Para el Miercoles 15/4/2015. Se pueden entregar los problemas individualmente o en grupo. Hacerlo en grupo no penaliza.

Salvo afirmación expresa en sentido contrario se asume siempre que estamos trabajando en un espacio de probabilidad (Ω, \mathcal{A}, P) , que $\mathcal{B} \subset \mathcal{A}$ es una sub- σ -álgebra, que las funciones son medibles, etc..

Recordatorio: si $0 , <math>||f||_p := (\int |f|^p)^{1/p}$, mientras que $||f||_{\infty}$ denota el supremo esencial de |f|.

- 1) Decidir razonadamente si la independencia de los sucesos A y B es equivalente a la independencia de A y B^c .
- 2) Hallar la relación entre la independencia de los sucesos A y B, y la independencia de las variables aleatorias $\mathbf{1}_A$ y $\mathbf{1}_B$.
- 3) Probar que si $X_n \to X$ en L^p , donde $0 , entonces <math>X_n \to X$ en probabilidad.
- **4)** Probar que si $X_n \to X$ en probabilidad, entonces $X_n \to X$ en distribución. Decimos que $X_n \to X$ en distribución si para todo punto x de continuidad de F_X , $\lim_n F_{X_n}(x) = F_X(x)$.
- 5) Dar un ejemplo de dos variables aleatorias incorrelacionadas pero no independientes. Sugerencia: Considerar dos v. a. no triviales con soportes disjuntos y media 0.
- 6) Los límites superior e inferior de una sucesión de conjuntos $\{A_n\}_{n=1}^{\infty}$ se definen respectivamente como $\limsup_n A_n := \bigcap_{n\geq 1} \bigcup_{k\geq n} A_k$ y $\liminf_n A_n := \bigcup_{n\geq 1} \bigcap_{k\geq n} A_k$. Determinar que conjunto es más grande. Hallar la relación entre $\limsup_n A_n$ y $\limsup_n \mathbf{1}_{A_n}$. Hacer lo mismo con los límites inferiores.
- 7) Dada la probabilidad uniforme en [0,1), para $n \geq 1$ y $0 \leq k < n$ definimos $X_{n,k} := \mathbf{1}_{[k/n,(k+1)/n)}$. Con el orden del diccionario, los pares (n,k) están ordenados linealmente. Hallar $\limsup_{(n,k)\to\infty} X_{n,k}$ y $\liminf_{(n,k)\to\infty} X_{n,k}$. Hallar $P(\limsup_{(n,k)\to\infty} X_{n,k} > 1/2\}$). Decidir razonadamente si la sucesión $\{X_{n,k}\}_{(n,k)\geq (1,0)}$ converge en probabilidad, en L^p , 0 , y en casi todo punto.
- 8) Probar que si $\{X_n\}_{n=1}^{\infty}$ converge c. s. a X, entonces para todo $\epsilon > 0$, $P(\limsup_n \{|X_n X| > \epsilon\}) = 0$.
- 9) Probar que si para todo $\epsilon > 0$, $P(\limsup_n \{|X_n X| > \epsilon\}) = 0$, entonces $\{X_n\}_{n=1}^{\infty}$ converge casi seguro a X. Sugerencia: Tomar $\epsilon = 1/k$, k natural, y usar el hecho de que la unión numerable de conjuntos de probabilidad cero tiene probabilidad cero.
- 10) Probar que la convergencia casi seguro implica la convergencia en probabilidad. Sugerencia: Usar alguno de los problemas anteriores.