- 1) Probar que si μ es una medida en el espacio X, y $f: X \to [0, \infty)$ es medible, entonces para todo $1 \le p < \infty$, $\int_X f^p d\mu = \int_0^\infty p t^{p-1} \mu \{f \ge t\} dt$.
- 2) Prove: if $X = \{X_t\}_{t \in T}$ is uniformly integrable, then X is bounded in L^1 .
- 3) Prove: if $X = \{X_t\}_{t \in T}$ is bounded in L^p for some p > 1, then X is uniformly integrable.
- **4)** Prove or disprove: if $X = \{X_n\}_{n\geq 0}$ is a martingale bounded in L^{∞} and X_{∞} is its pointwise almost sure limit, then $\lim_n \|X_{\infty} X_n\|_{\infty} = 0$.
- 5) The mean and any median of a r.v. cannot be very far apart. Prove that their distance is bounded by one standard deviation. HHH: use Jensen, use a minimisation property, use Jensen.