Ingeniería Informática

ALGEBRA

Hoja 1: Conjuntos y funciones

1. Dar una descripción alternativa de los siguientes conjuntos:

 $\begin{array}{ll} a) \ \{x \in \mathbb{R} \mid x^2 - 5x + 6 = 0\} \\ c) \ \{x \in \mathbb{R} \mid x < 3\} \\ e) \ \{x \in \mathbb{N} \mid \exists y \in \mathbb{N} \text{ tal que } y + 1 < x\} \\ g) \ \{x \in \mathbb{R} \mid \exists y \in \mathbb{R} \text{ tal que } x = y^2\} \end{array} \qquad \begin{array}{ll} b) \ \{x \in \mathbb{Z} \mid x^2 - 5x + 6 = 0\} \\ d) \ \{x \in \mathbb{N} \mid x < 3\} \\ f) \ \{x \in \mathbb{R} \mid x^2 + 2 = 0\} \\ h) \ \{x \in \mathbb{R} \mid \exists y \in \mathbb{N} \text{ tal que } y < 5 \text{ y } x = y^2\}. \end{array}$

Donde $\mathbb{N} = \{0, 1, 2, 3, \dots\}.$

2. Sean $S = \{a, b, c, d\}$, $T = \{1, 2, 3\}$ y $U = \{b, 2\}$. ¿Cuáles de las siguientes expresiones son correctas?

 $(1) \quad \{a\} \in S$

(2) $a \in S$

 $(3) \quad \{a,c\} \subseteq S$

 $(4) \quad \varnothing \in S$

(5) $\{a\} \subseteq \mathcal{P}(S)$

(6) $\{\{a\}, \{a,b\}\} \in \mathcal{P}(S)$

(7) $\{a, c, 2, 3\} \subseteq S \cup T$ (8) $U \subseteq S \cup T$

(9) $b \in S \cap U$

 $(10) \quad \{b\} \subseteq S \cap U$

 $(11) \{1,3\} \in T$

(12) $\{1,3\} \subset T$

(13) $\{1,3\} \in \mathcal{P}(T)$ (14) $\{\emptyset\} \in \mathcal{P}(S)$ (15) $\emptyset \in \mathcal{P}(S)$

 $(16) \quad \varnothing \subseteq \mathcal{P}(S)$

 $(17) \quad \{\emptyset\} \subseteq \mathcal{P}(S)$

3. Sean $S = \{1, 2, 3, 4, 5\}, T = \{3, 4, 5, 7, 8, 9\}, U = \{1, 2, 3, 4, 9\}, V = \{2, 4, 6, 8\}$ subconjuntos del conjunto N (de números naturales). Calcular:

(a) $S \cap U$

(b) $(S \cap T) \cup U$

(c) $(S \cup U) \cap V$ (d) $(S \cup V) \setminus U$ (e) $(U \cup V \cup T) \setminus S$

(f) $(S \cup V) \setminus (T \cap U)$.

4. Demuestra las siguientes igualdades:

(a) $(A \cup B)^c = A^c \cap B^c$

(b) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$

(c) $(A \cup B) \cap A = A$

(d) $(A \cap B) \cup A = A$

5. Calcula el conjunto de partes del conjunto vacío, es decir, calcula $\mathcal{P}(\varnothing)$.

6. Decidir razonadamente si son verdaderas o falsas las siguientes afirmaciones:

(1) $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$ (2) $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$

7. Dados los subconjuntos S y V del ejercicio 3, indica cuáles son los elementos del conjunto $S \times V$ y observa que es un subconjunto de $\mathbb{N} \times \mathbb{N}$.

8. Comparar los siguientes conjuntos, siendo $S = \{a, b\}, T = \{a\}, V = \{1, 2\}$ y $U = \{1\}$:

(a) $(S \times V) \setminus (T \times U)$

(b) $(S \setminus T) \times (V \setminus U)$.

9. Decir si es verdadero o falso que para conjuntos A, B y C cualesquiera se tiene que,

 $(i) \quad A \setminus (B \cup C) = (A \setminus B) \cup (A \setminus C)$

 $(ii) \quad |A \cup B| = |A \setminus B| + |B \setminus A| + |A \cap B|$

 $(iii) \quad A \times (B \triangle C) = (A \times B) \triangle (A \times C)$

(iv) $\mathcal{P}(A \setminus B) = \mathcal{P}(A) \setminus \mathcal{P}(B)$

(v) $A \subseteq B \iff \mathcal{P}(A) \subseteq \mathcal{P}(B)$

(vi) $A \setminus B = A \setminus C \Longrightarrow B = C$,

donde $A \vee B$ son conjuntos finitos en el apartado ii) $\vee |D|$ denota el número de elementos de D.

10. ¿Cuáles de las siguientes funciones son inyectivas?, ¿cuáles suprayectivas?, ¿hay alguna biyectiva? Empieza asegurándote de que efectivamente son funciones.

(i)
$$f: \mathbb{N} \to \mathbb{N}, \ f(m) = m+2$$
 (ii) $g: \mathbb{N} \to \mathbb{N}, \ g(n) = n(n+1)$

(i)
$$f: \mathbb{N} \to \mathbb{N}, \ f(m) = m+2$$
 (ii) $g: \mathbb{N} \to \mathbb{N}, \ g(n) = n(n+1)$ (iii) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \sqrt{x^2+1}$ (iv) $f: \mathbb{Q} \to \mathbb{Q}, \ f(x) = x^2+4x$

$$(v) g: \mathbb{N} \to \mathbb{Q}, \ g(n) = n/(n+1) \quad (vi) g: \mathbb{Z} \to \mathbb{N}, \ g(n) = n^2$$

11. Se consideran las siguientes funciones:

$$i)$$
 $f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x) = x^3 + 1$

$$ii)$$
 $f: \mathbb{Z} \longrightarrow \mathbb{Z}, \quad f(n) = 2n + 4$

$$iii)$$
 $f: \mathbb{Q} \longrightarrow \mathbb{Q}$, $f(x) = 2x + 4$

Halla la imagen: Im(f), y $f^{-1}(0)$ en cada uno de los casos.

- **12.** Sea $a \in \mathbb{R}$ no nulo. Comprobar que $f : \mathbb{R} \setminus \{a\} \longrightarrow \mathbb{R} \setminus \{a\}$, dada por $f(x) = \frac{ax}{x-a}$ es biyectiva y calcular su inversa.
- 13. Decidir de qué tipo son las funciones $f, g: \mathbb{Z} \longrightarrow \mathbb{Z}$ definidas por

$$f(n) = \begin{cases} n+1 & \text{si } n \text{ es par,} \\ 2n & \text{si } n \text{ es impar} \end{cases} \quad g(n) = \begin{cases} n/2 & \text{si } n \text{ es par,} \\ n+1 & \text{si } n \text{ es impar.} \end{cases}$$

14. Sea $f: \mathbb{R} \to \mathbb{R}$ dada por

$$f(x) = \begin{cases} x^3 & \text{si } x < 0, \\ x - 27 & \text{si } x \ge 0. \end{cases}$$

Comprobar si f es inyectiva y/o sobreyectiva. Calcular $f \circ f$.

15. Dar ejemplos de funciones $f: \mathbb{N} \to \mathbb{N}$ de cada uno de los siguientes tipos:

- a) Inyectiva pero no suprayectiva.
- b) Suprayectiva pero no invectiva.
- c) Biyectiva.
- d) Ni inyectiva ni suprayectiva.
- **16.** Si $f: \mathcal{U} \longrightarrow \mathcal{U}$ y $A, B \subseteq \mathcal{U}$, decidir si son verdaderas o falsas las fórmulas

$$i)$$
 $f(A) \cap f(B) = f(A \cap B)$

$$i) \ f(A) \cap f(B) = f(A \cap B)$$
 $ii) \ f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B)$

iii)
$$f^{-1}(f(A)) = A$$

$$iii) f^{-1}(f(A)) = A$$
 $iv) f^{-1}(A^c) = (f^{-1}(A))^c.$

17. Sea
$$f: \mathbb{R} \to \mathbb{R}$$
 la aplicación $f(x) = x^3 - 3x$. Calcular $f((0,2)), f([-1,3)), f^{-1}([-1,1])$ y $f^{-1}((0,\infty))$.

18. Si $f:A\longrightarrow B$ y $g:B\longrightarrow C$ son biyectivas, demostrar que $g\circ f$ también lo es y que

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

- 19. Indicar cuántas funciones biyectivas se pueden definir del conjunto $\{a,b,c\}$ en sí mismo.
- **20.** Sea A finito, y |A| = n. Indicar cuántas funciones biyectivas se pueden definir de A en A.