Para el Lunes 10/3/2014. Se pueden entregar los problemas individualmente o en grupo. Hacerlo en grupo no penaliza.

Salvo afirmación expresa en sentido contrario se asume siempre que estamos trabajando en un espacio de probabilidad (Ω, \mathcal{A}, P) , que $\mathcal{B} \subset \mathcal{A}$ es una sub- σ -álgebra, que las funciones son medibles, etc..

Recordatorio: si $0 , <math>||f||_p := (\int |f|^p)^{1/p}$, mientras que $||f||_{\infty}$ denota el supremo esencial de |f|.

- 1) Demostrar que si $X := \{X_t\}_{t \in T}$ es una colección uniformemente integrable de variables aleatorias, entonces $\|X\|_1 := \sup_{t \in T} \|X_t\|_1 < \infty$.
- 2) Sea $Y \in L^1$. Dada la filtración $\{A_n\}_{n=0}^{\infty}$, definimos $X_n := E(Y|A_n)$. Probar que $X := \{X_n\}_{n=0}^{\infty}$ es una martingala uniformemente integrable, adaptada a $\{A_n\}_{n=0}^{\infty}$. Decidir razonadamente a qué converge.
- 3) Probar que si $X := \{X_n\}_{n=0}^{\infty}$ es una martingala adaptada a la filtración $\{\mathcal{A}_n\}_{n=0}^{\infty}$, entonces para todo $n \geq 0$ tenemos que $\sigma(X_0, \ldots, X_n) \subset \mathcal{A}_n$, y X es una martingala adaptada a $\sigma(X_0, \ldots, X_n)$. Aquí $\sigma(X_0, \ldots, X_n)$ denota la σ -ágebra más pequeña que hace que todas las funciones X_0, \ldots, X_n sean medibles.
- **4)** Probar que si $X := \{X_n\}_{n=0}^{\infty}$ es una submartingala, y $0 < r \le s \le \infty$, entonces $||X||_r \le ||X||_s$, donde $||X||_p := \sup_{n \in \mathbb{N}} ||X_n||_p$.