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ABSTRACT. We study necessary conditions on the weight w for the spline
wavelet systems to be bases in the weighted space LP(w) .

In this article we study some questions arising in the investigation of the prob-
lem of describing those classes of weight functions w for which the wavelet
systems are bases or unconditional bases in the weighted spaces LP(w) =
LP(R, w). A priori these conditions depend on the concrete system. But there
are some features which are common to all wavelet systems. Here we examine
only the case of spline wavelet systems defined on the real line R.

For a given non-negative integer m, the spline wavelets are defined in the
following way:

Let Vy={feL*(R)NnC™ (R) such that the restriction of f
to each interval ]n, n+ 1[ 1is a polynomial of degree < m},

where by C"(R) we denote the class of functions on R whose derivatives
of order r are continuous and by C~!(R) we denote the class of piecewise
continuous functions on R. Defining V. = {f(2x) : f(x) € V;} , wegeta
multiscale analysis of L2(R) in the sense of Mallat and Meyer (see [M], [D]).
Let W; be the orthogonal complement of V; in Vj,;. It is well known (see
[S], [M], [D]) that there is a function y € V] such that the functions y(x —k),
k € Z , form an orthonormal basis of W;, and consequently the system

k() =22y (@x-k):j, k€ Z}

is an orthonormal basis of L2(R). y can even be chosen so that it satisfies the
following regularity property:

(1) lwO(x) < Cor (1 +1x)~H

forall M >0 and 0L/ <m.
Here we are going to study only necessary conditions on the weight w so
that the system {y; x}; kez, for some enumeration of the indices, is a basis

Received by the editors July 23, 1992 and, in revised form, May 5, 1993.

1991 Mathematics Subject Classification. Primary 42B20, 42B25, 42C10, 46B15.

Key words and phrases. Wavelets, splines, A, weights, Schauder and unconditional bases.

The first author was supported by DGICYT Spain, under Grant PB90-187. The second author
was supported by Ministerio de Educacion, Spain, under Sabattical Grant SB90-82.

© 1994 American Mathematical Society
0002-9939/94 $1.00 + $.25 per page

433



434 J. GARCIA-CUERVA AND K. S. KAZARIAN

in the weighted space L?(w), 1 < p < oo. Sufficiency results for the system
{¥; k}j kez to be an unconditional basis in L?(w), 1 < p < oo (namely
that w € 4,, class of weights to be defined below) follow from the Calderdn-
Zygmund theory for regular singular integrals. See the paper [G-K] where the
authors develop such theory (including the corresponding results for weighted
Hardy spaces H?(w), 0 < p < 1) from simple atomic estimates.

The main part of the proof of the basisness of some classical systems in the
weighted spaces is the proof of the uniform boundedness of the partial surns
in the weighted norm, which in its turn can be derived from the boundedness
in the weighted spaces of such operators as the conjugate function, the Hilbert
transform, the Hardy-Littlewood maximal function, the square function, etc.
Of course, the work of Calder6n and Zygmund was basic to understand these
operators, but the history of the weighted estimates can be traced to the works
of Hardy and Littlewood, Babenko, Stein, Hirschman, Gaposkin, Helson and
Szegd, and many others. The combination of the Calderén-Zygmund theory
with the fundamental work of B. Muckenhoupt [Mu] led to the development of
a complete machinery to get weighted results.

The classes of weights discovered by Muckenhoupt are usually denoted by
A, . They play a basic role in Fourier Analysis, <nd they also arise naturally
in the problem we are investigating. The main properties of these classes of
weights are studied systematically in [G-R]

Studying the problem of basisness in the weighted spaces L”(w), 1 <p < oo,
one comes across a new phenomenon which does not arise for the classical
complete orthonormal systems defined on finite intervals (see [Z] ). In this article
we are going to concentrate our attention mainly on this new obstacle. The
following theorem is one of the main tools for clarifying matters.

Theorem 1. Let ® be a locally integrable function on R such that:

(2) / %?II)—N dx <oo  for someN >0
R
and
(3) /d)(t)e//j,k(t)dt=0 forevery j,keZ,
R

where y; i are the spline wavelets of order m considered above. Then on each
half-line R_ =] — 00, 0] and R, = [0, +oo, the function ® is almost every-
where equal to some polynomial of degree < m.

Proof. Let n be any nonnegative integer. Consider the segment [0, 2"], and
let f be an arbitrary continuous function defined on [0, 2"]. Denote by P
the projection operator P : L2[0, 2"] — T,, where T, is the subspace of
L2[0, 2"] consisting of the polynomials of degree < m restricted to the segment
[0, 2"]. From the fact that ¥ € V;, we immediately obtain:

(4) ’ [f(t)—P(")(f)(t)]y/j,k(t)dt=0 forevery j<-n,keZ.
0

Hence, by the orthonormality of {; }; xrez We have:

(5) Yo D @y ax) = f(x) - PU(f)(x)

j=—n k=—oc0
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where a; ; = f02 [f (&)= P™(f)(0)]w;, k(1) dt and the series in the left-hand side

_of (5) converges in L2(R). Actually this series converges in a stronger sense as
we can see with the help of the following lemma, which is a slight modification
of a result of Z. Cisielski and J. Domsta [C-D].

Lemma CD. Let P, be the projection operator P, : L*(R) — V,,. Then for
every f € C[0,2"], |Py(Nllooc £ Cml|fllcoc Where Cn > O depends only on

m; P,(f)(x) = f(x) wuniformlyon [0,2"] as v — +oo; and P,(f)(x) —
0 wuniformlyon ]—oo, -0[U]2"+6, +oo[ foreveryd >0 as v — +.

This lemma follows immediately from the results on P.7 of [C-D] (pp. 216~
217) if we observe that the functions g(2*x—-k) , k=-m+1,...,2""" -1,
where g =y *xx---*xx (m+ 1times) and y is the characteristic function of
[0, 1], form an algebraic basis of the space A% consisting of the restrictions
of the functions ¢ € ¥, to the segment [0, 2"] (see [Ch, pp. 81-87]).

In order to finish the proof of Theorem 1, we also need the following lemma:

Lemma 1. Let

(6) K(x, )= Y wix - kw(t-k).
kez
Then the following estimates hold:
™) [k olde<c,  xer;
R
(8) IK(x, )] < Cy(1+]x —t)™

where M > 1 is arbitrary and the positive numbers C and Cys are independent
of x and t.

Proof of Lemma 1. The inequality (7) follows immediately from (6) and (1).
In order to prove (8), assume that x —¢ > 1.

IK(x,t)|<C Z 1+ |x — k|)~M+D(1 4 |t — k|)~M+D,
=—00
Hence, summing first for k£ > x and writing |x — ¢#| instead of |t — k|, we
obtain:
9) > (A +lx— k)M + |2 — k|)"HMHD < C(1 + |x — o)~
k>x

The same estimate holds for the sum in & < ¢. To estimate the remaining
sum, note that the number of points k belonging to the interval ]¢, x[ is not
larger than 1 + |x —¢| and that the distance of every such point from one of
the endpoints of the interval is > |x —¢|/2. Combining these observations with
(9), we get:

IK(x, )] < Cl(1+|x - | D 1 (14 (1/2)]x — )M (1 + [x — £])]
C(l+|x—t))”

and this completes the proof of Lemma 1.

<
<

Now we proceed with the proof of Theorem 1.
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By Lemma 1 we see that the series EZ:’L oo Qv .k Wy k(x) converges uniformly
to P,(g) - P,_1(g), where g = f — P™(f), and applying inequality (8) with
M = N + 2 by Lebesgue-dominated convergence theorem, conditions (3), and
Lemma CD we obtain:

2" 2
0= A D()Lf (1) - PM(f)(1)]dt = /0 [®(2) — P™(®)(1)]f(2) dt.
Hence ®(t) = P™(®)(t) forae. t€[0, 2"].

Since the integer n > 0 is arbitrary, we obtain that ®(¢) = P(¢) a.e. on R,,
where P is a polynomial of degree < m.

We could proceed in the same way in the half-line R_. O

Let .
(x), = { X if x>0,
710  ifx<o.
We can easily derive from (1) that the functions 1, x,..., x™"!, (x)r,

(—=x)% are orthogonal to the functions y; x (j, kK € Z). To see that, take one
of the mentioned functions, denote it by ¢, and integrate it against any of the
functions (x — k) (k € Z). That this integral is 0 can be seen by truncating
the function ¢ outside a large compact set and extending it to R in such a way
that the resulting function belongs to ¥;. For this new function, the integral
against y(x —k) is, of course, 0. By (1) the difference of the two integrals will
be arbitrarily small if the compact set is chosen large enough. Finally we see
that ¢ is orthogonal to all the functions y; x (j, kK € Z) by using the following
property of the function ¢ : for every a > 0 ¢(ax) = b,¢(x), where b, > 0
depends only on a >0 and ¢.

Denote by U,, the set of those locally integrable functions which satisfy the
conditions (2) and (3) for a given m. By Theorem 1 one can easily conclude
that U, is a linear space of dimension < 2m + 2 (actually we can prove that
the dimension is m + 2, but in this article we do not use that fact).

We omit the proof of the following lemma because it is entirely similar to
that of the corresponding result in [K, pp. 38-40].

Lemma 2. Let w > 0 be a locally integrable function satisfying the same condi-
tion (2) as ® in Theorem 1, and let 1 < p < 0.

For the system {y; i}, kez of m-spline wavelets to be complete and/or mini-
mal in the space LP(w) it is necessary and sufficient that the following conditions
(1) and/or (ii) respectively are fulfilled.

(i) A function of the form w='u, where u € U,,, belongs to L?'(w) (p~!
+p'~V=1landp = ccoforp=1) ifand only if u=0 a.e.

(ii) For every j, k € Z there exists a uniquely determined function u; j €
Unm, such that & i = (v +u; )w™' € LP (w).

Definition 1. We will say that the weight function w > 0 has a singularity of
order p at +oo (resp., —oo) if for every a > 0 (resp., b <0)

+00 L b .
/ w™r1dt =400  (resp., / w”—1dt = +00).
a —00

Theorem 2. Let 1 < p < oo, and let w > 0 be a nonnegative function which
satisfies the same condition (2) as ® in Theorem 1 and also has singularities of
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order p at both +oo and —oo. Assume also that y is the m-spline wavelet con-
sidered above with m > 1, so that y € C(R). Then if the system {¥.k}j kez
Jor some enumeration of the indices constitutes a Schauder basis in the space
LP(w) , we necessarily have that w € A,.

Proof. By Theorem 1 and our assumptions on the function w it is obvious that
fwulel’ (w) forfeU, if f=0 ae.

Hence by Lemma 2 we obtain that the conjugate system of the system
{Wj.k}j kez is {¥j xw™'}; kez. The coefficients of the expansion of the func-
tion f € LP(w) with respect to the system {¥j,k}j kez are defined by the
equations

(10) a; 1(f) =/Rf(t>w,-,k(z)dr, j.kez.

By the Banach theorem we have that the partial sum operators are uniformly
bounded; hence, we conclude that there is a number C > 0 independent of f
such that

(11) @ k(DY) kllr@w) < Cllfllow) for everyj, k € Z.

From (10) and (11), using the fact that ||y||,,» = sup| [, fw dt|, where the
supremum is taken over the ball ||f]|.» < 1, we easily obtain that

1/p’
(12) (/Rl‘//j,klpwl_p d’) W kllpw < C if p>1
and
(13) “Wj’kw—l||L°°||‘V/j,k”Ll(w) <C ifp=1.

The following observation will be useful in the sequel.
Claim. For every x € R there is an integer k € Z such that y(x — k) #0.

From the contrary assumption we obtain that there exists some point xg €
[0, 1[ such that, for every function f € W, and every k€ Z, f(xo—k)=0.
It is obvious that the point yy = 1 — x( will have the same property, that is,
f(vo—k) = 0 for every k € Z and every f € W,. But there are known
constructions of functions which belong to W, and have no such property, for
example, the compactly supported splines constructed in [Ch-W]. Hence, our
claim is true. '

From the definition of the function y, it is obvious that there is an interval
In, n+1[, n € Z, such that on each half of it, y is a nontrivial polynomial.
Without loss of generality we can assume that y has only finitely many zeros
{xi}—; (0 < s < 2m) on the segment [0, 1]. According to our claim, for every
i (1 <i<s<2m),onecan find an integer k; such that y(x; —k;) # 0. Hence,
there is a positive number a > 0 such that we can cover the segment [0, 1] with
opensets A;, 0<i<s, wherefor 1 <i<s, A; isan open interval centered
around x; on which |y(x —k;)| >a and Ag={x € 1-1, 2[: |y(x)| > a},
obviously a finite union of open intervals. Consequently there exists some € > 0
such that every open interval of length less than ¢ which contains some point
of [0, 1] is entirely contained in one of the sets {Ai};_o- Hence, by (12) or
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(13), using only translations for j = 0, one can deduce that there is a constant
C > 0 such that for every interval 7 C R, whose length satisfies § < |I| <€,
we have

1 1 L\ .
14 ——/wdt (——/w p—ldt) <C if p>1
(14 m S, 4\, P
or
(15) |71|/wdt||w-1||m,)sc if p=1.
I

For an arbitrary interval 7 ¢ R we find an integer j € Z such that 2/~ le <
|I| < 2/€. Then dilating by 2/ and translating the sets {A;};_, we can cover
the interval I by one of the resulting sets. Hence, using conditions (12) or (13)
for j and respectively k£, we immediately get conditions (14) or (15) with the
same C > 0 on the right-hand side. O

If in Theorem 2 we do not assume that the weight function w has singular-
ities of order p at +oco, then we get more complicated necessary conditions
which probably are also sufficient. These questions will be discussed in a forth-
coming publication. Here we state the necessary and sufficient conditions for
the Haar wavelet system to be an unconditional basis in the weighted space
LP(w), 1 < p < co. The proof of the following theorem can be obtained in the
same way as the proof of the corresponding result for the Haar system in the
classical setting of the segment [0, 1], which is given in [K2]. Denote

1 for0<x<1i,
yOx)=4 -1  forl<x<l,
0 otherwise.

Theorem 3. Let 1 < p < oo, andlet w > 0 be a weight function on R. Consider
the system ¥ = {u/}?}( (x) = yO(2/x — k)}; kez . Then the following conditions
are equivalent for w :

(a) The system ¥, for some enumeration of the indices, is a Schauder basis
of the space LP(w).

(b) ¥ is an unconditional basis of the space LP(w).

(c) On each of the halflines R, and R_, the function w satisfies this property:
Either w belongs to the class dyadic A, on the halfline or else there is a sequence
of dyadic intervals {A;}}>°_, contained in the halfline such that |A;| = 277,
A CA_y, and

1
|Ail Ja,

p—1
(16) w(t)dt L w(t)~ 71 dt <C
|Ail Jac

(where AS is the complement of A; with respect to the corresponding halfline),
and for every dyadic interval not belonging to the collection {A;}/2>°  condition

(14) holds with the same constant C > 0 appearing in (16), which is, of course,
independent of the particular interval.
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