Ingeniería Informática

ÁLGEBRA

Hoja 2: Relaciones de equivalencia y de orden

- 1. Sea $3\mathbb{Z} = \{3k \mid k \in \mathbb{Z}\}$. Considerar la relación sobre \mathbb{Z} definida por: $m\mathcal{R}n \iff m-n \in 3\mathbb{Z}$. Demostrar que es una relación de equivalencia. Describir las clases de equivalencia y el conjunto cociente.
- **2.** Sea $A = \{1, 2, 3, 5, 8, 13, 21, 34\}$ y la relación $a \mathcal{R} b \iff 3$ divide a $b^2 a^2$. Comprobar que es una relación de equivalencia y hallar las clases.
- **3.** Fijado un entero positivo n, definimos $n\mathbb{Z} = \{nk \mid k \in \mathbb{Z}\}$. Definimos $x\mathcal{R}y \iff x-y \in n\mathbb{Z}$. Demostrar que es una relación de equivalencia. Describir las clases de equivalencia y el conjunto cociente.
- **4.** Considerar la relación sobre $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ definida por: $(m, n)\mathcal{R}(m', n') \iff m \cdot n' = m' \cdot n$. Probar que es una relación de equivalencia. ¿Puedes describir las clases de equivalencia y el conjunto cociente?
- **5.** Consideramos ahora la relación sobre $\mathbb{Z} \times \mathbb{Z}$ definida por: $(m, n)\mathcal{R}(m', n') \iff m \cdot n' = m' \cdot n$. ¿Es esta relación una relación de equivalencia?
- **6.** En el conjunto \mathbb{R} se define la siguiente relación: $x\mathcal{R}y \iff x-y \in \mathbb{Z}$. Demuestra que es de equivalencia y halla el conjunto cociente.
- 7. En el conjunto \mathbb{R} se define la siguiente relación: $x\mathcal{R}y \iff \lfloor x \rfloor = \lfloor y \rfloor$, donde $\lfloor z \rfloor = \max\{m \in \mathbb{Z} : m \leq z\}$ (la parte entera de z). Demuestra que \mathcal{R} es una relación de equivalencia y halla el conjunto cociente.
- 8. En el conjunto de rectas del plano \mathbb{R}^2 se considera la siguiente relación:

$$r_1 \mathcal{R} r_2$$
 si y solo si $r_1 = r_2$ ó r_1 es paralela a r_2 .

Comprueba que es una relación de equivalencia. Halla la clase de equivalencia de la recta 2x + 3y - 1 = 0. Describe el conjunto cociente hallando un conjunto X de números y una biyección $g: \mathbb{R}^2/R \to X$.

- 9. Sea $f: \mathbb{R} \to \mathbb{R}: x \mapsto f(x) = x^2$. Se considera la siguiente relación en $\mathbb{R}: x\mathcal{R}y \iff f(x) = f(y)$. Demostrar que \mathcal{R} es una relación de equivalencia. Obtener el conjunto cociente.
- 10. Sean X e Y conjuntos y $f: X \to Y$ una función. Se considera la siguiente relación en X:

$$x\mathcal{R}y \iff f(x) = f(y).$$

Demuestra que \mathcal{R} es una relación de equivalencia en X. Obtén el conjunto cociente. ¿Qué es el conjunto cociente si f es una biyección?

- 11. Sea A un conjunto y B un subconjunto no vacío de A. En el conjunto $\mathcal{P}(A)$ se considera las siguientes relaciones:
 - a) $X\mathcal{R}_1Y \iff X \cap B = Y \cap B$.
 - b) $X\mathcal{R}_2Y \iff X \cup B = Y \cup B$.
 - c) $X\mathcal{R}_3Y \iff X \setminus B = Y \setminus B$.

Estudia si son relaciones de equivalencia y, en caso afirmativo, describe los conjuntos cocientes.

12. Dado un conjunto no vacío A, definimos \leq en su conjunto de partes $\mathcal{P}(A)$ mediante la inclusión: $A \leq B$ si (y sólo si) $A \subset B$. Probar que \leq es un orden parcial. Decidir razonadamente en qué casos define un orden

total. Decidir razonadamente si la relación R definida mediante inclusión reversa (de modo que A R B si y sólo si $B \subset A$) define un orden parcial en $\mathcal{P}(A)$, y en caso de respuesta afirmativa, determinar en qué casos R es un orden total.

- **13.** Sea F el conjunto de todas las funciones $f: \mathbb{R} \to \mathbb{R}$, con la relación $f \leq g$ si (y sólo si) para todo $x \in \mathbb{R}$, $f(x) \leq g(x)$. Probar que \leq define un orden parcial en F, que no es total.
- **14.** Sea $\mathbb{N}[t]$ el conjunto de los polinómios en t con coeficientes en los numeros naturales, es decir, todas las funciones $p: \mathbb{R} \to \mathbb{R}$ de la forma $p(t) = a_0 + a_1 t + \cdots + a_n t^n$, donde $a_0 \dots, a_n \in \mathbb{N}$.
- a) Identificando p(t) con la (n+1)-tupla (a_n, \ldots, a_0) y usando el orden del diccionario en las correspondientes n-tuplas, $n \geq 0$, probar que la relación \leq así definida nos proporciona un orden total o lineal en $\mathbb{N}[t]$. Comentario: para comparar polinomios de distinto grado, digamos k < n, escribimos los coeficientes mayores que k como ceros, hasta completar la (n+1)-tupla.
- b) Dados $p, q \in \mathbb{N}[t]$, decimos que $p \leq q$ si existe una constante c tal que para todo $t \geq c$, $p(t) \leq q(t)$. Probar que la relación \leq así definida nos proporciona un orden total o lineal en $\mathbb{N}[t]$. Sugerencia: una posibilidad es considerar la relación entre los ordenes definidos en los apartados (a) y (b).