsilon}^{p, w}(x, y)=\frac{1}{\Gamma(w)} \int_{\alpha_{p}} z^{w} e^{-\varepsilon z} h_{z}(x, y) \frac{\mathrm{d} z}{z}, \quad x \neq y
$$

and $r_{\varepsilon}^{p, w}(x, x)=0$. It is not hard to prove that this integral is absolutely convergent. We omit this verification, as it is implicit in Proposition 4.1 below. Note that the change of variables $z=\tau(\zeta)$ and formula (7) for the Mehler kernel show that

$$
\begin{align*}
r_{\varepsilon}^{p, w}(x, y)= & \frac{e^{\left(|x|^{2}+|y|^{2}\right) / 2}}{2^{d} \Gamma(w)} \int_{\tau^{-1} \alpha_{p}} \tau(\zeta)^{w-1} \frac{(1+\zeta)^{d}}{\zeta^{d / 2}} e^{e \tau(\zeta)} \tag{9}\\
& \times e^{-\left(\zeta|x+y|^{2}+\zeta^{-1}|x-y|^{2}\right) / 4} \tau^{\prime}(\zeta) \mathrm{d} \zeta .
\end{align*}
$$

The function $r_{\varepsilon}^{p, w}$ agrees with the kernel of the operator $J^{p, w}(\mathscr{L}+\varepsilon \mathscr{I})$ off the diagonal (see Proposition 5.2 below). In this section we prove pointwise estimates for $r_{\varepsilon}^{p, w}$, which will be crucial for the study of the operator $J^{p, w}(\mathscr{L}+\varepsilon \mathscr{I})$ we shall perform in Section 5. In Proposition 4.1 we show that $r_{\varepsilon}^{p, w}$ satisfies standard estimates in a convenient neighbourhood of the diagonal of $\mathbb{R}^{d} \times \mathbb{R}^{d}$. Define the local region by

$$
L=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d}:|x-y| \leqslant \min \left(1,|x+y|^{-1}\right)\right\} .
$$

Pointwise estimates in the complement of L are proved in Proposition 4.3.

Proposition 4.1. Suppose that $1<p<2$ and that $N>0$ is an integer. Then there exists C such that for every $\varepsilon \in(0,1]$, and every complex number w with $-N \leqslant \mathscr{R} w \leqslant d / 2-1 / N$, the following hold:
(i) if $(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d}$ then

$$
\left|r_{\varepsilon}^{p, w}(x, y) \leqslant C \frac{e^{-\phi_{p} \operatorname{Im} w}}{|\Gamma(w)|} e^{\left(|x|^{2}+|y|^{2}\right) / 2}\right| x-\left.y\right|^{2 \operatorname{Re} w-d} ;
$$

(ii) if (x, y) is in the local region L, and $x \neq y$, then

$$
\begin{aligned}
& \left|\nabla_{x} r_{\varepsilon}^{p, w}(x, y)\right|+\left|\nabla_{y} r_{\varepsilon}^{p, w}(x, y)\right| \\
& \quad \leqslant C \frac{e^{-\phi_{p} \operatorname{Im} w}}{|\Gamma(w)|} e^{\left(|x|^{2}+|y|^{2}\right) / 2}|x-y|^{2 \operatorname{Re} w-d-1}
\end{aligned}
$$

Proof. We assume that $x \neq y$, because otherwise the conclusion is obvious. We shall need the integral $I(x, y ; w, k), k \in \mathbb{R}$, defined by

$$
\int_{\tau^{-1}{ }_{\circ} \alpha_{p}} \tau(\zeta)^{w-1} \frac{(1+\zeta)^{d}}{\zeta^{k} e^{\varepsilon \tau(\zeta)}} e^{-\left(\zeta|x+y|^{2}+\zeta^{-1}|x-y|^{2}\right) / 4} \tau^{\prime}(\zeta) \mathrm{d} \zeta
$$

We parametrise $\tau^{-1} \circ \alpha_{p}$ by $\zeta=e^{i \phi_{p}} t$, where t is in [0, $\left.1 / 2\right]$. Since

$$
\left|\tau(\zeta)^{w-1} \frac{(1+\zeta)^{d}}{\zeta^{k} e^{\varepsilon \tau(\zeta)}} \tau^{\prime}(\zeta)\right| \leqslant C e^{-\phi_{p} \operatorname{Im} w} t^{\operatorname{Re} w-k-1}
$$

by elementary complex analysis, we obtain that

$$
\begin{aligned}
|I(x, y ; w, k)| \leqslant & C e^{-\phi_{p} \operatorname{Im} w} \int_{0}^{1 / 2} t^{\operatorname{Re} w-k} e^{-\cos \phi_{p}|x-y|^{2} / 4 t} \frac{\mathrm{~d} t}{t} \\
= & C \frac{4^{k-\operatorname{Re} w} e^{-\phi_{p} \operatorname{Im} w}}{\left(\cos \phi_{p}\right)^{k-\operatorname{Re} w}|x-y|^{2 \operatorname{Re} w-2 k}} \\
& \times \int_{\cos \phi_{p}|x-y|^{2} / 2}^{\infty} v^{k-\operatorname{Re} w} e^{-v} \frac{\mathrm{~d} v}{v} \\
\leqslant & C \begin{cases}e^{-\phi_{p} \operatorname{Im} w}|x-y|^{2 \operatorname{Re} w-2 k} & \text { if } \operatorname{Re} w<k \\
e^{-\phi_{p} \operatorname{Im} w}(1+|\log | x-y| |) & \text { if } \operatorname{Re} w=k \\
e^{-\phi_{p} \operatorname{Im} w} & \text { if } \operatorname{Re} w>k\end{cases}
\end{aligned}
$$

Since $\mathscr{R} w<d / 2$ by hypothesis, we deduce from (9) that

$$
\begin{aligned}
\left|r_{\varepsilon}^{p, w}(x, y)\right| & \leqslant C \frac{e^{\left(|x|^{2}+|y|^{2}\right) / 2}}{|\Gamma(w)|}|I(x, y ; w, d / 2)| \\
& \leqslant C \frac{e^{\left(|x|^{2}+|y|^{2}\right) / 2}}{|\Gamma(w)|} e^{-\phi_{p} \operatorname{Im} w}|x-y|^{2 \operatorname{Re} w-d}
\end{aligned}
$$

as required to prove (i).

To prove (ii), it suffices to estimate $\nabla_{x} r_{\varepsilon}^{p, w}$, because $r_{\varepsilon}^{p, w}$ is symmetric. By differentiating (9) under the integral sign, it is easy to check that

$$
\nabla_{x} r_{\varepsilon}^{p, w}(x, y)=x r_{\varepsilon}^{p, w}(x, y)+\frac{e^{\left(|x|^{2}+|y|^{2}\right) / 2}}{2^{d} \Gamma(w)} \nabla_{x} I(x, y ; w, d / 2),
$$

and that

$$
\begin{aligned}
\nabla_{x} I(x, y ; w, d / 2)= & -\frac{1}{2}(x+y) I(x, y ; w, d / 2-1) \\
& -\frac{1}{2}(x-y) I(x, y ; w, d / 2+1) .
\end{aligned}
$$

We remark that if $(x, y) \in L$, and $x \neq y$, then

$$
|x|=\frac{1}{2}|x-y+x+y| \leqslant \frac{1}{2}(|x-y|+|x+y|) \leqslant|x-y|^{-1},
$$

so that $\max (|x|,|x+y|) \leqslant|x-y|^{-1}$. Thus, from the estimates for I proved above we deduce that

$$
\begin{aligned}
\left|\nabla_{x} I(x, y ; w, d / 2)\right| \leqslant & \frac{1}{2|x-y|}|I(x, y ; w, d / 2-1)| \\
& +\frac{1}{2}|x-y||I(x, y ; w, d / 2+1)| \\
\leqslant & C e^{-\phi_{p} \operatorname{Im} w}|x-y|^{2 \operatorname{Re} w-d-1} \quad \forall(x, y) \in L .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\mid \nabla_{x} r_{\varepsilon}^{p, w}(x, y) \leqslant & |x-y|^{-1}\left|r_{\varepsilon}^{p, w}(x, y)\right| \\
& +\frac{e^{\left(|x|^{2}+|y|^{2}\right) / 2}}{2^{d}|\Gamma(w)|}\left|\nabla_{x} I(x, y ; w, d / 2)\right| \\
\leqslant & C \frac{e^{-\phi_{p} \operatorname{Im} w}}{|\Gamma(w)|} e^{\left(|x|^{2}+|y|^{2}\right) / 2}|x-y|^{2 \operatorname{Re} w-d-1} \quad \forall(x, y) \in L,
\end{aligned}
$$

as required.
We now estimate $r_{\varepsilon}^{p, i u}, u \in \mathbb{R}$, off the local region. A similar analysis may be carried out for $r_{\varepsilon}^{p, w}$ for all complex w. We need a little more notation.

Suppose that a is in \mathbb{R}^{+}and that $b \geqslant 0$. Let $F_{a, b}: \mathbb{R}^{+} \rightarrow \mathbb{C}$ be defined by

$$
F_{a, b}(s)=-a\left(s+s^{-1}-2\right)+i a b\left(s^{-1}-s\right) .
$$

Various estimates for $r_{\varepsilon}^{p, w}$ will involve integrals $\operatorname{of} \exp \left(F_{a, b}\right)$ for different values of the parameters a, b and w. We study such integrals in the following technical lemma, which will be used in Proposition 4.3.

Lemma 4.2. Suppose that δ, κ and N are in \mathbb{R}^{+}. Then there exists C (depending on δ, κ and N) such that the following hold
(i) for every $a \in \mathbb{R}^{+}$, every $b \geqslant 0$, every complex number v with $|\operatorname{Re} \nu| \leqslant N$, and every $\sigma \geqslant \delta>1 / 2$ such that $a \sigma \kappa$

$$
\left|\int_{0}^{1 / 2} s^{v} e^{F_{a, b}(s / \sigma)} \frac{\mathrm{d} s}{s}\right| \leqslant C(a \sigma)^{-1} e^{-2(1-1 / 2 \delta)^{2} a \sigma}
$$

(ii) for every $a \in[\kappa, \infty)$, every $b \in[0, N]$, every complex number v with $|\operatorname{Re} v| \leqslant N$ and every $\sigma \in(0, \delta)$

$$
\left|\int_{0}^{1 / 2} s^{v} e^{F_{a, b}(s / \sigma)} \frac{\mathrm{d} s}{s}\right| \leqslant\left\{\begin{array}{lll}
C(1+|\operatorname{Im} v|) \sigma^{\operatorname{Re} v} a^{-1 / 2} & \text { if } b=0 \\
C(1+|\operatorname{Im} v|) \sigma^{\operatorname{Re} v}(a b)^{-1} & \text { if } b>0 .
\end{array}\right.
$$

Proof. For notational convenience we write F instead of $F_{a, b}$ and δ^{\prime} instead of $1 /(2 \delta)$ during this proof.

We first prove (i). It is easy to check that if v is in $\left(0, \delta^{\prime}\right]$, then $\operatorname{Re} F(v) \leqslant-\left(1-\delta^{\prime}\right)^{2} a / v$. Since s / σ is in $\left(0, \delta^{\prime}\right]$,

$$
\begin{aligned}
\left|\int_{0}^{1 / 2} s^{v} e^{F(s / \sigma)} \frac{\mathrm{d} s}{s}\right| & \leqslant \int_{0}^{1 / 2} s^{\operatorname{Re} v} e^{\operatorname{Re} F(s / \sigma)} \frac{\mathrm{d} s}{s} \\
& \leqslant \int_{0}^{1 / 2} s^{\operatorname{Re} v} e^{-\left(1-\delta^{\prime}\right)^{2} a \sigma / s} \frac{\mathrm{~d} s}{s} \\
& =\left(\left(1-\delta^{\prime}\right)^{2} a \sigma\right)^{\operatorname{Re} v} \int_{2\left(1-\delta^{\prime}\right)^{2} a \sigma}^{\infty} v^{-\operatorname{Re} v} e^{-v} \frac{\mathrm{~d} v}{v} \\
& \sim(a \sigma)^{-1} e^{-2\left(1-\delta^{\prime}\right)^{2} a \sigma},
\end{aligned}
$$

as required to prove (i).
We now prove (ii). Without loss of generality, we may assume that $\delta>1 / 2$. Clearly,

$$
\left|\int_{0}^{1 / 2} s^{v} e^{F(s / \sigma)} \frac{\mathrm{d} s}{s}\right| \leqslant\left|\int_{0}^{\sigma / 2 \delta} s^{v} e^{F(s / \sigma)} \frac{\mathrm{d} s}{s}\right|+\left|\int_{\sigma / 2 \delta}^{1 / 2} s^{v} e^{F(s / \sigma)} \frac{\mathrm{d} s}{s}\right| .
$$

Arguing much as in the proof of (i), we see that

$$
\begin{align*}
\left|\int_{0}^{\sigma / 2 \delta} s^{v} e^{F(s / \sigma)} \frac{\mathrm{d} s}{s}\right| & \leqslant \int_{0}^{\sigma / 2 \delta} s^{\operatorname{Re} v} e^{\operatorname{Re} F(s / \sigma)} \frac{\mathrm{d} s}{s} \tag{10}\\
& \leqslant \int_{0}^{\sigma / 2 \delta} s^{\operatorname{Re} v} e^{-\left(1-\delta^{\prime}\right)^{2} a \sigma / s} \frac{\mathrm{~d} s}{s} \\
& =\left(\left(1-\delta^{\prime}\right)^{2} a \sigma\right)^{\operatorname{Re} v} \int_{2 \delta\left(1-\delta^{\prime}\right)^{2} a}^{\infty} v^{-\operatorname{Re} v} e^{-v} \frac{\mathrm{~d} v}{v} \\
& \leqslant C \sigma^{\operatorname{Re} v} a^{-1} e^{-2 \delta\left(1-\delta^{\prime}\right)^{2} a} .
\end{align*}
$$

By changing variables, we get

$$
\left|\int_{\sigma / 2 \delta}^{1 / 2} s^{v} e^{F(s / \sigma)} \frac{\mathrm{d} s}{s}\right|=\sigma^{\operatorname{Re} v}\left|\int_{\delta^{\prime}}^{1 / 2 \sigma} v^{v} e^{F(v)} \frac{\mathrm{d} v}{v}\right| .
$$

We claim that there exists C such that

$$
\left|\int_{\delta^{\prime}}^{1 / 2 \sigma} v^{v} e^{F(v)} \frac{\mathrm{d} v}{v}\right| \leqslant\left\{\begin{array}{lll}
C(1+|v|) a^{-1 / 2} & \text { if } \quad b=0 \tag{11}\\
C(1+|v|)(a b)^{-1} & \text { if } \quad b>0
\end{array}\right.
$$

Assuming the claim, we immediately get (ii) from (10) and (11).
We now prove the claim, considering the two cases $1 /(4-1 / \delta) \leqslant \sigma \leqslant \delta$ and $\sigma<1 /(4-1 / \delta)$ separately.

Suppose first that $1 /(4-1 / \delta) \leqslant \sigma \leqslant \delta$. By the mean value theorem, we may write $v^{v-1}=1+R(v ; v)$, where

$$
|R(v ; v)| \leqslant C(1+|v|)|v-1| \quad \forall v \in\left[\delta^{\prime}, 2-\delta^{\prime}\right] .
$$

Correspondingly, we write

$$
\int_{\delta^{\prime}}^{1 / 2 \sigma} v^{v} e^{F(v)} \frac{\mathrm{d} v}{v}=\int_{\delta^{\prime}}^{1 / 2 \sigma} e^{F(v)} \mathrm{d} v+\int_{\delta^{\prime}}^{1 / 2 \sigma} R(v ; v) e^{F(v)} \mathrm{d} v .
$$

If v is in $\left[\delta^{\prime}, 2-\delta^{\prime}\right]$, then $\mathscr{R} F(v)=-a\left((v-1)^{2} / v\right) \leqslant-a\left((v-1)^{2} /\left(2-\delta^{\prime}\right)\right)$. Therefore,

$$
\begin{aligned}
\left|\int_{\delta^{\prime}}^{1 / 2 \sigma} R(v, v) e^{F(v)} \mathrm{d} v\right| & \leqslant C(1+|v|) \int_{\delta^{\prime}}^{2-\delta^{\prime}}|v-1| e^{-a(v-1)^{2} /\left(2-\delta^{\prime}\right)} \mathrm{d} v \\
& =2 C(1+|v|)\left(2-\delta^{\prime}\right) a^{-1} \int_{0}^{\left(1-\delta^{\prime}\right) \sqrt{a /\left(2-\delta^{\prime}\right)}} v e^{-v^{2}} \mathrm{~d} v \\
& \leqslant C(1+|\operatorname{Im} v|)(1+a)^{-1}
\end{aligned}
$$

We now estimate $\int_{\delta^{\prime}}^{1 / 2 \sigma} e^{F(v)} \mathrm{d} v$. If $b=0$, then

$$
\begin{aligned}
\int_{\delta^{\prime}}^{1 / 2 \sigma} e^{F(v)} \mathrm{d} v & \leqslant \int_{\delta^{\prime}}^{2-\delta^{\prime}} e^{-a(v-1)^{2} /\left(2-\delta^{\prime}\right)} \mathrm{d} v \\
& =2\left(\frac{2-\delta^{\prime}}{a}\right)^{1 / 2} \int_{0}^{\left(1-\delta^{\prime}\right) \sqrt{a /\left(2-\delta^{\prime}\right)}} e^{-s^{2}} \mathrm{~d} s \\
& \leqslant C(1+a)^{-1 / 2} .
\end{aligned}
$$

If $b>0$, an integration by parts shows that

$$
\begin{aligned}
\int_{\delta^{\prime}}^{1 / 2 \sigma} e^{F(v)} \mathrm{d} v & =\int_{\delta^{\prime}}^{1 / 2 \sigma} e^{\operatorname{Re} F(v)} e^{i \operatorname{Im} F(v)} \mathrm{d} v \\
& =\left.\frac{e^{F(v)}}{i \operatorname{Im} F^{\prime}(v)}\right|_{\delta^{\prime}} ^{\sigma / 2}+i \int_{\delta^{\prime}}^{1 / 2 \sigma}\left(\frac{\operatorname{Re} F^{\prime}(v)}{\operatorname{Im} F^{\prime}(v)}-\frac{\operatorname{Im} F^{\prime \prime}(v)}{\left(\operatorname{Im} F^{\prime}(v)\right)^{2}}\right) e^{F(v)} \mathrm{d} v .
\end{aligned}
$$

Since $\operatorname{Im} F^{\prime}(v)=-a b\left(1+v^{-2}\right), \quad \operatorname{Im} F^{\prime \prime}(v)=2 a b v^{-3} \quad$ and $\quad \operatorname{Re} F^{\prime}(v)=$ $a\left(v^{-2}-1\right)$,

$$
\left|\int_{\delta^{\prime}}^{1 / 2 \sigma} e^{F(v)} \mathrm{d} v\right| \leqslant C(a b)^{-1}\left(1+a \int_{\delta^{\prime}}^{2-\delta^{\prime}}|v-1| e^{\mathrm{Re} F(v)} \mathrm{d} v\right) .
$$

We have already shown that the last integral is bounded by $C(1+a)^{-1}$. Thus, we may conclude that

$$
\left|\int_{\delta^{\prime}}^{1 / 2 \sigma} e^{F(v)} \mathrm{d} v\right| \leqslant C(a b)^{-1},
$$

as required to finish the proof of the claim in the case where $1 /(4-1 / \delta) \leqslant \sigma \leqslant \delta$.

We now consider the case where $\sigma<1 /(4-1 / \delta)$. Clearly,

$$
\left|\int_{\delta^{\prime}}^{1 / 2 \sigma} v^{v} e^{F(v)} \frac{\mathrm{d} v}{v}\right| \leqslant\left|\int_{\delta^{\prime}}^{2-\delta^{\prime}} v^{v} e^{F(v)} \frac{\mathrm{d} v}{v}\right|+\left|\int_{2-\delta^{\prime}}^{1 / 2 \sigma} v^{v} e^{F(v)} \frac{\mathrm{d} v}{v}\right| .
$$

From (11) (with $\sigma=1 /(4-1 / \delta)$) we see that

$$
\left|\int_{\delta^{\prime}}^{2-\delta^{\prime}} v^{v} e^{F(v)} \frac{\mathrm{d} v}{v}\right| \leqslant\left\{\begin{array}{lll}
C(1+|\operatorname{Im} v|) a^{-1 / 2} & \text { if } & b=0 \\
C(1+|\operatorname{Im} v|)(a b)^{-1} & \text { if } & b>0 .
\end{array}\right.
$$

Since $v \mapsto \operatorname{Re} F(v) / v$ is decreasing in $[1, \infty)$, we have that $\operatorname{Re} F(v) \leqslant$ $-\left(1-\delta^{\prime}\right)^{2} a v /\left(2-\delta^{\prime}\right)^{2}$ on $\left[2-\delta^{\prime}, \infty\right)$, and so

$$
\begin{aligned}
&\left|\int_{2-\delta^{\prime}}^{1 / 2 \sigma} v^{v} e^{F(v)} \frac{\mathrm{d} v}{v}\right| \leqslant \int_{2-\delta^{\prime}}^{1 / 2 \sigma} v^{\operatorname{Re} v} e^{\operatorname{Re} F(v)} \frac{\mathrm{d} v}{v} \\
& \times \int_{2-\delta^{\prime}}^{\infty} v^{\operatorname{Re} v} e^{-\left(1-\delta^{\prime}\right)^{2} a v /\left(2-\delta^{\prime}\right)^{2} \frac{\mathrm{~d} v}{v}} \\
&=\left(\frac{\left(1-\delta^{\prime}\right)^{2} a}{\left(2-\delta^{\prime}\right)^{2}}\right)^{-\operatorname{Re} v} \int_{\left(1-\delta^{\prime}\right)^{2} a /\left(2-\delta^{\prime}\right)}^{\infty} s^{\operatorname{Re} v} e^{-s} \frac{\mathrm{~d} s}{s} \\
& \sim a^{-1} e^{-\left(1-\delta^{\prime}\right)^{2} a /\left(2-\delta^{\prime}\right)},
\end{aligned}
$$

as required to finish the proof of the claim and of the lemma.
We now estimate $r_{\varepsilon}^{p, \text { iu }}$ off the local region L. We call the complementary set of L the global region and denote it by G. Explicitly,

$$
G=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d}:|x-y|>\min \left(1,|x+y|^{-1}\right)\right\} .
$$

For $0<\eta<1$, let D^{η} be defined by

$$
D^{\eta}=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d}:|x-y|<\eta|x+y|\right\} .
$$

Proposition 4.3. Suppose that $1<p<2$ and that $0<\eta<1$. Then there exists C such that for every $\varepsilon \in(0,1]$ and every $u \in \mathbb{R}^{+}$the following hold:
(i) for every $(x, y) \in G \cap D^{\eta}$

$$
\begin{aligned}
\left|r_{\varepsilon}^{p, i u}(x, y)\right| \leqslant & C(1+u)^{2} \frac{e^{-\phi_{p} u}}{|\Gamma(i u)|} \frac{|x+y|^{d / 2-1}}{|x-y|^{d / 2+1}}\left(1+\frac{|x-y|^{3 / 2}}{|x+y|^{1 / 2}}\right) \\
& \times e^{\left(|x|^{2}+|y|^{2}-\left(\cos \phi_{p}\right)|x-y||x+y|\right) / 2} ;
\end{aligned}
$$

(ii) for $1 / 2<\eta<1$ and for every $(x, y) \in G \backslash D^{\eta}$

$$
\begin{aligned}
\left|r_{\varepsilon}^{p, i u}(x, y)\right| \leqslant & C(1+u) \frac{e^{-\phi_{p} u}}{\Gamma(i u)} \frac{e^{-\mu|x-y|^{2}}}{|x-y|^{2}} \\
& \times e^{\left(|x|^{2}+|y|^{2}-\left(\cos \phi_{p}\right)|x-y||x+y|\right) / 2},
\end{aligned}
$$

where $\mu=(1-1 / 2 \eta)^{2}\left(\cos \phi_{p}\right) / 2$.
Proof. We consider (9). By elementary complex analysis

$$
\tau(\zeta)^{i u-1} \frac{(1+\zeta)^{d}}{\zeta^{d / 2} e^{\varepsilon \tau(\zeta)}} \tau^{\prime}(\zeta)=2^{i u} \zeta^{i u-d / 2-1}+R(\zeta ; i u, \varepsilon),
$$

where the remainder R satisfies the estimate

$$
|R(\zeta ; i u, \varepsilon)| \leqslant C(1+u) e^{-\phi_{p} u}|\zeta|^{-d / 2} \quad \forall \zeta \in \tau^{-1}\left(\alpha_{p}^{*}\right),
$$

for some C independent of u. Then, we may write

$$
\begin{equation*}
r_{\varepsilon}^{p, i u}(x, y)=\frac{e^{\left(|x|^{2}+|y|^{2}\right) / 2}}{2^{d-i u} \Gamma(i u)} A(x, y ; i u)+\frac{e^{\left(|x|^{2}+|y|^{2}\right) / 2}}{2^{d} \Gamma(i u)} B(x, y ; i u), \tag{12}
\end{equation*}
$$

where

$$
A(x, y ; i u)=\int_{\tau^{-1}{ }_{\circ \alpha_{p}}} \zeta^{i u-d / 2-1} e^{-\left(\zeta|x+y|^{2}+\zeta^{-1}|x-y|^{2}\right) / 4} \mathrm{~d} \zeta
$$

and

$$
B(x, y ; i u)=\int_{\tau^{-1} \circ \alpha_{p}} R(\zeta ; i u, \varepsilon) e^{-\left(\zeta|x+y|^{2}+\zeta^{-1}|x-y|^{2}\right) / 4} \mathrm{~d} \zeta .
$$

We parametrise $\tau^{-1} \circ \alpha_{p}$ by $\zeta=e^{i \phi_{p}} t$, where $0 \leqslant t \leqslant 1 / 2$. It is easy to check that

$$
\begin{aligned}
-\frac{1}{4}\left(\zeta|x+y|^{2}+\zeta^{-1}|x-y|^{2}\right. & =-a(t / \sigma+\sigma / t)+i a b(\sigma / t-t / \sigma) \\
& =F_{a, b}(t / \sigma)-2 a
\end{aligned}
$$

where $a=\left(\cos \phi_{p}\right)|x+y||x-y| / 4, b=\tan \phi_{p}, \sigma=|x-y| /|x+y|$ and $F_{a, b}$ is as in Lemma 4.2. A simple computation shows that

$$
\begin{equation*}
A(x, y ; i u)=e^{i i_{p}(i u-d / 2)} e^{-2 a} \int_{0}^{1 / 2} t^{i u-d / 2} e^{F_{a, b}(t / \sigma)} \frac{\mathrm{d} t}{t}, \tag{13}
\end{equation*}
$$

and similarly that

$$
\begin{align*}
|B(x, y ; i u)| & \leqslant \int_{\tau^{-1{ }_{\circ} \alpha_{p}}}|R(\zeta ; i u, \varepsilon)| e^{-\operatorname{Re}\left(\zeta|x+y|^{2}+\zeta^{-1}|x-y|^{2}\right) / 4} \mathrm{~d} \zeta \tag{14}\\
& \leqslant C(1+u) e^{-\phi_{p} u} e^{-2 a} \int_{0}^{1 / 2} t^{1-d / 2} e^{F_{a, 0}(t / \sigma)} \frac{\mathrm{d} t}{t}
\end{align*}
$$

We now prove (i). We claim that if $(x, y) \in G \cap D^{\eta}$, then $|x-y||x+y|>1$. Indeed, if $\min \left(1,|x+y|^{-1}\right)=|x+y|^{-1}$, then $|x-y||x+y|>1$. If, instead, $\min \left(1,|x+y|^{-1}\right)=1$, then $|x+y| \leqslant 1$, and $|x-y|>1$ because $(x, y) \in G$. Thus,

$$
|x+y| \leqslant 1<|x-y|<\eta|x+y|,
$$

which contradicts $\eta<1$, and the claim is proved. Consequently, $a \geqslant\left(\cos \phi_{p}\right) / 4$. We may apply Lemma $4.2($ ii $)$ (with $\kappa=\left(\cos \phi_{p}\right) / 4, v=i u-d / 2$ and $\delta=\eta$) to estimate the absolute value of the integral in (13) and (with the same values of κ and δ, but with $v=1-d / 2$ and $b=0$) to estimate the last integral in (14). We obtain that

$$
|A(x, y ; i u)| \leqslant C(1+u) e^{-\phi_{p} u} \frac{|x+y|^{d / 2-1}}{|x-y|^{d / 2+1}} e^{-\left(\cos \phi_{p}\right)|x+y||x-y| / 2}
$$

and that

$$
\left\lvert\, B(x, y ; i u) \leqslant C(1+u)^{2} e^{-\phi_{p} u} \frac{|x+y|^{d / 2-3 / 2}}{|x-y|^{d / 2-1 / 2}} e^{-\left(\cos \phi_{p}\right)|x+y||x-y|^{2}} .\right.
$$

By combining these estimates for $A(x, y ; i u)$ and $B(x, y ; i u)$ with (12), we obtain the required estimates for $r_{\varepsilon}^{p, i u}$ in the region $G \cap D^{\eta}$.

We now prove (ii). We claim that if $(x, y) \in G \cap\left(D^{\eta}\right)^{c}$, then $|x-y|^{2} \geqslant \eta$. Indeed,

$$
|x-y| \geqslant \min \left(1,|x+y|^{-1}\right) \geqslant \min \left(1, \eta|x-y|^{-1}\right) .
$$

Then either $\eta|x-y|^{-1}>1$, so that $|x-y|>1$, or $\eta|x-y|^{-1} \leqslant 1$, so that $|x-y|>\eta|x-y|^{-1}$, i.e., $|x-y|^{2} \geqslant \eta$, as required to prove the claim. Now, $\sigma \geqslant \eta$ and $a \sigma=\left(\cos \phi_{p}\right)|x-y|^{2} / 4>\eta\left(\cos \phi_{p}\right) / 4$. Therefore, we may apply Lemma 4.2(i) (with $\kappa=\eta\left(\cos \phi_{p}\right) / 4, v=i u-d / 2$ and $\delta=\eta$) to estimate the absolute value of the integral in (13) and (with the same values of κ and δ, but with $v=1-d / 2$) to estimate the last integral in (14). We obtain that

$$
\begin{aligned}
|A(x, y ; i u)| \leqslant & C e^{-\phi_{p} u}|x-y|^{-2} \\
& \times e^{-\left(\cos \phi_{p}\right)|x+y||x-y| / 2-(1-1 / 2 \eta)^{2} \cos \phi_{p}|x-y|^{2} / 2},
\end{aligned}
$$

and that

$$
\begin{aligned}
|B(x, y ; i u)| \leqslant & C(1+u) e^{-\phi_{p} u}|x-y|^{-2} \\
& \times e^{-\left(\cos \phi_{p}\right)|x+y||x-y| / 2-(1-1 / 2 \eta)^{2} \cos \phi_{p}|x-y|^{2} / 2} .
\end{aligned}
$$

By combining these estimates with (12), we obtain the required estimates for $r_{\varepsilon}^{p, i u}$ in the region $G \backslash D^{\eta}$.

The proof of the proposition is complete.
The next proposition gives a condition which implies that an integral operator with kernel supported in the global region G is bounded on $L^{p}(\gamma)$. A related result, due to S . Pérez, is in [P, p. 71].

If $E \subset \mathbb{R}^{d} \times \mathbb{R}^{d}$, we denote by E_{x} its x-section, i.e., the set $\left\{y \in \mathbb{R}^{d}\right.$: $(x, y) \in E\}$.

Proposition 4.4. Suppose that $1<p<\infty, \quad|1 / r-1 / 2| \leqslant|1 / p-1 / 2|$, $0<\eta<1, \mu>0$ and $m: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{C}$ is measurable. The following hold:
(i) if for every $(x, y) \in D^{\eta}$

$$
|m(x, y)| \leqslant C \frac{|x+y|^{d / 2-1}}{|x-y|^{d / 2+1}}\left(1+\frac{|x-y|^{3 / 2}}{|x+y|^{1 / 2}}\right) e^{\left(|x|^{2}+|y|^{2}\right) / 2-|1 / p-1 / 2||x-y||x+y|}
$$

then the integral operator \mathscr{M}_{1} defined by

$$
\mathscr{M}_{1} \phi(x)=\int_{G_{x} \cap D_{x}^{\eta}} m(x, y) \phi(y) d \gamma(y) \quad \forall \phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)
$$

extends to a bounded operator on $L^{r}(\gamma)$;
(ii) if for every $(x, y) \in\left(D^{\eta}\right)^{c}$

$$
|m(x, y)| \leqslant C \frac{e^{-\mu|x-y|^{2}}}{|x-y|^{2}} e^{\left(|x|^{2}+|y|^{2}\right) / 2-|1 / p-1 / 2||x-y||x+y|}
$$

then the integral operator \mathscr{M}_{2} defined by

$$
\mathscr{M}_{2} \phi(x)=\int_{G_{x} \backslash D_{x}^{n}} m(x, y) \phi(y) d \gamma(y) \quad \forall \phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)
$$

extends to a bounded operator on $L^{r}(\gamma)$.
Proof. We fix r such that $|1 / r-1 / 2| \leqslant|1 / p-1 / 2|$. Let $\mathscr{U}_{r}: L^{r}\left(\mathbb{R}^{d}\right) \rightarrow$ $L^{r}(\gamma)$ denote the invertible isometry defined by

$$
\mathscr{U}_{r} f=\gamma_{0}^{-1 / r} f \quad \forall f \in L^{r}\left(\mathbb{R}^{d}\right) .
$$

We prove (i). We need to show that the operator $\mathscr{U}_{r}^{-1} \mathscr{M}_{1} \mathscr{U}_{r}$, whose kernel with respect to Lebesgue measure is $\left(\gamma_{0}^{1 / r} \otimes \gamma_{0}^{1 / r^{\prime}}\right) m \chi_{G}$, extends to a bounded operator on $L^{r}\left(\mathbb{R}^{d}\right)$. We define $q_{r}: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ by

$$
\left.q_{r}(x, y)=\left.\left|\frac{1}{r}-\frac{1}{2}\right|| | x\right|^{2}-|y|^{2}\left|-\left|\frac{1}{p}-\frac{1}{2}\right|\right| x+y| | x-y \right\rvert\, .
$$

Note that

$$
\gamma_{0}(x)^{1 / r} \gamma_{0}(y)^{1 / r^{\prime}} e^{\left(|x|^{2}+|y|^{2}\right) / 2-|1 / p-1 / 2||x-y||x+y|} \leqslant e^{q_{r}(x, y)} .
$$

Since $q_{r} \leqslant q_{p}$, our hypotheses imply that

$$
\begin{gathered}
\gamma_{0}^{1 / r}(x)|m(x, y)| \gamma_{0}^{1 / r^{\prime}}(y) \leqslant C \frac{|x+y|^{d / 2-1}}{|x-y|^{d / 2+1}}\left(1+\frac{|x-y|^{3 / 2}}{|x+y|^{1 / 2}}\right) e^{q_{p}(x, y)} \\
\forall(x, y) \in D^{\eta} .
\end{gathered}
$$

We claim that

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{d}} \int_{G_{x} \cap D_{x}^{\eta}} \frac{|x+y|^{d / 2-1}}{|x-y|^{d / 2+1}}\left(1+\frac{|x-y|^{3 / 2}}{|x+y|^{1 / 2}}\right) e^{q_{p}(x, y)} \mathrm{d} y<\infty . \tag{15}
\end{equation*}
$$

If the claim holds, then by symmetry (15) holds with the role of x and y interchanged, so that

$$
\begin{aligned}
& \sup _{x \in \mathbb{R}^{d}} \int_{G_{x} \cap D_{x}^{\eta}} \gamma_{0}^{1 / r}(x)|m(x, y)| \gamma_{0}^{1 / r^{\prime}}(y) \mathrm{d} y \\
& \quad+\sup _{y \in \mathbb{R}^{d}} \int_{G_{y} \cap D_{y}^{n}} \gamma_{0}^{1 / r}(x)|m(x, y)| \gamma_{0}^{1 / r^{\prime}}(y) \mathrm{d} x<\infty .
\end{aligned}
$$

Hence $\mathscr{U}_{r}^{-1} \mathscr{M}_{1} \mathscr{U}_{r}$ extends to a bounded operator on $L^{1}\left(\mathbb{R}^{d}\right)$ and on $L^{\infty}\left(\mathbb{R}^{d}\right)$. By interpolation, $\mathscr{U}_{r}^{-1} \mathscr{M}_{1} \mathscr{U}_{r}$ extends to a bounded operator on $L^{r}\left(\mathbb{R}^{d}\right)$, as required.

To complete the proof of (i), it remains to prove (15). We denote by $B(z, r)$ the Euclidean ball centered at z and with radius r. It is straightforward to check that for every x in $\mathbb{R}^{d} \backslash\{0\}$ the set D_{x}^{η} is the ball $B\left(\left(\left(1+\eta^{2}\right) /\left(1-\eta^{2}\right)\right) x,\left(2 \eta /\left(1-\eta^{2}\right)\right)|x|\right)$. Thus, if $(x, y) \in D^{\eta}$

$$
\begin{equation*}
|y| \leqslant \frac{1+\eta}{1-\eta}|x| . \tag{16}
\end{equation*}
$$

Moreover, $x+y$ is in the ball centered at $\left(2 /\left(1-\eta^{2}\right)\right) x$ and of radius $\left(2 \eta /\left(1-\eta^{2}\right)\right)|x|$, so that

$$
\begin{equation*}
\frac{2}{1+\eta}|x| \leqslant|x+y| \leqslant \frac{2}{1-\eta}|x| . \tag{17}
\end{equation*}
$$

Note that $G_{x} \cap D_{x}^{\eta}$ is nonempty if and only if $|x|>c$ for some positive c. It is easy to check that there exists a constant $a>0$ such that for every x in \mathbb{R}^{d} we have that $G_{x} \subseteq\left\{y \in \mathbb{R}^{d}:|y-x| \geqslant a /(1+|x|)\right\}$.

We treat the cases where $d=1$ and $d>1$ separately.

If $d=1$, then $q_{p}=0$. In view of the remarks above

$$
\begin{aligned}
\int_{G_{x} \cap D_{x}^{\eta}} & \left(|x+y|^{-1 / 2}|x-y|^{-3 / 2}+|x+y|^{-1}\right) \mathrm{d} y \\
& \leqslant C|x|^{-1 / 2} \int_{G_{x} \cap D_{x}^{\eta}}|x-y|^{-3 / 2} \mathrm{~d} y+C|x|^{-1} \int_{G_{x} \cap D_{x}^{\eta}} \mathrm{d} y \\
& \leqslant C|x|^{-1 / 2} \int_{a /(1+|x|)}^{(1+\eta) /(1-\eta)|x|} r^{-3 / 2} \mathrm{~d} r+C|x|^{-1} \int_{a /(1+|x|)}^{(1+\eta) /(1-\eta)|x|} \mathrm{d} r \\
& \leqslant C
\end{aligned}
$$

as required.
Suppose now that $d>1$. We need to estimate q_{p} on $G_{x} \cap D_{x}^{\eta}$. By combining (16) and (17), we obtain that

$$
\begin{aligned}
\left||y|^{2}-|x|^{2}\right|+|x-y||x+y| & \leqslant|x-y|(|x|+|y|+|x+y|) \\
& \leqslant \frac{4}{1-\eta}|x-y||x| .
\end{aligned}
$$

If $x \neq 0$, let $\pi_{x}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ denote the orthogonal projection onto the hyperplane of \mathbb{R}^{d} orthogonal to x. Since $\left||y|^{2}-|x|^{2}\right|^{2}-|x-y|^{2}|x+y|^{2}=$ $-4|x|^{2}\left|\pi_{x}(y)\right|^{2}$, we see that

$$
\begin{aligned}
\left|\left|y^{2}\right|-|x|^{2}\right|-|x-y||x+y| & =-4 \frac{|x|^{2}\left|\pi_{x}(y)\right|^{2}}{\left.| | y\right|^{2}-|x|^{2}|+|x-y|| x+y \mid} \\
& \leqslant(\eta-1) \frac{|x|\left|\pi_{x}(y)^{2}\right|}{|x-y|} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \int_{G_{x} \cap D_{x}^{\eta}} \frac{|x+y|^{d / 2-1}}{|x-y|^{d / 2+1}} e^{q_{p}(x, y)} \mathrm{d} y \\
& \quad \leqslant C|x|^{d / 2-1} \int_{G_{x} \cap D_{x}^{n}} \frac{e^{(\eta-1)|x|\left|\pi_{x}(y)\right|^{2 / \mid x-y} \mid}}{|x-y|^{d / 2+1}} \mathrm{~d} y
\end{aligned}
$$

We pass to polar coordinates around x, i.e., we write $y=x+r \omega$, where r is in \mathbb{R}^{+}and $|\omega|=1$; the right hand side in the last inequality is bounded by
$C|x|^{d / 2-1} \int_{S^{d-1}} \mathrm{~d} \sigma(\omega) \int_{a /(1+|x|)}^{(1+\eta) /(1-\eta)|x|} r^{d / 2-1} \exp \left((\eta-1) \frac{|x|\left|\pi_{x}(x+r \omega)\right|^{2}}{r}\right) \frac{\mathrm{d} r}{r}$.

We observe that $\left|\pi_{x}(x+r \omega)\right|^{2}=r^{2}\left|\pi_{x}(\omega)\right|^{2}$, change variables by letting $|x|\left|\pi_{x}(\omega)\right|^{2} r=v$ in the inner integral, and obtain for $d>2$

$$
\begin{aligned}
\int_{G_{x} \cap D_{x}^{\eta}} & \frac{|x+y|^{d / 2-1}}{|x-y|^{d / 2+1}} e^{q_{p}(x, y)} \mathrm{d} y \\
& \leqslant C \int_{S^{d-1}} \mathrm{~d} \sigma(\omega)\left|\pi_{x}(\omega)\right|^{2-d} \int_{a|x|\left|\pi_{x}(\omega)\right|^{2} /(1+|x|)}^{(1+\eta) /(1-\eta)|x|^{2}\left|\pi_{x}(\omega)\right|^{2}} v^{d / 2-1} e^{(\eta-1) v} \frac{\mathrm{~d} v}{v} \\
& \leqslant C \int_{\left\{\left|\pi_{x}(\omega)\right|<1 /|x|\right\}}\left|\pi_{x}(\omega)\right|^{2-d}\left(|x|\left|\pi_{x}(\omega)\right|\right)^{d-2} \mathrm{~d} \sigma(\omega) \\
& +C \int_{\left\{\left|\pi_{x}(\omega)\right| \geqslant 1| | x \mid\right\}}\left|\pi_{x}(\omega)\right|^{2-d} \mathrm{~d} \sigma(\omega) \\
& \leqslant C
\end{aligned}
$$

since here $|x|>c$. For $d=2$ we get

$$
\begin{aligned}
& \int_{G_{x} \cap D_{x}^{\eta}} \frac{|x+y|^{d / 2-1}}{|x-y|^{d / 2+1}} e^{q_{p}(x, y)} \mathrm{d} y \\
& \leqslant C \int_{S^{d-1}} \mathrm{~d} \sigma(\omega) \int_{\left.a|x|| | \pi_{x}(\omega)\right|^{2} /(1+|x|)}^{(1+\eta) /(1-\eta)|x|^{2}\left|\pi_{x}(\omega)\right|^{2}} e^{(\eta-1) v} \frac{\mathrm{~d} v}{v} \\
& \leqslant C \int_{S^{d-1}} \mathrm{~d} \sigma(\omega) \int_{c\left|\pi_{x}(\omega)\right|^{2}}^{\infty} e^{(\eta-1) v} \frac{\mathrm{~d} v}{v} \\
& \leqslant C \int_{S^{d-1}} \log \left(1+\frac{1}{\left|\pi_{x}(\omega)\right|}\right) \mathrm{d} \sigma(\omega) \\
& \leqslant C .
\end{aligned}
$$

Analogously, we may prove that

$$
\sup _{x \in \mathbb{R}^{d}} \int_{G_{x} \cap D_{x}^{\eta}} \frac{|x+y|^{d / 2-3 / 2}}{|x-y|^{d / 2-1 / 2}} e^{q_{p}(x, y)} \mathrm{d} y<\infty
$$

as required to finish the proof of (15) and of (i).
We now prove (ii). By arguing as in the proof of (i), we may reduce the problem to showing that

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{d}} \int_{G_{x} \backslash D_{x}^{\eta}} \frac{1}{\left|x-y^{2}\right|} e^{q_{p}(x, y)-\mu|x-y|^{2}} \mathrm{~d} y<\infty . \tag{18}
\end{equation*}
$$

We observe that $|x-y| \geqslant c$ for y in $G_{x} \backslash D_{x}^{\eta}$. Since $q_{p} \leqslant 0$, (18) is easily proved.

The proof of the proposition is now complete.

5. ANALYSIS OF $J^{p, w}(\mathscr{L}+\varepsilon \mathscr{I})$

In Lemma 5.1 below we prove estimates for $\left\|\left\|J^{p, w}(\mathscr{L}+\varepsilon \mathscr{I})\right\|_{2}\right.$ when $\mathscr{R} w \geqslant 0$. We denote by $j_{\varepsilon}^{p, w}$ the kernel of $J^{p, w}(\mathscr{L}+\varepsilon \mathscr{I})$. In Proposition 5.2, we shall prove that the distribution $j_{\varepsilon}^{p, w}$ agrees off the diagonal with the function $r_{\varepsilon}^{p, w}$ from Section 4. It follows that $j_{\varepsilon}^{p, w}$ is locally integrable for Re $w>0$, and if $\operatorname{Re} w=0$ its singular support is contained in the diagonal of $\mathbb{R}^{d} \times \mathbb{R}^{d}$. The main result concerning $J^{p, w}(\mathscr{L}+\varepsilon \mathscr{I})$ is Proposition 3.1.

Lemma 5.1. Suppose that $1<p<2$ and that $N \in \mathbb{R}^{+}$. Then there exists C such that for every $\varepsilon \in \mathbb{R}^{+}$and for every w with $0 \leqslant \mathscr{R} w \leqslant N$

$$
\left\|J^{p, w}(\mathscr{L}+\varepsilon \mathscr{I})\right\|_{2} \leqslant C \frac{e^{-\phi_{p} \operatorname{Im} w}}{|\Gamma(1+w)|} .
$$

Moreover, let u be in $\mathbb{R} \backslash\{0\}$. Then $J^{p, w}(\mathscr{L}+\varepsilon \mathscr{I})$ converges to $J^{p, i u}(\mathscr{L}+\varepsilon \mathscr{I})$ in the strong operator topology of $L^{2}(\gamma)$ as w tends to iu in $\mathbf{S}_{\pi / 2}$.

Proof. Note that $\arg z \geqslant \phi_{p}$ and $|z| \leqslant C$ for every z in α_{p}^{*}. Thus, $\left|z^{w}\right| \leqslant|z|^{\operatorname{Re} w} e^{-\phi_{p} \operatorname{Im} w}$, and we deduce from (8) that for $\lambda>0$

$$
\left|J^{p, w}(\lambda)\right| \leqslant C \frac{e^{-\phi_{p} \operatorname{Im} w}}{|\Gamma(1+w)|}\left(e^{-\operatorname{Re} z_{p} \lambda}+\lambda \int_{\alpha_{p}}|z|^{\operatorname{Re} w} e^{-\lambda \operatorname{Re} z}|\mathrm{~d} z|\right) .
$$

We claim that

$$
\lambda \int_{\alpha_{p}}|z|^{\operatorname{Re} w} e^{-\lambda \mathscr{G} z}|\mathrm{~d} z| \leqslant C \frac{\lambda}{(1+\lambda)^{1+\operatorname{Re} w}} .
$$

Indeed,

$$
\lambda \int_{\alpha_{p}}|z|^{\operatorname{Re} w} e^{-\lambda \operatorname{Re} z}|\mathrm{~d} z| \leqslant C \lambda \int_{0}^{1} t^{\operatorname{Re} w} e^{-\lambda t} \mathrm{~d} t,
$$

and considering separately the cases $\lambda \leqslant 1$ and $\lambda>1$, one easily verifies the claim.

Thus, there exists C such that for every w with $0 \leqslant \mathscr{R} w \leqslant N$

$$
\left|J^{p, w}(\lambda)\right| \leqslant C \frac{e^{-\phi_{p} \operatorname{Im} w}}{|\Gamma(1+w)|}\left(e^{-\operatorname{Re} z_{p} \lambda}+\frac{\lambda}{(1+\lambda)^{1+\operatorname{Re} w}}\right) \quad \forall \lambda>0 .
$$

The required estimate for $\left\|\left\|J^{p, w}(\mathscr{L}+\varepsilon \mathscr{I})\right\|_{2}\right.$ follows from this by spectral theory.

We already know that $J^{p, w}(\lambda)$ is holomorphic in w near $i u$, and a routine computation shows that $J^{p, w}(\lambda)-J^{p, i u}(\lambda)$ is uniformly bounded as w tends to $i u$ within $\mathbf{S}_{\pi / 2}$.

$$
\begin{aligned}
& \left\|J^{p, w}(\mathscr{L}+\varepsilon \mathscr{I}) f-J^{p, i u}(\mathscr{L}+\varepsilon \mathscr{I}) f\right\|_{2}^{2} \\
& \quad=\sum_{n=1}^{\infty}\left|J^{p, w}(n+\varepsilon)-J^{p, i u}(n+\varepsilon)\right|^{2}\left\|\mathscr{P}_{n} f\right\|_{2}^{2} \rightarrow 0,
\end{aligned}
$$

as required to finish the proof of the lemma.
Proposition 5.2. Suppose that $1<p<2$ and that $\varepsilon \in \mathbb{R}^{+}$.
(i) If $\mathscr{R} w>0$, then the distribution $j_{\varepsilon}^{p, w}$ is the locally integrable function $r_{\varepsilon}^{p, w}$.
(ii) If $u \in \mathbb{R} \backslash\{0\}$ and $\Phi \in C_{c}^{\infty}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$, then

$$
\begin{aligned}
\left\langle\left(1 \otimes \gamma_{0}\right) j_{\varepsilon}^{p, i u} \Phi\right\rangle= & J^{p, i u}(\varepsilon) \int_{\mathbb{R}^{d}} \Phi(x, x) \mathrm{d} x \\
& +\iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}}(\Phi(x, y)-\Phi(x, x)) r_{\varepsilon}^{p, i u}(x, y) \mathrm{d} x \mathrm{~d} \gamma(y) .
\end{aligned}
$$

In particular, $j_{\varepsilon}^{p, \text { iu }}$ agrees with $r_{\varepsilon}^{p, \text { iu }}$ off the diagonal.
Proof. We first prove (i). For every pair of functions ϕ and ψ in $L^{2}(\gamma)$

$$
\begin{aligned}
\left(J^{p, w}(\mathscr{L}+\varepsilon \mathscr{I}) \phi, \psi\right) & =\sum_{n=0}^{\infty} J^{p, w}(n+\varepsilon)\left(\mathscr{P}_{n} \phi, \psi\right) \\
& =\sum_{n=0}^{\infty} \frac{1}{\Gamma(w)} \int_{\alpha_{p}} z^{w} e^{-(n+\varepsilon) z} \frac{\mathrm{~d} z}{z}\left(\mathscr{P}_{n} \phi, \psi\right),
\end{aligned}
$$

where (\cdot, \cdot) denotes the inner product in $L^{2}(\gamma)$. Since $\sum_{n=0}^{\infty}\left|\left(\mathscr{P}_{n} \phi, \psi\right)\right| \leqslant$ $\|\phi\|_{2}\|\psi\|_{2}$ and

$$
\left|\frac{1}{\Gamma(w)} \int_{\alpha_{p}} z^{w} e^{-(n+z) z} \frac{\mathrm{~d} z}{z}\right| \leqslant C(w) \int_{\alpha_{p}}|z|^{\operatorname{Re} w-1}|\mathrm{~d} z|<\infty,
$$

we may interchange the order of summation and integration to get

$$
\begin{aligned}
\left(J^{p, w}(\mathscr{L}+\varepsilon \mathscr{I}) \phi, \psi\right)= & \frac{1}{\Gamma(w)} \int_{\alpha_{p}} \frac{\mathrm{~d} z}{z} z^{w} e^{-\varepsilon z} \sum_{n=1}^{\infty} e^{-n z}\left(\mathscr{P}_{n} \phi, \psi\right) \\
= & \frac{1}{\Gamma(w)} \int_{\alpha_{p}} \frac{\mathrm{~d} z}{z} z^{w} e^{-\varepsilon z} \iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} h_{z}(x, y) \\
& \times \phi(y) \psi(x) \mathrm{d} \gamma(x) \mathrm{d} \gamma(y) .
\end{aligned}
$$

Suppose now that ϕ and ψ are in $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$. From formula (7) for the Mehler kernel, we deduce that

$$
\begin{aligned}
\sup _{z \in \alpha_{p}^{*}}\left\|h_{z}(x, \cdot)\right\|_{L^{1}(\gamma)}= & \sup _{\zeta \in\left[0, e^{\left.i i_{p} / 2\right]}\right.}\left\|h_{\tau(\zeta)}(x, \cdot)\right\|_{L^{1}(\gamma)} \\
\leqslant & C e^{|x|^{2} / 2} \sup _{\zeta \in\left[0, e^{\left.i \phi_{p} / 2\right]}\right.} \int_{\mathbb{R}^{d}}|\zeta|^{-d / 2} \\
& \times e^{-\cos \phi_{p}|x-y|^{2} / 4|\zeta|} e^{-|y|^{2 / 2}} \mathrm{~d} y \\
\leqslant & C e^{|x|^{2 / 2}} .
\end{aligned}
$$

Thus, by Hölder's inequality,

$$
\begin{aligned}
& \iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \int_{\alpha_{p}}\left|z^{w} e^{-\varepsilon z} h_{z}(x, y) \phi(y) \psi(x)\right| \mathrm{d} \gamma(x) \mathrm{d} \gamma(y) \frac{|\mathrm{d} z|}{|z|} \\
& \quad \leqslant\|\phi\|_{\infty} \int_{\mathbb{R}^{d}} \mathrm{~d} \gamma(x) \sup _{z \in \alpha_{p}^{*}}\left\|h_{z}(x, \cdot)\right\|_{1}|\psi(x)| \int_{\alpha_{p}}\left|z^{w}\right| \frac{|\mathrm{d} z|}{|z|} \\
& \quad \leqslant C\|\phi\|_{\infty} \int_{\mathbb{R}^{d}} \mathrm{~d} \gamma(x) e^{|x|^{2} / 2}|\psi(x)| \int_{\alpha_{p}}\left|z^{w}\right| \frac{|\mathrm{d} z|}{|z|} \\
& \quad<\infty .
\end{aligned}
$$

Therefore, we may interchange the order of integration and obtain that

$$
\left(J^{p, w}(\mathscr{L}+\varepsilon \mathscr{I}) \phi, \psi\right)=\iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} r_{\varepsilon}^{p, w}(x, y) \phi(y) \psi(y) \mathrm{d} \gamma(x) \mathrm{d} \gamma(y),
$$

and finally

$$
J^{p, w}(\mathscr{L}+\varepsilon \mathscr{I}) \phi(x)=\int_{\mathbb{R}^{d}} r_{\varepsilon}^{p, w}(x, y) \phi(y) \mathrm{d} \gamma(y),
$$

as required.

We now prove (ii), and start by continuing $j_{\varepsilon}^{p, w}$ analytically to the halfplane $\operatorname{Re} w>-1 / 2$. If $\mathscr{R} w>0$ and Φ is in $C_{c}^{\infty}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$, we may write $\left\langle\left(1 \otimes \gamma_{0}\right) j_{\varepsilon}^{p, w}, \Phi\right\rangle_{\mathbb{R}^{2 d}}$ as

$$
\begin{gather*}
\iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} r_{\varepsilon}^{p, w}(x, y)(\Phi(x, y)-\Phi(x, x)) \mathrm{d} x \mathrm{~d} \gamma(y) \tag{19}\\
\quad+\iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} r_{\varepsilon}^{p, w}(x, y) \Phi(x, x) \mathrm{d} x \mathrm{~d} \gamma(y) .
\end{gather*}
$$

Since

$$
|\Phi(x, y)-\Phi(x, x)| \leqslant C|x-y|
$$

it follows from the pointwise estimates for $r_{\varepsilon}^{p, w}$ proved in Proposition 4.1 that the first integral is absolutely convergent for $\operatorname{Re} w>-1 / 2$ and defines an analytic function there.

To continue analytically the second integral, observe that by the estimates in Proposition 4.1(i) and its proof, for $\operatorname{Re} w>0$

$$
\begin{aligned}
& \iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \int_{\alpha_{p}}\left|z^{w} e^{-\varepsilon z} h_{z}(x, y) \Phi(x, x)\right| \mathrm{d} x \mathrm{~d} \gamma(y) \frac{|\mathrm{d} z|}{|z|} \\
& \quad \leqslant C e^{-\phi_{p} \operatorname{Im} w} \iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} e^{|x|^{2} / 2} \frac{|\Phi(x, x)|}{|x-y|^{d-2 \operatorname{Re} w}} e^{-|y|^{2 / 2}} \mathrm{~d} x \mathrm{~d} y .
\end{aligned}
$$

In this double integral, we integrate first in y and obtain a continuous function of x, which is clearly in $L^{1}\left(\mathbb{R}^{d}\right)$. Therefore, we may interchange the order of integration in the second integral in (19) by Fubini's theorem, integrate first in y, use the fact that $\int_{\mathbb{R}^{d}} h_{z}(x, y) \mathrm{d} \gamma(y)=1$, and obtain that

$$
\iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} p_{\varepsilon}^{p, w}(x, y) \Phi(x, x) \mathrm{d} x \mathrm{~d} \gamma(y)=J^{p, w}(\varepsilon) \int_{\mathbb{R}^{d}} \Phi(x, x) \mathrm{d} x .
$$

The right hand side here has an analytic continuation to $\operatorname{Re} w\rangle-1$.
Thus $j_{\varepsilon}^{p, w}$ can be continued to $\mathscr{R} w>-1 / 2$. In particular, $\left\langle\left(1 \otimes \gamma_{0}\right) j_{\varepsilon}^{p, w}\right.$, $\Phi\rangle_{\mathbb{R}^{2 d}}$ tends to the right-hand side of the formula in (ii), as $w \rightarrow i u$, Re $w>0$.

The convergence in the strong operator topology from Lemma 5.1 implies that for Φ of the form $\psi \otimes \phi$ with $\phi, \psi \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$, this limit is

$$
\left\langle\left(1 \otimes \gamma_{0}\right) j_{\varepsilon}^{p, i u}, \psi \otimes \phi\right\rangle
$$

But two distributions in $\mathbb{R}^{d} \times \mathbb{R}^{d}$ which coincide on all tensor products $\psi \otimes \phi$ are equal.

Now (ii) follows, and the lemma is proved.
We now prove Proposition 3.1, which we restate for the reader's convenience.

Proposition 3.1. Suppose that $1<p<2$. Then there exists C such that

$$
\left\|J^{p, i u}(\mathscr{L}+\varepsilon \mathscr{I})\right\|_{p} \leqslant C(1+u)^{5 / 2} e^{\phi_{p}^{* u}} \quad \forall \varepsilon \in(0,1] \quad \forall u \in \mathbb{R}^{+} .
$$

Proof. In this proof, C will denote a positive constant independent of ε in $(0,1]$. Let φ be a smooth function on $\mathbb{R}^{d} \times \mathbb{R}^{d}$ which vanishes off L, is equal to 1 in

$$
\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d}:|x-y| \leqslant \frac{1}{2(1+|x|+|y|)}\right\},
$$

and satisfies the estimate

$$
\begin{equation*}
\left|\nabla_{x} \varphi(x, y)\right|+\left|\nabla_{y} \varphi(x, y)\right| \leqslant C|x-y|^{-1} . \tag{20}
\end{equation*}
$$

By Proposition 4.3 and Proposition 4.4 we see that the integral operator with kernel $(1-\varphi) j_{\varepsilon}^{p, \text { iu }}$ (with respect to the Gauss measure) is bounded on $L^{r}(\gamma)$ for $|1 / r-1 / 2| \leqslant|1 / p-1 / 2|$, and its operator norm is bounded by

$$
C(1+u)^{2} \frac{e^{-\phi_{p} u}}{|\Gamma(i u)|} \quad \forall \varepsilon \in(0,1] \quad \forall u \in \mathbb{R}^{+} .
$$

Moreover, $J^{p, i u}(\mathscr{L}+\varepsilon \mathscr{F})$ is bounded on $L^{2}(\gamma)$ by spectral theory (Lemma 5.1), and

$$
\left\|J^{p, i u}(\mathscr{L}+\varepsilon \mathscr{I})\right\|_{2} \leqslant C \frac{e^{-\phi_{p} u}}{|\Gamma(1+i u)|} \quad \forall \varepsilon \in(0,1] \quad \forall u \in \mathbb{R}^{+} .
$$

Therefore, the integral operator with kernel $\varphi j_{\varepsilon}^{p, i u}$ (with respect to the Gauss measure) is bounded on $L^{2}(\gamma)$, and its operator norm is bounded by

$$
C e^{-\phi_{p} u}\left(\frac{(1+u)^{2}}{|\Gamma(i u)|}+\frac{1}{|\Gamma(1+i u)|}\right) \quad \forall \varepsilon \in(0,1] \quad \forall u \in \mathbb{R}^{+} .
$$

The kernel of the same integral operator with respect to Lebesgue measure is $\left(1 \otimes \gamma_{0}\right) \varphi j_{\varepsilon}^{p, i u}$. We show that this kernel satisfies standard estimates.

From Proposition 4.1(i) we deduce that for every (x, y) in L such that $x \neq y$,

$$
\gamma_{0}(y) \varphi(x, y)\left|j_{\varepsilon}^{p, i u}(x, y)\right| \leqslant C \frac{e^{-\phi_{p} u}}{|\Gamma(i u)|} e^{\left(|x|^{2}-|y|^{2}\right) / 2}|x-y|^{-d} .
$$

Since $e^{|x|^{2}-|y|^{2}}$ is uniformly bounded above for (x, y) in L, we may conclude that

$$
\gamma_{0}(y) \varphi(x, y)\left|j_{\varepsilon}^{p, i u}(x, y)\right| \leqslant C \frac{e^{-\phi_{p} u}}{\Gamma(i u)}|x-y|^{-d} .
$$

The gradient of $\left(1 \otimes \gamma_{0}\right) \varphi j_{\varepsilon}^{p, i u}$ with respect to y is the sum of three terms: $\left(1 \otimes \nabla_{y} \gamma_{0}\right) \varphi j_{\varepsilon}^{p, i u},\left(1 \otimes \gamma_{0}\right) \nabla_{y} \varphi j_{\varepsilon}^{p, i u}$ and $\left(1 \otimes \gamma_{0}\right) \varphi \nabla_{y} j_{\varepsilon}^{p, i u}$. By Proposition 4.1(ii) the absolute value of the last term is bounded by

$$
C \frac{e^{-\phi_{p} u}}{|\Gamma(i u)|}|x-y|^{-d-1} \quad \forall(x, y) \in L, \quad x \neq y .
$$

Since

$$
|y| \leqslant|x-y|^{-1} \quad \forall(x, y) \in L,
$$

we deduce from Proposition 4.1(i) that

$$
\begin{aligned}
\left|\nabla_{y} \gamma_{0}(y)\right|\left|\varphi j_{\varepsilon}^{p, i u}(x, y)\right| & =2\left|y \gamma_{0}(y)\right|\left|\varphi j_{\varepsilon}^{p, i u}(x, y)\right| \\
& \leqslant 2|x-y|^{-1}\left|\gamma_{0}(y) \varphi j_{\varepsilon}^{p, i u}(x, y)\right| \\
& \leqslant C \frac{e^{-\phi_{p} u}}{|\Gamma(i u)|}|x-y|^{-d-1} .
\end{aligned}
$$

By (20), the second term satisfies similar estimates.
A trivial modification of the above argument shows that

$$
\left|\nabla_{x}\left[\left(1 \otimes \gamma_{0}\right) \varphi j_{\varepsilon}^{p, i u}\right](x, y)\right| \leqslant C \frac{e^{-\phi_{p} u}}{|\Gamma(i u)|}|x-y|^{-d-1} .
$$

We deduce from [GMST, Theorem 3.7] that the integral operator with kernel $\varphi j_{\varepsilon}^{p, i u}$ with respect to the Gauss measure is bounded on $L^{p}(\gamma)$ and its $L^{p}(\gamma)$ operator norm is bounded by a constant times the sum of its $L^{2}(\gamma)$ operator norm and the constants appearing in the standard estimates, i.e., by

$$
C e^{-\phi_{p} u}\left(\frac{(1+u)^{2}}{|\Gamma(i u)|}+\frac{1}{|\Gamma(1+i u)|}\right) \quad \forall \varepsilon \in(0,1] \quad \forall u \in \mathbb{R}^{+} .
$$

Thus, we may conclude that

$$
\begin{aligned}
&\left\|J^{p, i u}(\mathscr{L}+\varepsilon \mathscr{I})\right\|_{p} \leqslant C e^{-\phi_{p} u}\left(\frac{(1+u)^{2}}{|\Gamma(i u)|}+\frac{1}{|\Gamma(1+i u)|}\right) \\
& \forall \varepsilon \in(0,1] \quad \forall u \in \mathbb{R}^{+} .
\end{aligned}
$$

From this and the asymptotics for the Γ-function, we deduce that

$$
\left\|J^{p, i u}(\mathscr{L}+\varepsilon \mathscr{F})\right\|_{p} \leqslant C(1+u)^{5 / 2} e^{\left(\pi / 2-\phi_{p}\right) u} \quad \forall \varepsilon \in(0,1] \quad \forall u \in \mathbb{R}^{+}
$$ as required.

ACKNOWLEDGMENT

The authors have received support from the European Commission via the TMR Network "Harmonic Analysis."

REFERENCES

[B] D. Bakry, L’hypercontractivité et son utilisation en théorie des semi-groupes, in "Lectures on Probability Theory" (D. Bakry, R. D. Gill, and S. A. Molchanov, Eds.), Lecture Notes in Mathematics, Vol. 1581, pp. 1-114, Springer-Verlag, New York/Berlin, 1994.
[C] M. Cowling, Harmonic analysis on semigroups, Ann. Math. 117 (1983), 267-283.
[CDMY] M. Cowling, I. Doust, A. McIntosh, and A. Yagi, Banach space operators with a bounded H^{∞} functional calculus, J. Austral. Math. Soc. 60 (1996), 51-89.
[ChM] M. Christ and D. Müller, On L^{p} spectral multipliers for a solvable Lie group, Geom. Funct. Anal. 6 (1996), 860-876.
[CM] M. Cowling and S. Meda, Harmonic analysis and ultracontractivity, Trans. Amer. Math. Soc. 340 (1993), 733-752.
[E] J. B. Epperson, The hypercontractive approach to exactly bounding an operator with complex Gaussian kernel, J. Funct. Anal. 87 (1989), 1-30.
[GMST] J. Garcia-Cuerva, G. Mauceri, P. Sjögren, and J. L. Torrea, Spectral multipliers for the Ornstein-Uhlenbeck semigroup, J. Anal. Math. 78 (1999), 281-305.
[H] W. Hebisch, Spectral multipliers on exponential growth solvable Lie groups, Math. Z. 229 (1998), 435-441.
[Hö] L. Hörmander, Estimates for translation invariant operators in L^{p} spaces, Acta Math. 104 (1960), 93-140.
[M] S. Meda, A general multiplier theorem, Proc. Amer. Math. Soc. 110 (1990), 639-647.
[Me] P. A. Meyer, Note sur le processus d'Ornstein-Uhlenbeck, in "Lecture Notes in Mathematics," Vol. 920, pp. 95-132, Springer-Verlag, New York/Berlin, 1982.
[N] E. Nelson, The free Markov field, J. Funct. Anal. 12 (1973), 211-227.
[P] S. Pérez, "Estimaciones punctuales y en la norma para operadores relacionados con el semigrupo de Ornstein-Uhlenbeck," Thesis, Universidad Autónoma, Madrid, 1996.
[Pi] G. Pisier, Riesz transforms: A simpler analytic proof of P. A. Meyer’s inequality, in "Lecture Notes in Mathematics," Vol. 1321, pp. 485-501, Springer-Verlag, New York/Berlin, 1988.
[RS] M. Reed and B. Simon, "Methods of Modern Mathematical Physics. Vol. II. Fourier Analysis, Self-Adjointness," Academic Press, New York, 1975.
[Sj] P. Sjögren, Operators associated with the Hermite operator-A survey, J. Fourier Anal. Appl. 3 (1997), 813-823.
[S] E. M. Stein, "Topics in Harmonic Analysis Related to the Littlewood-Paley Theory," Ann. of Math. Stud., Vol. 63, Princeton Univ. Press, Princeton, NJ, 1970.

