PROCESOS ESTOCÁSTICOS Due on Monday 20th.

1) Let $\Omega := \{0, 1\}$ with the uniform probability, and let $Y : \Omega \to \Omega$ be the identity, so Y is a Bernoulli trial. Let $X_t := tY$, and let $\{\mathcal{A}_t\}_{t \in [0,\infty)}$ be the natural filtration of the process $\{X_t\}_{t \in [0,\infty)}$. Determine whether $\mathcal{A}_0 = \mathcal{A}_0^+$.

2) In a Galton-Watson branching process, let X_n denote the number of individuals belonging to the n-th generation, and let μ denote the expected number of offsprings of any given individual. Determine whether the process $\{X_n/\mu^n\}_{n\geq 0}$ is a martingale with respect to the natural filtration.

3) The mean and any median of a r.v. cannot be very far apart. Prove that their distance is bounded by one standard deviation. HHH: use Jensen, use a minimisation property, use Jensen.