LÓGICA Hoja 8

Para entregar el 11 de Diciembre.

1) Dada la MT con alfabeto $\{B, 1, 2\}$, definida por $\{(q_0 \ 1 \ 2 \ q_0), (q_0 \ 2 \ D \ q_0), (q_0 \ B \ D \ q_0)\}$, determinar su output cuando el input es 1 1 $B \ B \ 1 \ B \ 2 \ B$ (el resto de la cinta son B's). Describir en general que hace esta MT, y si se detiene el algún momento o no.

2) Definimos la función $Pair: \mathbb{N}^2 \to \mathbb{N}$ (ver p. 85 del libro) como

$$Pair(x,y) := \frac{(x+y)(x+y+1)}{2} + x.$$

Probar que Pair es bijectiva. Nótese que dado el valor Pair(x,y), x e y pueden hallarse algorítmicamente mediante minimización acotada.

Los siguientes problemas proporcionan una "construcción" moderadamente explicita (Zorn) de modelos no estándar de los naturales. Consideramos probabilidades P finitamente aditivas, que sólo toman los valores $0 \ y \ 1$.

- 3) Sea P una probabilidad finitamente aditiva, definida en un álgebra de subconjuntos de \mathbb{N} , con valores en $\{0,1\}$. Los conjuntos con probabilidad 1 forman un *filtro*. Definir *filtro* sin utilizar probabilidades, y probar que las dos definiciones coinciden.
- 4) Probar que todo filtro de subconjuntos de un conjunto S, puede extenderse a un ultrafiltro (a un filtro maximal con respecto a la inclusión) en S. Sugerencia: Zorn.
- 5) Probar que si U es un ultrafiltro en S, para todo $A \subset S$, o $A \in U$ o $A^c \in U$.
- **6)** Probar que si U es un ultrafiltro en S, y $A_1 \cup \cdots \cup A_n = S$, entonces existe una $j \in \{1, \ldots, n\}$ tal que $A_j \in U$.
- 7) Sea $\prod_{n\in\mathbb{N}} X_n$ un producto cartesiano de conjuntos no vacios, y sea U un ultrafiltro en \mathbb{N} . Para $x,y\in\prod_{n\in\mathbb{N}} X_n$, definimos $x\sim y$ si x e y son iguales casi seguro, es decir si $\{n\in\mathbb{N}: x_n=y_n\}\in U$. Probar que \sim es una relación de equivalencia. Al conjunto $\mathcal{U}:=\prod_{n\in\mathbb{N}} X_n/\sim$ se le denomina ultraproducto.
- 8) Tomando $X_n = \mathbb{N}$ para todo n en la construcción anterior, probar que \mathcal{U} es un modelo de los axiomas de Peano. Sugerencia: Buscar en la literatura el Teorema Fundamental de los Ultraproductos, de Łoś, e invocarlo.
- 9) Probar que si el ultrafiltro U contiene a todos los subconjuntos de \mathbb{N} con complemento finito, entonces existe una $c \in \mathcal{U}$ tal que para todo $n \in \mathbb{N}, c > n$. Sugerencia: tomar $c_n = n$.